
 1

A Generic Menu-Based Interface for
Web Querying

By

Suhair Mohammad Al-Haj Hassan

Faculty of Information Technology

Middle East University for Graduate Studies

Supervisors:

Dr. Musbah Aqel

Prof. Munib Qutaishat

A thesis submitted in partial fulfillment
of the requirements for the degree of Master of Science

in Computer Information Systems

Amman, Jordan
June, 2008

 I

 II

 III

 IV

DEDICATION

To the greatest person in the whole word, to my father, who taught me

how to navigate life’s many roads, and to my beloved mother for their love,

encouragement, patience and big support. Without them nothing of this

would have been possible.

To my dear brothers Osama, Amjad and Ammar, and to my sweet sister

Nisreen for their love and encouragement.

To my father, mother, brothers, and sisters in law for their kindness and

encouragement.

To my best friend Ayah and her husband, for their kindness and support.

And specially, to the Love of my life and my soul mate, my precious

Fiancé Ahmad, for his love, support, encouragement, and being always

there for me.

You all make the journey worthwhile… Thank you

 V

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my supervisors Dr.

Musbah Aqel and Professor Munib Qutaishat for their guidance, support and

motivation through out my research.

My appreciation is also given to all of the Information Technology

faculty members at the Middle East University for Graduate Studies and I

am particularly grateful to Professor Mohammad Al-Haj Hassan, for helping

and encouraging my efforts during the thesis work.

Finally, I would like to take a moment to specially thank my Fiancé

Ahmad Samhan, for his immense patience, emotional support and

encouragement during my research.

 VI

CONTENTS

LIST OF FIGURES.. IX

LIST OF TABLES... XII

ABSTRACT.. XIII

ABSTRACT IN ARABIC...XIV

CHAPTER 1: INTRODUCTION..1

1.1 AN OVERVIEW OF WEB QUERYING………………………………….…..………………1

1.2 PROBLEM DEFINITION…………………………………………………………………...…2

1.3 THESIS OBJECTIVES………..………………………………..………………..…………… 2

1.4 REQUIREMENTS………………………………………………………………………..……3

1.4.1 TOAD FOR ORACLE VERSION 9.0…………………………………………………..3

 1.4.2 ORACLE FORMS BUILDER 10g AND ORACLE DATABASE 10g……….………..4

 1.4.3 MICROSOFT EXCEL……………………………………………………………….…..6

1.5 SIGNIFICANCE………………………………………...…………………………………..…7

1.6 RELATED WORK……………………………………...…………………………………...…8

1.7 THESIS CONTRIBUTION……………………………..……………………..………...……14

1.8 METHODOLOGY.……………………………………...……………………………..…..…14

1.9 THESIS ORGANIZATION………………………………………………………..…………15

CHAPTER 2: WEB INFORMATION MAPPING AND CONVERSION T OOLS AND

 METHODOLOGIES……………………………………………………………………………16

2.1 SITEMAPS……………………………………………………………………………………16

 2.1.1 SITEMAPS AND THEIR BENEFITS…………………….…………………...………16

 2.1.2 SITEMAPS FORMATS………………………………………………………….….…17

2.2 OVERVIEW OF WEB MAPPING AND CONVERSION TOOLS AND PHASES………...19

 2.2.1 XML:WRENCH………………………………………………………………..………19

 2.2.1.1 EDITING FILES AND CHANGING THEIR TYPES………………….........…21

 2.2.1.2 CHECKING XML FILES………………………………………..…………...…21

 2.2.1.3 CONVERTING HTML FILES TO XML………………………..…………...…22

 2.2.2 OXYGEN XML EDITOR…………………………………….…………..……………24

 VII

 2.2.2.1 INTELLIGENT XML EDITING……………………..…….….………………..25

 2.2.2.2 XML SCHEMA EDITOR……………………………………………..……...…26

 2.2.2.3 XML AND RELATONAL DATABASES…………………………….….…….28

 2.2.3 ALTOVA XMLSPY 2008……………………………………………………...………31

 2.2.3.1 ALTOVA XMLSPY OVERVIEW AND MAIN FEATURES……………….…31

 2.2.3.2 QUERYING A DATABASE BY XMLSPY…..…………………..….…………33

 2.2.3.3 GENERATING DB STRUCTURE FROM XML SCHEMA………...…………34

 2.2.3.4 CREATING DB TABLES WITH RELATIONSHIPS……………….…………37

 2.2.3.5 EXPORTING XML DATA TO A DATABASE…………………….….………38

 2.2.4 OTHER CONVERSION AND MAPPING TOOLS…………………….……………..40

 2.2.4.1 ALTOVA MAPFORCE 2008………………………………………………..….40

 2.2.4.2 ALTOVA STYLEVISION 2008……………………………………………...…42

 2.2.4.3 STYLUS STUDIO2008 XML ENTERPRISE SUITE……………...…….…..…43

 2.2.4.4 ALLORA FROM HIT SOFTWARE……………………………………….....…43

CHAPTER 3: CONVERTING WEB DATA TO RELATIONAL DATABA SES.....................…46

3.1 SELECTING A SPECIFIC DOMAIN………………………………………………………..47

3.2 IMPORTING WEB DATA INTO MICROSOFT EXCEL WITH WEB QUERIES…….…..48

3.2.1 CREATING THE WEB QUERY.…………………………….………………………..48

3.2.2 CUSTOMIZING THE WEB QUERY…………………………………………………52

3.3 MODIFING AND REFORMATTING EXCEL TABLES………...…………………………54

3.4 IMPORTING DATA FROM MICROSOFT EXCELTO ORACLE DATABASE………..…66

CHAPTER 4: GENERIC MENU-BASED INTERFACE (GMBI) DEVE LOPMENT… …….....75

4.1 OVERVIEW OF THE DATABASE TABLES………….……………………………………75

4.2 ANALYSIS AND DESIGN OF GMBI……………………...……………………….………80

4.3 IMPLEMENTATION OF GMBI……………………………………………………..………85

4.4 TESTING, EVALUATION AND MAINTENANCE OF GMBI………………….…………89

CHAPTER 5: DISCUSSION AND RESULTS……………………...…………………………...…96

5.1 EXPERIMENTAL RESULTS ACCOMPLISHED AFTER TESTING AND VALIDATION

PHASE…………………………………………………………………………………………….96

 VIII

5.2 BENEFITS AND ADVANTAGES OF GMBI COMPARED TO OTHER SEARCH

INTERFACES…………………………………………………………………………………….96

CHAPTER 6: CONCLUSIONS AND FUTURE WORK……………………...… ………………101

6.1 SUMMARY………………………………………………………………….………………101

6.2 CONCLUSIONS…………………………………….………………………………………101

6.3 FUTURE WORK.………………………………………………………….……………..…102

REFERENCES…………………………………………………………………………………...…104

APPENDICES........... .. 109

APPENDIX A: GLOSSARY OF ACRONYMS........... .. 109

APPENDIX B: THE SOFTWARE LIFE CYCLE…………………………………………………...111

APPENDIX C: THE CODE OF DEVELOPING GMBI…………………………………………….114

 IX

LIST OF FIGURES

Figure 1.1: Oracle Forms Builder Object Navigator………………………………...…...6

Figure 1.2: Excel Sheet Sample…………………………………………………………..7

Figure 1.3: The Architecture of AMID……………………….…………………..………8

Figure 1.4: The WebSQL User-Interface……………………………….……………..…9

Figure 1.5: The Architecture of the WebSQL System………………………….....……10

Figure 1.6: The WebSQL Applet…………………………………………….…………11

Figure 1.7: Architecture of the Niagara System……………………………………...…12

Figure 1.8: The Schema Extraction Model……………………………………………...14

Figure 2.1: ACM Sitemap………………………………………….……………………17

Figure 2.2: XML:Wrench Main Interface………………………….……………………20

Figure 2.3: Convert HTML to XML Dialog Box………………………………….……23

Figure 2.4: <oXygen/> XML Editor Main Interface…………..……………………..…25

Figure 2.5: Lists of Possible Elements in Intelligent XML Editing……………….……26

Figure 2.6: Support for Learning Words in Intelligent XML Editing………………..…26

Figure 2.7: The Visual Schema Diagram Full Model View…………………….………28

Figure 2.8: The XML Database Perspective……………………………………………29

Figure 2.9: The Database Browser…………………………………………………...…29

Figure 2.10: Editing Table Contents……………………………………………….……30

Figure 2.11: Trang Converter Dialog Box………………………………………………31

Figure 2.12: Altova XMLSpy Schema/WSDL View………………………………...…32

Figure 2.13: Database Query Window in XMLSpy………………………………….…33

Figure 2.14: Editing Database Data in Database Query Window………………………34

Figure 2.15: Generate DTD/Schema Dialog Box…………………………………….…35

Figure 2.16: Connect to a Data Source Dialog Box…………………………….………36

Figure 2.17: Create DB Structure from XML Schema Dialog Box……………….……37

Figure 2.18: Create DB Tables with Relationships…………………………………..…38

Figure 2.19: Export XML Data to Database Dialog Box…………………………….…39

Figure 2.20: Steps of Converting Web Content to RDB Using Mapping Tools……..…40

 X

Figure 2.21: Altova MapForce Main Interface…………………………………….…....41

Figure 2.22: Allora XML Database Server Software…………………………..…….…45

Figure 3.1: The Architecture of GMBI……….……………………...…………….……46

Figure 3.2: Extracting Web Data and Converting it to RDB Process……..…….………47

Figure 3.3: New Web Query Window……………………………………………..……49

Figure 3.4: The Web page we want to extract data from…………………..……………49

Figure 3.5: Choosing an HTML document to open the Web page………………...……50

Figure 3.6: Selecting a table from the Web page………………………………..………51

Figure 3.7: Pulling Data into MS Excel Worksheet ……………………………………52

Figure 3.8: Web Query Options Dialog Box……………………………………………53

Figure 3.9: External Data Range Properties Dialog Box………………………..………54

Figure 3.10: Conferences Excel Sheet…………..………………………………………55

Figure 3.11: Journals Excel Sheet…………………………………..……………...……56

Figure 3.12: Magazines Excel Sheet…………………………………………….………57

Figure 3.13: Educational_Courses Excel Sheet…………………………………………58

Figure 3.14: Articles Excel Sheet……………………………………………….………59

Figure 3.15: Citations Excel Sheet………………………………………………...……60

Figure 3.16: Books Excel Sheet…………………………………..…………………..…61

Figure 3.17: Affiliated_Organizations Excel Sheet………………………………..……62

Figure 3.18: Newsletters Excel Sheet……………………………………………...……63

Figure 3.19: Proceedings Excel Sheet…………………………………………..………64

Figure 3.20: Special Interest Groups (SIGs) Excel Sheet………………………………65

Figure 3.21: Transactions Excel Sheet…………………………………..………...……66

Figure 3.22: Execute “Create table” Command in Toad……………………..…………67

Figure 3.23: Import Table Data……………………………………….……………...…69

Figure 3.24: Import Wizard Window………………………...…………………………70

Figure 3.25: Import Wizard Window…………………………………...………………70

Figure 3.26: Import Wizard Window……………………………………...……………71

Figure 3.27: Import Wizard Window……………………………………...……………71

Figure 3.28: Import Wizard Window……………………………………...……………72

Figure 3.29: Import Wizard Window………………………………………...…………72

 XI

Figure 3.30: Import Wizard Window……………………………………………...……73

Figure 3.31: Result Window after the Import Data Process is done ……………………73

Figure 3.32: End of Import Table Data Process ………………...………………...……74

Figure 4.1: Development Process ………...…………………………………….………75

Figure 4.2: Data Block Wizard…………………………………………….……………81

Figure 4.3: Layout Wizard…………………………………………..…………..……....82

Figure 4.4: The Horizontal Toolbar Canvas and its Items………………………………83

Figure 4.5: The Tab Canvas and its Items………………………………………………83

Figure 4.6: Our Generic Menu-Based Interface (GMBI) ………………………………84

Figure 4.7: LOV Wizard………………………………………………….......................88

Figure 4.8: Searching for a Specific Journal Depending on the Abbreviation…......…...89

Figure 4.9: The Result of the Search Process Done in Example (1)……………....……90

Figure 4.10: Searching for Conferences Depending on the Conference Record…......…91

Figure 4.11: The Result of the Search Process Done in Example (2)……………..……92

Figure 4.12: Searching for Books Using the Dynamic Built-In Menu

‘Main Category’…………………………………………………….……………………93

Figure 4.13: Continue Searching for Books Using the Dynamic Built-In Menu

‘Book Title’……………………………………………………………............................94

Figure 4.14: The Result of the Search Process Done in Example (3)………………..…95

Figure 5.1: The WebSQL User-Interface ………………………………………....……97

Figure 5.2: The WebSQL Applet ……………………………………………..………...98

Figure 5.3: ACM SIGMOND Anthology DBLP Search………………………..…..…..98

Figure 5.4: RFC Index Search Engine…………………………………………..………99

Figure B.1: The Software Life Cycle (Waterfall Model)………………….……....…..111

Figure B.2: Testing Process Stages ……………………………………..…………….112

 XII

LIST OF TABLES

Table 4.1: Conferences……………………………………………………………….…76

Table 4.2: Journals………………………………………………………………………76

Table 4.3: Magazines ………………………………………………………………...…77

Table 4.4: Educational_Courses……………………………………………………...…77

Table 4.5: Articles……………………………………………………………….………77

Table 4.6: Citations……………………………………………………….......................78

Table 4.7: Books……………………………………………………...............................78

Table 4.8: Affiliated_Organizations……………………………………………….……78

Table 4.9: Newsletters…………………………………………………….......................79

Table 4.10: Proceedings……………………………………………………....................79

Table 4.11: Special Interest Groups…………………………………………………..…79

Table 4.12: Transactions……………………………………………………...................80

Table 5.1: Comparison between GMBI and other search interfaces…………………....99

 XIII

ABSTRACT

A Generic Menu-Based Interface for Web Querying
By

 Suhair Al-Haj Hassan
Supervisors

 Dr. Musbah Aqel
Prof. Munib Qutaishat

The World Wide Web is a fertile area that holds a very large amount of useful

information. Millions of users access the Web daily searching for various types of needed

information. Having the right information from the right interface is an important issue in

the Web querying field. While searching the web, earlier users had to be aware of various

index servers that were deployed on the web to achieve an efficient information retrieval.

In order to solve this problem, Web query languages that rely on Structured Query

Language (SQL) were introduced such as: Web Structured Query Language (WebSQL)

and Web Object Query Language (WebOQL) to extract data from the web. Nowadays,

users differ in their proficiency and background knowledge. For those users who are not

familiar with formal query languages and others, in this research we have developed a

Generic Menu-Based Interface (GMBI) that provides good support and guidance on

query formulation driven by a grammar-based control structure, to assist users. GMBI

generates legitimate query step by step as menu choices, provides the users with the SQL

query related to the search process, and retrieves the result and the data needed from the

database back to the users. This supports users in remembering the query syntax and

metadata, which does not require data processing and database structure knowledge.

Preliminary, testing result showed that this wok can simplify the job of the Web users and

make their search more efficient in information context.

Keywords: WebSQL, Word Wide Web, Control Grammar, Data Extraction,

Information Retrieval, Mapping tools, Generic Menu-Based Interface

 XIV

����

� ال��ا�� �����م ال���� ال�������� ��ّ�وا����� ��ّ��� ��ّ�� �
 إ�!اد

 ���(�')! ال'�ج %$#
 إش(اف

,-� ال!آ��ر �/��ح
 ا��7�ذ ال!آ��ر ���5 34���ت

 ا������� �����
 ا�� ����
 ، ه�#��
 م�" ا�����م��ت ا������ة
 ی����ي ���� آ��� � ���� ا�������

م��" إ����3 ب����1 ���" أن���اع م*�����
 م���� ی�����-�ن �ا����+�*�م�" إ���� ا��ی��) ی�م��� م�ی���" ����' ی���&

، وإن إی=�د ا�����م
 ا���س�
 م" ا��ا-:
 ا���س��
 ی��� أم�;ا م:��� 8�9 ���7 أن��6
 إدارة م���م�ت

أث�ء ا���' �" B;یA ا��ی)، آ�ن ی=) ��� ا��+�*�م�" ا@وا#7 أن ی��ن�ا ��� ���ن�ت، و?�ا�� ا�

ب:��ف و ، ا��ی) Gس�;-�ع ا�����م�ت ب��7 ���9ل
 ا���:;س
 ا��*���
 ا��=�ة �*�م درای
 ب��*�ادم

 اGس����م ا��:�����I� ���� ������ (س����م ا��ی�G ت��I� اث��) SQL (�7 هLM ا�����
 ��K اس��

: (م71 I�WebSQL و
I�WebOQL ((ن�ت م" ا��ی��س�*�ص ا��G.

 ا�����م ب:�Mا ��S�M إ��;ن�� ، 89 هLM ا@ی��م ی����وت ا���+�*�م�ن 8�9 ا�*��;ة وا�*����
 ا���;9��

 ��م� ���K وب;م=�
 �� ا���' ا�Mي ی:�ف إ��� ��
 ���� ا����ا
 وا-:�
 ب���#T ���9; د��K و��-��3 م�

 ����م ا��ا-:�
 ا��� ، ���' ��ة ب�6م ���K ه���8 م�8 ��� ?�ا�� م���دة س���م م� إ����ی" -�7 ��

 ���U�

 ب����ا#T ة ب*��U�ةب������� -���7 اس�����م س�������Vرات م�;و����س�����م آ*Gا
، و����9; -����

ا������
 ب����
 ا���' ���+�*�م�"، و�+�;-Y أیXً� ن��=
 اGس���م وا�����م�ت ا���U�ب
 م" ?���ة

����G 8 ی����K ا����+�*�م�" ب�س���Mآ�ر �;آ���) -���7 اGس�����م وا�����م���ت �:���، وا وه��Mا. ا����ن���ت

ون��=�
 ��Z�9 S�Mن ����� س��ف ی��+; . ب����
 م���=
 ا����ن�ت وه����
 ?�ا�� ا����ن�ت
���U) م�;9

 .��7 م+�*�م8 اGن�;ن] وی=�7 اس�;-��:K ������م�ت أآ1; آ��ءة و���9�

 1

CHAPTER 1

INTRODUCTION

 The Internet is already more widely deployed than any other computing system in
history and continues to grow rapidly. It contains lots of web sites dedicated to huge
number of topics. With so many Web sites, it is easy to get lost while searching for
specific information. The Internet and the World Wide Web (WWW) play an
increasingly important role in people’s private and professional activities. Searching the
Web is an every day need to a large number and variety of people, and perhaps the most
important thing to understand about searching for information on the Internet is the fact
that it is more like being a detective than simply pressing buttons. When searchers
approach the Internet, they look for information on a certain topic. Knowing the types of
search techniques available and mastering some general search tips can make the search
process more profitable.

 In the same way that the detective at the scene of a crime gets an immediate
impression of the events that transpired, and then sets out to find clues and evidences that
support that initial impression, Web searchers use their assumptions about what will be
found as clues in their search. At the same time that the crime detective keeps an eye
open for any evidence that paints a different story, successful Web searchers are open to
different types of information that they had not anticipated, resources and formats that
were not expected.

1.1 AN OVERVIEW OF WEB QUERYING

The WWW is a large, heterogeneous, distributed collection of documents connected
by hypertext links. The most common technology that had been used for searching the
Web depends on sending information retrieval requests to "index servers" that index as
many documents as they can find by navigating the network. One problem with this was
that users must be aware of the various index servers (many dozens of them are currently
deployed on the Web), of their strengths and weaknesses, and of the peculiarities of their
query interfaces. A more serious problem is that these queries cannot exploit the structure
and topology of the document network. As a solution for those problems a query
language, WebSQL, was proposed, which takes advantage of multiple index servers
without requiring users to know about them, and that integrates textual retrieval with
structure [19].

WebSQL is an SQL-like query language for extracting information from the web. Its

capabilities for performing navigation of web hypertexts makes it a useful tool for
automating several web-related tasks that require the systematic processing of either all
the links in a page, all the pages that can be reached from a given URL through paths that
match a pattern, or a combination of both. WebSQL also provides transparent access to
index servers that can be queried via the Common Gateway Interface (CGI) [65].

 2

In order to make WebSQL available to all WWW users, a WebSQL user interfaces
were designed. The input form can be used as a template for the most common WebSQL
queries making it easier for the user to submit a query.

Lots of rich and valuable work was done in the field of Web querying. But in spite of

this, several problems still face Web users in information retrieval. As those users differ
in their proficiency and background knowledge, most of them are not familiar with
formal query languages and face problems in having the right information from the right
interface, which is an important issue in the Web querying field. Most database interfaces
provide poor guidance to Web users on query formulation, burdening them to learn, and
recall precisely the query language and database structure and have data processing skills.

In this thesis, we aim to simplify the job of the Internet users and make their work

more efficient in information retrieval, by designing and implementing a Generic Menu-
Based Interface (GMBI) that will provide the users with good support and guidance, and
enable them to enter search queries using menus with a control grammar imposed on
them, and retrieve their needed data easily.

1.2 PROBLEM DEFINITION

Web users differ in their proficiency and background knowledge and most of them
are not familiar with formal query languages, as we mentioned earlier. Also, they face
problems in having the right information from the right interface because most database
interfaces provide poor guidance to Web users on query formulation. These problems that
face Web users while retrieving information from the Web, have been our main
motivation to instigate this research work.

The problem we focus on is designing a search form or interface that would provide

good support and guidance on query formulation, for different users who seek
information through the Web.

Our research aims to provide the needed information that users are looking for with

suitable guidance, and to generate legitimate query step by step as menu choices that will
help users through their search process.

Also, our research will focus on a specific domain. We have chosen Web pages that

contain various publications, such as books, conferences, articles, citations, journals,
magazines, newsletters and much more to be our domain of interest.

1.3 THESIS OBJECTIVES

 The major objectives of our study are:

• Analyzing certain Web sites related to publications, extract Web data from them
at different levels, and then convert the extracted data into a Relational Database
(RDB).

 3

• Developing a generic menu-based front-end interface that will provide support
and guidance on query formulation driven by a grammar-based control structure.

• Generating legitimate query step by step as menu choices, and provide the user
with the SQL statement that could work successfully with different types of
databases.

• Displaying results to users which depend on the database we have generated from
the different Web sites we have analyzed.

1.4 REQIREMENTS

In our work, we used certain tools and software applications in order to generate a
database, and then develop our interface. In this section, we are going to present a brief
description for those tools:

1.4.1 TOAD FOR ORACLE VERSION 9.0

Toad is a powerful, low-overhead database development and administration tool that
makes database and application development faster and easier and simplifies day-to-day
database administration tasks, by providing an intuitive graphical user interface to Oracle
[53].

Toad is an industry-leading tool that increases user productivity and application code

quality while providing an interactive community to support the user experience.
Whether the user is a developer, application developer, Data Base Administrator (DBA)
or business analyst, Toad offers specific features to make users more productive.

Leveraging Quest's ability to provide comprehensive cross-platform thought

leadership, Toad enables users to extract greater value from heterogeneous database
environment.

Toad also, makes PL/SQL development faster and easier. Advanced editors allow

users to work on multiple files simultaneously even different file types such as SQL,
PL/SQL, HTML, Java, and text. Hot keys, auto-correct, type-ahead, syntax highlighting,
version control and numerous other productivity features speed development, while
editing and testing are made easier with integrated result sets, explain plans, tracing, and
DBMS_OUTPUT views.

 Toad for Oracle is a comprehensive database tool that has evolved over the past 10
years into the most advanced and widely-used database tool of its kind. With simple
navigation and seamless workflow for database development, as well as advanced PL/SQL
editing, optimization and database administration capabilities, Toad proved to be the ideal
tool for both the expert and the new Oracle user.

 Using this tool, users can visually create queries and execute them, construct and
manage database objects, share project assets such as templates, scripts, and code snippets,
with other team members using Project Manager, Record workflow steps and play them

 4

back later with Action Recall, and Profile their PL/SQL code to find performance
bottlenecks and check for code coverage. Toad for Oracle also has its own team
collaboration utility called Team Coding, which works with Toad's editor to control code
access.

 Toad for Oracle provides the following features and benefits:

• Greater efficiency when performing daily tasks.
• Greater accuracy when writing, debugging and tuning code.
• Flexibility to perform many development and administration tasks from a

single tool.
• A smooth workflow that allows users to move from one task to another easily.
• Extensive reporting capabilities that produce quantifiable data and

documentation.
• Access to Oracle expertise through various Toad user communities.

 In our work, we used Toad for Oracle to create the tables we needed in oracle database.
And then, we used the tool to make the import process, to import data from excel sheets to
the tables created in the database, as will be shown and discussed in details in chapter 3.

1.4.2 ORACLE FORMS BUILDER 10g AND ORACLE DATABASE 10g

 Oracle offers a complete and integrated set of application development and business
intelligence tools that supports any development approach, any technology platform, and
any operating system [51].

Forward-thinking architects and developers are using these tools today to address the
complexity of their application and IT environments with Service-Oriented Architecture
(SOA), which facilitates the development of enterprise applications as modular business
services that can be easily integrated and reused, creating a truly flexible, adaptable IT
infrastructure [51].

Oracle’s development tools strategy is to offer software development tools that enable
the development of enterprise applications on an Internet model. The software
development tools consist of two parallel product offerings [25]:

• Traditional development tools: This solution set consists of the modeling

environment provided by Oracle Designer, the application development
framework provided by Oracle Forms, and the batch/ scheduled reporting solution
offered by Oracle Reports. The programming language and execution
environment for these tools is PL/SQL.

• Java development tools: Recognizing the rapid growth and adoption of Java/
J2EE technologies in the industry, Oracle also offers users the choice of a UML-
based modeling environment and 3GL development within Oracle JDeveloper, an
integrated J2EE Application Development Framework (Oracle ADF), and a Java-

 5

based end-user reporting solution that will be provided in a future release of
Oracle’s business intelligence tools. The programming language for these tools is
Java and the execution environment is any J2EE container, including Oracle’s
own Oracle container for J2EE (OC4J).

From the traditional development tools set, Oracle Forms, a component of the Oracle

Developer Suite, is Oracle's long-established technology to design and build enterprise
applications quickly and efficiently. Oracle remains committed to the development of this
technology, and to the ongoing release as a component of the Oracle platform. This
continuing commitment to Forms technology enables users to leverage their existing
investment by easily upgrading and integrating existing Oracle Forms applications to take
advantage of web technologies and Service-Oriented Architectures (SOA) [51].

Oracle Database 10g is the first database designed for grid computing, the most

flexible and cost-effective way to manage enterprise information. It cuts costs of
management while providing the highest possible quality of service.

In addition to providing numerous quality and performance enhancements, Oracle
Database 10g significantly reduces the costs of managing the IT environment, with a
simplified install, greatly reduced configuration and management requirements, and
automatic performance diagnosis and SQL tuning. These and other automated
management capabilities help improve DBA and developer productivity and efficiency.

In our work, we used Oracle Forms Builder 10g to design and implement our menu-
based interface, and we tested it on Oracle Database 10g. Figure 1.1 below shows the
Object Navigator of Oracle Forms Builder 10g.

 6

Figure 1.1: Oracle Forms Builder Object Navigator

1.4.3 MICROSOFT EXCEL

 Microsoft Excel has been used to import the data needed from the websites and
organize it into well-formatted tables to be imported to oracle database later on. A screen
shot of one of the excel sheet is provided in Figure 1.2 below.

 7

Figure 1.2: Excel Sheet Sample

 During our work, we have tried other software packages, and get knowledge about
them. We did not continue using them because we found others that serve our purposes in
a better way. For the benefits of the readers of this thesis, we give a brief description of
some of those packages in Chapter 2.

1.5 SIGNIFICANCE

 This research work could mainly serve web searchers and internet users who seek
particular information through the WWW, specially in the domain of several publications
like: Books, Journals, Magazines, Conferences, Articles and much more.

 Our research is also directed to DB users, developers and researchers who are
interested in DBMS issues and also the Web querying field.

 8

1.6 RELATED WORK

There has been lots of work and research in query languages, querying the WWW
and menu-based interfaces. In this section we are going to introduce some of the most
important related work in this field, which provides a good guidance to our work.

• Qutaishat [29] described an "Arabic Menu-Based Natural Language Interface

to Database Systems" (AMID), which is a front-end interface that was
conceived based on menus of lexical elements of the meta-data driven by a
grammar-based control structure. Their methodology in constructing the
system is a knowledge-based, meta-programmed expert system approach.
AMID scope avoids the problem that users who are not used to formal query
language (e.g. SQL) face in having the right information from the right
interface because of poor guidance that most interfaces provide. AMID scope
avoids this problem by guiding the user's query construction effectively and
generating legitimate query constituents incrementally as menu choices. The
Architecture of AMID is shown in Figure 1.3.

Figure 1.3: The Architecture of AMID [29]

• Konopnicki and Shmueli [14]. The W3QL approach is substantially different

from the query language WebSQL. In W3QL approach, they emphasize
extensibility and interfacing to external user-written programs and UNIX
utilities. While extensibility is a highly desirable goal when the tool runs in a
known environment, WebSQL tool can be downloaded to an arbitrary client
and run with minimal interaction with the local environment. On the other
hand, they support filling out forms encountered during navigation, and
discuss a view facility based on W3QL, while WebSQL do not currently
support either.

• Lakshmanan et al. [14]. Another recent effort in this direction is the WebLog

language. Unlike WebSQL, WebLog emphasizes manipulating the internal
structure of Web documents. Instead of regular expressions for specifying

 9

paths, they rely on Datalog-like recursive rules. The paper does not describe
an implementation or formal semantics.

• Mendelzon et al. [19] proposed a query language, WebSQL that takes

advantage of multiple index servers without requiring users to know about
them, and integrates textual retrieval with structure and topology-based
queries. They gave a formal semantics for WebSQL using a calculus based on
a novel "virtual graph" model of a document network. They proposed a new
theory of query cost based on the idea of "query locality", that is, how much
of the network must be visited to answer a particular query. They gave an
algorithm for characterizing WebSQL queries with respect to query locality.
Finally, they described a prototype implementation of WebSQL written in
Java, as shown in Figure 1.4.

Figure 1.4: The WebSQL User-Interface [19]

• Arocena et al. [1]. In this paper they produced Applications of a web query

language and reported on their experience using WebSQL, a high level
declarative query language for extracting information from the Web. WebSQL
takes advantage of multiple index servers without requiring users to know
about them, and integrates full-text with topology-based queries. The
WebSQL query engine is a library of Java classes, and WebSQL queries can
be embedded into Java programs much in the same way as SQL queries are
embedded in C programs. This allows accessing the Web from Java at a much
higher level of abstraction than a bare HTTP request. They used WebSQL for
applications related to Web maintenance and for the definition of the content

 10

of domain-specific text indexes. Using the library, they have also
implemented a client-server architecture that allows users to perform
interactive intelligent searches on the Web from an applet running on a
browser. They presented a WebSQL system architecture which demonstrates
an implementation of the WebSQL compiler, query engine, and user
interfaces, as shown in Figure 1.5.

Figure 1.5: The Architecture of the WebSQL System [1]

They have also developed a much more user-controllable front-end under the
form of a Java applet for Java-aware browsers, as shown in Figure 1.6.

 11

Figure 1.6: The WebSQL Applet [1]

• Patel et al. [26] presented an object-oriented database methodology for querying

Web sources of data, structured in XML, is presented in this paper. A querying
system is developed based on this methodology using ObjectStore database
system. XML data are converted into objects that can be stored as part of the
ObjectStore database system. Several querying interfaces for querying, searching
and browsing the database are developed. The methodology presented in this
paper is easily adaptable to any source of Web data that is represented in XML.

• Naughton et al. [24]. A truly useful system must provide mechanisms to find the
XML files that are relevant to a given query, and deal with remote data sources
that either provide unpredictable data access and transfer rates, or are infinite
streams, or both. The Niagara Internet Query System was designed from the
bottom-up to provide these mechanisms. It finds relevant XML documents by
using a novel collaboration between the Niagara XML-QL query processor and
the Niagara “text-in-context” XML search engine. To handle infinite streams and
data sources with unpredictable rates, it supports a “get partial” operation on
blocking operators in order to produce partial query results, and inserts
synchronization packets at critical points in the operator tree to guarantee the
consistency of (partial) results. Figure 1.7 shows the high level architectural
overview of the Niagara Internet Query System.

 12

Figure 1.7: Architecture of the Niagara System [24]

• Bourret [5]. This paper discussed mapping Document Type Definitions (DTDs)

to Databases. They discussed two mappings from XML to databases: a table-
based mapping and an object-relational (object-based) mapping. Both
mappings model the data in XML documents rather than the documents
themselves. This makes the mappings a good choice for data-centric
documents and a poor choice for document-centric documents. Both mappings
are commonly used as the basis for software that transfers data between XML
documents and databases, especially relational databases. An important
characteristic in this respect is that they are bidirectional. That is, they can be
used to transfer data both from XML documents to the database and from the
database to XML documents.

• Srivastava et al. [35]. Web mining, i.e. the application of data mining

techniques to extract knowledge from Web content, structure, and usage, is
the collection of technologies to fulfill the potential of extracting valuable
knowledge from the Web which has been quite evident. Interest in Web
mining has grown rapidly in its short history, both in the research and
practitioner communities. This paper provided a brief overview of the
accomplishments in the field, both in terms of technologies and applications.

• Piotrowski [28]. A natural language interface for legal databases was
presented in this paper. Browsing big legal databases has become a part of
daily work activity in an almost every modern law office. Legal regulations
change more often than it was in the past and to remain up-to-date, one must
use electronic media collections for help. The problem is that most popular
databases take queries in formal query languages (e.g. SQL), which can be

 13

difficult for the casual database user. This project tries to determine, how the
lawyers can be helped by providing natural language interface to legal
knowledge databases. It can possibly separate a lawyer or any other user that
looks for legal information, from complexity and understandability problems
that formal query languages involve.

• Atay et al. [3]. Storing and querying XML documents using a RDBMS is a

challenging problem since one needs to resolve the conflict between the
hierarchical, ordered nature of the XML data model and the flat, unordered
nature of the relational data model. This conflict can be resolved by the
following XML-to-Relational mappings: schema mapping, data mapping and
query mapping. In this paper, they proposed:

� A lossless schema mapping algorithm to generate a database schema
from a DTD, which makes several improvements over existing
algorithms.

� Two linear data mapping algorithms based on DOM and SAX,
respectively, to map ordered XML data to relational data.

• Gracia et al. [11]. A Multiontology Disambiguation Method for Querying the

Web was presented in this paper. The lack of explicit semantics in the current
Web can lead to ambiguity problems. Though disambiguation is a very well-
known problem in Natural Language Processing and other domains,
traditional methods are not flexible enough to work in a Web-based context.
In this paper they have identified some desirable properties that a Web-
oriented disambiguation method should fulfill, and make a proposal according
to them. The proposed method processes a set of related keywords in order to
discover and extract their implicit semantics, obtaining their most suitable
senses according to their context. The possible senses are extracted from the
knowledge represented by a pool of ontologies available in the Web.

• Cafarella et al. [7]. The Web contains a huge amount of text that is currently
beyond the reach of structured access tools. This unstructured data often
contains a substantial amount of implicit structure, much of which can be
captured using information extraction (IE) algorithms. By combining an IE
system with an appropriate data model and query language, they enabled
structured access to all of the Web’s unstructured data. They proposed a
general-purpose query system called the extraction database (ExDB), which
supports SQL-like structured queries over Web text. They also described the
technical challenges involved, motivated in part by their experiences with an
early 90M-page prototype. The Schema Extraction Model they proposed,
attempts to derive a single “best” schema for an input set of extractions. It
then populates the schema with the extractions to generate a relational
database that can be queried using standard SQL. The work flow for this
model is shown in Figure 1.8.

 14

Figure 1.8: The Schema Extraction Model [7]

1.7 THESIS CONTRIBUTION

In this thesis, we analyzed different Web sites related to publications, and perform
data and knowledge extraction from them in several levels. Then, our focus was to
convert this data and import it into oracle database using Toad for oracle tool, which we
are going to discuss later on.

For those users who are not familiar with formal query languages and others, this

work aims to design and produce a Generic Menu-Based Interface (GMBI) that will
provide support and guidance on query formulation driven by a grammar-based control
structure. After the testing and evaluation phase of our front-end interface, we proved that
the interface generates legitimate query step by step as menu choices, and provide the
user with the SQL statement that could work successfully with different types of
databases, such as: Microsoft Access, Microsoft SQL Server, Oracle, My SQL, Sybase,
and IBM DB2. This supports users in remembering the query syntax and metadata, which
does not require data processing and database structure knowledge.

Furthermore and most importantly, we proved that our interface also could provide

users with the search result they are seeking successfully, and retrieve the needed data
from the database. As a result, our work will simplify the job of the Internet users and
make their work more efficient in information retrieval.

1.8 METHODOLOGY

 Our methodologies for developing GMBI are based on experimental results and full
implementation. To evaluate our interface, it is tested through three stages of testing
process. Unit testing involves checking every program unit independently, to insure that
it operates correctly. After that, the individual components are integrated and tested as a

 15

complete system with simulated data. Finally, the whole system is tested with real data
before it is accepted for operational use.

1.9 THESIS ORGANIZATION

 In addition to several appendices, our thesis is divided into 5 chapters. In this section,
we will describe briefly the content of these chapters.

Chapter 1: It is this introductory chapter, in which we have given an idea about the
problem we have chosen for this work, the most relevant related work, the software used
in this work, and the organization of the thesis.

Chapter 2: In this chapter, we have summarized various Web information mapping and
conversion tools that convert and import Web data to different types of databases. Also,
we have described different conversion phases and methodologies that could be used to
make this process done.

Chapter 3: In this chapter, we have presented the process of converting Web
information to relational database and describe it in details. First of all, we have presented
the domain we have selected to be our focus, which are Web sites that concern
publications. Also, we have discussed importing Web data to Microsoft Excel, including
creating and customizing the Web query, and also modifying the Excel sheets to a well-
organized format. Then, we have discussed the process of importing the data from
Microsoft Excel to Oracle database, using ‘Toad for Oracle’ tool.

Chapter 4: This chapter is dedicated to present the development process of our Generic
Menu-Based Interface (GMBI). We have mainly discussed its design, implementation
and testing.

Chapter 5: Our final results have presented in this chapter. Also, we have presented our
interface advantages and benefits. And finally, a comparison between our produced
interface and other forms and interfaces has been discussed.

Chapter 6: Conclusions have been presented in this chapter. Also, we have presented
our work contribution. And finally, some ideas for the future work have been given.

 16

CHAPTER 2

WEB DATA MAPPING AND CONVERSION TOOLS AND
METHODOLOGIES

 While most critical enterprise data is stored in relational databases today, XML has
become the technology of choice for data exchange and content management. As a result,
the importance of working with XML data in harmony with relational databases is
paramount [16].

 In this chapter, we have introduced several methods and tools that convert back and
forth between databases and XML files. Although eventually not used directly in our
work, but mentioning them and their benefits will be valuable for the completion of our
work and for the reader’s benefit.

2.1 SITEMAPS

During our research, we found that one of the important issues related to searching
the Web, analyzing its information and data specially in XML format and then mapping
this data to relational databases is Sitemaps. In this section, we have presented Sitemaps,
their importance, their benefits, and their different formats.

2.1.1 SITEMAPS AND THEIR BENEFITS

 A Site map (or Sitemap) is a graphical representation of the architecture of a Web site
[23]. It can be either a document in any form used as a planning tool for Web design, or a
Web page that lists the pages on a Web site, typically organized in hierarchical fashion.
This helps visitors and search engine bots find pages on the site [47].

 Sitemaps are an easy way for Webmasters to inform search engines about pages on
their sites that are available for crawling. In its simplest form, a Sitemap is an XML file
that lists URLs for a site along with additional metadata about each URL (when it was
last updated, how often it usually changes, and how important it is, relative to other URLs
in the site) so that search engines can more intelligently crawl the site [58].

 Web crawlers usually discover pages from links within the site and from other sites.
Sitemaps supplement this data to allow crawlers that support Sitemaps to pick up all
URLs in the Sitemap and learn about those URLs using the associated metadata. Using
the Sitemap protocol does not guarantee that Web pages are included in search engines,
but provides hints for Web crawlers to do a better job of crawling your site. It is easier to
crawl a sitemap than a lot of pages [58].

 Sitemaps can improve search engine optimization of a site by making sure that all the
pages can be found. This is especially important if a site uses Macromedia Flash or
JavaScript menus that do not include HTML links [47].

 17

 Most search engines will only follow a finite number of links from a page, so if a site
is very large, the Sitemap may be required so that search engines and visitors can access
all content on the site [47].

 While some developers argue that Site index is a more appropriately used term to
replay page function, Web visitors are used to seeing each of the two terms and generally
associate both as one and the same. However, a site index is often used to mean an A-Z
index that provides access to particular content, while a Site map provides a general top-
down view of the overall site contents [47]. Figure 2.1 presents the Sitemap of the ACM
Web site.

Figure 2.1: ACM Sitemap

2.1.2 SITEMAPS FORMATS

 Sitemaps could be generated in various formats, which are: XML format, HTML
format, Resources of a Resource (ROR), Really Simple Syndication (RSS) format, and
Text format.

 The XML format is now recognized by main search engines. It is intended to give
various information to Googlebot and other crawlers. The XML Sitemap Protocol format
consists of XML tags. All data values in a Sitemap must be entity-escaped. The file itself

 18

must be UTF-8 encoded. The XML document is generated according to the standard
specification, including the following optional tags [48, 56]:

• The priority tag indicates which pages are the most important ones.
• The lastmod tag gives the date of the last modification. Used along with the

frequency attribute.
• The changefreq tag is the frequency of scanning by the robot, from always, for a

very big Web site with pages changing continuously, to yearly or never, for static
pages. As for W3C specifications of formats with a version number.

The Sitemap must [58]:

• Begin with an opening <urlset> tag and end with a closing </urlset> tag.
• Specify the namespace (protocol standard) within the <urlset> tag.
• Include a <url> entry for each URL, as a parent XML tag.
• Include a <loc> child entry for each <url> parent tag.

 A sample Sitemap that contains just one URL and uses all optional tags is shown
below. The optional tags are in italics [48].

 <?xml version="1.0" encoding="UTF-8"?>
 < urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
 < url>
 < loc>http://www.example.com/</loc>
 < lastmod>2005-01-01</lastmod>
 < changefreq>monthly</changefreq>
 < priority>0.8</priority>
 </url>

</urlset>

 The HTML format is for visitors of your Web site. It may display links, titles,
descriptions or other information. It is scanned by search engines and allows giving URL
of pages that are not indexed, specially in the case of multi-level sub-directories, since
deeper levels are not always scanned. Web sites owners are advised to put the link to the
HTML sitemap on the home page [56].

 An RSS file is a valid sitemap for Google and other search engines, but for recent
pages only [56]. The ROR format provides several pre-defined terms for describing
objects like sitemaps, products, events, reviews, jobs, classifieds, etc. The format can be
extended with custom terms. RORweb.com is the official Web site of ROR; the ROR
format was created by AddMe.com as a way to help search engines better understand
content and meaning. Similar concepts, like Google Sitemaps and Google Base, have also
been developed since the introduction of the ROR format [55].

 The text format gives only the list of URL of pages to be indexed. And it is accepted
by Google [56].

 In 2005, the search engine Google launched the Sitemap 0.84 Protocol, which would
be using the XML format [63]. Google introduced Google Sitemaps so Web developers

http://www.sitemaps.org/protocol.php
http://www.sitemaps.org/protocol.php
http://www.sitemaps.org/protocol.php
http://www.rorweb.com/

 19

can publish lists of links from across their sites. The basic premise is that some sites have
a large number of dynamic pages that are only available through the use of forms and
user entries. The sitemap files can then be used to indicate to a Web crawler how such
pages can be found [47].

 Additionally, when an XML sitemap is registered, Google produces an analysis of
problems encountered and a report of errors, and statistics. Google also, returns which
requests to search engines will lead to the Web site pages and the pages that have not
been indexed [56].

 Furthermore, Sitemap 0.90 was offered under the terms of the Attribution-ShareAlike
Creative Commons License and had wide adoption, including support from Google,
Yahoo!, MSN, Ask and Microsoft [58].

 Since MSN, Yahoo, Ask, and Google use the same protocol, having a Sitemap lets
the four biggest search engines have the updated page information. Sitemaps do not
guarantee all links will be crawled, and being crawled does not guarantee indexing.
However, a Sitemap is still the best insurance for getting a search engine to learn about
your entire site [47].

 Lots of Web sites provide tools to generate different formats of Sitemaps, such as:
Webmaster Tools, Simple Map Sitemap Generator, xml-sitemaps.com Sitemap Generator,
Rocketface ROR/RSS Sitemap Generator, Sitemaps pal and many others. For further
reading about those tools and about sitemaps we refer the reader to [23, 47, 48, 55, 56, 58,
59, and 63].

2.2 OVERVIEW OF WEB MAPPING AND CONVERSION TOOLS AN D
PHASES

 Since many XML-based applications require bi-directional interaction with relational
databases, converting back and forth between databases and XML data structures is a
common requirement.

 During our research, and to make the process of mapping Web data to relational
database done successfully, we have been in touch with various software packages and
tools that enable us to complete this process. For the completion of our work and for the
reader’s benefit, we have given an overview about those tools, their benefits and main
features in this section, and how they were addressed.

2.2.1 XML:WRENCH

 As XML becomes more ubiquitous, many organizations are migrating to XML-based
Web sites, with XML representing content and HTML presenting the content online.
Separating content from presentation in this manner provides many advantages. However,
much legacy content exists solely as HTML pages, and the process of converting HTML
to XML is a challenge because it’s not a one-to-one conversion. To translate HTML

 20

content to XML without losing data, developers need to convert each HTML page into
three separate files: an XML instance document that contains the page content, an XSLT
style-sheet with the presentation information, and a schema that represents the data
content model.

 XML:Wrench is a text editor for XML and similar files. XML:Wrench can be used to
edit files in XML, HTML, CSS, XHTML, PHP, RSS, DTD, XSL style-sheet and other
formats. Editor includes auto-suggest and auto-completion for each file-type. Each file-
type has its own context sensitive help files. XML:Wrench can open and save files
directly to your Web server (via FTP) [64].

 XML:Wrench also includes a number of XML tools for transforming and
manipulating XML/HTML files. XML:Wrench can be used to convert HTML to XML or
to generate new XML/HTML from your XML source using XSL/XSLT (eXtensible
Stylesheet Language Transformations) style-sheets. This can be done one file-at-a-time
or using a batch command on entire directories [62]. Figure 2.2 shows the main Interface
of XML:Wrench.

Figure 2.2: XML:Wrench Main Interface

 21

2.2.1.1 EDITING FILES AND CHANGING THEIR TYPES

 Once you have created or opened a file with XML:Wrench, you can then edit it.
XML:Wrench allows multiple files to be open at a time. Files are opened onto separate
'pages' and the user can switch between them by clicking on the tabs along the top of the
main edit panel.

 If we want to, we can move a page over to the right hand side, click on the tab and
then, holding the mouse down, drag the page over to the right. This can be useful if we
wish to compare two documents, or just as a way of grouping several open files.

 File-types are really a key part of how XML:Wrench works. At any given time,
XML:Wrench assumes that the file in the edit window is of a given file-type. File types
include, XML, HTML, CSS, plain text and much more. Users can also add one of their
own if they wish.

 The current file-type is used by XML:Wrench to change certain functionality. The
syntax high-lighting is based on the current file-type. As is the context-sensitive help that
is provided when pressing Ctrl+F1. The behavior of the preview buttons; the new file
templates, auto-close and auto-completion are all determined by the current file-type.

 The current file-type is set automatically when you open a file, and usually
determined by the file extension. However the user can change this at any time. There are
several reasons for doing this. The user might have several file-types that all use the same
extension, or might also have a file containing text of several different types. For instance,
users could have some CSS or PHP code nested inside some HTML statements. This
HTML might then be embedded inside some XSLT elements. Depending on what part of
the file the user was editing, he or she might want to change the current file-type between
CSS, HTML and XSLT.

 To change the file-type we select File | Change File type... from the main menu. Then
select the file-type we want to use from the drop down list.

2.2.1.2 CHECKING XML FILES

 It's important that XML files are syntactically correct. This is rather different from
HTML, where by and large Web browsers would tolerate a measure of badly formed
code.

The checks on an XML file work at two levels:

• check is well-formed
• check is valid

 22

 Firstly, a well-formed XML document is one that matches the basic specifications for
any XML file. This means that all tags starting with a < must have a matching >. Further
any attributes within the opening tag element must be quoted.

 Also, the open and closing elements must match. When a close tag is encountered, it
must hold the same text value as the most recent start tag. XML is case sensitive, so open
and close tags must be in the same case.

 To check a document is well-formed, we click on the well-formed button or select it
from the Tools menu. If the document is well-formed we will get a short message saying
OK. Otherwise XML:Wrench will display an error message and move the edit cursor to
the line containing the error.

 Secondly, a valid XML document is one that is well-formed and also matches criteria
laid out in a Document type definition. This is typically specified in a DTD file
referenced at the top of the XML file. If the XML does not contain DocType information
or a DTD then there is no difference between a check for well-formed and a check for
validity.

 To check a document is valid, we click on the valid button or select it from the Tools
menu. If the document is valid, we will get a short message saying OK. Otherwise
XML:Wrench will display an error mesage and move the edit cursor to the line
containing the error.

 Finally, there is no need to check both well-formed and valid. If a document is valid
then it must also be well-formed.

2.2.1.3 CONVERTING HTML FILES TO XML

 XML:Wrench can be used to convert an existing HTML File to XML. The converter
will attempt to make legal XML from the HTML without, as far as possible, changing the
content. Whether the conversion is 100% successful depends on the original HTML file.
After conversion, we can check the file using the XML check well-formed or validate
options.

 To begin a conversion, we select 'Convert HTML to XML' from the Tools menu. This
will display a dialog box similar to the one shown in Figure 2.3.

 23

Figure 2.3: Convert HTML to XML Dialog Box

 The HTML standard does not care about the case of text inside elements. The XML
standard does - usually elements and attributes are required to be lower case.

 Some attributes in HTML do not have any value, for example the 'selected' or
'noborder' attributes. This is not legal in XML. If we check the fix attributes check box,
these will be converted automatically.

 Also, HTML tags don't have to be paired up exactly. For example:

<i> This is italic and</i> bold is legal in HTML but forbidden in the XML
standard. In addition, many HTML pages often contain mis-matched or incomplete tags.
HTML browsers have tended to be very forgiving of illegal HTML and done their best to
cover up errors. If we tick the Fix mis-matched tags check box, XML:Wrench will
attempt to resolve any mis-matched tags.

 HTML contains a number of singleton elements that do not have content or may be
used without content. These include such elements as P, IMG, BR and HR. If we select
an element in the Convert singleton tags box, it will be converted to the form <x />.

 To make life easier XML:Wrench keeps track of things like current folders, files,
recently used files and so on. This information is saved between sessions in a default
project file.

 24

 If we want to, we can create our own project files for the different projects we are
working on. XML:Wrench then remembers the files we were editing, recent files used
separately for each project. The project file also stores any scripts we have created.

2.2.2 OXYGEN XML EDITOR

 <oXygen/> XML Editor is a cross-platform application for document development
using structured mark-up languages such as XML, XSD, Relax NG, XSL, and DTD. It
provides the tools for XML authoring, XML conversion, XML Schema, DTD, Relax NG
and Schematron development, XPath, XSLT, XQuery debugging, SOAP and WSDL
testing [61].

 <oXygen/> offers developers and authors a powerful Integrated Development
Environment. Based on proven Java technology, the intuitive Graphical User Interface of
the <oXygen/> XML Editor is easy-to-use and provides robust functionality for editing,
project management and validation of structured mark-up sources. Coupled with XSLT
and FOP transformation technologies, <oXygen/> supports output to multiple target
formats, including: PDF, PS, TXT, HTML and XML.

 <oXygen/> is the XML Editor of choice for developers, authors and integrators that
demand high-quality output with a flexible and robust, single-source, structured mark-up
environment.

 The integration with the XML document repositories is made through the WebDAV,
Subversion and S/FTP protocols. <oXygen/> has also support to browse, manage and
query native XML and relational databases.

 The <oXygen/> XML editor is also available as an Eclipse IDE plugin, bringing
unique XML development features to this widely used Java IDE. The main interface of
<oXygen/> XML Editor is shown in Figure 2.4.

 25

Figure 2.4: <oXygen/> XML Editor Main Interface

 <oXygen/> XML editor has a large number of features regarding the editing of the
XML related documents. In the subsections that follow, we are going to mention some of
them. For further reading, we refer the reader to [52].

2.2.2.1 INTELLIGENT XML EDITING

 <oXygen/> offers the lists of elements, attributes and attribute values through a
content completion assistant. Unlike other editors that offer all the available entries, for
example all the element names defined by the document XML Schema, <oXygen/>
shows only those entries valid in the editing context. In this way the XML document is
kept valid most of the time and the user does not have to know about the relations
between elements.

 In the following sample shown in Figure 2.5, you can see that the list of possible
elements for "tgroup" element contains "collspec", "tbody" and "thead" which are exactly
what the DocBook DTD has defined.

 26

Figure 2.5: Lists of Possible Elements in Intelligent XML Editing

 Also, <oXygen/> provides Support for learning words. The user need to turn this
option on as it is disabled by default. All the words in the document will be indexed as
they are written. When the user enter a word prefix and press CTRL+Space, all the words
starting with that prefix are presented through the content completion window, as shown
in Figure 2.6.

Figure 2.6: Support for Learning Words in Intelligent XML Editing

 <oXygen/> also provides much more intelligent XML editing features. What we
have mentioned above were just some of them.

2.2.2.2 XML SCHEMA EDITOR

 The schema diagram simplifies the development and understanding of the schema
files. <oXygen/> offers a side by side presentation of the schema source and diagram.
The diagram is synchronized in real time with the source editor: selecting an element in
the diagram highlights the corresponding element in the source editor, while moving the
caret in the source editor changes the selection in the diagram view.

 27

 The schema diagram renders all the XML Schema and Relax NG components and
allows the user to quickly navigate to the referred definitions of elements, attributes,
types, groups, patterns, etc.

 Two types of visual schema diagrams are available for a schema: The Full Model
View and The Logical Model View.

• Full Model View

The Full Model View provides a one-to-one correspondence between the schema
components and the graphical nodes. References to different components can be
expanded in place in the diagram (for instance element or attribute references, base
types, or in case of Relax NG schemas, the pattern references).

• Logical Model View

The Logical Model View displays a more compact diagram obtained by resolving the
references, type extensions and type restrictions, redefinitions etc. for XML Schema
and by applying the simplification rules for Relax NG.

A list with the defined schema components (elements, attributes, patterns, etc.)
presented in the Components View along with the Outline View simplifies the navigation
through large schemas. No matter the schema language, the smooth editing and the clear
and suggestive rendering make schema editing more fun and easier than ever.

 The Visual Schema Editor is integrated in the <oXygen/> standalone distribution and
the Eclipse IDE plugin. It is activated when opening an XSD (XML Schema) or a RNG
(Relax NG XML Syntax) file.

 Editing actions are available on the full model view allowing the addition of new
child or sibling elements on the fly so that the schema remains valid. Figure 2.7 shows
the visual schema diagram full model view.

 28

Figure 2.7: The Visual Schema Diagram Full Model View

2.2.2.3 XML AND RELATONAL DATABASES

 <oXygen/> XML Editor can perform XQuery/XPath queries against a native XML
database through a connection to the database server. A dedicated collection of database
exploring views are grouped together in a database perspective layout. Using the database
perspective users can browse tables or collections from databases, execute XQuery or
SQL queries, inspect or modify data, specify XML Schemas for the XML fields and
collections.

 The database support includes many of the popular servers, operating either as native
XML storage: Tamino, XHive, MarkLogic, TigerLogic, eXist, Berkeley or mixed, as
relational and XML at the same time: DB2, SQLServer, Oracle. We have to mention that
only eXist, Berkeley and JDBC (limited to table browsing) database support is included
into the Oxygen Professional and Academic Editions.

 The XML Database Perspective contains an explorer over the defined connections.
We can define multiple connections at one time and browse them in parallel. XML
Database Perspective also contains a table component for data inspection/editing and the
editor area. The XML Database Perspective is shown in Figure 2.8.

 29

Figure 2.8: The XML Database Perspective

 The database browser shown in Figure 2.9 shows the database schemas, catalogs,
tables, and field names. The user can click on a table and choose to edit the data or export
it as XML.

Figure 2.9: The Database Browser

 30

 If the table contains a column of the XML type, we can double-click it and open its
content into the editing area as shown in Figure 2.10. Then, we use the normal save
action to commit its new value into the database. Other operations available in the table
editor are: delete, insert and duplicate rows.

Figure 2.10: Editing Table Contents

 During our research, we found that <oXygen/> XML Editor can be used to convert
XML documents to XML Schemas. XML Schemas express shared vocabularies and
allow machines to carry out rules made by people. They provide a means for defining the
structure, content and semantics of XML documents. In more detail, XML Schema was
approved as a W3C Recommendation on 2 May 2001 and a second edition incorporating
many errata was published on 28 October 2004 [61].

 The conversion process can be done by selecting the menu command Tools | Trang
Converter. This pops up the dialog box shown in Figure 2.11. We select the input file
type ‘XML Documents’, and add an input file which is an XML document. Then we
select the output file type ‘W3C XML Schema’, and choose an output file. Finally, after
the input and output is specified, we click the ‘Convert’ button and the document will be
converted to an XML Schema.

 31

Figure 2.11: Trang Converter Dialog Box

2.2.3 ALTOVA XMLSPY 2008

 Altova XMLSpy 2008 is the industry standard XML Development Environment for
designing, editing and debugging enterprise-class applications involving XML, XML
Schema, XSLT, XQuery, SOAP, WSDL and Web service technologies. It is the ultimate
productivity enhancer for J2EE, .NET and database developers. In the following
subsections, we will give an overview of this tool.

2.2.3.1 ALTOVA XMLSPY OVERVIEW AND MAIN FEATURES

 XMLSpy is an integrated Development Environment (IDE) for the development of
XML projects. XMLSpy can be used, among other things, to edit and process a variety of
XML and other text documents; to import to and export from XML documents (including
to and from databases); to convert between certain types of XML documents and other
document types; to link different types of XML documents in projects; process
documents with the built-in XSLT 1.0 processor, XSLT 2.0 processor and XQuery 1.0
processor, and to even generate code from XML documents [45].

 The XMLSpy 2008 relational database integration functionality overcomes
interoperability challenges, allowing users to easily query database and convert back and
forth between databases and XML files. Figure 2.12 represents a screen shot of XML
graphical user interface, showing the Schema/ WSDL View.

 32

Figure 2.12: Altova XMLSpy Schema/WSDL View

 To help software developers work with XML in conjunction with relational databases,
XMLSpy 2008 interacts with the most popular relational databases in their native
interface language, including:

• IBM DB2
• Microsoft Access
• Microsoft SQL Server
• MySQL
• Oracle
• Sybase
• Any other database supporting ADO or ODBC connectivity

 XMLSpy allows users to connect to a relational database, generate an XML Schema
based on a relational database, import and export data based on database structures, and
generate relational database structures from XML Schemas with ease. The powerful
Database Query window allows users to perform queries against the database, edit the
data, and even commit changes to the database (commit currently only enabled for IBM
DB2).

 33

2.2.3.2 QUERYING A DATABASE BY XMLSPY

 XMLSpy 2008 includes the Database Query window shown in Figure 2.13, for
querying and editing database data. When you connect to a database, the Database Query
window displays database tables as a hierarchical tree in the browser pane. The SQL
editor tab allows you to display, edit, and execute SQL statements to query the database,
either by opening existing SQL files or creating SQL scripts from scratch using drag-and-
drop and auto-complete functionality.

Figure 2.13: Database Query Window in XMLSpy

 Once we have executed a database query, Figure 2.14 shows how we can edit the
database data directly in the results window, review changed fields (highlighted in pink),
and commit the changes back to the database. Or, if the database data is XML, we can
edit it in XMLSpy’s text or grid view, with full validation and entry helper support, and
save it back to the database, which is currently enabled for IBM DB2 9 only.

 34

Figure 2.14: Editing Database Data in Database Query Window

 The Database Query window with direct database editing support makes working
with database data in XMLSpy easier and more seamless than ever.

2.2.3.3 GENERATING DB STRUCTURE FROM XML SCHEMA

 The most features researchers in this field are interested in while using XMLSpy, are
generating a database (DB) structure from an XML schema, exporting XML data to a
database, and converting between certain types of XML documents. To complete the
whole conversion process between XML files and DB structure, we must first convert the
XML document; we get from either creating an XML sitemap as discussed in section 2.1
or from using the XML Wrench as discussed in section 2.2.1, to an XML schema. Then
we will be able to create the DB from the schema file created.

 XMLSpy allows us to create an empty database (or skeleton database) based on an
existing schema file. When a DB structure is created from an XML Schema, the
datatypes specific to that DB are generated from XML Schema datatypes, and vice versa
if the conversion process were from a DB structure to an XML Schema, which XML Spy
provides too. The conversion process could be done to several types of databases. The
method described below is generally the same for each type of database.

 35

1. We open the XML document we had, using XMLSpy.
2. And then, we select the menu command Convert | Generate DTD/Schema to open the

dialog box shown in Figure 2.15, and then save the schema file with a suitable name.

Figure 2.15: Generate DTD/Schema Dialog

Box

3. Then, we open the schema file we have generated in Schema/WSDL View.
4. After that, we select the menu command Convert | Create DB Structure from XML

Schema. This pops up the Connect to a Data Source dialog box shown in Figure 2.16,
which enables us to connect to a database (DB).

 36

Figure 2.16: Connect to a Data Source Dialog Box

5. Then we select a specific database type to connect to the required database. For
example, to connect to a Microsoft Access database, we select the Microsoft Access
radio button, and continue the process to select a database. We can use an existing
database or create a new database in which the schema structure will be contained.

6. In the Create DB Structure from XML Schema dialog, tables are created from the
schema and displayed in a tree format at the location where they will occur in the DB.
For example, in the screenshot shown in Figure 2.17, the Address table is created and
selected for export. Tables that should not be exported should be deselected (by
unchecking the check box or selecting the appropriate item from the context menu for
that table).

 37

Figure 2.17: Create DB Structure from XML Schema Dialog Box

7. If we want to drop (delete) tables in an existing DB that have the same name as tables
coming in from the schema, then we could check the Drop Existing Tables with the
same name check box.

2.2.3.4 CREATING DB TABLES WITH RELATIONSHIPS

 If the XML Schema from which the DB structure is generated has relationships
defined in the form of identity constraints, then these relationships are automatically
created in the generated DB structure and displayed in the Table Structure. Tables with
relationships are listed under the sections: Tables with ForeignKeys and Tables used by
ForeignKeys. Tables without relationships are listed in the Independent Tables section.

 38

 In the Relationships tab, we can create and modify table relationships. The tab lists all
possible primary-key/foreign-key relationships as shown in the screenshot in Figure 2.18.

Figure 2.18: Create DB Tables with Relationships

 To create a relationship, we can do the following:

1. We select one of the possible primary-key/foreign-key relationships.
2. In the lower pane of the dialog, we click the Plus button to create a relationship.
3. Then, we select the required columns in each of the two tables from the respective

dropdown lists.

We can also remove a relationship by selecting it and then clicking the Minus button.

2.2.3.5 EXPORTING XML DATA TO A DATABASE

 After completing the steps described in the previous sections, our database is now
created, but its tables are still empty. To export the XML data to the database, we select
the menu command Convert | Export to a database to open the Export to Database dialog
box shown in Figure 2.19 which allows us to specify where to start, how to handle export
fields, and which elements to include. Then we just select which database type we wish

 39

to append or create with our data, and the data is instantly converted and stored in the
database.

 Figure 2.19: Export XML Data to Database Dialog Box

 The following structure shown in Figure 2.20 summarizes the steps of extraction and
conversion that we have described above to convert Web content to a relational database.

 40

 Figure 2.20: Steps of Converting Web Content to RDB Using Mapping Tools

 Finally, the whole conversion process using the tools mentioned above, have been
experimented to convert an XML document to an MS Access database and to an Oracle
database. But even after completing exporting the XML data to the database, the tables
and the data we have got weren’t valuable as the data we were seeking to get from the
Web sites we have analyzed and studied. So that, we couldn’t build the search interface
on the databases that were created. As a result, we continued our research and found out
another way to create our desired database which will be discussed in details in Chapter 3.

2.2.4 OTHER CONVERSION AND MAPPING TOOLS

 There are many other tools and software packages that provide mapping facilities
between XML and relational databases. In this section, we are going to talk briefly about
some of them and mention others that readers may be interested in.

2.2.4.1 ALTOVA MAPFORCE 2008

 Altova MapForce 2008 is the premier graphical data mapping, conversion, and
integration tool. The data mapping tool maps between any combination of XML,
database, flat file, EDI, and/or Web service, then transforms data instantly or auto-
generates a royalty-free data integration application for execution of recurrent
conversions [43]. The main interface of MapForce is shown in Figure 2.21.

 41

Figure 2.21: Altova MapForce Main Interface

 Altova MapForce 2008 includes powerful support for database mapping, allowing
users to map and convert between database data and XML, flat files, EDI, Web services
and other database formats. In addition, support for building new Web services allows
users to map between database data and Web services operations, and then generate code
to implement the service server-side.

 MapForce 2008 is a general purpose data integration and Web services
implementation tool to support all major relational databases. Using MapForce, users can
create graphical data mappings by dragging connecting lines between source data, data
processing functions and filters, and target data structures. Database support in MapForce
allows users to:

• Connect to and query all major databases.
• Convert data from any supported database type to any other.
• Map data from XML, flat files, EDI, and/or Web services into databases.
• Map relational database data into XML, flat files, EDI, and/or Web services.
• Map XML data in databases into XML, flat files, EDI, and/or Web services (IBM

DB2 9 only).
• Create Web services that consume or write to databases.

 42

 MapForce 2008 supports databases as both the source and/or target of any mapping. It
supports the following databases:

• IBM DB2
• Microsoft Access
• Microsoft SQL Server
• MySQL
• Oracle
• Sybase
• Any ADO/ODBC database

2.2.4.2 ALTOVA STYLEVISION 2008

 Altova StyleVision 2008 lets users convert HTML to XML easily, using a visual
interface. Instead of hand-coding a separate XML instance document, XSLT stylesheet,
and schema, users simply highlight content from an existing HTML file, drag it across
the screen, and place it in a content model pane. StyleVision 2008 converts the data
behind the scenes and presents users with standards-conformant XML, XSLT, and
schema (XML Schema or DTD) documents [44].

 In addition, once users have converted HTML to XML, StyleVision 2008
automatically provides them with the corresponding XSLT 1.0 or 2.0 and XSL:FO
(eXtensible Stylesheet Language Formatting Objects) to output their content in
Word/RTF and PDF, respectively.

 By design, XML separates content from presentation. XML itself is only responsible
for representing data in a text format that is readable by all applications. Related
technologies such as XSLT and XSL:FO are used to specify how the data in an XML
document should be styled and laid out in presentation media such as HTML or PDF.

 Since business data must often be published in several different media to meet the
needs of customers, partners, and internal audiences, multiple style-sheets are required to
present each XML document. Coding even the simplest transformation style-sheets by
hand can be a difficult task, and writing multiple style-sheets to present an XML
document in popular formats like HTML, PDF, and Word / RTF can become arduous and
error-prone very quickly.

 Altova StyleVision 2008, however, takes the headache out of publishing XML in
multiple formats by auto generating XSLT 1.0, XSLT 2.0, and XSL:FO style-sheets
based on a single design that users can create using drag and drop functionality. Their
ONE design simultaneously transforms their content into HTML, PDF, and Word/RTF
and allows them to save the corresponding standards-conformant style-sheets.

 43

2.2.4.3 STYLUS STUDIO2008 XML ENTERPRISE SUITE

 Stylus Studio 2008 XML Enterprise Suite provides a comprehensive set of XML
tools and features for working with XML, XQuery, Web services, XML publishing, and
many other XML technologies. It is an XML development tool to support visual XQuery
editing, XQuery mapping, and XQuery debugging. And also, it provides comprehensive
XSLT development support, including XSLT debugging, XSLT mapping, XSLT
profiling, visual HTML-to-XSLT style-sheet design, XSL: FO, and others [60].

 Stylus Studio 2008 XML Enterprise Suite includes numerous synchronized, visual
XML editing views, Sense:X (Intelligent XML Editing), Integrated XML Validator,
XML differencing, and much more. Furthermore, it includes a visual DTD editor,
integrated DTD validator, and various DTD generation utilities.

 With Stylus Studio 2008 XML Enterprise Suite, users can map data in one format to
other using visual drag-and-drop mappers. Stylus Studio's mappers include support for
mapping to and from XML documents, Web service data, relational data, flat files, and
many more.

 This suite also includes Convert to XML, a visual tool for extracting XML data from
any file format including CSV, tab separated, binary data files, EDI, or any other flat
format, as well as many other data import/export utilities for RDBMS, XML, and others.
It also provides a powerful database and XML tools that are really useful for database
architects, database developers, and Database Administrators (DBA's).

2.2.4.4 ALLORA FROM HIT SOFTWARE

 Allora leverages leading edge XML mapping and database technology to give
application developers bi-directional access to relational databases without the need for
complex SQL or XSLT programming. Allora speeds development and deployment by
accurately and transparently transforming data structures between XML
elements/attributes and relational database structures [49].

 Once Allora mapping is in place, full bi-directional XML-RDB access is enabled.
Allora XML database transformation gives developers a simplified, consistent XML
interface to relational data and includes Web Services. Whether they export data from a
database into XML, import data from XML to a database, insert XML into a database, or
transform or convert XML into a database, Allora and HiT Software XML Utilities could
be a great help for all users in doing their job.

 Allora can generate XML from any database and write XML element and attribute
values into any database. It is an XML database mapping platform that consists of:

1) Design-time tools for mapping XML to relational data or text.
2) Wizard support for popular application servers and IDE tools.
3) A rich set of application programming interfaces to the Allora run-time engine.

 44

4) A Workflow Manager tool to organize and execute a set of transformation tasks
with associated XML file manipulation.

5) A set of SOAP interfaces to the Allora Web service engine Web for building
distributed applications.

6) And a database connector.

 Allora works with any relational database that has a JDBC or ODBC connector.
Allora has been certified to work well with over 20 different databases. Allora bi-
directionally transforms XML and data stored in relational databases such as DB2, Oracle,
Microsoft SQL Server, MySQL, Informix, Ingres, IDMS, Datacom, ANTs, MaxDB, and
Sybase.

 Allora's design-time components for data transformation include a graphical Mapper
application, source code wizards, object interfaces, and sample source code. The design-
time graphical Mapper application lets developers simultaneously see DTDs or XML
schemas and database catalog structures. Also, the Mapper can automatically create XML
schemas from relational databases and vice versa. Using the mapping files generated by
the Mapper, developers can request data specifying XML structures rather than database
structures or SQL. These mapping files are passed to Allora's interfaces by calling
applications.

 Allora offers a rich, flexible set of interfaces. Developers can refer to data by XML
element/attribute references, including XPATH, or by RDB catalog structures. Similarly,
they can exercise XML element/sub-element methods or specify record/field SQL
commands. The Allora OVLT API optimizes import and export of data within very large
tables and XML documents. This API increases performance by an order of magnitude
while minimizing local and database server resource requirements. Allora manages all
SQL middleware connection processes for efficient and proper database interaction and
data integration.

 Allora's data binding object interfaces enable developers to create objects that
represent database records. Data binding includes methods to iterate through records
sequentially, yet retaining the XML formatting structures.

 For maximum data access flexibility, Allora can also be implemented as a full-
function SOAP-based Web service for remote applications. Allora Web service supports
two client access modes: a SOAP interface mode and a higher level remote API mode.
Figure 2.22 presents the Allora XML database server software.

 45

Figure 2.22: Allora XML Database Server Software

 The mapping tools and software packages that we have described earlier in this
chapter are just part of other existing tools related to the subject of our thesis. We feel
that the tools we have selected to describe are enough for the benefits of the readers, even
though interested readers may look for more.

 46

CHAPTER 3

CONVERTING WEB DATA TO RELATIONAL
DATABASES

 In this Chapter, we have explained and discussed the first phase of developing GMBI,
which presents how the extraction of Web data was done and then how the extracted
data was converted to relational database. The whole architecture of GMBI is presented
in Figure 3.1. And the process of extracting Web data and converting it to RDB is
shown in Figure 3.2.

Figure 3.1: The Architecture of GMBI

 47

Figure 3.2: Extracting Web Data and Converting it to RDB Process

3.1 SELECTING A SPECIFIC DOMAIN

 In our work, we thought that selecting a specific domain that users may be most
interested in would be valuable and make the work more quantified. We have chosen to
focus on Web pages that contain publications in its variety, such as books, articles and
citations, journals and magazines, newsletters, conferences, educational courses, and
much more.

 In our domain of interest, we selected some specific Web sites to work with and
try our search form on their data, specially: www.acm.org, www.ieee.com and
http://citeseer.ist.psu.edu. From ACM, we focused on ACM Books, Journals and
Magazines, Affiliated Organizations, Newsletters, Proceedings, Transactions, and Special
Interest Groups (SIGs). And from IEEE, our focus and study was on IEEE Conferences,
Journals, Magazines, and Educational Courses. Finally, from Citeseer, we focused on
CiteSeer Articles and Citations.

 We have created our database from data in those Web sites mentioned above and their
publications, as will be shown in the coming sections in this chapter. And then we tested

http://www.acm.org/
http://www.ieee.com/
http://citeseer.ist.psu.edu/
http://citeseer.ist.psu.edu/

 48

the search form we have built and make queries on the database we have created
successfully as will be discussed in chapter 4. Although our focus was on those specific
Web sites, our work is generic and has the flexibility to work with most Web sites with
publications.

3.2 IMPORTING WEB DATA INTO MICROSOFT EXCEL WITH WE B
QUERIES

 Web queries offer a handy way to import data from selected tables at a Web page into
a worksheet. An Excel Web query allows us to pull data from a Web site into an Excel
worksheet. It will find any tables on the Web page and let us select the ones containing
data we want to put into our worksheet, allowing for dynamic updates from the Web page.

 Web queries are not just useful for pulling information from standard HTML pages,
but also they can be used quite nicely in situations where a standard Object Database
Connection (ODBC) would be difficult or impossible to create or maintain.

3.2.1 CREATING THE WEB QUERY

To make the importing process obvious, we are going to start with a simple Web
query using one of Yahoo! Web pages, finance historical stock prices, to show how this
step was done. This is a great example because the data we are interested in is presented
in a plain, tabular format and has little confusing information in it. But we must notice
that this Web query doesn't put important information in images or through links.

We created the Web query, through the following steps:

1. We select the first cell in the excel sheet in which we want results to appear.
2. Then we choose Data | Import External Data | New Web Query to open the dialog

box shown in Figure 3.3. And then entered the URL to query in the address area
and clicked the Go button as shown in Figure 3.4.

 49

Figure 3.4: The Web Page of Interest

Figure 3.3: New Web Query Window

 50

3. Another way to accomplish what is done in 2, is to choose Data | Import External
Data | Import Data, and then open a saved HTML Document (which is the web
page we want to pull data from) as shown in Figure 3.5.

Figure 3.5: Choosing an HTML document to open the Web page

4. Select the table we want to use for the query as shown in Figure 3.6. And if a
well-formatted table wasn’t available, we could select any data we want from the
Web page and then modify it to a well-formatted table, as will be discussed later
in section 3.3.

 51

Figure 3.6: Selecting a Table from the Web Page

5. Finally, we click the Import button. And the data is now in our worksheet, as
shown in Figure 3.7.

 52

Figure 3.7: Pulling Data into MS Excel Worksheet

3.2.2 CUSTOMIZING THE WEB QUERY

After we have created a Web query, we can customize it to meet our needs through
accessing Web query properties. By making a right-click on a cell in the query results and
choose Edit Query, or click Edit Query on the External Data toolbar, or choose Data |
Import External Data | Edit Query. When the Web page that we are querying appears, we
click the Options button in the upper-right corner of the window to open the dialog box
shown in Figure 3.8. The options here allow us to change how the query interacts with
the Web page itself.

 53

Figure 3.8: Web Query Options Dialog Box

In addition, we can edit the Data Range options to meet our needs, and we have the
same choice of Data Range options that we could have with other external data queries,
such as ODBC queries. Just right-click on a cell in the query results and then choose Data
Range Properties, or click Edit Query on the External Data toolbar or choose Data |
Import External Data | Data Range Properties, to open the dialog box shown in Figure
3.9. For example, we will probably want to change the Data Range's name from the
default to a name we can easily access and memorize.

 54

 Figure 3.9: External Data Range Properties Dialog Box

3.3 MODIFYING AND REFORMATTING EXCEL TABLES

 Many times, the Web page we are interested in may not contain well-formatted tables
as the example we have mentioned in the previous section. Lots of times, we found that
the data we need to pull to the excel sheet, is scattered in lists that is not really tables.

 To deal with this problem, we must make some modifications and reformatting to the
data in the excel sheet and put it in a well-formatted tables, and some times add headers
to the tables and also a Primary Key (PK). The reason we are going to do this is to make
those tables and their data more readable and organized. And most important, is to make
those tables able to be converted to a relational database later on.

 In this section, we are going to view the excel sheets we worked with from the Web
sites we have mentioned previously in their final format, after being modified and
reformatted, and that will be converted to our database later on.

 We have named the tables as the following: Conferences, Journals, Magazines,
Educational_Courses, Articles, Citations, Books, Affiliated_Organizations, Newsletters,
Proceedings, Special_Interest_Groups and Transactions. And now we will list all the
tables in the figures shown below, from Figure 3.10 to Figure 3.21 respectively.

 55

Figure 3.10 shows Conferences worksheet. We have imported Conferences table from
IEEE Web site, and it contains the following columns:

1. Conference Record: This attribute indicates a unique number for each conference,
and will be the table’s Primary key when it will be imported to the database.

2. Conference Name: This attribute contains the conference name.
3. Acronym: This attribute indicates an abbreviation for the conference name.
4. Mtg Year: This attribute indicates the meeting year.
5. Mtg Start Date: This attribute indicates the meeting starting date.
6. Mtg Location: This attribute indicates the meeting location.
7. ISBN: This attribute contains a 10-digit number for the conference.
8. IEEE Catalog No: This attribute contains the conference’s IEEE catalog number.
9. IEEE BMS Part No: This attribute contains the conference’s IEEE BMS Part number.
10. Estimated Received Date: This attribute contains the estimated received date.
11. Actual Release Date: This attribute contains the actual release date.
12. Xplore PU No: This attribute contains the IEEE Xplore number if posted at.
13. Posted to Xplore: This attribute indicates if the conference is posted to the IEEE

Xplore or not yet, (Y/N).

Figure 3.10: Conferences Excel Sheet

 56

Figure 3.11 shows Journals worksheet. We have imported the Journals table from IEEE
Web site and also the ACM Web site and merge their data together, and it contains the
following columns:

1. Journal_No: This attribute indicates a unique number for each Journal, and will
be the table’s Primary key when it will be imported to the database.

2. Journal: This attribute contains the Journal name.
3. Abbreviation: This attribute indicates an abbreviation for the Journal name.
4. Source: This attribute indicates the source of the Journal, (IEEE/ACM).

Figure 3.11: Journals Excel Sheet

 57

Figure 3.12 shows Magazines worksheet. We have imported the Magazines table from
IEEE Web site and also the ACM Web site and merge their data together, and it contains
the following columns:

1. Magazine_No: This attribute indicates a unique number for each Magazine, and
will be the table’s Primary key when it will be imported to the database.

2. Magazine: This attribute contains the Magazine name.
3. Abbreviation: This attribute indicates an abbreviation for the Magazine name.
4. Source: This attribute indicates the source of the Magazine, (IEEE/ACM).

Figure 3.12: Magazines Excel Sheet

 58

Figure 3.13 shows Educational Courses worksheet. We have imported the Educational
Courses table from IEEE Web site, and it contains the following columns:

1. Course_ID: This attribute indicates a unique number for each Course, and will be
the table’s Primary key when it will be imported to the database.

2. Course_Title: This attribute contains the Course title.
3. Course_Instructors: This attribute contains the Course Instructors’ Names.
4. Sponsored By: This attribute shows by whom the Course is sponsored.
5. Publication Date: This attribute contains the Course publication date.
6. Summary: This attribute contains a summary for the Course.

Figure 3.13: Educational_Courses Excel Sheet

 59

Figure 3.14 shows Articles worksheet. We have imported the Articles table from
CiteSeer Web site, and it contains the following columns:

1. Article_No: This attribute indicates a unique number for each Article, and will be
the table’s Primary key when it will be imported to the database.

2. Authors: This attribute contains the Article authors’ names.
3. Article Title: This attribute contains the Article title.
4. Journal: This attribute contains the name of the journal that published the Article.
5. Year: This attribute contains the Article publication year.

Figure 3.14: Articles Excel Sheet

 60

Figure 3.15 shows Citations worksheet. We have imported the Citations table from
CiteSeer Web site, and it contains the following columns:

1. Citation_No: This attribute indicates a unique number for each Citation, and will
be the table’s Primary key when it will be imported to the database.

2. Authors: This attribute contains the Citation authors’ names.
3. Citation Title: This attribute contains the Citation title.
4. Journal: This attribute contains the name of the journal that published the

Citation.
5. Year: This attribute contains the Citation publication year.

Figure 3.15: Citations Excel Sheet

 61

Figure 3.16 shows Books worksheet. We have imported the Books table from ACM Web
site, and it contains the following columns:

1. Book_ID: This attribute indicates a unique number for each Book, and will be the
table’s Primary key when it will be imported to the database.

2. Main Category: This attribute contains a main subject area the Book related to.
3. Sub Category: This attribute contains a sub subject area the Book related to.
4. Book Title: This attribute contains the name of the Book
5. Edition: This attribute contains the Edition of the Book.

Figure 3.16: Books Excel Sheet

 62

Figure 3.17 shows Affiliated Organizations worksheet. We have imported the Affiliated
Organizations table from ACM Web site, and it contains the following columns:

1. Org_No: This attribute indicates a unique number for each Affiliated
Organization, and will be the table’s Primary key when it will be imported to the
database.

2. Affiliated_Organization: This attribute contains the Affiliated Organization name.
3. Publisher: This attribute contains the Publisher name.
4. Abbreviation: This attribute indicates an abbreviation for the Organization name.

Figure 3.17: Affiliated_Organizations Excel Sheet

 63

Figure 3.18 shows Newsletters worksheet. We have imported the Newsletters table from
ACM Web site, and it contains the following columns:

1. Newsletter_No: This attribute indicates a unique number for each Newsletter, and
will be the table’s Primary key when it will be imported to the database.

2. Newsletter: This attribute contains the Newsletter name.

Figure 3.18: Newsletters Excel Sheet

 64

Figure 3.19 shows Proceedings worksheet. We have imported the Proceedings table from
ACM Web site, and it contains the following columns:

1. Proceeding_No: This attribute indicates a unique number for each Proceeding,
and will be the table’s Primary key when it will be imported to the database.

2. Proceeding: This attribute contains the Proceeding name and description.

Figure 3.19: Proceedings Excel Sheet

 65

Figure 3.20 shows Special Interest Groups (SIGs) worksheet. We have imported the
SIGs table from ACM Web site, and it contains the following columns:

1. SIG_No: This attribute indicates a unique number for each Special Interest Group,
and will be the table’s Primary key when it will be imported to the database.

2. Special Interest Group (SIG): This attribute contains the Special Interest Group
name.

Figure 3.20: Special Interest Groups (SIGs) Excel Sheet

 66

Figure 3.21 shows the last sheet, whish is Transactions worksheet. We have imported the
Transactions table from ACM Web site, and it contains the following columns:

1. Trans_No: This attribute indicates a unique number for each Transaction, and
will be the table’s Primary key when it will be imported to the database.

2. Transaction: This attribute contains the Transaction name and description.
3. Abbreviation: This attribute indicates an abbreviation for the Transaction name.

Figure 3.21: Transactions Excel Sheet

3.4 IMPORTING DATA FROM MICROSOFT EXCEL TO ORACLE
DATABASE

 After the excel tables were formatted and organized to the final format we wanted,
now the next step is to import the data to our database. The database we have chosen is
Oracle Database 10g, and the importing process will be done using the tool ‘TOAD for
Oracle’. This process will be shown and discussed in this section.

 67

 First of all, after we open Toad, we must choose the database we are going to import
the data to, which is in our case named ‘orcl’. And we must connect to the database
using a specific user name and password.

 Before starting the import process, we must create the tables we want to import the
data to in the database and their attributes. To create the tables, the commands will be
written in the editor window as shown in Figure 3.22. And then executed by clicking the
button Execute statement, or by choosing Editor | Execute statement.

Figure 3.22: Execute “Create table” Command in Toad

 We have created a table in the database for every excel sheet, and it is important that
the attributes of each table created in the database match the heading of each column in
the excel sheet. And here are all the commands we have written and executed, to create
our 12 tables in oracle database:

1) Create table Conferences(
Conference_Record Number (10), Conference_Name varchar2 (300),
Acronym varchar2 (10), Mtg_Year Number (4), Mtg_Start_Date Date,
Mtg_Location varchar2 (50), ISBN varchar2 (20),
IEEE_Catalog_No varchar2 (30), IEEE_BMS_Part_No varchar2 (30),
Estimated_Recieved_Date Date, Actual_Release_Date Date,
Xplore_PU_No Number (20), Posted_to_Xplore varchar2 (1));

2) Create table Journals(
Journal_No Number (3), Journal varchar2 (200),

 68

Abbreviation varchar2 (10), Source varchar2 (10));

3) Create table Magazines(
Magazine_No Number (2), Magazine varchar2 (500),
Abbreviation varchar2 (10), Source varchar2 (10));

4) Create table Educational_Courses(
Course_ID Number (3), Course_Title varchar2 (200),
Course_Instructors varchar2 (200), Sponsored_by varchar2 (200),
Publication_Date Date, Course_Summary varchar2 (600));

5) Create table Articles(
Article_No Number (3), Authors varchar2 (200),
Article_Title varchar2 (200), Journal varchar2 (200),
Article_Year Number (4));

6) Create table Citations(
Citation_No Number (3), Authors varchar2 (200),
Citation varchar2 (200), Journal varchar2 (200),
Citation_Year Number (4));

7) Create table Books(
Book_ID Number (4), Main_Category varchar2 (100),
Sub_Category varchar2 (100), Book_Title varchar2 (300),
Edition varchar2 (30));

8) Create table Affiliated_Organizations(

Org_NO Number (3), AFF_Organization varchar2 (200),
Publisher varchar2 (100), Abbreviation varchar2 (10));

9) Create table Newsletters(

Newsletter_No Number (3), Newsletter varchar2 (200));

10) Create table Proceedings(
Proceeding_No Number (3), Proceeding varchar2 (200));

11) Create table Special_Interest_Groups(

SIG_No Number (3), SIG varchar2 (200));

12) Create table Transactions(
Transaction_No Number (3), Transaction_Title varchar2 (200),
Abbreviation varchar (10));

 69

 After all tables were created successfully, the next step is to import the data from the
excel sheets to the tables. This is done through the following steps:

1. Choosing Database | Import | Import table data to open the window shown in
Figure 3.23.

Figure 3.23: Import Table Data

2. Then we select a table name from the Object Name list, which is one of the
tables we have created in the database. For this example, we are going to
select the table “Conferences” to explain the import process.

3. And then, we select the option ‘One commit after all records’ from the
Commit Mode list, to make sure that after all records imported to the table,
data will be committed.

4. After that, we click the Show Data button that will show any data was already
in the table, if any, and then click the Execute Wizard button to open the
Import Wizard window, and then select the table type: Excel file(*.xls) as
shown in Figure 3.24.

 70

Figure 3.24: Import Wizard Window

5. Then, we choose an excel file that contains the data we would like to import,
which is related to the table “Conferences” we want to import the data to, as
shown in Figure 3.25.

Figure 3.25: Import Wizard Window

 71

6. After that, we must define additional options and formats for the data file, like
dates, times and numbers. Figure 3.26 shows the data formats.

Figure 3.26: Import Wizard Window

7. Then, the import wizard will make some guesses about where our field breaks
occur in the file preview. And we could also make our own adjustments,
because sometimes the guesses won’t be correct. We must choose the excel
sheet we want to import data from, then map the columns names to the table
attributes as shown in Figure 3.27.

Figure 3.27: Import Wizard Window

 72

8. After that, we set the fields mappings to specify the correspondence between
fields in the source and destination files, and also choose the field that will be
the primary key for the table, which is in our example, the
‘conference_record’. Figure 3.28 shows this process.

Figure 3.28: Import Wizard Window

9. Then, the data will be previewed, to check it and make sure of its correctness
before importing. Also, we click the button ‘Size Cols to Data’ to size the
table columns to the data we are going to import as shown in Figure 3.29.

Figure 3.29: Import Wizard Window

 73

10. Finally, a summary will be previewed to check that all records will be added
to the destination table. Then, we click the ‘Execute’ Button to begin the
import process as shown in Figure 3.30.

Figure 3.30: Import Wizard Window

11. After the import process is done, a result window shown in Figure 3.31 will
present the number of rows processed, added, deleted and updated. And also,
will show the total errors if any.

Figure 3.31: Result Window after the Import Data Process is done

 74

12. The final result and the table data will then be previewed after the import
process is completed successfully. The data imported to the table
“Conferences” is shown in Figure 3.32 after the import table data process is
successfully done.

Figure 3.32: End of Import Table Data Process

 We have done the previous process to all the 12 tables we have created in the
database: Conferences, Journals, Magazines, Educational_Courses, Articles, Citations,
Books, Affiliated_Organizations, Newsletters, Proceedings, Special_Interest_Groups and
Transactions. Now, our database is successfully created and is ready to test our search
generic menu-based interface on, as will be shown in details in the next chapter.

 75

CHAPTER 4

GENERIC MENU-BASED INTERFACE (GMBI)
DEVELOPMENT

 After creating the tables in the database, and then importing the data into the tables,
the next and most important step now is to develop our Generic Menu-Based Interface
(GMBI), which the user will interact directly with to enter search queries and make
information retrieval. Figure 4.1 presents this phase of our work that we have described
and discussed in this chapter.

Figure 4.1: Development Process

4.1 OVERVIEW OF THE DATABASE TABLES

 In this section, we have viewed the tables created in the database, listing their
attributes and the attributes’ data types. Table 4.1 shows table ‘Conferences’ with its
attributes: Conference_Record (Primary Key), Conference_Name, Acronym, Mtg_Year,
Mtg_Start Date, Mtg_Location, ISBN, IEEE_Catalog_No, IEEE_BMS_Part_No,
Estimated_Received_Date, Actual_Release_Date, Xplore_PU_No, and Posted_to_Xplore.

 76

Table 4.1: Conferences

CONFERENCES

Attributes Data Types

Conference_Record
Conference_Name
Acronym
Mtg_Year
Mtg_Start_Date
Mtg_Location
ISBN
IEEE_Catalog_No
IEEE_BMS_Part_No
Estimated_Received_Date
Actual_Release_Date
Xplore_PU_No
Posted_to_Xplore

Number (5)
Varchar2 (300)
Varchar2 (10)
Number(4)
Date
Varchar2 (50)
Varchar2 (20)
Varchar2 (30)
Varchar2 (30)
Date
Date
Varchar2 (20)
Varchar2 (1)

 Table 4.2 describes table ‘Journals’ which consists of the attributes: Journal_No
(Primary Key), Journal, Abbreviation, and Source.

Table 4.2: Journals

JOURNALS
Attributes Data Types

Journal_No
Journal
Abbreviation
Source

Number (3)
Varchar2 (200)
Varchar2 (10)
Varchar2 (10)

 Table 4.3 presents table ‘Magazines’ which consists of the attributes: Magazine_No
(Primary Key), Magazine, Abbreviation, and Source.

 77

Table 4.3: Magazines

MAGAZINES

Attributes Data Types

Magazine_No
Magazine
Abbreviation
Source

Number (2)
Varchar2 (500)
Varchar2 (10)
Varchar2 (10)

 Table 4.4 shows table ‘Educational_Courses’ which consists of the following
attributes: Course_ID (Primary Key), Course_Title, Course_Instructors, Sponsered_By,
Publication_Date, and Course_Summary.

Table 4.4: Educational_Courses

EDUCATIONAL_COURSES

Attributes Data Types

Course_ID
Course_Title
Course_Instructors
Sponsered_By
Publication_Date
Course_Summary

Number (3)
Varchar2 (200)
Varchar2 (200)
Varchar2 (200)
Date
Varchar2 (600)

 Table 4.5 describes table ‘Articles’ which consists of the following attributes:
Article_No (Primary Key), Article_Title, Authors, Journal, and Article_Year.

Table 4.5: Articles

ARTICLES

Attributes Data Types

Article_No
Article_Title
Authors
Journal
Article_Year

Number (3)
Varchar2 (200)
Varchar2 (200)
Varchar2 (200)
Number (4)

 78

 Table 4.6 describes table ‘Citations’ which consists of the following attributes:
Citation_No (Primary Key), Citation_Title, Authors, Journal, and Citation_Year.

Table 4.6: Citations

CITATIONS

Attributes Data Types

Citation_No
Citation_Title
Authors
Journal
Citation_Year

Number (3)
Varchar2 (200)
Varchar2 (200)
Varchar2 (200)
Number (4)

 Table 4.7 presents table ‘Books’ with its attributes: Book_ID (Primary Key),
Main_Category, Sub_Category, Book_Title, and Edition.

Table 4.7: Books

BOOKS

Attributes Data Types

Book_ID
Main_Category
Sub_Category
Book_Title
Edition

Number (4)
Varchar2 (100)
Varchar2 (100)
Varchar2 (300)
Varchar2 (30)

 Table 4.8 shows table ‘Affiliated_Organizations’ which consists of the attributes:
Org_No (Primary Key), Aff_Organization, Publisher, and Abbreviation.

Table 4.8: Affiliated_Organizations

AFFILIATED_ORGANIZATIONS

Attributes Data Types

Org_No
Aff_Organization
Publisher
Abbreviation

Number (3)
Varchar2 (200)
Varchar2 (100)
Varchar2 (10)

 79

 Table 4.9 shows table ‘Newsletters’ which consists of the following attributes:
Newsletter_No (Primary Key), and Newsletter.

Table 4.9: Newsletters

NEWSLETTERS

Attributes Data Types

Newsletter_No
Newsletter

Number (3)
Varchar2 (200)

 Table 4.10 describes table ‘Proceedings’ which consists of the following attributes:
Proceeding_No (Primary Key), and Proceeding.

Table 4.10: Proceedings

PROCEEDINGS

Attributes Data Types

Proceeding_No
Proceeding

Number (3)
Varchar2 (200)

 Table 4.11 presents table ‘Special_Interest_Groups’ which consists of the following
attributes: SIG_No (Primary Key), and SIG.

Table 4.11: Special Interest Groups

SPECIAL_INTREST_GROUPS

Attributes Data Types

SIG_No
SIG

Number (3)
Varchar2 (200)

 Table 4.12 describes table ‘Transactions’ which consists of the following attributes:
Transaction_No (Primary Key), Transaction_Title, and Abbreviation.

 80

Table 4.12: Transactions

TRANSACTIONS

Attributes Data Types

Transaction_No
Transaction_Title
Abbreviation

Number (3)
Varchar2 (200)
Varchar2 (10)

 Those tables mentioned above and their data will be analyzed and studied in order to
deign our interface. Next section will be devoted to this idea.

4.2 ANALYSIS AND DESIGN OF GMBI

 Regardless of the tools and techniques that one uses to develop and build a system,
the underlying components of systems development are essentially the same [34]. In our
work, we followed the traditional WaterFall model, which consists of the following major
phases: Analysis, Design, Implementation, Testing, and Maintenance. The model is
described in Appendix B.

 The analysis and design phases are complex and critical steps in determining which
design, based on systems engineering and technology analysis, meets the user and system
requirements [34].

 In order to design our generic search Interface, the problem was specified and
identified, and we searched through the Internet and WWW about searchers and users
requirements and needs. Furthermore, we studied other search forms and interfaces and
analyzed them and tried to present something new and more useful for users in our
Interface as will be shown in this of this chapter.

 While analyzing the Web sites that concern publications and their data, we selected
the domain that building and developing our Interface will depend on. And then, we have
created the database with its tables that we have described earlier. Eventually, we have
collected good and enough information to begin the design phase.

 In the design phase, the system specifications are translated into a software
representation and architecture. We used Oracle forms builder 10g to design and then
implement our Interface. In our work, the design phase consists of two stages: creating
the Data blocks and their items, and creating the Canvases.

 Our interface consists of 13 data blocks which are created using the Data Block
Wizard, 12 of them are database blocks which present the tables created in the database

 81

and their attributes, and the last data block is a control block which presents the search
and control process as will be discussed later in this chapter.

 To create a database data block using the Data Block Wizard, we first select the type
of the data block we would like to create which could be a table or view, or stored
procedure. The type of all the data blocks we would like to create is table, because they
will be built on our database tables. After that, we enter the table on which we want to
base the data block. Then we select the columns that should appear as items in the data
block as shown in Figure 4.2.

Figure 4.2: Data Block Wizard

 Furthermore, in the Data Block Wizard we may optionally create master-detail
relationships to other data blocks created in our form. Finally, we enter a name for the
data block and it will be successfully created.

 The next stage in the design phase is creating the Canvases. We divide our interface
into two Canvases and they will be created using the Layout Wizard, although we could
also create them manually. But the Layout Wizard allows us to quickly and easily lay out

 82

the items of the data blocks on the Canvas, and will display the items in a frame on the
Canvas. First, we select the Canvas type on which we want to layout the data block’s
items. The Canvas could be Content, Stacked, Vertical Toolbar (VTB), Horizontal
Toolbar (HTB), or Tab.

 We select our Canvases to be: a Horizontal Toolbar Canvas and a Tab Canvas. When
creating the Tab Canvas, we also must select a Tab page on which to layout the data
block’s items. In our case, we select 12 different Tab pages which represent the data
blocks created for the 12 tables in our database.

 Then, we select the data block we want and the items that should be displayed in the
frame, and select an item type for each. After that, we enter a prompt, height, and width
for each item as shown in Figure 4.3.

Figure 4.3: Layout Wizard

 After that, we select a layout style for our frame to be Form or Tabular. In our case,
we select the layout style for our two Canvases to be Form. Finally, we may enter a title
for the frame and we must specify the number of database records to be displayed in the
frame, as well as the distance between each record. And also, choose whether to display a
scrollbar in the frame or not.

 83

 The Horizontal Toolbar Canvas shown in Figure 4.4 is built on the search data block,
and contains the following items:

1) ‘Search’ Button: When pressing this button, the search process will be executed
and done, and the search result will be displayed and presented to the user.

2) ‘Show SQL’ Button: When pressing this button, the SQL statement related to the
current search process will be viewed in the ‘SQL Produced’ text item.

3) ‘SQL Produced’ Text Item: After pressing the ‘Show SQL’ button, the SQL
statement produced will be viewed in this text item.

4) ‘Reset’ Button: When pressing this button, the search process will be reset to let
the user begin a new one, and every item will become empty.

5) ‘Exit’ Button: This button will let the user exit the search form.

Figure 4.4: The Horizontal Toolbar Canvas and its Items

 The Tab Canvas shown in Figure 4.5 consists of 12 tabs; each is built on one of the
data blocks that represent the tables created in the database that were described earlier,
and let the search process executes on that table. Each tab contains all the attributes of the
table, and allows the search process to be done depending on any of those attributes.

Figure 4.5: The Tab Canvas and its Items

 84

The Tab Canvas also contains a set of radio buttons as follows:
1) ‘Like’ : Selected if the user wants to make a search that one of the database items

will include the text written by the user in that text item.
2) ‘Start’ : Selected if the user wants to make a search that one of the database items

will start with the text written by the user in that text item.
3) ‘End’ : Selected if the user wants to make a search that one of the database items

will end with the text written by the user in that text item.

 Furthermore, The Tab Canvas contains buttons labeled ‘More…’ related to some of
the database items. When selecting one of these buttons, a Menu which contains all the
records saved in that item in the database, will pop up and let the user select one of its
records and make the search process depending on the record selected, which simplifies
the search process a lot for the users.

 After the user runs the form, our Generic Menu-Based Interface will look like the
screen shot shown in Figure 4.6.

Figure 4.6: Our Generic Menu-Based Interface (GMBI)

 After the design phase was completed, our next step will be to begin the
implementation and coding phase, and then testing our interface. Next section will be
devoted to this idea.

 85

4.3 IMPLEMENTATION OF GMBI

 During the implementation phase, the software design is converted into a set of
programs or program units. Using Oracle Forms Builder 10g, the Implementation process
will be addressed by two stages: building a set of Triggers and writing a PL\SQL code on
them, and creating Lists of Values (LOVs) to be our Menus.

 Triggers could be built at three levels: Form level, Data block level and Item level.
The triggers built at the form level are the most generic. Examples of those triggers that
we built during the implementation phase are: PRE-FORM, WHEN-TAB-PAGE-
CHANGED, ON-MESSAGE, and WHEN-NEW-FORM-INSTANCE. For example, the
code that is written on the trigger WHEN-TAB-PAGE-CHANGED is mentioned below.

 if :system.tab_new_page = 'CONFERENCES' then
 :global.tab:= 1;

 elsif :system.tab_new_page = 'JOURNALS' then
 :global.tab:= 2;

 elsif :system.tab_new_page = 'EDUCATIONAL_COURSES' then
 :global.tab:= 3;

 elsif :system.tab_new_page = 'ARTICLES' then
 :global.tab:= 4;

 elsif :system.tab_new_page = 'CITATIONS' then
 :global.tab:= 5;

 elsif :system.tab_new_page = 'BOOKS' then
 :global.tab:= 6;

 elsif :system.tab_new_page = 'AFFILIATED_ORGANIZATIONS' then
 :global.tab:= 7;

 elsif :system.tab_new_page = 'NEWSLETTERS' then
 :global.tab:= 8;

 elsif :system.tab_new_page = 'PROCEEDINGS' then
 :global.tab:= 9;

 elsif :system.tab_new_page = 'SPECIAL_INTEREST_GROUPS' then
 :global.tab:= 10;

 elsif :system.tab_new_page = 'TRANSACTIONS' then
 :global.tab:= 11;

 86

 elsif :system.tab_new_page = 'MAGAZINES' then
 :global.tab:= 12;
 end if ;

 if :system.mode = 'ENTER-QUERY' then
 exit_form;
 end if ;

 :SQL:= NULL;
 go_block (:system.tab_new_page);
 enter_query;

 An example of the triggers built at the data block level is: WHEN-NEW-BLOCK-
INSTANCE. The most specific and important triggers are the ones built at the item level.
The most commonly used are the trigger WHEN-BUTTON-PRESSED which is built on
Push Buttons. The function of the buttons that are labeled ‘More…’ is to view the list of
values of a particular database item as a menu. For example the code written on trigger
WHEN-BUTTON-PRESSED that is built on the button CONF_NAME on the data block
CONFERENCES to show its LOV is shown below.

 if show_lov ('CONF_LOV') = true then
 null;
 end if;

 Other buttons that are created on the search block like: Search, Reset, Show SQL, and
Exit have different functions. The most critical and important trigger for the purpose of
GMBI is built on the Search button. A part of the code written on the trigger WHEN-
BUTTON-PRESSED which is built on the Search button is shown below.

 if :global.tab = 2 then

 if :journals.c = 2 then

 :JOURNALS.JOURNAL_NO:= '%' | |:JOURNALS.JOURNAL_NO| | '%';

 :JOURNALS.JOURNAL:= '%' | |:JOURNALS.JOURNAL| | '%';

 :JOURNALS.ABBREVIATION:= '%' | |:JOURNALS.ABBREVIATION| | '%';

 :JOURNALS.SOURCE:= '%' | |:JOURNALS.SOURCE| | '%';

elsif :journals.c = 3 then

 :JOURNALS.JOURNAL_NO:= :JOURNALS.JOURNAL_NO| | '%';

 :JOURNALS.JOURNAL_NO:= :JOURNALS.JOURNAL| | '%';

 :JOURNALS.JOURNAL_NO:= :JOURNALS.ABBREVIATION| | '%';

 87

:JOURNALS.JOURNAL_NO:= :JOURNALS.SOURCE| | '%';

 elsif :journals.c = 4 then

 :JOURNALS.JOURNAL_NO:= '%' | |:JOURNALS.JOURNAL_NO;

 :JOURNALS.JOURNAL:= '%' | |:JOURNALS.JOURNAL;

 :JOURNALS.ABBREVIATION:= '%' | |:JOURNALS.ABBREVIATION;

 :JOURNALS.SOURCE:= '%'| |:JOURNALS.SOURCE;

 end if;

 The code sample mentioned above concern the Tab page ‘Journals’ and the search
process done on it. A similar code is built for all the other Tab pages in the previous
trigger.

 Our next stage in the implementation phase is creating the Lists of Values (LOVs).
The LOVs is created for selected database items that we want to build a menu on,
depending on the records of those items to be shown to the users to choose from during
their search.

 Creating a LOV consists of two main steps: creating a Record Group which the LOV
is getting its data from based on an SQL query, and then building the LOV using the
LOV wizard or manually. Another way to create a LOV is building it and its Record
Group in parallel using the LOV wizard.

 In the LOV wizard, we could modify the LOV’s existing Record Group if was
created before, or create a new Record Group. Then we build the SQL query that the
Record Group will be based on. We may enter the SQL query directly into an SQL query
statement field, or use the Oracle Developer Query Builder to build the query as shown in
Figure 4.7.

 88

Figure 4.7: LOV Wizard

 After that, we determine the Record Group columns that we want to include in the
LOV. Then we could specify every LOV column properties, like entering a title, width,
and return value for every LOV column. We could also display the title we want in the
LOV window and determine its size. We may also modify some advanced properties that
affect the behavior of the LOV, like choosing to refresh the Record Group data before
displaying the LOV to the user. Finally, we assign the LOV to the items we want to
return values to, and then the LOV is successfully created.

 By completing all the previous steps and creating all the triggers, LOVs and program
units needed for our Generic Menu-Based Interface, the implementation phase is
accomplished. In the next section we are going to talk about the testing and maintenance
phases.

 89

4.4 TESTING, VALIDATION AND MAINTENANCE OF GMBI

 Software validation is intended to show that the system conforms to its specification
and meets the expectations of the users [34]. We have tested our system and checked the
validation of our generic interface through the three stages of the testing process
described in Appendix B. Unit testing involves checking all program units and the
triggers that were built one by one and verifying that each unit meets its specification.
After that, the individual program units are integrated and tested as a complete system to
ensure that the software requirements have been met. The System is tested firstly with
simulated test data, and then with real data.

 To show how the testing and evaluation phase is accomplished for our system, we
have explained this process through the following examples:

 Example (1): In this example, the user is looking for a specific Journal, which he
knows the abbreviation for. He accesses the ‘Journals’ tab page and enters the
abbreviation for the journal’s name which is: “TCBB”, in the Abbreviation field as
shown in Figure 4.8.

Figure 4.8: Searching for a Specific Journal Depending on the Abbreviation

 90

 After that, the searcher presses the ‘Search’ button to view the result of his search,
and he could also press the ‘Show SQL’ button to view the SQL statement related to the
search process. The search result and the data needed is found and previewed easily and
quickly as shown in Figure 4.9. And, if the user wants to start a new search, he presses
the ‘Reset’ button to clear all the fields and start over again.

Figure 4.9: The Result of the Search Process Done in Example (1)

 Example (2): In this example, the user is looking for all conferences with conference
record including number “4”. The user accesses the ‘Conferences’ tab page, and enters
“4” in the ‘Conference Record’ field, and then selects the radio button ‘Like’ as shown in
Figure 4.10.

 91

Figure 4.10: Searching for Conferences Depending on the Conference Record

 Then, the searcher presses the ‘Search’ button to view the result of his search, and he
could also press the ‘Show SQL’ button to view the SQL statement related to the search
process. The search result and the records that satisfy the query is found and previewed
easily and quickly to the user as shown in Figure 4.11. And the user could move from a
record to another easily using the arrow buttons, and view all the record’s information.

 92

Figure 4.11: The Result of the Search Process Done in Example (2)

 Example (3): This example will explain clearly the role of the control grammar
structure used in building GMBI, and the great benefits of using the dynamic built-in
menus during the search process. The user in this example searches for books in a
specific area including main category, and sub category. First of all, the user accesses the
‘Books’ tab page. And then by pressing the ‘More…’ button related to the field ‘Main
Category’, a pop-up menu will appear that includes all the records in the column
Main_Category of table Books in the database. The user chooses the option ‘Databases’
as shown in Figure 4.12.

 93

Figure 4.12: Searching for Books Using the Dynamic Built-In Menu ‘Main Category’

 After selecting the main category, the user aims to select a specific sub category.
Similarly, when he presses the ‘More…’ button related to the field ‘Sub Category’, a
pop-up menu will appear that includes the records in the column Sub_Category of table
Books in the database that only have the main category ‘Databases’ and match the query.
In our example, the user chooses the option ‘Data Warehousing’ and then using the same
way views the menu related to the field ‘Book Title’, which includes only the records in
the column Book_Title of table Books that match the query and have the main category
‘Databases’ and the sub category ‘Data Warehousing’, and he chooses the title ‘Building
the Data Warehouse’ as shown in Figure 4.13.

 94

Figure 4.13: Continue Searching for Books Using the Dynamic Built-In Menu ‘Book Title’

 Then, the searcher presses the ‘Search’ button to view the result of his search, and he
could also press the ‘Show SQL’ button to view the SQL statement related to the search
process. Retrieving the search result, two records with two different Editions that satisfy
the query is found and previewed, and the user could move between them easily using the
arrow buttons. The search result of this example is shown in Figure 4.14.

 95

Figure 4.14: The Result of the Search Process Done in Example (3)

 The previous examples present just a sample of the many features of GMBI. And by
clarifying them, we claim that the results of the testing and evaluation phase and the
many benefits of using GMBI are now clear and speak for themselves.

 After the system is installed and put in practical use, maintenance involves correcting
the errors which were not discovered in earlier stages of the development life cycle,
improving the implementation of the system units and enhancing the system’s services as
new requirements are discovered.

 Improving our Generic Menu-Based Interface components and enhancing the services
it provides the users with, could always be in place to satisfy the users’ needs. Evolving
the Interface with its components and design would serve its functionality, and such a
process could also be considered as future work for us and for other interested researchers.

 96

CHAPTER 5

DISCUSSION AND RESULTS

 In this chapter, we have presented and discussed the results of our work that were
accomplished after completing the testing and validation phase. Then we are going to
present the benefits and advantages that GMBI provides compared to other forms and
search interfaces.

 5.1 EXPERIMENTAL RESULTS ACCOMPLISHED AFTER TESTING
AND VALIDATION PHASE

 Users could use our GMBI to accomplish their search processes in several ways.
They may enter a text into any field of any of the tab pages, and then press the ‘Search’
button and the search result will be displayed for them. They could also use the radio
buttons mentioned earlier: ‘Like’, ‘Start’, and ‘End’ in parallel with typing the text in the
field to improve their search.

 Also, when they press the ‘Show SQL’ button during a search process, the SQL
statement related to their search will be viewed for the users’ benefit. This legitimate
SQL statement is generated automatically, and is useful mostly for researchers and
professional DB users. They could base on such query and produce more compound SQL
statements which may give wider results, and may work successfully with different types
of DBMS. This SQL statement is also important for application and integration purposes.

 Furthermore, the most useful facility that GMBI offer for users during their search, is
selecting a specific item from a menu that pop up when pressing one of the ‘More…’
buttons in the tab pages that is related to the item they are focusing their search on. And
by pressing the ‘Search’ button, they can view the result. These menus are controlled by a
control grammar structure that is if the user selects a specific item through some menu,
then the other related menus in the same data block and tab page will display to the user
only the items that go along with the first selected item to choose from, as was explained
in Example (3) mentioned in section 4.4.

5.2 BENEFITS AND ADVANTAGES OF GMBI COMPARED TO OTH ER
SEARCH INTERFACES

 In this section, we have viewed some search forms and interfaces, and illustrated the
main differences between them and GMBI, and then introduced the benefits and
advantages that GMBI presents.

 Mendelzon et al. designed a Java applet invoked from an HTML form that is shown
in Figure 5.1, in order to make WebSQL available to all WWW users. But most users are
not familiar with formal query languages like WebSQL, and they probably face problems

 97

in data retrieval because such interfaces burden them to learn, and recall precisely the
query language and database structure [19].

Figure 5.1: The WebSQL User-Interface [19]

 Arocena et al. have developed three different interfaces. The simplest interface is an
HTML form connected to a CGI script. The user can either fill in the form to assemble a
query or type a complete WebSQL query directly. For Java-aware browsers, they have
developed a much more user-controllable front-end under the form of Java applet which
is shown in Figure 5.2. They also developed a stand-alone Java application that could be
installed on the user’s machine [1].

 98

Figure 5.2: The WebSQL Applet [1]

 The ACM SIGMOD Anthology is a digital library for the database systems research
community developed by ACM SIGMOD, and it has developed the DBLP search. The
DBLP server provides bibliographic information on major computer science journals and
proceedings. Initially the server was focused on Database systems and Logic
Programming (DBLP), now it is gradually being expanded toward other fields of
computer science. So, "DBLP" could also be read as "Digital Bibliography & Library
Project" [57]. The DBLP search form is shown in Figure 5.3. The user is required to fill
the form and enter meaningful text in the search fields to be able to retrieve data.

Figure 5.3: ACM SIGMOND Anthology DBLP Search [57]

 99

 Another search form is developed by the RFC (Request for Comments) series, which
contains technical and organizational documents about the Internet, including the
technical specifications and policy documents produced by the Internet Engineering Task
Force (IETF) [54]. Their search form is shown in Figure 5.4. The user is also required to
type what he is looking for in the search filed.

Figure 5.4: RFC Index Search Engine [54]

 After overviewing the previous interfaces and search forms, and to make the picture
more clear for the reader, presenting a comparison with our Generic Menu-Based
Interface (GMBI) is a must. We are going to describe the features and characteristics that
the GMID provides to the user and how it distinguishes from other Interfaces. Table 5.1
presents a comparison between GMBI and the previous forms and interfaces.

Table 5.1: Comparison between GMBI and other search interfaces

Interface

Comparison

Mendelzon

Arecona

DBLP

RFC

GMBI

Menu-Based (Use
Dynamic Menus)

No No No No Yes

Display the SQL St.
Automatically

No No No No Yes

Generic to almost All
Publications

No No No No Yes

Use Radio Buttons No No No Yes Yes

Require Users to Type
Text

Yes Yes Yes Yes Not
Required

Require Users to Type
SQL St.

Yes Yes Not
Required

Not
Required

Not
Required

 100

The main advantage that GMBI provides is using dynamic built-in menus while
attending a search process, not acquiring the user to type a text or memorize it.
Nevertheless, the user also has the ability to type any text or part of it and then uses the
useful radio buttons to simplify his search. Furthermore, GMBI provides support and
guidance on query formulation driven by a grammar-based control structure. The
interface generates legitimate query step by step as menu choices and makes the users’
mission easier.

Also, GMBI provides the user with the SQL statement that could work successfully

with different types of DBMS, such as: Microsoft Access, Microsoft SQL Server, Oracle,
My SQL, Sybase, and IBM DB2. This supports users in remembering the query syntax
and metadata, which does not require data processing and database structure knowledge.
The users also do not need to be familiar with formal query languages like SQL or
WebSQL.

 Furthermore, our interface also provides the users with the search result they are
seeking successfully, and retrieve the needed data from the database. This will simplify
the job of the Internet users and make their work more efficient in information retrieval.

 101

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

 In this chapter, we have presented and discussed the conclusions of our work, and
viewed our final results. Also, ideas for future work have been suggested at the end of the
chapter.

6.1 SUMMARY

 The WWW is a large, heterogeneous, distributed collection of documents connected
by hypertext links. Searching the Internet and the WWW is a daily need to most people.
Our thesis main goal was to develop a Generic Menu-Based Interface (GMBI) that
supports users in information retrieval and through their search processes.

 First of all, we have introduced an overview of Web querying and clarified the
statement of problem, our goals and contribution, the previous related work and the software
used during our work in chapter 1. In chapter 2 we gave an overview of various mapping and
conversion tools and methodologies that convert and import Web data to different types of
databases. Moreover, we described the process we used of converting Web data to
relational database in details in chapter 3. We presented our domain of interest which is
Web sites that focus on publications. Also, we described how Web data was converted to
Microsoft Excel and then to Oracle database, using ‘Toad for Oracle’ tool. In chapter 4,
we presented the phases of developing our Generic Menu-Based Interface (GMBI). We
mainly described its design, implementation and testing. Furthermore, we presented our
interface advantages and benefits, compared to other search forms and interfaces.

6.2 CONCLUSIONS

 As the Web and its usage continues to grow, so grows the opportunity to analyze Web
data and extract all manner of useful knowledge from it. Millions of users access the Web
daily searching for various types of useful information. As those users differ in their
proficiency and background knowledge, they face problems in having the right
information from the right interface. Earlier, they had to be aware of various index
servers that were deployed on the Web, of their strengths and weaknesses, and of the
peculiarities of their query interfaces. As a matter of fact these queries cannot exploit the
structure and topology of the document network. Also, most database interfaces provide
poor guidance to Web users in query formulation, and require the users to be familiar
with formal query languages like SQL, although most of those users are not used to such
languages.

 In our thesis, we have developed a Generic Menu-Based Interface (GMBI). The
whole work consists of two main phases: phase one presents extracting the data from the
Web and then converting it to a relational database, and phase two presents the analysis,
design, implementation and testing phases of developing GMBI.

 102

First of all, we analyzed different Web sites that concern publications, and made data
and knowledge extraction from them in several levels. We also studied several mapping
and conversion tools and tried them to make the data extraction from the Web and then
convert this data to relational databases, but the database we have got and its data weren’t
valuable as the data we were seeking to get from the Web sites we have analyzed and
studied. So that, we continued our search and found out other methodologies that serve
our purposes in a better way.

We extracted the data needed from the Web sites using an Excel Extractor. Then, we

modified the extracted data into well-formatted tables. Then our focus was to convert this
data and import it into an oracle database using the tool ‘Toad for Oracle’, to use this
database in the testing phase of developing our GMBI.

For those users who are not familiar with formal query languages and others, we have

designed and successfully implemented a Generic Menu-Based Interface (GMBI) that
will provide support and guidance on query formulation driven by a grammar-based
control structure.

The main advantage that GMBI provides is using dynamic built-in menus while

attending a search process, not acquiring the user to type a text or memorize it. The user
could easily use the buttons and the menus to select the data he is searching for.
Nevertheless, the user also has the ability to type any text or part of it and then uses the
buttons to simplify his search.

After the testing and evaluation phase of our front-end interface, we proved that the

interface generates legitimate query step by step as menu choices, and provide the user
with the SQL statement that could work successfully with different types of DBMSs,
such as: Microsoft Access, Microsoft SQL Server, Oracle, My SQL, Sybase, and IBM
DB2. This supports users in remembering the query syntax and metadata, which does not
require data processing and database structure knowledge.

Furthermore and most importantly, we proved that our interface also could provide

users with the search result they are seeking successfully, and retrieve the needed data
from the database. As a result, our work will simplify the job of the Internet users and
make their work more efficient in information retrieval.

6.3 FUTURE WORK

 We would like to suggest some interesting issues and ideas that could not be reached
because of time, resources and other constraints and they will aid as an improvement on
our GMBI. As future work, we mention:

• Applying an experimental test by allowing a group of searchers and Internet users
to try out GMBI besides completing our testing phases, and assess the features
and the benefits of the interface.

 103

• Adding improvements and extra features to GMBI, and expanding the database to
include other domains other than publications, such as: Sports, CD’s, Music, etc.

• Developing other mapping and conversion tools that could directly map Web data

to relational databases with full and valuable data.

• Proposing a solution for the problem that converting XML data don’t give us the
right and valuable data that we are seeking from Web sites.

 104

References

[1] Arocena G. O., Mendelzon A. O. and Mihaila G. A., "Applications of a Web
Query Language', 1997. http://www.cs.toronto.edu/~websql/

[2] Asonov D., "Querying Databases Privately: A New Approach to Private

Information Retrieval" (Lecture Notes in Computer Science), 1st edition,
Springer, 2004.

[3] Atay M., Chebotko A., Liu D., Lu S. and Fotouhi F., "Efficient schema-based

XML-to-Relational data mapping", Department of Computer Science, Wayne
State University, Detroit, MI 48202, USA, December 2005.

[4] Borges J. and Levene M., "Mining association rules in hypertext databases". In

Proceeding of the fourth International Conference on Knowledge Discovery and
Data Mining (KDD), New York , USA, August 27-31, 1998.

[5] Bourret R., "XML and Databases", Septemper 2005.

[6] Bourret R., "Mapping DTDs to Databases", May 2001.

http://www.xml.com/pub/a/2001/05/09/dtdtodbs.html

[7] Cafarella M. J., Re' C., Suciu D., Etzioni O. and Banko M., "Structured Querying
of Web Text, A Technical Challenge", University of Washington, 3rd Biennial
Conference on Innovative Data Systems Research (CIDR), Asilomar, California,
USA, January 2007.

[8] Etzioni O., Cafarella M., Downey D., Kok S., Popescu A-M., Shaked T.,

Soderland S., Weld D. and Yates A., "Web-scale Information Extraction in
KnowItAll", New York, May 2004.

[9] Etzioni O., Cafarella M., Downey D., Popescu A-M., Shaked T., Soderland S.,

Weld D. and Yates A., "Methods for Domain-Independent Information Extraction
from the Web: An Experimental Comparison", AAAI, San Jose, CA, July 2004.

[10] Gajos K., Czerwinski M., Tan D. and Weld D., "Exploring the Design Space for

Adaptive Graphical User Interfaces", Advanced Visual Interfaces (AVI), Venice,
Italy, May 2006.

[11] Gracia J., Trillo R., Espinoza M. and Mena E., "Querying the Web: A

Multiontology Disambiguation Method", University of Zaragoza, Spain, July
2006.

[12] James Bailey J., Bry F., Furche T. and Schaffert S., " Web and Semantic Web

Query Languages: A Survey", The University of Melbourne, Victoria, Australia,
and University of Munich, M¨unchen, Germany, 2005.

http://www.cs.toronto.edu/~websql/
http://www.xml.com/pub/a/2001/05/09/dtdtodbs.html

 105

[13] Kaufmann E., Bernstein A. and Zumstein R., Querix: "A Natural Language

Interface to Query Ontologies Based on Clarification Dialogs", University of
Zurich. In proceedings of the 5th International Semantic Web Conference (ISWC),
Athens, GA, November 2006.

[14] Konopnicki D. and Shmueli O., "W3QL: A query system for the World Wide

Web". In Proceedings of the 21st International Conference on Very Large
Databases, Zurich, Switzerland, 1995.

[15] Kosala R., "Web Mining Research: A Survey", Katholieke Universiteit Leuven,

Celestijnenlaan 200A, B3001 Heverlee, Belgium, ACM SIGKDD, July 2000.

[16] Lacroix Z., Sahuguet A. and Chandrasekar R., "Information Extraction and
Database Techniques: A user-oriented approach to querying the Web", University
of Pennsylvania, 1998.

[17] Lakshmanan L. V. S., Sadri F., and Subramanian I. N., "'A declarative language

for querying and restructuring the Web". In: Proc. 6th. International Workshop
on Research Issues in Data Engineering (RIDE), New Orleans, February 1996.

[18] Mendelzon A. O., Mihaila G. A. and Milo T., "Querying the World Wide Web".

In Proc. of First Int. Conf. on Parallel and Distributed Information Systems
(PDIS), pp. 80-91, December 1996. ftp://db.toronto.edu/pub/papers/pdis96.ps.gz

[19] Mendelzon A. O. and Milo T., "Formal models of Web queries". In: Proc. Acm

Pods 1997.

[20] Mihaila G. A., "WebSQL - an SQL-like query language for the World Wide
Web". Master's thesis, University of Toronto, 1996.

[21] Mihaila G. A., WebSQL Home Page, 1997.

http://www.cs.toronto.edu/~georgem/WebSQL.html

[22] Minohara T. and Watanabe R., "Queries on structure in hypertext". In:
Foundations of Data Organization and Algorithms (FODO), Berlin Heidelberg
New York: Springer, 1993.

[23] Morville P., "Information Architecture on the World Wide Web", pp:58, February

1998.

[24] Naughton J.et al., "The Niagara Internet Query System", Computer Sciences
Department, University of Wisconsin-Madison, 2000.

[25] Oracle Inc., Statement of Direction, "Oracle Forms – Oracle Reports – Oracle

Designer", November 2007.

ftp://db.toronto.edu/pub/papers/pdis96.ps.gz
http://www.cs.toronto.edu/~georgem/WebSQL.html

 106

[26] Patel B. C. and Sunderraman R., "Querying Web Data: An Object-Oriented
Approach", ACM Southeast Regional Conference, Proceedings of the 38th annual
on Southeast Regional Conference, Georgia State University, 2000.

[27] Petropoulos M., Papakonstantinou Y. and Vassalos V., "Building XML Query

Forms and Reports with XQForms", 2003.

[28] Piotrowski R., "Natural language interface to legal databases", Umea University,
2005.

[29] Qutaihsat M. A., "An Arabic Menu-Based Natural Language Interface to

Database Systems", Proceedings of 8th International Conference on Systems
Research Informatics and Cybernetics, Germany, 1995.

[30] Rajaraman A., "Virtual Database Technology, XML, and the Evolution of the

Web". Position paper, Junglee Corporation, 1998. Available at
http://www.junglee.com/tech/xml_pos.html

[31] Ramakrishnan R. and Gehrke J., "Database Management Systems", Third edition,

August 2002.

[32] Smith D. and Lopez M., "Information extraction for semi-structured documents".
In Proceedings of the Workshop on Management of Semistructured Data, In
conjunction with PODS/SIGMOD, Ventana Canyon Resort, Tucson, Arizona,
1997.

[33] Soderland S., Etzioni O., Shaked T. and Weld D., "The Use of Web-based

Statistics to Validate Information Extraction," (to appear) AAAI workshop on
Adaptive Text Extraction and Mining, San Jose, CA, July 2004.

[34] Sommerville I., "Software Engineering", Seventh Edition, Pearson Addison

Wesely, 2007.

[35] Srivastava J., Desikan P. and Kumar V., "Web Mining – Concepts, Applications
and Research Directions", University of Minnesota, AHPCRC Technical Report,
2005.

[36] Sunderraman R., ReQueSS, "Relational Querying of Semi-Structured Data".

International Conference on Data Engineering (ICDE), Demonstration Paper,
San Diego, CA, February 2000.

[37] Taniar D., "Web Information Systems", Idea Group Pub, 2004.

[38] Vertan C., "Querying Multilingual Semantic Web in Natural Language",

University of Hamburg, 2004.

http://www.junglee.com/tech/xml_pos.html

 107

[39] Weld D., Anderson C., Domingos P., Etzioni O., Lau T., Gajos K. and Wolfman

S., "Automatically Personalizing User Interfaces" (IJCAI), August 2003.

[40] Yates A., Etzioni O. and Weld D., "A Reliable Natural Language Interface to
Household Appliances" (IUI), January 2003.

[41] Yates R. B. and Neto B. R., "Modern Information Retrieval". Addison-Wesely

Longman Publishing Company, 1999.

WEB RESOURCES

[42] http://www.acme.com/searches.html
 Access date: May 4, 2008

[43] http://www.altova.com/products/mapforce/data_mapping.html
 Access date: April 24, 2008

[44] http://www.altova.com/products/stylevision/xslt_stylesheet_designer.html
 Access date: April 24, 2008

[45] http://www.altova.com/products/xmlspy/xml_editor.html
 Access date: April 23, 2008

[46] http://www.delphion.com
 Access date: May 4, 2008

[47] http://www.en.wikipedia.org/wiki/Site_map
 Access date: April 22, 2008

[48] https://www.google.com/webmasters/tools/docs/en/protocol.html
 Access date: April 21, 2008

[49] http://www.hitsw.com/index.html
 Access date: April 25, 2008

[50] http://www.lib.uchicago.edu/efts/ARTFL/projects/encyc/searchform.html
 Access date: May 5, 2008

[51] http://www.oracle.com/technology/products/
 Access date: April 17, 2008

[52] http://www.oxygenxml.com/
 Access date: April 23, 2008

[53] http://www.quest.com/toad/
 Access date: April 17, 2008

http://www.acme.com/searches.html
http://www.altova.com/products/mapforce/data_mapping.html
http://www.altova.com/products/stylevision/xslt_stylesheet_designer.html
http://www.altova.com/products/xmlspy/xml_editor.html
http://www.delphion.com/
http://www.en.wikipedia.org/wiki/Site_map
https://www.google.com/webmasters/tools/docs/en/protocol.html
http://www.hitsw.com/index.html
http://www.lib.uchicago.edu/efts/ARTFL/projects/encyc/searchform.html
http://www.oracle.com/technology/products/
http://www.oxygenxml.com/
http://www.en.wikipedia.org/wiki/Site_map

 108

[54] http://www.rfc-editor.org/rfcsearch.html
 Access date: May 5, 2008

[55] http://www.rocketface.com/maintain_website/ror_rss_sitemap_generator.html
 Access date: April 22, 2008

[56] http://www.scriptol.com/seo/simple-map.html
 Access date: April 22, 2008

[57] http://www.sigmod.org/sigmod/anthology/index.htm
 Access date: May 6, 2008

[58] http://www.sitemaps.org/
 Access date: April 21, 2008

[59] http://www.sitemapspal.com/
 Access date: April 21, 2008

[60] http://www.stylusstudio.com/xml_product_index.html
 Access date: April 26, 2008

[61] http://www.w3.org/XML/Schema
 Access date: April 22, 2008

[62] http://www.winsite.com/
 Access date: April 23, 2008

[63] http://www.xml-sitemaps.com/
 Access date: April 21, 2008

[64] http://www.xmlwrench.com/
 Access date: April 23, 2008

[65] http://www.math.tau.ac.il/~matias/courses/sem_fall98/websql/wwwSQL.htm
 Written by Golan Weiss, Access date: May 17, 2008

http://www.rfc-editor.org/rfcsearch.html
http://www.rocketface.com/maintain_website/ror_rss_sitemap_generator.html
http://www.scriptol.com/seo/simple-map.html
http://www.sigmod.org/sigmod/anthology/index.htm
http://www.sitemaps.org/
http://www.sitemapspal.com/
http://www.stylusstudio.com/xml_product_index.html
http://www.w3.org/XML/Schema
http://www.winsite.com/
http://www.xml-sitemaps.com/
http://www.xmlwrench.com/
http://www.math.tau.ac.il/~matias/courses/sem_fall98/websql/wwwSQL.htm

 109

APPENDICIES

APPENDIX A
Glossary of Acronyms

ACM Association for Computing Machinery.

ADF Application Development Framework.

AMID Arabic Menu-Based Natural Language Interface to Database

Systems.

CGI Common Gateway Interface.

CSS Cascading Style Sheets.

DBA Database Administrator.

DBMS Database Management Systems.

DDL Data Definition Language.

DOM Document Object Model.

DTDs Document Type Definitions.

EDI Electronic Data Interchange.

ExDB Extraction Database.

FTP File Transfer Protocol.

GMBI Generic Menu-Based Interface.

HTB Horizontal Toolbar.

HTTP Hypertext Transfer Protocol.

IBM International Business Machines Corporation.

IE Information Extraction.

IEEE Institute of Electrical and Electronics Engineers.

J2EE Java Platform, Enterprise Edition.

LOVs Lists of Values.

Mtg Meeting.

ODBC Object Database Connection.

PHP Hypertext Preprocessor.

PL/SQL Procedural Language extensions to Structured Query Language.

RDB Relational Database.

 110

RDBMS Relational Database Management System.

ROR Resources of a Resource.

RSS Really Simple Syndication.

SAX The Simple Application programming interface for The Extensible

Markup Language.

SDLC Systems Development Lifecycle.

SOA Service-Oriented Architectures.

SOAP Service-Oriented Architecture Protocol.

SQL Structured Query Language.

UML Unified Modeling Language.

V & V Verification and Validation.

VTB Vertical Toolbar.

W3QL World-Wide Web Query Language.

WSDL Web Services Description Language.

WWW World Wide Web.

XHTML Extensible Hypertext Markup Language.

XML-QL Extensible Markup Language-Query Language.

XSL eXtensible Stylesheet Language.

XSLT eXtensible Stylesheet Language Transformations.

 111

APPENDIX B
The Software Life Cycle

 The Systems Development Lifecycle (SDLC) process is defined as an organized way
to determine customer needs and user requirements such that technology can be applied
through systems development, and help customers and users perform their jobs more
effectively and efficiently [34].

 The SDLC process ends with maintenance and sustainment activities but includes a
way to use feedback for continuous improvement of processes and systems. Project
management is a tool used to manage the use of a systems development methodology (a
structured approach to systems development), and ensure systems are built that help the
users and customers [34].

 The traditional Waterfall model, is a sequential software development model and a
process for the creation of software in which development is seen as flowing steadily
downwards (like a waterfall) through the development phases as shown in Figure B.1
[34].

Figure B.1: The Software Life Cycle (Waterfall Model)

 The principal stages of the model map onto fundamental development activities:

1) Requirements analysis and definition: The System’s services, constraints and
goals are established by consultation with system users. They are then defied in
detail and serve as a system specification.

2) System and software design: The systems design process partitions the

requirements to either hardware or software systems. It establishes an overall

 112

system architecture. Software design involves identifying and describing the
fundamental software system abstractions and their relationships.

3) Implementation and unit testing: During this stage, the software design is realized

as a set of programs or program units. Unit testing involves verifying that each
unit meets its specification.

4) Integration and system testing: The individual program units or programs are

integrated and tested as a complete system to ensure that the software
requirements have been met. After testing, the software system is delivered to the
customer.

5) Operation and maintenance: Normally (although not necessarily) this is the

longest life-cycle phase. After the system is installed and put in practical use,
maintenance involves correcting the errors which were not discovered in earlier
stages of the development life cycle, improving the implementation of the system
units and enhancing the system’s services as new requirements are discovered.

 In principle, the result of each phase is one or more documents that are approved
(‘signed off’). The following phase should not start until the previous phase has finished.
In practice, these stages overlap and feed information to each other. During design,
problems with requirements are identified; during coding, design problems are found and
so on. The software process is not a simple linear model but involves a sequence of
iterations of the development activities.

 Software validation or, more generally, verification and validation (V & V) is
intended to show that a system conforms to its specification and that the system meets the
expectations of the users. Systems should not be tested as a single, monolithic unit.
Figure B.2 shows a three-stage testing process where system components are tested, the
integrated system is tested and, finally, the system is tested with real data [34].

Figure B.2: Testing Process Stages

 113

 The stages in the testing process are:

1) Component (or unit) testing: Individual components are tested to ensure that they
operate correctly. Each component is tested independently, without other system
components. Components may be simple entities as functions, object classes or
triggers, or may be coherent groupings of these entities.

2) System Testing: The components are integrated to make up the system. This

process is concerned with finding errors that result from unanticipated interactions
between components and component interface problems. It is also concerned with
validating that the system meets its requirements and testing the emergent system
properties.

3) Acceptance testing: This is the final stage in the testing process before the system

is accepted for operational use. The system is tested with real data rather than
with simulated test data.

 114

APPENDIX C
The Code of Developing GMBI

• Triggers on form level:

- PRE-FORM:

set_window_property (forms_mdi_window,window_state,maximize);

set_window_property ('window1',window_state,maximize);

- WHEN-TAB-PAGE-CHANGED:

if :system.tab_new_page='CONFERENCES' then

 :global.tab:=1;

elsif :system.tab_new_page='JOURNALS' then

 :global.tab:=2;

elsif :system.tab_new_page='EDUCATIONAL_COURSES' then

 :global.tab:=3;

elsif :system.tab_new_page='ARTICLES' then

 :global.tab:=4;

elsif :system.tab_new_page='CITATIONS' then

 :global.tab:=5;

elsif :system.tab_new_page='BOOKS' then

 :global.tab:=6;

elsif :system.tab_new_page='AFFILIATED_ORGANIZATIONS' then

 :global.tab:=7;

elsif :system.tab_new_page='NEWSLETTERS' then

 :global.tab:=8;

elsif :system.tab_new_page='PROCEEDINGS' then

 :global.tab:=9;

elsif :system.tab_new_page='SPECIAL_INTEREST_GROUPS' then

 :global.tab:=10;

elsif :system.tab_new_page='TRANSACTIONS' then

 :global.tab:=11;

 115

elsif :system.tab_new_page='MAGAZINES' then

 :global.tab:=12;

end if;

if :system.mode='ENTER-QUERY' then

 exit_form;

end if;

:SQL:=NULL;

go_block(:system.tab_new_page);

enter_query;

- ON-MESSAGE:

 declare

 v varchar2(1000);

 begin

 v:=:system.tab_new_page;

 if message_code=40353 then

 null;

 elsif message_code=40301 then

 if show_alert('qry')=88 then

 raise form_trigger_failure;

 end if;

 else

 message(message_type||'-'||message_code||': '||message_text);

 end if;

 end;

- WHEN-NEW -FORM-INSTANCE:

:global.tab:=1;

 116

• Triggers on data block level:

- WHEN-NEW -BLOCK-INSTANCE:

enter_query;

• Triggers on item level:

- WHEN_BUTTON_PRESSED on Push Button “MTG_YR”:

if show_lov('CONF_MTG_YEAR_LOV')=true then

 null;

end if;

- WHEN_BUTTON_PRESSED on Push Button “CONF_NAME”:

if show_lov('CONF_LOV')=true then

 null;

end if;

- WHEN_BUTTON_PRESSED on Push Button “JOUR_N”:

if show_lov('JOUR_LOV')=true then

 null;

end if;

- WHEN_BUTTON_PRESSED on Push Button “EDU_CRS_N”:

if show_lov('EDU_COURS_LOV')=true then

 null;

end if;

- WHEN_BUTTON_PRESSED on Push Button “ART_AUTHOR”:

if show_lov('ART_AUTH_LOV')=true then

 set_item_property('articles.tit',visible,property_true);

 set_item_property('articles.tit',enabled,property_true);

end if;

 117

- WHEN_BUTTON_PRESSED on Push Button “TITLE”:

if show_lov('ART_TIT_LOV')=true then

 null;

end if;

- WHEN_BUTTON_PRESSED on Push Button “ARTICLE_YR”:

if show_lov('ART_YR_LOV')=true then

 null;

end if;

- WHEN_BUTTON_PRESSED on Push Button “CITATION”:

if show_lov('CIT_LOV')=true then

 null;

end if;

- WHEN_BUTTON_PRESSED on Push Button “CIT_AUTHOR”:

if show_lov('CIT_AUTH_LOV')=true then

 null;

end if;

- WHEN_BUTTON_PRESSED on Push Button “CIT_YR”:

if show_lov('CIT_YR_LOV')=true then

 null;

end if;

- WHEN_BUTTON_PRESSED on Push Button “MAIN_CATEGORY”:

if show_lov('BOOKS_MAIN_LOV')=true then

 set_item_property('BOOKS.s',visible,property_true);

 set_item_property('BOOKS.s',enabled,property_true);

end if;

 118

- WHEN_BUTTON_PRESSED on Push Button “SUB_CATEGORY”:

if show_lov('BOOKS_sub_LOV')=true then

 set_item_property('BOOKS.b',visible,property_true);

 set_item_property('BOOKS.b',enabled,property_true);

end if;

- WHEN_BUTTON_PRESSED on Push Button “BOOK_TITLE”:

if show_lov('BOOKS_LOV')=true then

 null;

end if;

- WHEN_BUTTON_PRESSED on Push Button “AFF_ORG”:

if show_lov('AFF_ORG_LOV')=true then

 null;

end if;

- WHEN_BUTTON_PRESSED on Push Button “AFF_PUB”:

if show_lov('AFF_PUB_LOV')=true then

 null;

end if;

- WHEN_BUTTON_PRESSED on Push Button “NEWSLETTER”:

if show_lov('NEW_LOV')=true then

 null;

end if;

- WHEN_BUTTON_PRESSED on Push Button “PROCEEDING”:

if show_lov('PROC_LOV')=true then

 null;

end if;

 119

- WHEN_BUTTON_PRESSED on Push Button “SIG”:

if show_lov('SIG_LOV')=true then

 null;

end if;

- WHEN_BUTTON_PRESSED on Push Button “TRANSACTION”:

if show_lov('TRAN_LOV')=true then

 null;

end if;

- WHEN_BUTTON_PRESSED on Push Button “MAGAZINE”:

if show_lov('MAG_LOV')=true then

 null;

end if;

- WHEN_BUTTON_PRESSED on Push Button “SEARCH”:

if :global.tab=1 then

 if :conferences.c=2 then

 :CONFERENCE_RECORD:='%'||:CONFERENCE_RECORD||'%';

 :CONFERENCE_NAME:='%'||:CONFERENCE_NAME||'%';

 :ACRONYM:='%'||:ACRONYm||'%';

 :MTG_YEAR:='%'||:MTG_YEAR||'%';

 :MTG_START_DATE:='%'||:MTG_START_DATE||'%';

 :MTG_LOCATION:='%'||:MTG_LOCATION||'%';

 :ISBN :='%'|| :ISBN||'%';

 :IEEE_CATALOG_NO:='%'|| :IEEE_CATALOG_NO||'%';

 :IEEE_BMS_PART_NO:='%'|| :IEEE_BMS_PART_NO||'%';

 :ESTIMATED_RECIEVED_DATE:='%'|| :ESTIMATED_RECIEVED_DATE||'%';

 :ACTUAL_RELEASE_DATE :='%'||:ACTUAL_RELEASE_DATE||'%';

 :XPLORE_PU_NO :='%'||:XPLORE_PU_NO||'%';

 120

 elsif :conferences.c=3 then

 :CONFERENCE_RECORD:=:CONFERENCE_RECORD||'%';

 :CONFERENCE_name:=:CONFERENCE_name||'%';

 :ACRONYM:=:ACRONYm||'%';

 :MTG_YEAR:=:MTG_YEAR||'%';

 :MTG_START_DATE:=:MTG_START_DATE||'%';

 :MTG_LOCATION:=:MTG_LOCATION||'%';

 :ISBN := :ISBN||'%';

 :IEEE_CATALOG_NO:=:IEEE_CATALOG_NO||'%';

 :IEEE_BMS_PART_NO:=:IEEE_BMS_PART_NO||'%';

 :ESTIMATED_RECIEVED_DATE:= :ESTIMATED_RECIEVED_DATE||'%';

 :ACTUAL_RELEASE_DATE :=:ACTUAL_RELEASE_DATE||'%';

 :XPLORE_PU_NO :=:XPLORE_PU_NO||'%';

 elsif :conferences.c=4 then

 :CONFERENCE_RECORD:='%'||:CONFERENCE_RECORD;

 :CONFERENCE_name:='%'||:CONFERENCE_name;

 :ACRONYM:='%'||:ACRONYm;

 :MTG_YEAR:='%'||:MTG_YEAR;

 :MTG_START_DATE:='%'||:MTG_START_DATE;

 :MTG_LOCATION:='%'||:MTG_LOCATION;

 :ISBN :='%'|| :ISBN||'%';

 :IEEE_CATALOG_NO:='%'|| :IEEE_CATALOG_NO;

 :IEEE_BMS_PART_NO:='%'|| :IEEE_BMS_PART_NO;

 :ESTIMATED_RECIEVED_DATE:='%'|| :ESTIMATED_RECIEVED_DATE;

 :ACTUAL_RELEASE_DATE :='%'||:ACTUAL_RELEASE_DATE;

 :XPLORE_PU_NO :='%'||:XPLORE_PU_NO;

 end if;

 elsif :global.tab=2 then

 121

if :journals.c=2 then

 :JOURNALS.JOURNAL_NO:='%'||:JOURNALS.JOURNAL_NO||'%';

 :JOURNALS.JOURNAL:='%'||:JOURNALS.JOURNAL||'%';

 :JOURNALS.ABBREVIATION:='%'||:JOURNALS.ABBREVIATION||'%';

 :JOURNALS.SOURCE:='%'||:JOURNALS.SOURCE||'%';

 elsif :journals.c=3 then

 :JOURNALS.JOURNAL_NO:=:JOURNALS.JOURNAL_NO||'%';

 :JOURNALS.JOURNAL_NO:=:JOURNALS.JOURNAL||'%';

 :JOURNALS.JOURNAL_NO:=:JOURNALS.ABBREVIATION||'%';

 :JOURNALS.JOURNAL_NO:=:JOURNALS.SOURCE||'%';

 elsif :journals.c=4 then

 :JOURNALS.JOURNAL_NO:='%'||:JOURNALS.JOURNAL_NO;

 :JOURNALS.JOURNAL:='%'||:JOURNALS.JOURNAL;

 :JOURNALS.ABBREVIATION:='%'||:JOURNALS.ABBREVIATION;

 :JOURNALS.SOURCE:='%'||:JOURNALS.SOURCE;

 end if;

 elsif :global.tab=3 then

 if :EDUCATIONAL_COURSES.c=2 then

:EDUCATIONAL_COURSES.COURSE_ID:='%'||:EDUCATIONAL_COURSES.C

OURSE_ID||'%';

:EDUCATIONAL_COURSES.COURSE_TITLE:='%'||:EDUCATIONAL_COURS

ES.COURSE_TITLE||'%';

:EDUCATIONAL_COURSES.COURSE_INSTRUCTORS:='%'||:EDUCATIONAL

_COURSES.COURSE_INSTRUCTORS||'%';

:EDUCATIONAL_COURSES.SPONSORED_BY:='%'||:EDUCATIONAL_COURS

ES.SPONSORED_BY||'%';

:EDUCATIONAL_COURSES.PUBLICATION_DATE:='%'||:EDUCATIONAL_C

OURSES.PUBLICATION_DATE||'%';

 122

:EDUCATIONAL_COURSES.COURSE_SUMMARY:='%'||:EDUCATIONAL_CO

URSES.COURSE_SUMMARY||'%';

 elsif :EDUCATIONAL_COURSES.c=3 then

:EDUCATIONAL_COURSES.COURSE_ID:=:EDUCATIONAL_COURSES.COU

RSE_ID||'%';

:EDUCATIONAL_COURSES.COURSE_TITLE:=:EDUCATIONAL_COURSES.C

OURSE_TITLE||'%';

:EDUCATIONAL_COURSES.COURSE_INSTRUCTORS:=:EDUCATIONAL_CO

URSES.COURSE_INSTRUCTORS||'%';

:EDUCATIONAL_COURSES.SPONSORED_BY:=:EDUCATIONAL_COURSES.

SPONSORED_BY||'%';

:EDUCATIONAL_COURSES.PUBLICATION_DATE:=:EDUCATIONAL_COUR

SES.PUBLICATION_DATE||'%';

:EDUCATIONAL_COURSES.COURSE_SUMMARY:=:EDUCATIONAL_COUR

SES.COURSE_SUMMARY||'%';

elsif :EDUCATIONAL_COURSES.c=4 then

 :EDUCATIONAL_COURSES.COURSE_ID:='%'||:EDUCATIONAL_COURSES.C

OURSE_ID;

 :EDUCATIONAL_COURSES.COURSE_TITLE:='%'||:EDUCATIONAL_COURS

ES.COURSE_TITLE;

 :EDUCATIONAL_COURSES.COURSE_INSTRUCTORS:='%'||:EDUCATIONAL

_COURSES.COURSE_INSTRUCTORS;

 :EDUCATIONAL_COURSES.SPONSORED_BY:='%'||:EDUCATIONAL_COURS

ES.SPONSORED_BY;

 :EDUCATIONAL_COURSES.PUBLICATION_DATE:='%'||:EDUCATIONAL_C

OURSES.PUBLICATION_DATE;

 :EDUCATIONAL_COURSES.COURSE_SUMMARY:='%'||:EDUCATIONAL_CO

URSES.COURSE_SUMMARY;

 end if;

 123

 elsif :global.tab=4 then

 if :ARTICLES.c=2 then

 :ARTICLES.ARTICLE_NO:='%'||:ARTICLES.ARTICLE_NO||'%';

 :ARTICLES.AUTHORS:='%'||:ARTICLES.AUTHORS||'%';

 :ARTICLES.ARTICLE_TITLE:='%'||:ARTICLES.ARTICLE_TITLE||'%';

 :ARTICLES.JOURNAL:='%'||:ARTICLES.JOURNAL||'%';

 :ARTICLES.ARTICLE_YEAR:='%'||:ARTICLES.ARTICLE_YEAR||'%';

 elsif :ARTICLES.c=3 then

 :ARTICLES.ARTICLE_NO:=:ARTICLES.ARTICLE_NO||'%';

 :ARTICLES.AUTHORS:=:ARTICLES.AUTHORS||'%';

 :ARTICLES.ARTICLE_TITLE:=:ARTICLES.ARTICLE_TITLE||'%';

 :ARTICLES.JOURNAL:=:ARTICLES.JOURNAL||'%';

 :ARTICLES.ARTICLE_YEAR:=:ARTICLES.ARTICLE_YEAR||'%';

 elsif :ARTICLES.c=4 then

 :ARTICLES.ARTICLE_NO:='%'||:ARTICLES.ARTICLE_NO;

 :ARTICLES.AUTHORS:='%'||:ARTICLES.AUTHORS;

 :ARTICLES.ARTICLE_TITLE:='%'||:ARTICLES.ARTICLE_TITLE;

 :ARTICLES.JOURNAL:='%'||:ARTICLES.JOURNAL;

 :ARTICLES.ARTICLE_YEAR:='%'||:ARTICLES.ARTICLE_YEAR;

 end if;

 elsif :global.tab=5 then

 if :CITATIONS.c=2 then

 :CITATIONS.CITATION_NO:='%'||:CITATIONS.CITATION_NO||'%';

 :CITATIONS.AUTHORS:='%'||:CITATIONS.AUTHORS||'%';

 :CITATIONS.CITATION:='%'||:CITATIONS.CITATION||'%';

 :CITATIONS.JOURNAL:='%'||:CITATIONS.JOURNAL||'%';

 :CITATIONS.CITATION_YEAR:='%'||:CITATIONS.CITATION_YEAR||'%';

 124

 elsif :CITATIONS.c=3 then

 :CITATIONS.CITATION_NO:=:CITATIONS.CITATION_NO||'%';

 :CITATIONS.AUTHORS:=:CITATIONS.AUTHORS||'%';

 :CITATIONS.CITATION:=:CITATIONS.CITATION||'%';

 :CITATIONS.JOURNAL:=:CITATIONS.JOURNAL||'%';

 :CITATIONS.CITATION_YEAR:=:CITATIONS.CITATION_YEAR||'%';

 elsif :CITATIONS.c=4 then

 :CITATIONS.CITATION_NO:='%'||:CITATIONS.CITATION_NO;

 :CITATIONS.AUTHORS:='%'||:CITATIONS.AUTHORS;

 :CITATIONS.CITATION:='%'||:CITATIONS.CITATION;

 :CITATIONS.JOURNAL:='%'||:CITATIONS.JOURNAL;

 :CITATIONS.CITATION_YEAR:='%'||:CITATIONS.CITATION_YEAR;

 end if;

 elsif :global.tab=6 then

 if :BOOKS.c=2 then

 :BOOKS.BOOK_ID:='%'||:BOOKS.BOOK_ID||'%';

 :BOOKS.MAIN_CATEGORY:='%'||:BOOKS.MAIN_CATEGORY||'%';

 :BOOKS.SUB_CATEGORY:='%'||:BOOKS.SUB_CATEGORY||'%';

 :BOOKS.BOOK_TITLE:='%'||:BOOKS.BOOK_TITLE||'%';

 :BOOKS.EDITION:='%'||:BOOKS.EDITION||'%';

 elsif :BOOKS.c=3 then

 :BOOKS.BOOK_ID:=:BOOKS.BOOK_ID||'%';

 :BOOKS.MAIN_CATEGORY:=:BOOKS.MAIN_CATEGORY||'%';

 :BOOKS.SUB_CATEGORY:=:BOOKS.SUB_CATEGORY||'%';

 :BOOKS.BOOK_TITLE:=:BOOKS.BOOK_TITLE||'%';

 :BOOKS.EDITION:=:BOOKS.EDITION||'%';

 125

 elsif :BOOKS.c=4 then

 :BOOKS.BOOK_ID:='%'||:BOOKS.BOOK_ID;

 :BOOKS.MAIN_CATEGORY:='%'||:BOOKS.MAIN_CATEGORY;

 :BOOKS.SUB_CATEGORY:='%'||:BOOKS.SUB_CATEGORY;

 :BOOKS.BOOK_TITLE:='%'||:BOOKS.BOOK_TITLE;

 :BOOKS.EDITION:='%'||:BOOKS.EDITION;

 end if;

 elsif :global.tab=7 then

if :AFFILIATED_ORGANIZATIONS.c=2 then

 :AFFILIATED_ORGANIZATIONS.ORG_NO:='%'||:AFFILIATED_ORGANIZATI

ONS.ORG_NO||'%';

 :AFFILIATED_ORGANIZATIONS.AFF_ORGANIZATION:='%'||:AFFILIATED_

ORGANIZATIONS.AFF_ORGANIZATION||'%';

 :AFFILIATED_ORGANIZATIONS.PUBLISHER:='%'||:AFFILIATED_ORGANIZ

ATIONS.PUBLISHER||'%';

 :AFFILIATED_ORGANIZATIONS.ABBREVIATION:='%'||:AFFILIATED_ORG

ANIZATIONS.ABBREVIATION||'%';

 elsif :AFFILIATED_ORGANIZATIONS.c=3 then

:AFFILIATED_ORGANIZATIONS.ORG_NO:=:AFFILIATED_ORGANIZATION

S.ORG_NO||'%';

:AFFILIATED_ORGANIZATIONS.AFF_ORGANIZATION:=:AFFILIATED_OR

GANIZATIONS.AFF_ORGANIZATION||'%';

:AFFILIATED_ORGANIZATIONS.PUBLISHER:=:AFFILIATED_ORGANIZATI

ONS.PUBLISHER||'%';

:AFFILIATED_ORGANIZATIONS.ABBREVIATION:=:AFFILIATED_ORGANI

ZATIONS.ABBREVIATION||'%';

 elsif :AFFILIATED_ORGANIZATIONS.c=4 then

 126

:AFFILIATED_ORGANIZATIONS.ORG_NO:='%'||:AFFILIATED_ORGANIZATI

ONS.ORG_NO;

:AFFILIATED_ORGANIZATIONS.AFF_ORGANIZATION:='%'||:AFFILIATED_

ORGANIZATIONS.AFF_ORGANIZATION;

:AFFILIATED_ORGANIZATIONS.PUBLISHER:='%'||:AFFILIATED_ORGANIZ

ATIONS.PUBLISHER;

:AFFILIATED_ORGANIZATIONS.ABBREVIATION:='%'||:AFFILIATED_ORG

ANIZATIONS.ABBREVIATION;

 end if;

 elsif :global.tab=8 then

 if :NEWSLETTERS.c=2 then

:NEWSLETTERS.NEWSLETTER_NO:='%'||:NEWSLETTERS.NEWSLETTER_N

O||'%';

 :NEWSLETTERS.NEWSLETTER:='%'||:NEWSLETTERS.NEWSLETTER||'%';

 elsif :NEWSLETTERS.c=3 then

:NEWSLETTERS.NEWSLETTER_NO:=:NEWSLETTERS.NEWSLETTER_NO||'%';

 :NEWSLETTERS.NEWSLETTER:=:NEWSLETTERS.NEWSLETTER||'%';

 elsif :NEWSLETTERS.c=4 then

:NEWSLETTERS.NEWSLETTER_NO:='%'||:NEWSLETTERS.NEWSLETTER_NO;

 :NEWSLETTERS.NEWSLETTER:='%'||:NEWSLETTERS.NEWSLETTER;

 end if;

 elsif :global.tab=9 then

 if :PROCEEDINGS.c=2 then

:PROCEEDINGS.PROCEEDING_NO:='%'||:PROCEEDINGS.PROCEEDING_NO|

|'%';

 :PROCEEDINGS.PROCEEDING:='%'||:PROCEEDINGS.PROCEEDING||'%';

 127

 elsif :NEWSLETTERS.c=3 then

 :PROCEEDINGS.PROCEEDING_NO:=:PROCEEDINGS.PROCEEDING_NO||'%';

 :PROCEEDINGS.PROCEEDING:=:PROCEEDINGS.PROCEEDING||'%';

 elsif :NEWSLETTERS.c=4 then

 :PROCEEDINGS.PROCEEDING_NO:='%'||:PROCEEDINGS.PROCEEDING_NO;

 :PROCEEDINGS.PROCEEDING:='%'||:PROCEEDINGS.PROCEEDING;

 end if;

 elsif :global.tab=10 then

 if :SPECIAL_INTEREST_GROUPS.c=2 then

:SPECIAL_INTEREST_GROUPS.SIG_NO:='%'||:SPECIAL_INTEREST_GROUP

S.SIG_NO||'%';

:SPECIAL_INTEREST_GROUPS.SIG:='%'||:SPECIAL_INTEREST_GROUPS.SIG

||'%';

 elsif :SPECIAL_INTEREST_GROUPS.c=3 then

:SPECIAL_INTEREST_GROUPS.SIG_NO:=:SPECIAL_INTEREST_GROUPS.SI

G_NO||'%';

:SPECIAL_INTEREST_GROUPS.SIG:=:SPECIAL_INTEREST_GROUPS.SIG||'%';

 elsif :SPECIAL_INTEREST_GROUPS.c=4 then

:SPECIAL_INTEREST_GROUPS.SIG_NO:='%'||:SPECIAL_INTEREST_GROUP

S.SIG_NO;

:SPECIAL_INTEREST_GROUPS.SIG:='%'||:SPECIAL_INTEREST_GROUPS.SIG;

 end if;

 elsif :global.tab=11 then

 128

if :TRANSACTIONS.c=2 then

:TRANSACTIONS.TRANSACTION_NO:='%'||:TRANSACTIONS.TRANSACTIO

N_NO||'%';

:TRANSACTIONS.TRANSACTION_TITLE:='%'||:TRANSACTIONS.TRANSAC

TION_TITLE||'%';

:TRANSACTIONS.ABBREVIATION:='%'||:TRANSACTIONS.ABBREVIATION||

'%';

 elsif :TRANSACTIONS.c=3 then

:TRANSACTIONS.TRANSACTION_NO:=:TRANSACTIONS.TRANSACTION_

NO||'%';

:TRANSACTIONS.TRANSACTION_TITLE:=:TRANSACTIONS.TRANSACTIO

N_TITLE||'%';

 :TRANSACTIONS.ABBREVIATION:=:TRANSACTIONS.ABBREVIATION||'%';

 elsif :TRANSACTIONS.c=4 then

:TRANSACTIONS.TRANSACTION_NO:='%'||:TRANSACTIONS.TRANSACTIO

N_NO;

:TRANSACTIONS.TRANSACTION_TITLE:='%'||:TRANSACTIONS.TRANSAC

TION_TITLE;

 :TRANSACTIONS.ABBREVIATION:='%'||:TRANSACTIONS.ABBREVIATION;

 end if;

 elsif :global.tab=12 then

 if :MAGAZINES.c=2 then

 :MAGAZINES.MAGAZINE_NO:='%'||:MAGAZINES.MAGAZINE_NO||'%';

 :MAGAZINES.MAGAZINE:='%'||:MAGAZINES.MAGAZINE||'%';

 :MAGAZINES.ABBREVIATION:='%'||:MAGAZINES.ABBREVIATION||'%';

 :MAGAZINES.SOURCE:='%'||:MAGAZINES.SOURCE||'%';

 elsif :MAGAZINES.c=3 then

 129

 :MAGAZINES.MAGAZINE_NO:=:MAGAZINES.MAGAZINE_NO||'%';

 :MAGAZINES.MAGAZINE:=:MAGAZINES.MAGAZINE||'%';

 :MAGAZINES.ABBREVIATION:=:MAGAZINES.ABBREVIATION||'%';

 :MAGAZINES.SOURCE:=:MAGAZINES.SOURCE||'%';

 elsif :MAGAZINES.c=4 then

 :MAGAZINES.MAGAZINE_NO:='%'||:MAGAZINES.MAGAZINE_NO;

 :MAGAZINES.MAGAZINE:='%'||:MAGAZINES.MAGAZINE;

 :MAGAZINES.ABBREVIATION:='%'||:MAGAZINES.ABBREVIATION;

 :MAGAZINES.SOURCE:='%'||:MAGAZINES.SOURCE;

 end if;

end if;

execute_query;

- WHEN_BUTTON_PRESSED on Push Button “RESET”:

set_item_property('BOOKS.s',visible,property_true);

set_item_property('BOOKS.b',visible,property_true);

set_item_property('ARTICLES.TIT',visible,property_true);

:search_blk.sql:= ' ';

IF :SYSTEM.MODE='ENTER-QUERY' THEN

 EXIT_FORM;

ELSE

 clear_block;

END IF;

enter_query;

- WHEN_BUTTON_PRESSED on Push Button “SHOW_SQL”:

:search_blk.sql:=:system.last_query;

 130

- WHEN_BUTTON_PRESSED on Push Button “EXIT”:

if :system.mode='ENTER-QUERY' then

 exit_form;

end if;

exit_form;

• List of Values (LOVs) and Record Groups:
- TRAN_LOV:

SELECT ALL TRANSACTIONS.TRANSACTION_TITLE,
TRANSACTIONS.TRANSACTION_NO, TRANSACTIONS.ABBREVIATION
FROM TRANSACTIONS
order by TRANSACTIONS.TRANSACTION_TITLE;

- CONF_LOV:
SELECT ALL CONFERENCES.CONFERENCE_NAME
FROM CONFERENCES
order by CONFERENCES.CONFERENCE_NAME;

- CONF_MTG_YEAR_LOV:
SELECT DISTINCT CONFERENCES.MTG_YEAR
FROM CONFERENCES
ORDER BY CONFERENCES.MTG_YEAR;

- JOUR_LOV:
SELECT DISTINCT JOURNALS.JOURNAL
FROM JOURNALS
ORDER BY JOURNALS.JOURNAL;

- BOOKS_LOV:
SELECT DISTINCT BOOKS.BOOK_TITLE
FROM BOOKS
WHERE SUB_CATEGORY LIKE NVL(:BOOKS.SUB_CATEGORY,'%')
ORDER BY BOOKS.BOOK_TITLE;

- BOOKS_MAIN_LOV:
SELECT DISTINCT BOOKS.MAIN_CATEGORY
FROM BOOKS
ORDER BY BOOKS.MAIN_CATEGORY;

- BOOKS_SUB_LOV:
SELECT DISTINCT BOOKS.SUB_CATEGORY
FROM BOOKS
WHERE MAIN_CATEGORY LIKE NVL(:MAIN_CATEGORY,'%')

 131

ORDER BY BOOKS.SUB_CATEGORY;

- ART_AUTH_LOV:
SELECT distinct ARTICLES.AUTHORS
FROM ARTICLES
WHERE ARTICLES.ARTICLE_TITLE LIKE

NVL(:ARTICLES.ARTICLE_TITLE,'%')
order by ARTICLES.AUTHORS;

- ART_TIT_LOV:
SELECT distinct ARTICLES.ARTICLE_TITLE
FROM ARTICLES
order by ARTICLES.ARTICLE_TITLE;

- ART_YR_LOV:
SELECT DISTINCT ARTICLES.ARTICLE_YEAR
FROM ARTICLES
ORDER BY ARTICLES.ARTICLE_YEAR;

- EDU_COURS_LOV:
SELECT DISTINCT EDUCATIONAL_COURSES.COURSE_TITLE
FROM EDUCATIONAL_COURSES
ORDER BY EDUCATIONAL_COURSES.COURSE_TITLE;

- MAG_LOV:
SELECT DISTINCT MAGAZINES.MAGAZINE
FROM MAGAZINES
ORDER BY MAGAZINES.MAGAZINE;

- NEW_LOV:
SELECT DISTINCT NEWSLETTERS.NEWSLETTER
FROM NEWSLETTERS
ORDER BY NEWSLETTERS.NEWSLETTER;

- PROC_LOV:
SELECT DISTINCT PROCEEDINGS.PROCEEDING
FROM PROCEEDINGS
ORDER BY PROCEEDINGS.PROCEEDING;

- CIT_LOV:
SELECT DISTINCT CITATIONS.CITATION
FROM CITATIONS
WHERE CITATIONS.AUTHORS LIKE NVL(:CITATIONS.AUTHORS, '%')
ORDER BY CITATIONS.CITATION;

 132

- CIT_AUTH_LOV:
SELECT DISTINCT CITATIONS.AUTHORS
FROM CITATIONS
WHERE CITATIONS.CITATION LIKE NVL(:CITATIONS.CITATION,'%')
ORDER BY CITATIONS.AUTHORS;

- CIT_YR_LOV:
SELECT DISTINCT CITATIONS.CITATION_YEAR
FROM CITATIONS
ORDER BY CITATIONS.CITATION_YEAR;

- AFF_ORG_LOV:
SELECT DISTINCT AFFILIATED_ORGANIZATIONS.AFF_ORGANIZATION
FROM AFFILIATED_ORGANIZATIONS
ORDER BY AFFILIATED_ORGANIZATIONS.AFF_ORGANIZATION;

- AFF_PUB_LOV:
SELECT DISTINCT AFFILIATED_ORGANIZATIONS.PUBLISHER
FROM AFFILIATED_ORGANIZATIONS
WHERE AFFILIATED_ORGANIZATIONS.AFF_ORGANIZATION LIKE

NVL(:AFFILIATED_ORGANIZATIONS.AFF_ORGANIZATION,'%')
ORDER BY AFFILIATED_ORGANIZATIONS.PUBLISHER;

- SIG_LOV:
SELECT DISTINCT SPECIAL_INTEREST_GROUPS.SIG
FROM SPECIAL_INTEREST_GROUPS
ORDER BY SPECIAL_INTEREST_GROUPS.SIG;

	applet
	MMM96
	OLE_LINK1
	OLE_LINK10
	OLE_LINK2
	OLE_LINK3
	OLE_LINK4
	OLE_LINK5
	OLE_LINK6
	OLE_LINK7
	OLE_LINK8
	OLE_LINK9

