
 I

Towards An Ontology for Software
Product Quality Attributes

By

Ahmad Abdelhafiz Samhan
Faculty of Information Technology

Middle East University for Graduate Studies

Supervisors

Dr. Mohammad A. Al Fayoumi
Faculty of Information Technology

Middle East University for Graduate Studies

Dr. Ahmad K. A. Kayed
Software Engineering

Applied Science University

A thesis submitted in partial fulfillment
of the requirements for the degree of Master of Science

in Computer Information Systems

Amman, Jordan
May, 2008

 II

 III

 IV

 V

DEDICATION

I dedicate this work to my Father, Mother, Brothers, and Sisters, for their

love and Support, they were the light in my academic path and without them

nothing of this would have been possible.

 I also dedicate this work to my Father, Mother, Brothers, and Sister in

Law for their kind and patience.

And a special dedication to the rose of my life, my fiancée Suhair for her

love, patience, and support.

 VI

ACKNOWLEDGMENT

I would like to express my sincere appreciation to Dr. Mohammad Al-
Fayoumi and Dr. Ahmad Kayed for their guidance, support and motivation
through out my Master’s Thesis.

I would further like to acknowledge all of the Information Technology
faculty members at the Middle East University for Graduate Studies and I
am particularly grateful to Professor Dr. Mohammad Alhaj Hassan for
helping and encouraging my efforts during the thesis work.

Also, I would like to especially thank my brother Mohammad Samhan
for supporting me during the whole time of my studying and research.

Thank you All.

 VII

CONTENTS

AUTHERIZATION FORM…………………………………………………… ………………...I

COMMITTEE DECISION……………………………………………………… ……………...II

DECLERATION…………………………………… …………………………………………..III

DEDICATION..IV

ACKNOWLEDGMENT...V

LIST OF FIGURES..IX

LIST OF TABLES..XI

GLOSSARY OF ACRONYMS………...XII

ABSTRACT.. XIII

ABSTRACT IN ARABIC...XIV

CHAPTER 1: INTRODUCTION…………… …………………………………………………..1

1.1 OVERVIEW……………………………………………………………………………...1

1.1.1 THE DISCIPLINE OF SOFTWARE ENGINEERING…………………………....1

1.1.2 SCOPE OF SOFTWARE QUALITY……………………………………………...3

1.1.3 THE ROLE OF ONTOLOGY…………………………………………………..…5

1.1.3.1 WHAT IS AN ONTOLOGY…………………………………………...……..5

1.1.3.2 WHY DEVELOP AN ONTOLOGY………………………………………....5

1.1.3.3 WHAT IS IN AN ONTOLOGY………………………………………….…..7

1.1.3.4 LEVELS OF ONTOLOGY……………………………………………..…….7

1.1.3.5 ONTOLOGY DEVELOPMENT PROCESS AND LIFE CYCLE………...…8

1.2 PROBLEM DEFINITION……………………………………………………..………10

1.3 OBJECTIVES………………………………………………………………………….11

1.4 MOTIVATION OF THE STUDY………………………………………………….….12

1.5 REQUIREMENTS………………………………………………………..……………12

1.6 SIGNIFICANCE OF THE STUDY……………………………………………………12

1.7 CONTRIBUTION OF THE THESIS…………………………………………………..13

 VIII

1.8 METHODOLOGY……………………………………………………………..…..…..14

1.9 SOFTWARE USED IN THE WORK…………………………………………….…....15

1.9.1 KAON……………………………………………………………….……..…….15

1.9.2 TextToOnto……………………………………………………………..……….16

1.9.3 MS ACCESS AND MS VISIUAL BASIC TOOLS………………..…..….……18

1.10 HESIS ORGANIZATION……………………………………………………..………18

CHAPTER 2: RELATED WORK …….… ….…….…….…….…….…….…….…….……....20

2.1 GENERAL RELATED WORK….……………………………………………….……20

2.2 SPECIFIC RELATED WORK….…………………………………………..…………23

CHAPTER 3: BUILDING ONTOLOGY DOMAIN CONCEPTS… ….………...….…….…43

3.1 PARING TEXT CORPORA FOR SOFTWARE PRODUCT QUALITY

 ATTRIBUTES DOMAIN……………………………………...………………………43

3.2 EXTRACTING ONTOLOGY DOMAIN CONCEPTS…………….…………………44

3.3 ONTOLOGY EVALUATION PROCESS…………………………………………….49

3.4 THE COVERAGE PROCESS AND THE EVALUATION RESULTS…………..…..54

3.5 ENHANCING ONTOLOGY DOMAIN CONCEPTS…………………………...……57

3.5.1 THE ENHANCING IDEA AND PROCESS………………………...……….…57

3.5.2 EVALUATING THE NEW SUGGESTED ONTOLOGY DOMAIN

 CONCEPTS……………………………...………………………………………59

CHAPTER 4: EXTRACTING ONTOLOGY DOMAIN RELATIONSHIPS ……………...62

4.1 EXTRACTING RELATIONSHIPS BETWEEN CONCEPTS …….………………....62

4.2 A LATTICE REPRESENTATION OF THE RELATIONSHIPS……….………….....67

4.3 LISTING EACH CONCEPT RELATIONSHIPS WITH OTHERS IN THE

 ONTOLOGY DOMAIN……………………………………………………………….71

 IX

CHAPTER 5: CONCLOSIONS AND FUTURE WORK……………… ..………………..….76

5.1 CONCLUSIONS…………………………………………….……………………....…76

5.1.1 PRESENTING FINAL RESULTS……………………………………...…….....77

5.1.2 OUR CONTIBUTION…………………………………………..………………77

5.2 FUTURE WORK……………………………………..………………..……………....78

REFERENCES...80

APPENDICES...89

APPENDIX A..89

APPENDIX B..119

APPENDIX C..140

APPENDIX D..141

APPENDIX E..143

APPENDIX F...161

 X

LIST OF FIGURES

Figure 1.1: Methontology ontology development process life cycle………………………….…..8

Figure 1.2: Steps of the methodology of the study………………………………………………15

Figure 1.3: An overview of the KAON Tool Suite and its main components; KAON, KAON

 Extensions and TextToOnto…………………………………………………...….…16

Figure 1.4: The Front-end of the TextToOnto tool as an extension of KAON tool……………..17

Figure 1.5: Part of the algorithm used in the Ms Visual Tool………………………………...…18

Figure 2.1: The McCall quality model, organized around three types quality characteristics…..24

Figure 2.2: McCall’s Quality Model illustrated through a hierarchy of 11 quality factors (on the

 left hand side of the Figure) related to 23 quality criteria (on the right hand side of

 the Figure)……………………………………… ………………………………......25

Figure 2.3: Boehm's Software Quality Characteristics Tree………………………………….….27

Figure 2.4: Principles of Dromey’s Quality Model………………………………………...……30

Figure 2.5: The ISO 9000:2000 standards. The crosses and arrows indicate changes made

 from the older ISO 9000 standard to the new ISO 9000:2000 standard…………….31

Figure 2.6: The ISO 9126 quality model…………………………………………………...……32

Figure 2.7: ISO 9126: Software Product Evaluation: Quality Characteristics and Guidelines for

 their use……………………………………………………………………………...34

Figure 2.8: Maturity Levels of SW-CMM………………………………………………….……40

Figure 2.9: The staged CMMI-SW/SW representation…………………………………...……..41

Figure 2.10: The continuous CMMI-SW/SW representation……………………………………42

Figure 3.1: Creating a Corpus using TextToOnto Tool…………………………………………44

Figure 4.1: Part of the resulted relationships using TextToOnto tool…………………………...62

Figure 4.2: Using TexToOnto results as an input for the second MS Access tool………..…….63

Figure 4.3: Part of the resulted relationships groups from using the second tool……………..…64

 XI

Figure 4.4: Group 1 relationship Lattice representation: One Level Relationship…………...….67

Figure 4.5: Group 2 relationship Lattice representation: Two Levels Relationship……………..68

Figure 4.6: Group 7 relationship Lattice representation: One Level Relationship……………....68

Figure 4.7: Group 10 relationship Lattice representation: a One Level Relationship…….….….69

Figure 4.8: Group 22 relationship Lattice representation: Two Level Relationship………….....69

Figure 4.9: Group 28 relationship Lattice representation: Two Level Relationship……………70

Figure 4.10: Group 33 relationship Lattice representation: Three Level Relationship………….70

 XII

LIST OF TABLES

Table 2.1: Comparison between criteria/goals of the McCall and Boehm quality models………28

Table 2.2: Comparison between criteria/goals of the McCall, Boehm and ISO 9126

 quality models………………………………………………..……………………….33

Table 2.3: Maturity levels with corresponding focus and key process areas for CMM………....40

Table 3.1: the resulted 292 concepts (out of 2750)………………………………………………46

Table 3.2: The suggested 100 ontology domain concepts…………………………………….....48

Table 3.3: SWPQAs and their definitions from various sources references……….……...…….50

Table 3.4: Coverage Process Results…………………………………………………………….54

Table 3.5: The top listed 25 uncovered chosen concepts………………………………………...58

Table 3.6: The new 125 Ontology domain concepts list…………………………………………58

Table 3.7: The Coverage process results using the new suggested Ontology domain

 concepts……………………………………………………………………………....59

Table 4.1: The resulted relationships between groups of our Ontology concepts after

 filtering.……………………………………………………………………………....64

Table 4.2: Each Ontology domain concept relationships with other concepts in the domain…...71

Table A.1: The complete common SWQPAs extracted from different sources and their

 definitions…………………………………………………………………………...89

Table B.1: The complete results from the ontology evaluation step……………………………119

Table C.1: The final suggested ontology domain concepts list……………………………...…140

Table D.1: Relationships between groups of concepts in the ontology domain…………….….141

Table E.1: Each SWPQA definition concepts from our ontology domain concepts………..….143

Table F.1: Each concept relationships with others in the ontology domain concepts….……....161

 XIII

GLOSSARY OF ACRONYMS

API Application Programming Interface.

BWW Model Bung_Wand_Weber Model.

CMM I Capability Maturity Model Integration.

DoD Department of Defense.

FURPS Functionality, Usability, Reliability, Performance, Supportability.

GQM Goal, Question, Metric.

IBM International Business Machines Corporation.

IEEE Institute of Electrical and Electronics Engineers.

IEEE/EIA Institute of Electrical and Electronics Engineers/Electronic Industries

Association.

ISO/IEC International Standards Organization / International Electrotechnical

Commission.

ISO-JTC1 International Standards Organization/ Joint Technical Committee 1

KAON KArlsruhe ONtology.

MTBF Mean Time Between Failures.

NATO North Atlantic Treaty Organization.

PSM Practical Software Measurement.

QA Quality Assurance.

RDF Resource Description Framework.

SEI Software Engineering Institute.

SPICE Software Process Improvement and Capability dEtermination.

SQA Software Quality Assurance.

SQuaRE Software Product Quality Requirements and Evaluation.

SWE Software Engineering.

SWQ Software Quality.

SWPQAs Software Product Quality Attributes.

UML Unified Modeling Language.

VIM International Vocabulary of Basic and General Terms.

W3C World Wide Web Consortium.

XML Extensible Markup Language.

 XIV

ABSTRACT

Towards an Ontology for Software Product Quality Attributes
By

Ahmad AbdelHafiz Samhan
Supervisors

Dr. Mohammad A. Al Fayoumi
Dr. Ahmad K. A. Kayed

 This work focuses on studying the most common Software Product Quality Attributes
(SWPQAs) concepts and terminologies that current SWPQAs proposals present, in order
to extract a conceptualization for the SWPQAs domain. We collected and studied many
documents and reports that discussed SWPQAs in their contents, we extracted, studied,
evaluated, and enhanced an ontology domain concepts from the most common concepts
used in the semantic of the collected documents. Later we extracted and presented
general relationships between the suggested ontology concepts. Those presented concepts
along with the extracted relationships are introduced as an ontology that is considered as
a first in the specific domain of SWPQAs. We condensed the thousands of concepts used
to define the most common discussed and studied SWPQAs into a smaller set of concepts
consists of 125 concepts, with a coverage percentage for the studied domain of 80%, this
presented ontology can be used by software engineers, researchers, practitioners, and
stakeholders as a common agreement of SWPQAs pool of knowledge in order to solve
the inconsistency problem in the semantic between them while defining or using any of
the definintions of the discussed SWPQAs. In addition to this, our ontology provides a
base to evaluate any related presented definition semantic for one of the studied
attributes.

Key Words:
Conceptualization, ontology, Software Quality Attributes, Semantic inconsistency,
Relationship Lattice, ontology Text Corpus. Coverage Technique, ontology Evaluation.

 XV

 ����
 ��� ���ء أ���ل��� ل����� ��دة ال�
�	��ت

�اد� إ

� ال�#�" ! ��ن�� � أح

 إ&
اف

 ال�آ��ر �� � ال#����

� ال�آ��ر أح � ال*�ی

)	دة ا�!��&ّ��ت ا��$ ت"!� � ا����ت��آَ� ��� درا�� ���ه�� و����
�ت �	
	ع ر������

�:9 8.�� ب�&.�7 ودرا�� . ّ	ر د,�$ ��م ���4ا��$ ت���و��4 ا3ب
�ث 0$ ه/ا ا�.&�ل ,��+*ص ت�

ا�"9�9 � ا��:�ر�� وا�	C=�D ا��$ ن�AB8 0$ �@.	ن�4 خ��=>)	دة ا�!��&��ت، 8.�� ب���+*ص

ودرا�� وت:��� وت
�H ��.��ه�� وت:9�.�4 آ.��ه�� �:��ح� �Fن�	�)$ ا�.:��ح � خ*ل درا��

�ب"9 ذ�I 8.�� ب���+*ص ودرا�� وت:9�� . وا�	C=�D ا�.&."�ا�.��ه�� ا��B="� وا�.�H+9�� 0$ ا��:�ر�

��0 ��"*�8ت ا�"��� . �*�8ت ���� ب� ���ه�� ا3ن�	�)$ ا�.:��حKب� ��ا�.��ه�� ا�.:9 L/ه

A�98ُ �4ب�� Nح��:9 8.�� ب��+�> R,ف . آPول أن�	�)$ 0$ �&�ل خ��=>)	دة ا�!��&��ت ا�.:�

��U خ��=>)	دة ا�!��&��ت ا�.�9او�� 0$ ا�9را�� وا��:�ش إ�� ا�.��ه�� ا�.�H+9�� 0$ ت"

� � ا�.��ه�� ت�W	ن � Xأص ��	&.�ت 125���� ��4	م ، وب�H!� ت���X ��.��ه�� ا�.�H+9�� 0$ ت"

، ه/L ا3ن�	�)$ ا�.:9�� �W. أت ت�H+9م � a!8 % 80خ��=>)	دة ا�!��&��ت ب.� �:�رب

�، �bت ،ا�!�ح��&�� ب
 eH�W. ا��+9ا��4 ا�..�ر�� ، وأي ش+> �N �*�8 ب�9�4.�4$ ا�!

�� ا�9,��� ا3�� ا�/ي �
 a���WB �9م اK).�ع ��� �"�ن$ ا�.��ه،آ.�!7 �"� �0���N��� C ب�K).�ع

�f0 I�/� �0ن .�تي � ا����ت ا�.9رو�� ا��$ ت"!� �)	دة ا�!��&�ا�.�H+9�� 0$ ت"��U أKب�

W.�)$ ا�.:9م	�	ت ا3ن���&�� أن ��H+9م آ��Pس ��:��� أي ت"��U ت� ت:9�N. �+��=>)	دة ا�!

 .ا�.9رو��

 1

CHAPTER 1

INTRODUCTION

 This chapter reviews the thesis. A brief background about the field to which the thesis
subject belongs is given; Software Engineering (SWE), Software Quality (SWQ), and the
field of ontology and its role. Then we give an idea about our research problem and how
it has been addressed. We end the chapter by giving information about tools used in the
work, our own contribution, and the outline of the thesis chapters.

1.1 OVERVIEW

Recently, Quality Assurance (QA) concept has been widely developed to be included
in many of our life existing fields; financial, industrial, trading, etc. Software Quality
Attributes (SWQAs) have been created as a matter of applying the QA concept on the
results of software development process, to fit the products with the organizational and
global market standards and goals and to provide them with a competitive advantage
value. Software quality is composed of many attributes such as portability, usability,
reliability, modularity, and other software quality related attributes.

During the last years, many researchers (individuals and groups) discussed and

presented software attributes in their works which show that till now there is a lack of
consensus on the semantic of many of concepts and terminologies used in the field of
SWQAs. According to this and in more specific our research is focusing on studying the
most common SWPQAs concepts and terminologies that current SWQAs proposals
present to extract a conceptualization for the SWQAs, after that we will study this
conceptualization in order to build an ontology that produce a coherent and consistent
semantics for SWQAs concepts and terminologies that can be used by SW engineers,
researchers, practitioners, and stakeholders as a common agreement of SWQAs pool of
knowledge. Before defining my research problem, a brief introduction to the related
fields of this research is given.

1.1.1 THE DISCIPLINE OF SOFTWARE ENGINEERING

Since the dawn of computing in the 1940s, the use of computer software has been

rising enormously, Nowadays, computer software play many important roles, and
considered as a way for delivering a product as it they are the basis of controlling
operating systems, networks, and other applications, and also considered as products
themselves [97]. They serve the human kind in almost all of the fields of his life;
government, banking and finance, education, transportation, entertainment, medicine,
agriculture, and law [106].

 2

Computer software is a general term used to describe a collection of computer
programs, procedures, and documentations that perform some tasks on a computer
system [120]. The increasingly development of science and technology makes the need
for software an important issue especially for software products that is typically a single
application or suite of applications built by a software individuals/companies to be used
by many customers, businesses or consumers [21].

Software products are categorized under two major types, generic products; which are
stand alone products developed to be used by any customer in the market, and
customized products; which are developed especially to a customer or to a group of
customers [111].

The evolving of software development makes developers take a more systematic and
planned way to develop their software products, Software Engineering revealed in order
to help developers to do so. The IEEE Computer Society defines software engineering as:
The application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software; that is, the application of engineering to software
[54].

The term software engineering first appeared in late 1950s and early 1960s.
Programmers have always known about civil, electrical, and computer engineering and
debated what engineering might mean for software. The NATO Science Committee
sponsored two conferences on software engineering in 1968 and 1969 [99], which gave
the field its initial boost. Many believe that these conferences marked the official start of
the profession of software engineering.

At the early decades of software engineering revealing, it was motivated to face the
Software Crisis problem appeared at that time, researchers and practitioners tried every
possible way to solve this crisis (Cost and budget overrun, property damage, and software
life and death), In 1987, Fred Brooks published the No Silver Bullet [18] article, arguing
that no individual technology or practice would ever make a 10-fold improvement in
productivity within 10 years.

Software engineering had been widely affected by the appearance of the Internet,
programmers and developers were required to deal with many new revealed issues and
merge it within their developed software (images, maps, animations, web browsers usage,
etc). Simpler and faster methodologies that developed running and inexpensive software
products have been introduced to small organizations in order to satisfy their demands,
some of these methodologies are: Rapid prototyping, Agile development, Extreme
programming, and others [99].

The need for computer software has grown dramatically, thousands of billions of
dollars are spent on the development of computer software. Software products provide us
with a more productive, safer, and flexible working environment to help us to be more
successful, accurate, trustable, efficient, and productive [109]. Despite these successes,
Computer Software and Software Engineering face many key challenges such as

 3

heterogeneity challenge, delivery challenge, trust challenge, cost challenge, timelines
challenge, and quality challenge [111]. Researchers and practitioners are continuously
searching to solve these challenges, they solved some of them, and searching to solve
others. However this is a good characteristic of the evolving Software Engineering
discipline.

1.1.2 SCOPE OF SOFTWARE QUALITY

Computer hardware and software are widely distributed and used in modern society.
The evolving manner of business, hardware and technology, the appearance of the world
wide web, and other revealing factors make users need individuals and interconnected
computers, as well as sharing and exchanging information using a global information
structure, processing algorithms and techniques, storage capacity and allocation dealing,
data search and retrieval methodologies, all these needs and more are being met with the
support of software.

This important role of software increases the dependability of human kind on them
especially because they are used in so many fields of his life. Because of that developers
are working hard to ensure not to be failed by their developed software by producing
reliable and trusted software.

To be trusted and reliable, software must have some features and characteristics that
satisfy what the customers want, this leads us to the quality world. The term quality is
one of the most discussed terms these days. All of the researchers agree that quality is
considered as a key business factor, as a matter of fact they considered not including it
will compromise the business. Here are some of quality definitions as presented by some
of quality specialists:

• Quality: The totality of characteristics of an entity that bear on its ability to satisfy
stated and implied needs [11].

• Dr. Barry Boehm [14] thinks of quality as: “Achieving high levels of user
satisfaction, portability, maintainability, robustness, and fitness for use".

• Watts Humphery [47], of the software engineering institute, presented the quality
as: "Achieving excellent levels of fitness for use, conformance to requirements,
reliability and maintability”.

• Bill Perry [47], head of quality assurance institute has defined quality as: “High
levels of user satisfaction and adherence to requirements”.

Quality is a general term that can be applied on mostly anything in any field. As a

consequence of that, quality is applied more specifically on software products under the
term of software quality or software quality assurance.

 4

Conformance to specifications and meeting customer's needs are two major corners
when discussing the definition of software quality [10], which is defined as a planned and
systematic set of activities built into software to ensure its quality. It consists of software
quality assurance, software quality control, and software quality engineering.

As an attribute, software quality is defined as (1) The degree to which a system,

component, or process meets specified requirements; or (2) The degree to which a
system, component, or process meets customer or user needs or expectations [54].

The aimed features of quality differ from customer to customer. Factors differ upon

the required requirements of the system. Quality of computer software must be planned
from the beginning of software developing. So, it can not be existed at the moment it
needed without planning, it must be kept in mind in every phase of software
development. Before all of that, quality goals and attributes must be clearly defined,
effectively monitored, and rigorously enforced.

As a consequence of the need for a planned quality the terminology of software

quality assurance has appeared, ESA PSS-05-0 defines software quality assurance
(SWQA) as a ‘Planned and systematic pattern of all actions necessary to provide
adequate confidence that the item or product conforms to established technical
requirements' [37]. SWQA does this by checking that [32]:

• Plans are defined according to standards.
• Procedures are performed according to plans.

Customers demand quality in the applications they use, and without making the

customers happy from the software they own or use, the business will not survive. There
are several reasons why business should be concerned with quality [42]:

• Quality is a competitive issue now.
• Quality is a must for survival.
• Quality gives you the global reach.
• Quality is cost effective.
• Quality helps retain customers and increase profits.
• Quality is a hallmark of world-class business.

As we mentioned earlier, software quality assurance came as a planned and

systematic pattern to ensure the existence of quality features to be in the developed
product.

 5

1.1.3 THE ROLE OF ONTOLOGY

“What’s the use of their having names” the Gnat said, if they won’t answer to them?”
“No us to THEM,” said Alice, “but it’s useful to the people who name them, I suppose, if
not, why do things have names at all?”
 By Lewis Carroll, through the looking Glass.

1.1.3.1 WHAT IS AN ONTOLOGY

ontology as seen from philosophical perspective is the science of studying beings
(studying of what is, of the kinds and structures of objects, properties, events, processes
and relationships in every area of reality), this term which was coined in 1613 included in
many philosophical areas from the metaphysics of Aristotle to the object-theory of
Alexius Meinong [108].

Philosophical ontology handles the precise utilization of words as descriptors of
entities; it gives an account for those words that belong to entities and those that do not
[35]. In both Computer Science and Information Science, an ontology is a representation
of a set of concepts within a domain and the relationships between those concepts. It is
used to reason about the properties of that domain, and used to define the domain [14].

1.1.3.2 WHY DEVELOP AN ONTOLOGY

Recently, the term ontology has widely included in the field of computer and
information science. When building frameworks for information representation of data
and knowledge base systems, designers use a wide variety of terms and concepts. Studies
showed that there is an inconsistency problem in the semantic of the terms that are used,
e.g. identical databases labels are used but with different meanings, and also the same
meaning expressed using different names. Methods must be found to resolve the
terminological and conceptual incompatibilities [107]. An ontology in this context is a
dictionary of terms formulated in a canonical syntax and with commonly accepted
definitions designed to yield a lexical or taxonomical framework for knowledge-
representation which can be shared by different information systems communities [107].

Ontologies are used in variety of current fields; Artificial intelligence [45], Software
engineering [92], the Semantic web [89], Biomedical informatics [4] , Library science
[45], Information architecture [92], Ecommerce content standard [46], and other fields ,
as a form of knowledge representation about the domain or some part of it.

In this era the presence of consistent global information has become an important
issue. In every domain researchers and practitioners need to share information to conduct
their works in a professional manner. To do that in a correct way inconsistencies between
terms and concepts must be reduced. Ontology defines a common vocabulary for them; it
contains machine-interpretable definitions of basic concepts in the domain and
relationships among them.

 6

From studying the role of ontologies in different knowledge domains, many studies
showed that creating and developing and also enhancing ontologies has become
important to many fields and areas of domain knowledge, because of its approved
advantages effects when using them in the field of the studied knowledge domain.

Many reasons support our recommendation of creating, developing, and using
ontologies, some of them are:

• Ontologies support applications (especially distributed ones) to exchange
information and to process transactions independently [65].

• Ontologies make the reusing of a domain knowledge possible [31].

• Ontologies provide semantic-aware information systems, which can support

enterprise, government, and personal activities at the same time [31].

• Ontologies can share different applications [90].

• Ontologies can use other ontologies [90].

• Ontologies can analyze, support, and enhance domain knowledge [90].

• Ontologies are used as a semantic support representation for many areas [65].

• Ontologies are used to capture the domain information independently of any
application requirements [66].

Ontology shows enormous potential in making software more efficient, adaptive, and

intelligent. It is recognized as one of the areas which will bring the next breakthrough in
software development. The idea of ontology has been welcomed by visionaries and early
adopters.

Since 1991, the semantic Web initiative, lead by W3C, has changed the ontology
landscape completely, through the initiative, researchers and developers join forces to
provide standard semantics markup languages based on XML, ontology management
systems, and other useful tools. Also, the Web provides interesting applications of
ontology that are critical to daily life such as search and navigation. In addition, people
rediscover the value of ontology in other important applications such as information and
process integration [73, 74].

 7

1.1.3.3 WHAT IS IN AN ONTOLOGY

Different knowledge representation formalisms and corresponding languages exist for
the formalization and implementation of ontologies. Each of them provides different
components that can be used for these tasks. However, they share the following minimal
set of components [20]:

• Classes represent concepts, which are taken in a broad sense. Classes in the

ontology are usually organized in taxonomies through which inheritance
mechanisms can be applied.

• Relationships represent a type of association between concepts of the domain.
They are formally defined as any subset of a product of n sets, that is: R = C1 ×
C2 × … × Cn. ontologies usually contain binary relationships. The first argument
is known as the domain of the relationship, and the second argument is the range.

• Instances are used to represent elements or individuals in an ontology.

Ontology is an essential data structure for conceptualizing knowledge [117]. It is

commonly used as a fundamental structure for capturing knowledge by analyzing
relevant concepts and relationships in the area under search [86]. It depends mostly on
the analysis of textual data over a collection of text documents by using natural language
processing to do that and more such as obtaining semantic graph of a document;
visualization of documents; information extraction to find relevant concepts; and
visualization of context of named entities in a document collection [117].

1.1.3.4 LEVELS OF ONTOLOGY

 Different authors like P’erez, Jones, Storre, Robert, Malka, and others have organized
ontology in their studies and reports into different levels [63, 90, 94, 95, and 100]:

• Lexical, vocabulary, or data layer. The focus here is on concepts, facts, etc. that
ontology included, and the vocabulary used to represent these concepts.

• Hierarchy or taxonomy. An ontology typically includes a hierarchical is-a

relationships, or subsumption relationships between concepts.

• Other semantic relationships. The ontology may contain other relationships
besides is-a relationship. This typically includes measures such as precision and
recall.

• Context level. Ontology may be a part of a larger collection of ontologies.

Another form of context is the application where the ontology is to be used

 8

• Syntactic level. The ontology is usually described in a particular formal
language and must match the syntactic requirements of that language (use of the
correct keywords, etc.). Various other syntactic considerations, such as the
presence of natural-language documentation, avoiding loops between definitions,
etc., may also be considered.

• Structure, architecture, design. Unlike the first three levels on this list, which

focus on the actual sets of concepts, instances, relationships, etc. involved in the
ontology, this level focuses on higher-level design decisions that were used during
the development of the ontology. This is primarily of interest in manually
constructed ontologies. For some applications, it is also important that the formal
definitions and statements of the ontology are accompanied by appropriate
natural-language documentation, which must be meaningful, coherent, up-to-date
and consistent with the formal definitions, sufficiently detailed, etc.

Let us don’t forget that ontologies have been applied and played an important role in

different areas of Software Engineering fields as they do in other disciplines. They
provide a general framework reference of an agreed concepts and terminologies among
researchers, practitioners, and stakeholders, they enhance collaboration, communication,
and knowledge sharing, they represent all assumptions related to the entities and
relationships between them that belong to the area under search, and finally they
contribute in reducing gabs between researchers, etc created by conceptual confusion
[104,106,123]. Hence, building an ontology to capture the conceptualization knowledge
about Software Quality Attributes domain will achieve a significant successful solution
for the semantic conflicts problem the field suffers from.

1.1.3.5 ONTOLOGY DEVELOPMENT PROCESS AND LIFE CYCLE

The ontology development process refers to the activities that are performed when
building ontologies. It identifies three categories of activities as shown in Figure 1.1.

Figure 1.1: Methontology ontology development process life cycle [22].

 9

a) Ontology management activities:

 The management process activities are responsible for the project management issues
[22, 24, 39].

1. Scheduling is the first activity of the ontology life cycle. The objective is to plan
the main tasks to be done, how they will be arranged and the required resources,
i.e. people, software and hardware.

2. Control is performed along the whole ontology life cycle in order to survey that
there are not undesired deviations from the initial schedule.

3. Quality is responsible for checking that the quality of each methodology output
(ontology, software and documentation) is assured.

b) Development Process:

The development process includes all the activities that produce the successive
prototype refinement stages towards the desired ontology. The process starts with
specification that produces an informal output that then evolves increasing its level of
formality, as it passes through the different activities, towards the final computable
model, which can be directly understood by the machine [22, 24, 39]. It consists of:

1. Specification: The specification establishes the ontology purpose and scope. Why
the ontology is being built, what are the intended uses and end-users. The
specification can be informal, in natural language, or formal, e.g. using a set of
competence questions.

2. Conceptualisation: The objective of this activity is to organize and structure the
knowledge acquired during knowledge acquisition using external representations
that are independent of the knowledge representation and implementation
paradigms in which the ontology will be formalised and implemented next. An
informally perceived view of a domain is converted into a semi-formal model
using intermediate representations based on tabular and graph notations. These
intermediate representations (concept, attribute, relation, axiom and rule) are
valuable because they can be understood by domain experts and ontology
developers. Therefore, they bridge the gap between people's domain perception
and ontology implementation languages.

3. Formalisation: The goal of this activity is to formalise the conceptual model.
There are ontology development tools that automatically implement the
conceptual model into several ontology languages using translators. Therefore,
formalisation is not a mandatory activity.

4. Implementation: This activity builds computable models using ontology
implementation languages. There are many ontology languages and they do not
have the same expressiveness nor do they reason the same way.

 10

5. Maintenance: This activity updates and corrects the ontology if needed due to the
necessities of the current development process or other processes that reuse this
ontology in order to build other ontologies or applications.

c) Support Process:

The support activities are performed in parallel with the development-oriented
activities [22, 24, 39].

1. Knowledge Acquisition: First of all, the source knowledge must be captured
using knowledge elicitation techniques. The sources of knowledge are listed
giving a description and specifying the elicitation techniques used in each case.
The techniques used to extract knowledge from sources can be partially automatic
by means of natural language analysis and machine learning techniques.

2. Evaluation: The evaluation activity judges the developed ontologies, software
and documentation against a frame of reference. Ontologies should be evaluated
before they are used or reused. There are two kinds of evaluation, the technical
one, which is carried out by developers, and users’ evaluation.

3. Integration, merging and alignment: The integration activity is needed if other
ontologies are reused. There are to options when an ontology is integrated in the
current ontological framework. First, there is ontology alignment that consists in
establishing different kinds of mapping between the ontologies, hence preserving
the original ontologies. Second, ontology merging that produces a new ontology
from the combination of the input ontologies.

4. Documentation: Documentation details each completed stage and product.
5. Configuration Management: Configuration management records ontologies,

software and documentation versions in order to control changes.

1.2 PROBLEM DEFINITION

Software quality attributes are one of the key revealed issues that made significant
influences on Software Engineering. They play a very important role in evaluating
software programs. They are considered by practitioners and researchers to be the key
factor for producing high quality competitive software products to the markets which is
enforced by the appearance of quality assurance issues.

As a matter of fact many initiatives such as IEEE standard releases, ISO/IEC releases,
SPICE (Software Process Improvement and Capability dEtermination), and many quality
models such as McCall quality model, Boehm quality model, Dromey quality model, and
others, consider software quality attributes to be an important element of reaching a
higher maturity levels while developing and managing the quality of software programs
[68, 94].

 11

During the last decades many developments in many fields have affected how the
business is done, one of the most important affecting issues are the emerging of the
Internet and the Globalization, which had a huge effect on the individuals and the
organizations business processes. It created a need for sharing information and resources
widely as a matter of collaboration to compete efficiently in market. In order to achieve
this collaboration standards are created to provide agreed terminologies and practices that
make participants avoid inconsistencies in their business [68].

However, researchers in this domain explained that there is no single standard that
covers the area of software attributes in its totality, but rather there are many different
standards that focus on specific areas. Without a comprehensive framework considered as
a reference when managing these diverse standards, inconsistencies arise in the attributes
concepts and terminologies [63].

Recently, a lot of efforts from researchers and standards institutes are done to

manipulate the symptoms that software quality discipline suffers from as it is believed a
young discipline. Software quality attributes concepts, principles, and terminologies are
considered by those researchers and institutes to be in a stage that they are still being
defined, consolidated, and agreed [68].

One way in regard to reach to a common solution for our introduced problem;

software product quality attributes concepts and terminologies inconsistency among the
current presented studies and reports, is by representing the conceptualization of the
software product quality attributes domain by an ontology in order to reach to an
understandable unified semantic framework for software product quality attributes.

So the question that points to itself: Can we condense the thousands of concepts used
in the semantic of the most common software product attributes to a smaller set of
concepts, and introduce the result as an ontology? Our work is focusing on that. In our
thesis we studied and analyzed the presented reports, documents, and proposals
concerned with SWPQAs and so we extracted the various concepts, definitions, and
terminologies from them, after that a general relationships between the resulted concepts
were extracted and introduced as an ontology that aims to produce a coherent and
consistent conceptualization framework for SWPQAs to eliminate gabs and terminology
conflicts between software engineers, researchers, practitioners, and stakeholders when
using it as a common agreement software quality attributes pool of knowledge.

1.3 OBJECTIVES

In this thesis we aim to:

• Extract concepts used in the semantic of the most common discussed SWPQAs.
• Extract general relationships between the extracted concepts.
• Introduce the extracted concepts and relationships as an ontology for the domain

of SWPQAs.

 12

• Introduce ways in order to use the provided ontology to solve the semantic
inconsistency problem found in the field of SWPQAs.

1.4 MOTIVATION OF THE STUDY

 During the last years, a lot of efforts from researchers and standards institutes are
done to manipulate the symptoms that SWPQAs discipline suffers from as it is believed a
young discipline. Software quality attributes concepts, principles, and terminologies are
considered by those researchers and institutes to be in a stage that they are still being
defined, consolidated, and agreed. Many researchers (individuals and groups) discussed
and presented software attributes in their works which show that till now there is a lack of
consensus on the semantic of many concepts and terminologies used in this field. This
motivated us to do our research in this field, and provide this work which focuses on
studying the most common SWPQAs concepts and terminologies that current SWPQAs
proposals present, in order to extract a conceptualization for the SWPQAs domain and
introduce it as an ontology for the studied field to be used in order to reach to a consistent
semantic.

The meaning of consistent as we used in our work includes both generally agreement
“consensus” and coherent “without conflicts” meanings. Consistent as defined in the
Merriam Webster dictionary means “marked by harmony, regularity, or steady
continuity: free from variation or contradiction”.

1.5 REQUIREMENTS

In order to reach to efficient results for our work many requirements were needed:

• Hardware device: Personal computer.
• Computer software: Operating system (Windows XP), Java Development Kit 5,

Microsoft office suite, KAON tool suit. They will be discussed later.
• Human Experts: Professors, Practitioners in the field of SWE and ontology.

1.6 SIGNIFICANCE OF THE STUDY

This thesis aims to address the needs of two main kinds of interested audiences:

• The first kind is the software quality attributes researchers and standard

developers (e.g., international standardization institutes and committees), who is
responsible for producing concepts, terms, and standards in the field.

• The second kind is the software quality attributes practitioners, who may be
confused by the terminology differences and conflicts in the existing standards
and proposals when they would use them in their works.

 13

1.7 CONTRIBUTION OF THE THESIS

SWPQAs discipline is considered in the emerging phase, and it suffers from the
typical symptoms of any relatively evolving disciplines. SWPQAs are currently in the
phase in which terminologies, principles, and methods are still being defined,
consolidated, and agreed. In particular, there is a lack of consensus on the concepts and
terminologies used in the semantic of this field. Studies showed that inconsistencies in
the semantic used different research attributes proposals often occur [24, 39].

In our research we focused on studying SWPQAs concepts and terminologies that
current SWQ proposals, documents, and reports present. We prepared text corpora from
them to be used in tools to extract the most discussed and used concepts from it. After
that experts (doctors and professors in the field of SWE and SWQ) were asked to study
and filter the resulted concepts and provided them to us.

An evaluation phase depended on a coverage technique was done to the resulted
concepts, followed by an enhancing step to the evaluated ontology domain concepts
which leaded us to increase the number of the suggested concepts in the ontology
domain, after that a coverage evaluation is done again to the new suggested ontology
domain concepts.

In order to extract general relationships among the suggested ontology domain
concepts, we returned to the prepared text corpus again and ran out two tools on it. We
studied them, filtered them, listed them and represented part of them using a lattice
representation.

After we have finished our research steps, and depending on the results we had, we

claim that we have presented the conceptualization of the 66 common discussed
SWPQAs by an ontology, which is considered as a first in this specific domain.

According to the results of the suggested ontology, we also claim that we condensed

the semantic of thousands of concepts used to define any of the discussed SWPQAs into
a smaller set of concepts , and that will help experts, software engineers, researchers,
practitioners, and stakeholders in the field of SWPQAs to share and use a common and
agreed semantic of concepts when defining any of the studied attributes, and that will
lead us to resolve the inconsistencies of the semantic appeared among documents and
reports that define any of the studied attributes.

 In addition to this, our ontology provides a base to evaluate any related presented
definition semantic for one of the studied attributes. The way of doing that is if a high
percentage of the concepts used in the semantic of the presented definition are covered
by our ontology domain, the presented definition semantic can be accepted, but if not we
claim that it is a weak semantic to be used to define such an attribute.

 14

1.8 METHODOLOGY

This research will be carried out through a theoretical and an empirical study. Our
approach to study the problem as shown in Figure 1.2 is divided into 6 parts:

• The first part of this research is a literature review on almost about all existing

proposals and ontologies in software quality, with the focus on a specific domain
concerning with the software product quality attributes domain. This review
presented, discussed, and analyzed different sources for software quality in
general and for software product quality attributes in particular, such as
researches, reports, documents, and proposals produced by various individuals,
institutes, and committees in the field.

• The second part of our work focused on paving the way to capture and extract the

ontology domain concepts from the knowledge domain prepared in the first step
using some tools. Later a support from experts in the field to study and filter the
results was asked.

• The third part of our work handled the evaluation of the resulted ontology domain

concepts, by following a technique categorized as a coverage approach in the
domain.

• In the fourth part, enhanced results were reached depending on the results of the

evaluation step.

• In the fifth part, we captured and extracted general relationships between the

suggested ontology domain concepts, by providing the prepared knowledge
domain to two tools, after that we studied and filtered the resulted relationships
into groups, a general lattice representation to a part of the resulted relationships
was constructed.

• In the sixth and the final part, we showed how the results contribute in the

domain, and suggested many ways to use them in order to reach to a common,
shared, and agreed semantic when defining any of the studied software product
quality attributes.

 15

Figure 1.2: Steps of the methodology of the study

1.9 SOFTWARE USED IN THE WORK

In our work we used many tools in order to reach to some necessary results, below is a
brief description for those tools used in this work:

1.9.1 KAON

KAON consists of a number of different modules providing a broad bandwidth of

functionalities centered around creation, storage, retrieval, maintenance and application
of ontologies. It was and currently is being further developed in a joint effort mainly by
members of the Institute of Applied Informatics and Formal Description methods (AIFB)
at University of Karlsruhe and the Forschungzentrum Informatik (FZI) – Research Center
for Information Technologies, Karlsruhe [79].

Start

End

Text corpora
 Preparation

Extracting Ontology
Domain Concepts

 (ODCs)

Evaluating The
Suggested ODCs

Enhancing The
 ODCs

Relationships
Extraction

And Presentation

How Does Our
Ontology

Contribute?

 16

The KArlsruhe Ontology [79] and Semantic Web tool suite a.k.a. KAON Tool Suite
is an open source ontology management infrastructure. However, there exist also external
components which support functionalities such as e.g. ontology learning from texts. An
overview of the KAON Tool Suite and its main components; KAON, KAON Extensions
and TextToOnto, is presented by Figure 1.3.

Figure 1.3: An overview of the KAON Tool Suite and its main components; KAON, KAON Extensions and
 TextToOnto [79].

KAON (consisting of KAON Frontend and KAON Core) includes a variety of
different modules for ontology creation and management. The Frontend is represented by
two applications developed in order to be used particularly by human users:

• KAON Workbench: provides a graphical environment for ontology based
applications. It includes the OI-Modeler – a graphical ontology editor - and the
Open Registry (a.k.a. ontology Registry), which provides mechanisms for
registering and searching ontologies in a distributed context.

• KAON Portal: is a simple tool for multi-lingual, ontology-based Web portals.

The Core of KAON supports programmatic access to ontologies by including both

APIs and implementations for managing local and remote ontology repositories [36].

KAON Extensions are a collection of optional components not included in the

standard distribution of KAON [36].

• DLP (Description Logic Programs) supports efficient ontology reasoning by
mapping Description Logic into Logic Programs.

• KAON Server can be considered as Application Server for the Semantic Web,

which provides a generic infrastructure to facilitate plug’n’play engineering of
ontology-based applications.

 17

• KAONtoEdit is a plug-in for OntoEdit [93], which allows working directly on
implementations of the KAON API in order to load, modify and store KAON
ontology models.

• TextToOnto is a KAON-based tool suite supporting the ontology engineering

process by providing a collection of independent tools for ontology learning and
maintenance.

In Our work we focused on using the TextToOnto Extension because of its capability

to help users to learn about ontologies from a provided text.

1.9.2 TextToOnto

TextToOnto [83] is a tool suite built upon KAON in order to support the ontology

engineering process by text mining techniques. Providing a collection of independent
tools for both automatic and semi-automatic ontology extraction. it assists the user in
creating and extending OI-Models. Moreover, efficient support for ontology maintenance
is given by modules for ontology pruning and comparison. In particular, the current
distribution of TextToOnto comprises the following tools:

• TaxoBuilder: for building concept hierarchies
• TermExtraction: for adding concepts to an ontology
• InstanceExtraction: for adding instances to an ontology
• RelationExtraction: for semi-automatic learning of conceptual relationships
• RelationLearning: for automatic and semi-automatic relationship learning
• OntologyComparison: for comparing two ontologies
• OntologyPruner: for adapting an ontology to a domain-specific corpus

Figure 1.4 shows the front-end of the TextToOnto tool as an extension of KAON tool.

Figure 1.4: The Front-end of the TextToOnto tool as an extension of KAON tool.

 18

1.9.3 MS ACCESS AND MS VISIUAL BASIC TOOLS

MS Access and MS Visual Basic have been used to implement algorithms. Screen
shots of the program are provided in Figure 1.5, for further reading about it you may refer
to [71, 72].

Figure 1.5: Part of the algorithm used in the Ms Visual Tool.

1.10 THESIS ORGANIZATION

- This thesis is organized into 5 chapters:

Chapter 1: This chapter reviews the thesis. A brief background about the field to
which the thesis subject belongs is given; Software Engineering (SWE), Software Quality
(SWQ), and the field of ontology and its role. Then we give an idea about our research
problem and how it has been addressed. We end the chapter by giving information about
tools used in the work, our own contribution, and the outline of the thesis chapters.

 19

Chapter 2: In this chapter we give a brief idea about the most relevant work in the
literature that are related to our study.

Chapter 3: This chapter is talking about the preparation of the text corpora for the
SWPQAs knowledge domain. This preparation is done by collecting and studying a large
number of documents and reports related to the field of software quality. The chapter
also is discussing how the prepared text corpora were used to extract and create our
primary ontology domain concepts using TextToOnto tool with support of an MS Access
tool and then with support of human experts. In this chapter, we also focused on
evaluating the suggested ontology domain concepts using a coverage methodology. After
preparing the needed corpus, and by using a tool created by Kayed [72], we counted the
covered concepts and calculated a coverage percentage for them. Later, we discussed
what the results would be if we collect and study the uncovered concepts from the
domain under discussion. The results showed an enhancement of our ontology domain
concepts, and gave a much better coverage percentage. The results are shown in the
discussion.

Chapter 4: In this chapter we extracted general relationships between the new concepts
of the suggested ontology domain after studying and filtering the results of two tools. We
presented the resulted relationships as groups. After that, a general lattice representation
for part of the resulted relationships was done. Later, we listed each concept in the
ontology domain with other concepts in the same domain that appeared with them when
studying the extracted relationships.

Chapter 5: In this chapter we present and discuss the conclusions of our research; our
final results and how we used them to contribute in the studied domain are presented
among the conclusions. Future work are suggested at the end of this chapter.

 20

CHAPTER 2

RELATED WORK

In this chapter we give a brief idea about the most relevant work in the literature that
are related to our study.

2.1 GENERAL RELATED WORK

Ontologies have been widely built and used during the last years. Many researches
related to software engineering and measurements have been issued; in particular,
building ontologies for software measurement engineering using potential elements (such
as goals, viewpoints, data, operations, agents, scenarios and resources) have been carried
out. Proposals, studies, standards, and contributions related to the work are illustrated
below:

[Balzer, 1982]

Has started advocating the benefits of underlying ontologies of precise and formal
specifications, notably for checking a specification adequacy through prototyping [5].
.
[Rumbaugh, 1991]

Has proposed multi-paradigm frameworks to combine multiple languages in a

semantically meaningful way so that different facets can be captured by languages that fit
them best [101].

[VIM, 1993]

The International Vocabulary of Basic and General Terms in Metrology [61] covers

120 terms of subjects related to measurement. Although its main target is not software,
it has been successfully used by several authors, such as Alain Abran, for defining
software measurement concepts [1], and is one of the bases for ISO-JTC1 software
measurement harmonization efforts. The VIM is a very detailed, complete and mature
reference. However, its terms remain at a very detailed level; for instance, there are no
definitions for general terms such as “metric” or “measure". The new version of the VIM,
currently in preparation, is expected to deal with the software measurement specific
needs.

[Kim, 1999]

Henry Kim [76] has proposed a formal model of enterprise quality, called “ontology

of enterprise quality modeling”. This is a global ontology, whose main objective is to
help evaluate the conformance of organizations to ISO/IEC 9000 standards.

 21

As part of his global ontology, Kim also proposes measurement ontology. Although
Kim's measurement ontology is not specific to software products and processes, it
contains many concepts that can be applied within the context of software measurement.
Under this perspective, Kim's proposal mainly focuses on targets-and-goals, including
concepts such as “quality requirement”, ”entity”, ”enterprise model of quality”, and
“measured attribute”. It does not define, however, concepts such as “measure", “metric"
or “scale", for instance.

[Kitchenham et al., 2001]

Barbara Kitchenham et al. [78] propose a method for specifying models of software

data sets in order to capture the definitions and relationships among software measures.
They propose a conceptual model with three components. First, the generic component
defines concepts such as attributes, units, and scale types, independently from other
considerations. The development model provides the link between measures and entities
of interest. Finally, the project domain represents the data values collected from real
projects, linking data values to actual instances of the entities that are defined in the
development model domain. This proposal is mainly concerned with both measures and
targets-and-goals, but without considering the measurement process in detail. Besides,
their terminology is not completely aligned with the rest of the standards and proposals.
For instance, the concept of “measure” is represented by the term “DM element measure
type", which significantly differs from the terms “metric" or “measure", probably the
most commonly used terms in the rest of the sources for representing this concept.

[Briand et al. 2002]

Lionel Briand et al. propose the GQM/MEDEA approach for defining measures of

product attributes in software engineering. This approach is driven by the experimental
goals of measurement, expressed via the GQM [9] paradigm and a set of empirical
hypotheses. This proposal provides a UML class diagram with the concepts involved in
the GQM/MEDEA process. Those GQM/MEDEA concepts related to software
measurement are mainly concerned with measurement targets-and-goals (e.g., entity,
attribute).It does not consider, for instance, the concepts “measurement” or “scale”, and
does not distinguish between base and derived measures either. One of the specific
characteristics of this proposal is that its concepts are not defined, but just presented for
their use in the GQM/MEDEA process. This forced us to guess their real meaning when
including them in the comparison analysis.

 [Devedzic, 2002]

Has explored that ontologies are needed in all phases of software engineering

lifecycle, each of which must have knowledge, whether about data structure, methods and
domain. This makes ontologies everywhere and they make possible to smoothly integrate
Artificial Intelligence with other software disciplines [26].

 .

 22

[Zlot, 2002]

Has defined a structure to represent the task knowledge with support to software

engineers in understanding business problems starting from the understanding of the task,
which comprises these problems. This structure combines task ontologies and problem
solving methods to support capturing knowledge about specific domain throughout the
development process [124].

.
[Obrst, 2003]

Has discussed the use of ontology for semantic interoperability in homogenous

environments [91].

[Maria Martin et al., 2003]

Have presented a semiformal ontology for software metrics and indicators based as

much as possible on the concepts from the studied standards which can be useful to
support different assurance processes, methods and tools in addition to be the foundation
for the cataloging web system used in their work [24].

[Ahmad Kayed et al, 2005]

Have used the conceptual graphs to implement ontology that built for solving

problems in the E-commerce domain, and used the BWW model to evaluate the work
done by using conceptual graphs, that leaded to build a meta-model using some of the
BWW constructs [73].

[Felix Garcia et al, 2005]

Have presented an analysis of the software measurements terminology proposals and

provided a comparison framework that can be used to identify and address the
discrepancies, gabs, and terminology conflicts that current software measurement
proposals present, A basic software measurement ontology is introduced, that aims at
contributing to the harmonization of the different software measurement proposals and
standards, by providing a coherent set of common concepts used in software
measurement. The ontology is also aligned with the metrology vocabulary used in other
more mature measurement engineering disciplines [39].

 23

2.2 SPECIFIC RELATED WORK

In addition of previously presented related work, we separated and illustrated more
specific related work to software quality in a dependent subsection, because of its
important role in our work.

• McCall’s Quality Model (1977)

One of the more renown predecessors of today’s quality models is the quality model

presented by Jim McCall et al. [77,84,87] (also known as the General Electrics Model of
1977). This model, as well as other contemporary models, originates from the US
military (it was developed for the US Air Force, promoted within DoD) and is primarily
aimed towards the system developers and the system development process. In this quality
model McCall attempts to bridge the gap between users and developers by focusing on a
number of software quality factors that reflect both the users’ views and the developers’
priorities.

The McCall quality model has, as shown in Figure 2.1, three major perspectives for

defining and identifying the quality of a software product: product revision (ability to
undergo changes), product transition (adaptability to new environments) and product
operations (its operation characteristics). Product revision includes maintainability (the
effort required to locate and fix a fault in the program within its operating environment),
flexibility (the ease of making changes required by changes in the operating environment)
and testability (the ease of testing the program, to ensure that it is error-free and meets its
specification). Product transition is all about portability (the effort required to transfer a
program from one environment to another), reusability (the ease of reusing software in a
different context) and interoperability (the effort required to couple the system to another
system). Quality of product operations depends on correctness (the extent to which a
program fulfils its specification), reliability (the systems ability not to fail), efficiency
(further categorized into execution efficiency and storage efficiency and generally
meaning the use of resources, e.g. processor time, storage), integrity (the protection of the
program from unauthorized access) and usability (the ease of the software).

 24

Figure 2.1: The McCall quality model, organized around three types quality characteristics.

The model furthermore details the three types of quality characteristics (major
perspectives) in a hierarchy of factors, criteria and metrics:

• 11 Factors (To specify): They describe the external view of the software, as
viewed by the users.

• 23 quality criteria (To build): They describe the internal view of the software, as

seen by the developer.

• Metrics (To control): They are defined and used to provide a scale and method
for measurement.

Figure 2.2 shows the McCall’s Quality Model illustrated through a hierarchy of 11

quality factors (on the left hand side of the Figure) related to 23 quality criteria (on the
right hand side of the Figure).

 25

Figure 2.2: McCall’s Quality Model illustrated through a hierarchy of 11 quality factors (on the left hand
side of the Figure) related to 23 quality criteria (on the right hand side of the Figure).

 26

The quality factors describe different types of system behavioral characteristics, and
the quality criterions are attributes to one or more of the quality factors. The quality
metric, in turn, aims to capture some of the aspects of a quality criterion. The idea behind
McCall’s Quality Model is that the quality factors synthesized should provide a complete
software quality picture [77]. The actual quality metric is achieved by answering yes and
no questions that then are put in relation to each other. That is, if answering equally
amount of “yes” and “no” on the questions measuring a quality criteria you will achieve
50% on that quality criteria. The metrics can then be synthesized per quality criteria, per
quality factor, or if relevant per product or service.

• Boehm’s Quality Model (1978)

The second of the basic and founding predecessors of today’s quality models is the
quality model presented by Barry W. Boehm [13,14]. Boehm addresses the contemporary
shortcomings of models that automatically and quantitatively evaluate the quality of
software. In essence his models attempts to qualitatively define software quality by a
given set of attributes and metrics. Boehm's model is similar to the McCall quality model
in that it also presents a hierarchical quality model structured around high-level
characteristics, intermediate level characteristics, primitive characteristics, each of which
contributes to the overall quality level.

- The high-level characteristics represent basic high-level requirements of actual use

to which evaluation of software quality could be put – the general utility of software. The
high-level characteristics address three main questions that a buyer of software has:

• As-is utility: How well (easily, reliably, efficiently) can I use it as-is?

• Maintainability: How easy is it to understand, modify and retest?

• Portability: Can I still use it if I change my environment?

- The intermediate level characteristic represents Boehm’s 7 quality factors that
together represent the qualities expected from a software system:

• Portability (General utility characteristics): Code possesses the characteristic
portability to the extent that it can be operated easily and well on computer
configurations other than its current one.

• Reliability (As-is utility characteristics): Code possesses the characteristic

reliability to the extent that it can be expected to perform its intended functions
satisfactorily.

• Efficiency (As-is utility characteristics): Code possesses the characteristic

efficiency to the extent that it fulfills its purpose without waste of resources.

 27

• Usability (As-is utility characteristics, Human Engineering): Code possesses the
characteristic usability to the extent that it is reliable, efficient and human-
engineered.

• Testability (Maintainability characteristics): Code possesses the characteristic

testability to the extent that it facilitates the establishment of verification criteria
and supports evaluation of its performance.

• Understandability (Maintainability characteristics): Code possesses the

characteristic understandability to the extent that its purpose is clear to the
inspector.

• Flexibility (Maintainability characteristics, Modifiability): Code possesses the

characteristic modifiability to the extent that it facilitates the incorporation of
changes, once the nature of the desired change has been determined. (Note the
higher level of abstractness of this characteristic as compared with
augmentability).

- The lowest level structure of the characteristics hierarchy in Boehm’s model is the

primitive characteristics metrics hierarchy. The primitive characteristics provide the
foundation for defining qualities metrics-which was one of the goals when Boehm
constructed his quality model. Consequently, the model presents one ore more metrics

supposedly measuring a given primitive characteristic.

Figure 2.3: Boehm's Software Quality Characteristics Tree [14].

 28

Boehm’s and McCall’s models might appear very similar, the difference is that
McCall’s model primarily focuses on the precise measurement of the high-level
characteristics “As-is utility” (see Figure 2.3), whereas Boehm’s quality mode model is
based on a wider range of characteristics with an extended and detailed focus on
primarily maintainability. Table 2.1 compares the two quality models, quality factor by
quality factor.

Table 2.1: Comparison between criteria/goals of the McCall and Boehm quality models [53].

Criteria / Goals McCall 1977 Boehm 1978

Correctness * *

Reliability * *

Integrity * *

Usability * *

Efficiency * *

Maintainability * *

Testability * *

Interoperability *

Flexibility * *

Reusability * *

Portability * *

Clarity *

Modifiability *

Documentation *

Resilience *

Understandability *

Validity *

Functionality

Generality *

Economy *

As indicated in Table 2.1 Boehm focuses a lot on the models effort on software
maintenance cost-effectiveness – which, he states, is the primary payoff of an increased
capability with software quality considerations.

 29

• FURPS Quality Model

A later, and perhaps somewhat less renown, model that is structured in basically the
same manner as the previous two quality models (but still worth at least to be mentioned
in this context) is the FURPS model originally presented by Robert Grady [43] ,(and
extended by Rational Software [64,80,112]. FURPS stands for:

• Functionality – which may include feature sets, capabilities and security.
• Usability - which may include human factors, aesthetics, consistency in the user

interface, online and context-sensitive help, wizards and agents, user
documentation, and training materials.

• Reliability - which may include frequency and severity of failure, recoverability,
predictability, accuracy, and mean time between failures (MTBF).

• Performance - imposes conditions on functional requirements such as speed,
efficiency, availability, accuracy, throughput, response time, recovery time, and
resource usage.

• Supportability - which may include testability, extensibility, adaptability,
maintainability, compatibility, configurability, serviceability, installability,
localizability (internationalization).

The FURPS-categories are of two different types: Functional (F) and Non-functional

(URPS). These categories can be used as both product requirements as well as in the
assessment of product quality.

• Dromey's Quality Model

An even more recent model similar to the McCall’s, Boehm’s and the FURPS quality
models, is the quality model presented by R. Geoff Dromey [27, 28]. Dromey proposes a
product based quality model recognizes that quality evaluation differs for each product
and so a more dynamic idea for modeling the process is needed to be wide enough to
apply for different systems. Dromey is focusing on the relationships between the quality
attributes and the sub-attributes, as well as attempting to connect software product
properties with software quality attributes.

As illustrated in Figure 2.4, there are three principal elements to Dromey's generic

quality model:

1. Product properties that influence quality
2. High level quality attributes
3. Means of linking the product properties with the quality attributes.

 30

Figure 2.4: Principles of Dromey’s Quality Model.

Dromey's Quality Model is further structured around a 5 steps process:

1. Choose a set of high-level quality attributes necessary for the evaluation.
2. List components/modules in your system.
3. Identify quality-carrying properties for the components/modules (qualities of

the component that have the most impact on the product properties from the
list above).

4. Determine how each property effects the quality attributes.
5. Evaluate the model and identify weaknesses.

• ISO 9000

ISO stands for International Standards Organization. The ISO organization is
responsible for a whole battery of standards of which the ISO 9000 [55-63] family
probably is the most well known, spread and used. Figure 1.9 shows The ISO 9000:2000
standards. The crosses and arrows indicate changes made from the older ISO 9000
standard to the new ISO 9000:2000 standard.

 31

Figure 2.5: The ISO 9000:2000 standards. The crosses and arrows indicate changes made
from the older ISO 9000 standard to the new ISO 9000:2000 standard.

ISO 9001 is an international quality management system standard applicable to

organizations within all type of businesses. ISO 9001 internally addresses an
organization’s processes and methods and externally at managing (controlling, assuring
etc.) the quality of delivered products and services. ISO 9001 is a process oriented
approach towards quality management. That is, it proposes designing, documenting,
implementing, supporting, monitoring, controlling and improving (more or less) each of
the following processes [55-63]:

• Quality Management Process.
• Resource Management Process.
• Regulatory Research Process.
• Market Research Process.
• Product Design Process.
• Purchasing Process.
• Production Process.
• Service Provision Process.
• Product Protection Process.
• Customer Needs Assessment Process.
• Product Protection Process.
• Customer Needs Assessment Process.

 32

• ISO 9126

Besides the famous ISO 9000, ISO has also release the ISO 9126: Software Product
Evaluation: Quality Characteristics and Guidelines for their Use-standard

[60] (among

other standards), Figure 1.10 below shows the ISO 9126 model.

Figure 2.6: The ISO 9126 quality model.

This standard was based on the McCall and Boehm models. Besides being structured
in basically the same manner as these models (see table 2.2), ISO 9126 also includes
functionality as a parameter, as well as identifying both internal and external quality
characteristics of software products. Figure 2.7 shows a comparison between
criteria/goals of the McCall, Boehm and ISO 9126 quality models [69].

 33

Table 2.2: Comparison between criteria/goals of the McCall, Boehm and ISO 9126
 quality models [69].

ISO 9126, as shown in table 2.2 below, proposes a standard which specifies six areas

of importance, i.e. quality factors, for software evaluation.

 34

Figure 2.7: ISO 9126: Software Product Evaluation: Quality Characteristics and Guidelines for their use.

- Each quality factor and its corresponding sub-factors are defined as follows:

• Functionality: A set of attributes that relate to the existence of a set of functions
and their specified properties. The functions are those that satisfy stated or
implied needs;

� Suitability: Attribute of software that relates to the presence and

appropriateness of a set of functions for specified tasks.

 35

� Accuracy: Attributes of software that bare on the provision of right or
agreed results or effects.

� Security: Attributes of software that relate to its ability to prevent
unauthorized access, whether accidental or deliberate, to programs and
data.

� Interoperability: Attributes of software that relate to its ability to interact
with specified systems.

� Compliance: Attributes of software that make the software adhere to
application related standards or conventions or regulations in laws and
similar prescriptions.

• Reliability: A set of attributes that relate to the capability of software to maintain

its level of performance under stated conditions for a stated period of time;

� Maturity: Attributes of software that relate to the frequency of failure by
faults in the software.

� Fault tolerance: Attributes of software that relate to its ability to maintain a
specified level of performance in cases of software faults or of
infringement of its specified interface.

� Recoverability: Attributes of software that relate to the capability to re-
establish its level of performance and recover the data directly affected in
case of a failure and on the time and effort needed for it.

� Compliance: Attributes of software that make the software adhere to
application related standards or conventions or regulations in laws and
similar prescriptions.

• Efficiency: A set of attributes that relate to the relationship between the level of
performance of the software and the amount of resources used, under stated
conditions;

� Time behavior: Attributes of software that relate to response and processing

times and on throughput rates in performing its function.
� Resource behavior: Attributes of software that relate to the amount of

resources used and the duration of such use in performing its function.
� Compliance: Attributes of software that make the software adhere to

application related standards or conventions or regulations in laws and
similar prescriptions.

• Maintainability: A set of attributes that relate to the effort needed to make

specified modifications;

� Analyzability: Attributes of software that relate to the effort needed for
diagnosis of deficiencies or causes of failures, or for identification of parts
to be modified.

 36

� Changeability: Attributes of software that relate to the effort needed for
modification, fault removal or for environmental change.

� Stability: Attributes of software that relate to the risk of unexpected effect of
modifications.

� Testability: Attributes of software that relate to the effort needed for
validating the modified software.

� Compliance: Attributes of software that make the software adhere to
application related standards or conventions or regulations in laws and
similar prescriptions.

• Portability: A set of attributes that relate to the ability of software to be transferred

from one environment to another;

� Adaptability: Attributes of software that relate to on the opportunity for its
adaptation to different specified environments without applying other
actions or means than those provided for this purpose for the software
considered.

� Installability: Attributes of software that relate to the effort needed to install
the software in a specified environment.

� Conformance: Attributes of software that make the software adhere to
standards or conventions relating to portability.

� Replaceability: Attributes of software that relate to the opportunity and
effort of using it in the place of specified other software in the environment
of that software.

• Usability: A set of attributes that relate to the effort needed for use, and on the

individual assessment of such use, by a stated or implied set of users;

� Understandability: Attributes of software that relate to the users' effort for
recognizing the logical concept and its applicability.

� Learnability: Attributes of software that relate to the users' effort for
learning its application (for example, operation control, input, output).

� Operability: Attributes of software that relate to the users' effort for
operation and operation control.

� Attractiveness.
� Compliance: Attributes of software that make the software adhere to

application related standards or conventions or regulations in laws and
similar prescriptions.

 37

• ISO/IEC 14598 (1999-2001) and 9126 (2001-2004)

ISO/IEC 14598 (Information technology- Software product evaluation) [62], is a
series of international standards that provide methods for measurement, assessment and
evaluation of software product quality. The different parts of this series set out a generic
picture of the process of evaluation, addressing it from the point of view of developers,
acquirers and (third party) evaluators. The standards of ISO/IEC 14598 series are mainly
concerned with the set of concepts in the measures group, and partially covering some of
the measurement process aspects. ISO/IEC 14598 series makes use of the ISO/IEC 9126
series (Software engineering “Product quality” Parts 1 to 4) [60], which propose a
software product quality model, and metrics for internal quality, external quality, and
quality in use.The SQuaRE project [3] has been specifically created to make them
converge, trying to eliminate the gaps, conflicts, and ambiguities that they currently
present. In fact, ISO/IEC TR 9126-2, 9126-3 and 9126-4 were allowed to be published as
Technical Reports between 2002 and 2004 without changing their original terminology,
with the agreement that they would be aligned with the new SC7 measurement terms as
soon as possible.

• ISO/IEC 15939 (2002) and PSM (2002)

ISO/IEC 15939 standards identify the activities and tasks needed to successfully
identify, define, select, apply, and improve software measurement within an overall
project or organizational measurement structure. It also provides definitions for
measurement terms commonly used within the software industry. The two key
components included in this standard are software measurement process and
measurement information model. The software measurement process is driven by the
information needs of the organization. For each information need, this process produces
an information product that tries to satisfy it. The measurement information model
establishes the link between measures and information needs. Measured entities include
processes, products, projects, and resources. The model describes how the relevant
attributes are quantified, and converted to indicators that provide a basis for decision-
making. It basically rests upon the concepts of ISO/IEC 14598 and ISO/IEC 9126,
although changing some of the terms in order to be aligned as much as possible with the
ISO VIM. Hence, it does not use the term “metric”, relating directly the terms
“measurement” and “measure”. ISO/IEC 15939, together with VIM, has become the
standard used by ISO-JTC1 (International Standards Organization/ Joint Technical Committee
1), as the basis for its software measurement terminology harmonization efforts [68].
Another key reference, the PSM (Practical Software Measurement) [88], is compatible
with ISO/IEC 15939, and therefore uses the same terminology.

 38

• ISO/IEC 15504 (SPICE)

The ISO/IEC 15504: Information Technology - software process assessment is a large
international standard framework for process assessment that intends to address all
processes involved in:

• Software acquisition
• Development
• Operation
• Supply
• Maintenance
• Support

ISO/IEC 15504 consists of 9 component parts covering concepts, process reference

model and improvement guide, assessment model and guides, qualifications of assessors,
and guide for determining supplier process capability:

1. ISO/IEC 15504-1 Part 1: Concepts and Introductory Guide.
2. ISO/IEC 15504-2 Part 2: A Reference Model for Processes and Process

Capability.
3. ISO/IEC 15504-3 Part 3: Performing an Assessment.
4. ISO/IEC 15504-4 Part 4: Guide to Performing Assessments.
5. ISO/IEC 15504-5 Part 5: An Assessment Model and Indicator Guidance.
6. ISO/IEC 15504-6 Part 6: Guide to Competency of Assessors.
7. ISO/IEC 15504-7 Part 7: Guide for Use in Process Improvement.
8. ISO/IEC 15504-8 Part 8: Guide for Use in Determining Supplier Process

Capability.
9. ISO/IEC 15504-9 Part 9: Vocabulary.

Given the structure and contents of the ISO/IEC 15504 documentation it is more

closely related to ISO 9000, ISO/IEC 12207 and CMM, rather than the initially discussed
quality models (McCall, Boehm and ISO 9126).

• IEEE

 - IEEE has also release several standards, more or less related to the topic of our
research. To name a few:

• IEEE Std. 1220-1998: IEEE Standard for Application and Management of the
systems engineering process.

• IEEE Std 730-1998: IEEE Standard for SWQA Plans.
• IEEE Std 828-1998: IEEE Standard for Software Configuration Management

Plans – Description.
• IEEE Std 829-1998: IEEE Standard For Software Test Documentation.

 39

• IEEE Std 830-1998: IEEE recommended practice for software requirements
specifications.

• IEEE Std 1012-1998: IEEE standard for software verification and validation
plans.

• IEEE Std 1016-1998: IEEE recommended practice for software design
descriptions.

• IEEE Std 1028-1997: IEEE Standard for Software Reviews.
• IEEE Std 1058-1998: IEEE standard for software project management plans.
• IEEE Std 1061-1998: IEEE standard for a software quality metrics methodology.
• IEEE Std 1063-2001: IEEE standard for software user documentation.
• IEEE Std 1074-1997: IEEE standard for developing software life cycle

processes.
• IEEE/EIA 12207.0-1996: Standard Industry Implementation of International

Standard ISO/IEC 12207: 1995 (ISO/IEC 12207) Standard for Information
Technology Software Life Cycle Processes.

Of the above mentioned standards it is probably the implementation of ISO/IEC

12207: 1995 that most resembles previously discussed models in that it describes the
processes for the following life-cycle:

• Primary Processes: Acquisition, Supply, Development, Operation, and
Maintenance.

• Supporting Processes: Documentation, Configuration Management, Quality
Assurance, Verification, Validation, Joint Review, Audit, and Problem
Resolution.

• Organization Processes: Management, Infrastructure, Improvement, and Training

In fact, IEEE/EIA 12207.0-1996 is so similar to the ISO 9000 standard that it could
actually bee seen as a potential replacement for ISO within software engineering
organizations.

The IEEE Std 1061-1998 is another standard that is relevant from the perspective of
this research as the standard provides a methodology for establishing quality
requirements and identifying, implementing, analyzing and validating the process and
product of software quality metrics [54].

• Capability Maturity Model(s) (CMM)

The Carnegie Mellon Software Engineering Institute (SEI), non-profit group
sponsored by the DoD work at getting US software more reliable [50, 51, 52]. SEI has
also produced a number of more extensive Capability Maturity Models that in a very
IEEE and ISO 9000 similar manner addresses the topic of software quality such as:

 40

• CMM / SW-CMM [85, 52].
• P-CMM [23].
• CMMI - PDD-CMM - SE-CMM - SA-CMM [109].

The CMM/SW-CMM addresses the issue of software quality from a process

perspective, Figure 2.8 below shows the Maturity levels of SW-CMM, and also table 2.3
shows the Maturity levels with corresponding focus and key process areas for CMM.

Figure 2.8: Maturity Levels of SW-CMM.

Table 2.3: Maturity levels with corresponding focus and key process areas for CMM

 41

The SW-CMM is superseded by the CMMI model which also incorporates some
other CMM models into a wider scope. CMMI Integrates systems and software
disciplines into one process improvement framework and is structured around the
following process areas [23, 85]:

• Process management.
• Project management.
• Engineering.
• Support.

And similarly to the SW-CMM the CMMI is structured around the following maturity
levels [109]:

• Maturity level 5: Optimizing - Focus on process improvement.
• Maturity level 4: Quantitatively managed - Process measured and controlled.
• Maturity level 3: Defined - Process characterized for the organization and is

proactive.
• Maturity level 2: Managed - Process characterized for projects and is often

reactive.
• Maturity level 1: Initial - Process unpredictable, poorly controlled and reactive.
• Maturity level 0: Incomplete.

Figures 2.9 and 2.10 show the two representations of the CMMI model.

Figure 2.9: The staged CMMI-SW/SW representation.

 42

Figure 2.10: The continuous CMMI-SW/SW representation.

 43

CHAPTER 3

BUILDING ONTOLOGY DOMAIN CONCEPTS

This chapter is talking about the preparation of the text corpora for the SWPQAs

knowledge domain. This preparation is done by collecting and studying a large number
of documents and reports related to the field of software quality. The chapter also is
discussing how the prepared text corpora were used to extract and create our primary
ontology domain concepts using TextToOnto tool with support of an MS Access tool and
then with support of human experts. In this chapter, we also focused on evaluating the
suggested ontology domain concepts using a coverage methodology. After preparing the
needed corpus, and by using a tool created by Kayed [72], we counted the covered
concepts and calculated a coverage percentage for them. Later, we discussed what the
results would be if we collect and study the uncovered concepts from the domain under
discussion. The results showed an enhancement of our ontology domain concepts, and
gave a much better coverage percentage. The results are shown in the discussion.

3.1 PREPARING TEXT CORPORA FOR SOFTWARE PRODUCT
 QUALITY ATTRIBUTES DOMAIN

As mentioned earlier, TextToOnto is a tool provided for ontology engineering process
depending on text mining techniques and natural language processing algorithms [83]. To
use this tool we needed to prepare text corpora, in linguistics, text corpora consists of
large set of electronically processed and stored texts. They are needed when doing
statistical analysis, checking occurrences, or validating linguistic rules on a specific
domain. TextToOnto tool deals with corpora of text or html type.

For our research we prepared text corpora to be used within the TextToOnto tool and
later within an Access tool, software quality relevant domain documents, reports, and
publications were collected. In our case, we collected as much as possible of what we
could reach to of publications, documents, and reports that we think they were related to
the field, almost about 85 different related documents to software engineering, quality,
and software quality were collected. We believed that in such a large collected domain
heterogeneous and homogenous text collection, concepts, and terms can be found. Upon
the discussion of SWPQAs and their definitions, a more deep study was conducted to
these collected documents and they were filtered into almost 34 much related documents,
reports, and publications. After that from these resulted files we created a document
contains a summery from their semantic; the parts that specifically discussed SWPQAs, it
included about 95 pages with almost 33,600 words. Later, we converted them into text
files. By that our text corpora for the SWPQAs domain were ready, where the corpus
consisted of the 34 documents were entered into the TextToOnto tool and the corpus
consisted of the summary was entered into the Access tool later on. The discussion later
shows the details of how they had been used.

 44

3.2 EXTRACTING ONTOLOGY DOMAIN CONCEPTS

Ontology domain concepts extraction is considered the most important part in
building an ontology. In order to extract ontology domain concepts we must study the
semantic of the prepared text corpora. To do so, at first we used the TextToOnto tool
[83]. We added the prepared text corpus (34 related documents) to the tool by using the
New Corpus function. Figure 3.1 shows the creation and addition of the prepared corpus
to the tool.

Figure 3.1: Creating a Corpus using TextToOnto Tool.

Later we used the New Term Extraction function in order to extract concepts from
provided the text corpus. This tool depends on natural language processing algorithms in
addition to semantic lexicon filtering techniques. When we decided to declare parameters

 45

to be used in the tool, at first we used frequency threshold to be 5 and above but the result
included more than 8500 concepts and that was very large to be considered as a initial
result for the ontology domain concepts; it was difficult to be handled, so we declared 10,
15, and 20 as frequency thresholds to be taken, from the results that came we chose to
stick with retrieving concepts that their frequency in the given text corpus were 10
frequencies or above, we also chose to retrieve concepts that consist on one unique word
as a term; to have a suitable number of concepts (not too large and also not too small) to
be collected and studied in our work. Figure 3.2 shows this step and some of the resulted
concepts.

Figure 3.2: The Term Extraction process using the TextToOnto tool.

This step; using TextToOnto tool to extract concepts, provided us with about 2750
single concepts having a 10 or above as frequency of appearance in the given text corpus.
After that and in order to refine these resulted concepts we used a tool created by Kayed
[72], it is a combination between MS Access tool and MS Visual Basic language. We
provided it with the resulted concepts (2750) and with the other previously prepared text
corpus (text corpus from the abstract file), It depends on a semantic counting algorithm
that counts the unique frequencies of the concepts in a given set of texts, so by using this
algorithm it studied which concepts from the provided 2750 concepts were found in the
semantic of the provided corpus and how many times? This tool provided us with almost
292 single concepts. Table 3.1 below lists the resulted concepts from the tool.

 46

Table 3.1: the resulted 292 concepts (out of 2750).

Concept Frequency Concept Frequency Concept Frequency
attribute 99 work 8 independ 3
software 83 capacity 7 nature 3

component 78 control 7 occurrence 3
system 68 express 7 people 3
ability 58 failure 7 portability 3

function 57 manner 7 precision 3
use 56 response 7 presence 3

form 52 scope 7 produce 3
characteristic 42 storage 7 relationship 3

degree 39 adapt 6 relative 3
product 38 case 6 reliability 3

can 37 complex 6 repair 3
perform 35 developer 6 risk 3

capability 32 example 6 show 3
program 30 general 6 speed 3

environment 26 make 6 stability 3
concern 25 objective 6 testability 3
design 25 period 6 transfer 3

end 25 processing 6 verification 3
user 25 support 6 adaptability 2

measure 24 table 6 adaptation 2
code 23 utilization 6 assessment 2

operation 23 communication 5 audit 2
fact 22 computing 5 certification 2

quality 22 definition 5 commonality 2
time 22 demand 5 compliance 2
data 20 documentation 5 concept 2
effort 20 error 5 configurability 2
extent 20 freedom 5 conformance 2
factor 20 impact 5 cost 2
source 19 interval 5 couple 2

requirement 18 respect 5 customer 2
change 17 see 5 database 2

ease 17 structure 5 defect 2
rate 17 sub 5 dependability 2

implementation 16 type 5 dependency 2
number 16 unit 5 descript 2
amount 15 version 5 description 2

level 15 architecture 4 domain 2
part 15 configuration 4 establishment 2

process 15 continuity 4 evaluation 2
computer 14 effectiveness 4 figure 2
interface 14 incorporation 4 flexibility 2
resource 14 mechanism 4 goal 2

state 14 memory 4 independent 2
application 13 order 4 integrity 2

develop 13 organization 4 interaction 2
input 13 platform 4 knowledge 2

performance 12 probability 4 maintainability 2
set 12 property 4 market 2

correct 11 result 4 model 2

 47

Concept Frequency Concept Frequency Concept Frequency
functionality 11 throughput 4 modifiability 2

operating 11 understandability 4 network 2
test 11 usability 4 practice 2

understand 11 accuracy 3 protection 2
access 10 availability 3 provision 2

document 10 being 3 range 2
efficiency 10 business 3 reason 2

information 10 completeness 3 reliance 2
mean 10 complexity 3 sense 2
object 10 correctness 3 standardization 2
context 9 custom 3 step 2

fault 9 deploy 3 terminology 2
hardware 9 development 3 testing 2

output 9 disk 3 tolerance 2
performing 9 engine 3 understanding 2

place 9 engineer 3 uniform 2
purpose 9 exchange 3 uniformity 2

specification 9 execution 3 research 1
standard 9 hand 3 responsiveness 1

effect 8 help 3 reusability 1
means 8 idea 3 safety 1

minimum 8 increase 3 second 1
modification 8 independence 1 security 1

service 8 industry 1 self 1
usage 8 interoperate 1 setting 1
utility 2 issue 1 solution 1
valid 2 language 1 specificity 1
value 2 latency 1 suitability 1
way 2 machine 1 survivability 1

absence 1 maintenance 1 top 1
abstract 1 marketing 1 traceability 1

abstraction 1 meaning 1 training 1
accessibility 1 measurement 1 transition 1

appendix 1 method 1 transport 1
applicability 1 metrics 1 try 1
assurance 1 modular 1 validating 1
breadth 1 modularity 1 verifiability 1

build 1 note 1 volume 1
clarity 1 operator 1 web 1

compatibility 1 improvement 1 existence 1
confidence 1 overlap 1 explanation 1
consistency 1 point 1 extendability 1

coupling 1 predict 1 future 1
deployment 1 predictability 1 guide 1
evaluator 1 producibility 1 removal 1
readiness 1 reference 1

replacement 1 report 1

 48

After we had the 292 concepts resulted from the used Access tool, we reached to the
final part of extracting the ontology domain concepts. We took those concepts, and
applied an elimination process for the stopping words (extremely common words like
use, can, the, of, etc) from them. The concepts set resulted from the elimination process
was sent to human experts (professors, doctors, and practitioners) in the field of SWE and
SWQ, where we asked them to help us in condensing the sent set of concepts into a
smaller one. After a while the results were sent back to us, we collected them, studied
them upon the agreement of all experts on the sent concepts; they all considered them
related and important to the studied field, and merged them into one set of concepts. The
result of this part was 100 concepts, which we suggested as an ontology domain concept.
Table 3.2 below shows the suggested ontology domain concepts.

Table 3.2: The suggested 100 ontology domain concepts.

Concept Concept Concept Concept Concept

ability develop meaning responsiveness control

access developer measure scope data

accessibility development memory service definition

accuracy documentation modification set degree

adapt ease notation setting design

adaptability effect number software information

adaptation effectiveness object source level

amount efficiency objective specification maintenance

applicability effort operating storage manner

application environment operation structure mean

attribute error operator system purpose

capability extent output test quality

change factor performance throughput rate

characteristic failure period time respect

code freedom portability understand response

component function precision understandability usage

computer functionality probability understanding user

computing hardware product uniform utility

concern implementation program uniformity utilizati on

context incorporation property usability work

 An evaluation process for the suggested ontology domain concepts must be done in
order to see how much the reached concepts belong to the knowledge domain of software
quality , and to know if the resulted concepts are enough to build a good ontology from
or not. That what we are discussing in the next chapter.

 49

3.3 ONTOLOGY EVALUATION PROCESS

Various methodologies to evaluate ontologies have been presented in the last decade,

most of them belong to one of the following categories:

• Evaluations based on using the ontology in a context of an application or project,
to evaluate how effective it is. The use of the system may reveal weakness or
strength points in the ontology [16]. For our research it is hard to build an
application in order to be used considering the time we have, also we could not
find an application in the field to use the suggested ontology in its context.

• Evaluations based on the effort done by human experts, who try to assess how

well the ontology meets a set of predefined criteria, standards, and requirements
[96]. To reduce the role of human intervention in our work especially after we
depended on human experts when extracting the suggested ontology domain
concepts, we did not use this approach to evaluate the suggested ontology domain
concepts.

• Evaluations based on comparing the ontology with other ontologies in the same

domain [17]. As we declared earlier, our ontology is presented as a first in the
specific domain of SWQPAs, so we could not use this approach for evaluation.

• Evaluations based on studying ontology relationships considering some criteria

[17]. For our ontology we extracted and presented general and basic relationships
between the extracted concepts from the domain, it is not adequate to be evaluated
using this approach.

• Evaluations based on studying and comparing the formal representation of the

ontology with other ontologies formal representations, criterions, or measures
[117]. As mentioned earlier, our ontology is presented as a first in the specific
domain of SWQPAs, so we could not use this approach for evaluation.

• Evaluations based on fitting or covering techniques between an ontology and a

domain of knowledge that the ontology is created for [16, 25].

The last methodology; the coverage methodology, can be decomposed into two

different coverage approaches. The first is done by comparing the new ontology domain
concepts with a considered existing gold standard domain concepts, to see how much
does the studied domain fit in the resulted ontology. The second approach is done by
comparing the ontology domain concepts with concepts of a prepared knowledge domain
to see how much does the suggested ontology concepts cover from the studied domain
concepts.

 50

For our research we used a coverage technique; the requirements for this approach are
available (text corpora, tools, etc). We combined the two last discussed approaches of the
coverage methodology. We prepared a corpus that combined between the semantic of
golden standards and the semantic of SWQ knowledge domain. From many related
documents, reports, and publications we extracted the semantic of the most common
discussed SWPQAs and their various discussed definitions in those files. We reached to
almost 66 SWPQAs and a wide range of definitions for them. Table 3.3 shows part of the
extracted 66 common discussed SWPQAs. The complete extracted 66 SWPQAs and
there definitions in addition to the sources they are taken from are presented in Appendix
A.

Table 3.3: SWPQAs and their definitions from various sources references.

Att
ID

Quality
Attribute

Definition(s)

1 Accuracy

 Attributes of software that bare on the provision of right or agreed results or effects.

Those attributes of the software which provide the required precision in calculations
and outputs.

 This quality factor addresses the concern that programs provide the precision
required for each output. Accuracy is important because most computer
manipulations are not exact, but are limited approximations.

A software product possesses accuracy to the extent that its outputs are sufficiently
precise to satisfy their intended use

The capability of the software product to provide the right or agreed results or effects
with the needed degree of precision.

The characteristics of the software which provide the required
precision in calculations and outputs

(1) A qualitative assessment of correctness, or freedom from error. (2) A quantitative
measure of the magnitude of error. Contrast with: precision

Correctness

 51

Att
ID

Quality
Attribute

Definition(s)

The degree to which a system, as built, is free from error, especially with respect to
quantitative outputs. Accuracy differs from correctness; it is a determination of how
well a system does the job it is designed for rather than whether it was implemented
correctly

The capability of the software product to provide the right or agreed results or effects
with the needed degree of precision

The provision of right or agreed results or effects

7 Complexity
This quality factor addresses the concern that programs not be complex

Is the extent to which it is involved or intricate, composed of many interwoven parts?

The degree to which a component or system has a design and/or internal structure
that is difficult to understand, maintain and verify.

A code measure, which is a combination of code, data, data flow, structure and
control flow metrics

 (1) The degree to which a system or component has a design or implementation that
is difficult to understand and verify.
(2) Pertaining to any of a set of structure-based metrics that measure the attribute in (1).

12 Functionality This characteristic express the ability of a component to provide the required

services, when used under specified conditions

The responsibilities assigned to the classes of a design, which are made available
by the classes through their public interfaces.

 A set of attributes that relate to the existence of a set of functions and their specified
properties. The functions are those that satisfy stated or implied needs

 52

Att
ID

Quality
Attribute

Definition(s)

The capability of the software product to provide functions which meet stated and
implied needs when the software is used under specified conditions.

The extent to which a component satisfies its specifications and fulfills the stated or
implied needs of the user

The capability of the software product to provide functions that meets stated and
implied needs when the software is used under specified conditions.

Is the essential purpose of any product or service

Is expressed as a totality of essential functions that the software product provides

Characteristics relating to achievement of the basic purpose for which the software is
being engineered

40

Dependability

This attribute indicates if the component is not self-contained, i.e. if the component
depend of other component to provide its specified services

Is that property of a computer system such that reliance can justifiably be placed on
the service it delivers

 That property of a system such that reliance can justifiably be
placed in the service it provides

Availability. The degree to which a system or component is operational and accessible
when required for use.
Dependability is that property of a computer system such that reliance can
justifiably be placed on the service it deliver

 53

Att
ID

Quality
Attribute

Definition(s)

45 Integrity The protection of the program from unauthorized access

Extent to which unauthorized access to the software or data can be controlled

Quality factor addresses the concern that programs must continue to perform their
function even under adverse conditions: inputs that are unexpected, improper, or
harmful

Ability of software to prevent purposeful or accidental damage to the data or
software

The extent to which access to software or data by unauthorized
persons should be controlled

The degree to which a system or component or application prevents unauthorized
access to, or modification of, computer programs or data.

 Non-occurrence of improper alterations of information

Is the requirement that data and process be protected from unauthorized
modification

Protection of the program from unauthorized access.

 The extent to which access to a software component, a component-based software
using the software component or the companion data by unauthorized persons can be
controlled

THE degree to which a system prevents unauthorized or improper access or
modification to its code and data or other system resources and/or the degree to
which it ensures that data or object state is maintained in a coherent and correct
manner. The idea of integrity includes restricting unauthorized user access as well as
ensuring that data is accessed properly by its intended users and other software.

65 Readability The ease with which a developer can read and understand the source code and

technical documentation of a system, especially at the detailed source code statement
level

66 Productivity The capability of the software product to enable users to expend appropriate amounts
of resources in relation to the effectiveness achieved in a specified context of use.

 54

As shown in the table above, the most common and discussed 66 software product
quality attributes were extracted from the studied knowledge domain found in various
documents and reports we collected earlier. The table shows that every attribute has many
definitions came from many sources. If we take a deep look to them, we will see
inconsistencies on the semantic of the used concepts. That really makes the researchers in
the field confused about those attribute semantic. After completing the ontology that we
aim to build through our work, we will show how to use it in order to solve the problem
appeared from using various semantics in the definitions of any of the studied attributes.

3.4 THE COVERAGE PROCESS AND THE EVALUATION
 RESULTS

After we prepared the text corpus for the evaluation process (as seen in the table
before), we used two tools to help us in conducting the coverage technique. First, for each
quality attribute definition(s) we extracted its single and unique concepts using the
TextToOnto tool as used before. After that we eliminated the stopping words from the
resulted concepts.

Later, in order to know how much does our suggested ontology concepts cover from

each attribute definition concepts which were extracted earlier, we used a program
created by Kayed [72]; we provided the program with two groups of concepts, the first
group consisted of the single concepts of each attribute definition(s), and the second
group consisted of our suggested ontology domain concepts; it is the same tool used in
the refinement process for the extracted ontology concepts. The results after that
appeared with which concepts from our ontology domain covered concepts from each
attribute definition(s).

Depending on the results provided by the program, and for each quality attribute

definition(s), we counted how many concepts did our ontology domain concepts cover,
and calculated the average coverage for each one. Finally we calculated the average of all
the resulted coverage averages for all of the attributes definition(s). The result of the
coverage process showed that an average of 73% of the definitions concepts was covered
by our ontology domain concepts. That was a very good coverage percentage for the
studied domain text corpus. Table 3.4 shows part of the results from these steps. The
complete results are provided in Appendix B.

Table 3.4: Coverage Process Results.

Att. ID Attribute Def. Concepts Onto. Concepts that

cover
Count and Average

assessment accuracy 17 from 24
computer capability 0.708333333
concern computer

determination concern
extent degree
factor error

freedom extent

1 Accuracy

job factor

 55

magnitude freedom
measure measure
output output
quality precision
respect product

capability quality
provision respect

right software
system system

accuracy
correctness

degree
error

product
precision
software
attribute attribute 16 from 19

code code 0.842105263
combination component
component concern

concern control
control data

data degree
degree design
design extent
extent factor
factor implementation
flow measure

implementation quality
measure set
metrics structure
quality system

set
structure

7 Complexity

system
Functionality ability ability 12 from 16

achievement capability 0.75
capability characteristic

characteristic component
component design

design extent
existence product
express purpose
extent service

product set
purpose software
service user

set
software
totality

12

user
attribute attribute 7 from 10

availability component 0.7
40 Dependability

component computer

 56

computer degree
degree property

property service
reliance system

self
service
system
ability ability 21 from 30
access access 0.7

application application
code code

companion component
component computer
computer concern
concern data
damage degree

data extent
degree factor
extent function
factor information

function manner
idea modification

information object
integrity object
manner program

modification quality
object software

occurrence system
process user

program
protection

quality
requirement

software
state

system

45 Integrity

User
code code 7 from 8

developer developer 0.875
documentation documentation

ease ease
level level

source source
statement system

65 Readability

system
capability capability 5 from 7

context context 0.714285714
effectiveness effectiveness

expend product
product software
relation

66 Productivity

software

The Average of Coverage Averages is : 0.734520723

 57

As shown in the table above, the evaluation process revealed that our ontology
domain concepts covered almost 73% from the given knowledge domain. This result
supports our claim; that we can condense the thousands of concepts used to define the 66
most common and discussed software product quality attributes into a smaller set of
concepts (100 concepts), and those 100 concepts covered about 73% of the semantic
used to define them. In other words, a range of 73% of the semantic of each studied
SWPQA is covered by our ontology domain concepts.

What about the uncovered concepts? Can we get benefits from the evaluation process

that had been done to our ontology domain concepts in order to enhance the work? Next
section will be devoted to answer this question.

3.5 ENHANCING ONTOLOGY DOMAIN CONCEPTS

 After studying the results of the evaluation process for the suggested ontology domain
concepts, we devoted this section for answering a specific question that says: what the
result would be if we collect and study the uncovered concepts from the domain under
discussion? The results show that we were able to enhance our ontology domain concepts
with a much better coverage percentage. Such results are shown in the discussion below.

3.5.1 THE ENHANCING IDEA AND PROCESS

 As mentioned earlier, ontology domain concepts are considered to be the most
important part of the ontology building process, reaching to coherent ontology domain
concepts is like accomplishing about 70% of the ontology building process road. In order
to make the reached coverage percentage of our ontology domain concepts better, an
enhancing idea was suggested.

From the results of the previous section; evaluating the ontology domain concepts
through concepts knowledge domain coverage technique, we could reach to the
uncovered concepts for the studied domain. A question popped up in our minds which
says: can we get benefits from those uncovered concepts in order to enhance our
suggested ontology domain concepts? So we took a look again on the concepts of each
definition (mentioned earlier in table 3.4), we collected and studied the uncovered
concepts for each definition and made a list from them.

A study for the resulted list of the uncovered concepts depending on their appearance

frequency in the domain of SWPQAs has been conducted. After that we rearranged the
list according to the studied criterion, we found that the frequencies range was between 1
and 5, when we studied them we found that the number of concepts had frequency of
5,4,and 3 were 25 concepts, and concepts that had frequency of 2 or/and 1 were in
hundreds, so we chose the top listed 25 concepts and studied them upon if we can add
them to our ontology domain concepts and get a noticed better covering average
percentage when evaluating the new suggested ontology concepts. Table 3.5 shows the
new chosen concepts.

 58

Table 3.5: The top listed 25 uncovered chosen concepts.

Concept Concept Concept
means meeting idea

capacity minimum impact
interface nature interval

requirement people variety
state presence Verification

architecture relationship
availability reliability

demand resource
exchange risk
express testability

 We took the new resulted concepts and merged them with our ontology domain
concepts. This gave us a new suggested ontology domain concepts consisted of 125
concepts. Table 3.6 shows the new 125 suggested ontology domain concepts.

Table 3.6: The new 125 Ontology domain concepts list.

Concept Concept Concept Concept
ability documentation memory risk
access ease minimum scope

accessibility effect modification service
accuracy effectiveness nature set

adapt efficiency notation setting
adaptability effort number software
adaptation environment object source

amount error objective specification
applicability exchange operating state
application express operation storage
architecture extent operator structure

attribute factor output system
availability failure people test
capability freedom performance testability
capacity function period throughput
change functionality portability time

characteristic hardware precision understand
code idea presence understandability

component impact probability understanding
computer implementation product uniform
computing incorporation program uniformity

concern information property usability
context interface purpose usage
control interval quality user

data level rate utility
definition maintenance relationship utilization

degree manner reliability variety
demand mean requirement verification
design meaning resource
develop means respect

developer measure response
development meeting responsiveness

 59

3.5.2 EVALUATING THE NEW SUGGESTED ONTOLOGY
DOMAIN CONCEPTS

 In order to see how the new suggested ontology concepts effected on our work, we
evaluated it using the same technique (the coverage technique) we used to evaluate our
first suggested ontology domain concepts. For each software product quality attribute
definition, we counted how many new covered concepts we got when we used the new
ontology domain concepts to cover it, and we calculated the new coverage percentage for
each one. After that, the average of the covering averages was calculated. Table 3.7
shows the new results.

Table 3.7: The Coverage process results using the new suggested Ontology domain concepts.

Att. ID The Old Count The New Count The new Percentage
1 17 from 24 no change 0.708333333
2 13 from 15 14 from 15 0.933333333
3 6 from 10 no change 0.6
4 4 from 4 no change 1
5 12 from 26 17 from 26 0.653846154
6 9 from 12 no change 0.75
7 16 from 19 no change 0.842105263
8 4 from 7 no change 0.571428571
9 17 from 22 no change 0.772727273
10 4 from 5 no change 0.8
11 38 from 66 42from 66 0.636363636
12 12 from 16 13 from 16 0.8125
13 5 from 5 no change 1
14 13 from 17 16 from 17 0.941176471
15 10 from 14 no change 0.714285714
16 39 from 61 45 from 61 0.737704918
17 8 from 12 no change 0.666666667
18 13 from 17 no change 0.764705882
19 32 from 45 36 from 45 0.8
20 29 from 36 30 from 36 0.833333333
21 11 from 12 no change 0.916666667
22 33 from 41 35 from 41 0.853658537
23 7 from 13 8 from 13 0.615384615
24 5 from 8 6 from 8 0.75
25 10 from 19 13 from 19 0.684210526
26 14 from 17 16 from 17 0.941176471
27 20 from 44 24 from 44 0.545454545
28 5 from 9 7 from 9 0.777777778
29 9 from 11 10 from 11 0.909090909
30 22 from 40 27 from 40 0.675
31 12 from 30 14 from 30 0.466666667
32 26 from 35 no change 0.742857143
33 31 from 48 33 from 48 0.6875
34 8 from 10 9 from 10 0.9
35 7 from 9 8 from 9 0.888888889
36 15 from 19 no change 0.789473684
37 19 from 24 20 from 24 0.833333333

 60

Att. ID The Old Count The New Count The new Percentage
38 17 from 22 19 from 22 0.863636364
39 12 from 15 13 from 15 0.866666667
40 7 from 10 8 from 10 0.8
41 3 from 4 4 from 4 1
42 3 from 3 no change 1
43 17 from 23 19 from 23 0.826086957
44 20 from 21 no change 0.952380952
45 21 from 30 24 from 30 0.8
46 9 from 13 10 from 13 0.769230769
47 3 from 5 4 from 5 0.8
48 7 from 8 no change 0.875
49 10 from 11 11 from 11 1
50 7 from 11 9 from 11 0.818181818
51 13 from 15 14 from 15 0.933333333
52 7 from 8 no change 0.875
53 12 from 17 13 from 17 0.764705882
54 10 from 15 11 from 15 0.733333333
55 11 from 12 no change 0.916666667
56 13 from 14 no change 0.928571429
57 6 from 11 8 from 11 0.727272727
58 10 from 13 11 from 13 0.846153846
59 4 from 6 no change 0.666666667
60 15 from 22 19 from 22 0.863636364
61 5 from 6 no change 0.833333333
62 7 from 13 no change 0.538461538
63 13 from 16 15 from 16 0.9375
64 8 from 13 9 from 13 0.692307692
65 7 from 8 no change 0.875
66 5 from 7 no change 0.714285714

 The New Average For Coverage Averages is : 0.7989858 ≈ 0.80

From studying the results above, we can see that this step enhanced our ontology

domain concepts coverage percentage from seventy three percent to about eighty percent.
It is clear that the new suggested ontology domain gave us a much better result in the
evaluation process.

 The new results of the evaluation process showed that an average of 80% from the

semantic used to define one of the 66 studied software product quality attributes are
covered by our new suggested ontology domain concepts. This 80% is shared and agreed
knowledge concepts among a very large number of experts and practitioners in the field,
who used to define software product quality attributes. These new results enhanced our
claim that we can condense the thousands of concepts used in the semantic of the most 66
common and discussed software product quality attributes into a smaller set of concepts
consists of 125 concepts, which cover about 80% from it. In other words, a range of 80%
of the semantic used to define 66 software product quality attributes can be condensed by
our ontology domain concepts.

 61

What about the remaining 20% uncovered concepts? When we studied the remaining
20% uncovered concepts, we found that those concepts had not been used in a very large
shared manner like the 80% covered concepts in the domain. They were used by some
individuals in the field to define one of the discussed software product quality attributes.
About 50% of the uncovered concepts had an appearance frequency value of 2 in the
studied domain, and the second half of them had 1 as an appearance frequency value in
the semantic of the whole definitions. In addition to that, and in their semantic, they were
not related to the domain as much as the 80% covered concepts. So we can claim that a
large percentage of the uncovered concepts are not important to the shared knowledge
that we want to reach as much as the 80% covered concepts, and we can eliminate them
from the semantic used to define one of the studied attributes. So not mentioning them as
a part of our ontology domain concepts has a small negative effect on our work.

The idea of condensing concepts used in the studied semantic resulting with

information loss for sure, but if we take a look on the condensing results, we will see that
we condensed the thousands of concepts used in the semantic of the studied domain into
a smaller set of concepts, as we saw earlier we managed to condensed the 2750 extracted
concepts that have a coverage average of almost 100% for the concepts in the domain
into 125 concepts that have a coverage average of almost 80% for the concepts used in
the studied domain, we managed to condense about 95% of the used concepts with just
20% of information loss.

 62

CHAPTER 4

EXTRACTING ONTOLOGY DOMAIN RELATIONSHIPS

 In this chapter we extracted general relationships between the new concepts of the
suggested ontology domain after studying and filtering the results of two tools. We
presented the resulted relationships as groups. After that, a general lattice representation
for part of the resulted relationships was done. Later, we listed each concept in the
ontology domain with other concepts in the same domain that appeared with them when
studying the extracted relationships.

4.1 EXTRACTING RELATIONSHIPS BETWEEN CONCEPTS

Extracting structured information and relationships from text between concepts has
been widely studied lately and became a rich subject of research. Many works and
documents and even theses have been published about this subject exclusively. When we
decided to proceed in this step; extracting and creating relationships between concepts of
our ontology domain, we found that if we want to create a detailed and complete
ontology relation taxonomy, then this work will be large enough to be a thesis by itself.
Such details go beyond our work scope, and we suggested it to be done in the future
work. So, we went for extracting and presenting a basic and general representation of the
relationships that we could extract between our ontology domain concepts.

In this step, and in order to extract relationships between our suggested ontology

domain concepts, we used and studied the results of two tools. Firstly, we used the
TextToOnto tool in order to extract relationships (associations) between concepts. We
provided the tool with the text corpus we prepared previously to extract concepts from,
and also we provided it with the concepts we want to study the relationships between.
When we ran this step the used tool provided us with about 1467 relationships. Figure 4.1
shows part of the results of this step.

Figure 4.1: Part of the resulted relationships using TextToOnto tool.

 63

To get benefits from the resulted relationships from the TextToOnto tool, we used
them as an input for another tool; a tool created by Kayed et al [71]. Such a tool accepts
the relationships resulted from the TextToOnto tool as an input, and implements a
counting and relevancy algorithm on them. This tool provided us with about 65
relationships categorized in groups of concepts. Figures 4.2 and 4.3 show part of using
this tool and part of its results. Later, we took the 65 resulted groups from this tool,
studied them, filtered them upon containing our ontology domain concepts or not
(because the text corpus we provided to the tool contained much more concepts than our
ontology domain did). Table 4.1 shows the results of this step.

Figure 4.2: Using TexToOnto results as an input for the second MS Access tool.

 64

Figure 4.3: Part of the resulted relationships groups from using the second tool.

Table 4.1: The resulted relationships between groups of our Ontology concepts after filtering.

Group
 No

Level Group 1 Group 2

1 1 Software, system, requirement
characteristic, function,

Attribute, design, test ,user

2 1 Performance, degree, component Data, effort, function, software
,system

2 2 Data, effort Component, degree, performance,
requirement, function ,software,

system, user
3 1 Environment, program, ability Component, requirement, software
4 1 Extent, time ,product software ,system
5 1 Operate (ion), ease, change Environment, software, system
6 1 Resource, specification,

implementation
extent

 65

Group
 No

Level Group 1 Group 2

7 1 Capability, code Environment, performance,
requirement

8 1 Modification, measure Ability, requirement
9 1 amount ,state Function, resource, software
10 1 Application, applicability,

understand
Modification, requirement, system

,user
11 1 Level, modification Product, software, system
12 1 Service, access Requirement, system, user
13 1 Effect, set Attribute, resource, system, user
14 1 Develop(er), failure Ease, product, software
15 1 Output, computer Amount, system
16 1 Efficiency, quality characteristic
17 1 meeting Modification, performance
18 1 Documentation, concern Software, system
19 1 Hardware, purpose Environment, software
20 1 Number amount ,specification
21 1 information Ability, data, degree,

documentation, exchange, object,
software, system

22 1 control Access, attribute, characteristic,
data, degree, operation, user, idea

22 2 idea Ease
23 1 precision Requirement, service
24 1 Adapt, utility (ization) characteristic
25 1 probability Availability, express, extent ,failure,

function, performance, program,
time

26 1 interface software
27 1 Mean, context change
28 1 probability Ability, characteristic, code, degree,

function ,time, Verification
28 2 Verification Component, interface, set
29 1 Freedom, uniform Environment
30 1 Storage, reliability code
31 1 response Design, measure, meet ,system

,throughput, time
31 2 throughput Rate, requirement, response, time
33 1 error Maintenance, measure, precision,

program, requirement, system
33 2 maintenance Adaptability, attribute, ease, error,

impact ,state
33 3 impact component ,maintenance ,system
34 1 Scope, accuracy extent
35 1 Usage, usability resource
36 1 work ,period system
37 1 relationship Attribute, degree, function,

modification, product
38 1 notation Definition, degree, implementation,

quality, uniform

 66

Group
 No

Level Group 1 Group 2

38 2 Definition

Implementation, level, notation

39 1 testability Characteristic, code ,effort ,extent,
number

40 1 memory Amount, efficiency, time, usage
41 1 manner degree, modification, quality, usage
42 1 structure data ,design, measure, software,

understand
43 2 architecture code ,design,
44 1 respect Capability, implementation, output,

performance, requirement
45 1 minimum Amount, function, resource,

software
46 1 source Access, attribute, code ,concern
47 1 risk Change, freedom ,people, software
47 2 people Component, measure, risk
48 1 factor Ability, concern, quality, software
49 1 demand Object, rate,
50 1 presence Ability, usage
51 1 variety Component, operation
52 1 nature Change, utility
53 1 incorporation Change, requirement

 If we have a look at the table above, which shows the relationships between groups of
our ontology concepts, we would see a group number column; which refers to the ID of
the group of concepts that had a relationship in between. The second column shows the
level number which refers to the number of levels of the relationships when concepts
from the same group have relationships with other concepts. Before filtering, every group
was consisted of two levels: level one indicated that there is a relationship between a
group of concepts; call it g1, and another group of concepts, say g2, while in level 2, the
reverse of the relationship is given, that is the relationship that g2 has with g1. So we
filtered and eliminated them from the table above and said that g1 had a relationship with
g2 and vise versa instead. Also the second and the third level from a group may show that
a concept or (concepts), which considered as a part of a group of concepts, had a
relationship with other concepts from the domain. We did not eliminate this type of
relationships and we used it later in our representation. Also, we would see the group 1
column; which refers to a side of the group of concepts that had a relationship with
another group of concepts shown in group 2 column.

 67

4.2 A LATTICE REPRESENTATION OF THE RELATIONSHIPS

 After we studied and filtered the resulted relationships from the tools we used, as
shown in table 4.1 above, we considered representing them in a general form of lattice
representation, but if we did it to all relationships groups it will be a large and complex
representation in addition to time consuming. So we took part of those groups and
represented them as shown in the Figures as follows:

Figure 4.4: Group 1 relationship Lattice representation: One Level Relationship.

Figure 4.4 above shows one level relationship, which indicates that a group of
concepts consists of (software, system, requirement, and function) has a relationship with
another group of concepts consists of (attribute, design, test, and user) and vice versa.
When we looked at the semantic used to define the studied attributes, we found that
concepts from group one came in the semantic along with concepts from the second
group.

Software, system
requirement

characteristic, function

Attribute
Design
Test
User

 68

Figure 4.5: Group 2 relationship Lattice representation: Two Levels Relationship.

 Figure 4.5 above shows a two levels relationship, which indicates that a group of
concepts consists of (performance, degree, and component) has a relationship with a
group of concepts consists of (function, software, system, data, effort) and vise versa. We
separated the second group concepts from each other because we needed to connect a part
from it (data, effort) with a second level group of concepts consists of (requirements,
user). These groups are used together in the semantic when defining some of the studied
attributes. The diamond shape on the arrow between some concepts means that those
concepts together considered as a group, but separated for a needed reason.

Figure 4.6: Group 7 relationship Lattice representation: One Level Relationship.

Capability, code

Environment
Performance
Requirement

Performance
Degree

Component

 Function, software
 System

Requirement
 User

Data, effort

 69

Figure 4.7: Group 10 relationship Lattice representation: a One Level Relationship.

Figure 4.8: Group 22 relationship Lattice representation: Two Level Relationship.

Control

Access, attribute,
characteristic, data,
degree, operation, user

Ease

Idea

Application, applicability,
understand

Modification, requirement,
system, user

 70

Figure 4.9: Group 28 relationship Lattice representation: Two Level Relationship.

Similarly, Figures 4.6 to 4.9 show similar ideas, but for different groups.

Figure 4.10 shows a three levels relationship, the first level consists of the concept

(error) as the first group, and it has a relationship with another group of concepts consists
of (measure, precision, program, requirement, system and maintenance). We separated
(maintenance) and (system) from it because we needed to connect them with another
group in the second level, the second level consists of the group (adaptability, attribute,
ease, state, and impact) which has a relationship with (maintenance) in the first level of
the relationship. We separated (impact) from the group because it has a relationship with
the third level group of concepts (component) and with the concept (system) in the first
level. Again, the diamond shape on the arrows between concepts means that those
concepts together considered as a group, but separated for a needed reason.

 So, for all the groups that appears in the table, we can make a lattice representation as
shown, either for one or two or three levels relationship.

Probability

Ability, Characteristic,
Code, Degree,

Function, Time

Component,
interface, set

Verification

 71

Figure 4.10: Group 33 relationship Lattice representation: Three Level Relationship.

4.3 LISTING EACH CONCEPT RELATIONSHIPS WITH OTHERS

IN THE ONTOLOGY DOMAIN

 Finally, after representing the relationships groups as shown earlier, we looked at
them again and we knew that if we studied them we could list each concept relationships
with other concepts in the ontology domain. So we took them and reviewed them again,
but this time for each single concept in our ontology domain. We studied what other
concepts in the ontology domain (in all groups) appeared with each concept in the
previously presented relationships groups. The result, shown in table 4.2, gave us each
concept in the ontology domain and other concepts from the domain it has a relationship
with.

 Error

Measure,
precision,
program,

requirement,

Adaptability,
attribute, ease,

State

System

Impact

Component

Maintenance

 72

Table 4.2: Each Ontology domain concept relationships with other concepts in the domain.

ID Concept Other Concepts that have relationships with the first concept
1 ability Component, requirement, software, Modification, measure,

information, portability, factor, presence, portability
2 access Requirement, system, user, control, source
3 accessibility Requirement, system, user, control, source
4 accuracy Extent
5 adapt Characteristic
6 adaptability Maintenance
7 adaptation Environment, Software, Maintenance, Modification
8 amount Function, resource, software, Output, computer, Number,

memory, minimum, computing
9 applicability Modification, requirement, system ,user
10 application Modification, requirement, system ,user
11 architecture code ,design
12 attribute Software, system, requirement characteristic, function,

Effect, set, control, maintenance, relationship, source,
quality, meaning, means, portability, property,
responsiveness

13 availability Probability
14 capability Environment, performance, requirement, respect
15 capacity Function, System, Requirement, Software
16 change Environment, software, system, Mean, context, risk, nature,

means
17 characteristic Attribute, design, test ,user, Efficiency, quality, control,

Adapt, utility (ization), portability, testability, property
18 code Environment, performance, requirement, portability,

Storage, reliability, testability, architecture, source
19 component Data, effort, function, software ,system, Environment,

program, ability, Verification, impact, people, variety
20 computer Amount, system
21 computing Amount, system
22 concern Software, system, source, factor
23 context Change
24 control Access, attribute, characteristic, data, degree, operation,

user, accessibility
25 data Performance, degree, component, Component, degree,

performance, requirement ,software, system, user,
Information, control, structure

26 definition Notation, Implementation, level, notation, meaning, means
27 degree Data, effort, function, software ,system, information, control,

portability, relationship, notation, manner, level
28 demand Object, rate
29 design Software, system, requirement characteristic, function,

response, structure, architecture
30 develop Ease, product, software
31 developer Ease, product, software
32 development Ease, product, software
33 documentation Software, system, information, meaning, means,

 73

ID Concept Other Concepts that have relationships with the first concept
understanding

34 ease Environment, software, system, Develop(er), failure, idea,
maintenance

35 effect Attribute, resource, system, user
36 effectiveness Efficiency, Quality, Program, Function, Factor
37 efficiency Characteristic, memory, effectiveness
38 effort Performance, degree, component, requirement ,software,

system, user, Testability
39 environment Component, requirement, software, Operate(ion), ease,

change, Capability, code, Hardware, purpose
Freedom, uniform, adaptation

40 error Maintenance, measure, precision, program, requirement,
system

41 exchange Information
42 express Probability
43 extent software ,system, Resource, specification, implementation,

probability, Scope, accuracy, testability
44 factor Ability, concern, quality, software, effectiveness
45 failure Ease, product, software, probability
46 freedom Environment, risk
47 function Attribute, design, test ,user, Performance, degree,

component, amount ,state, probability, relationship,
minimum, capacity, effectiveness, responsiveness

48 functionality Attribute, design, test ,user, Performance, degree,
component, amount ,state, probability, relationship,
minimum

49 hardware Environment, software
50 idea Ease
51 impact Maintenance, component, system, interval
52 implementation Extent, notation, definition, respect
53 incorporation Change, requirement
54 information Ability, data, degree, documentation, exchange, object,

software, system
55 interface Software, Verification
56 interval Time, Period, impact, minimum
57 level Performance, Degree
58 maintenance Error, Adaptability, attribute, ease, impact ,state, adaptation
59 manner degree, modification, quality, usage
60 mean Change
61 meaning Definition, Attribute, Documentation
62 means Change, Definition, Attribute, Documentation
63 measure Ability, requirement, response, error, structure, people
64 Meeting (meet) Modification, performance, response
65 memory Amount, efficiency, time, usage, storage
66 minimum Amount, function, resource, software, interval
67 modification Ability, requirement, Application, applicability, understand,

Product, software, system, meeting, relationship, manner,
adaptation , understanding

68 nature Change, utility
69 notation Definition, degree, implementation, quality, uniform

 74

ID Concept Other Concepts that have relationships with the first concept
70 number amount ,specification, testability
71 object Information, demand
72 objective Information, demand
73 operating Environment, software, system, control, variety
74 operation Environment, software, system, control, variety
75 operator Environment, software, system, control, variety
76 output Amount, system, respect
77 people Risk, Component, measure
78 performance Data, effort, function, software ,system, Capability, code,

meeting, probability, respect, level
79 period System, time, interval
80 portability Ability, Program, Software, Attribut e, utilization
81 precision Requirement, service, error
82 presence Ability, usage
83 probability Availability, express, extent ,failure, function, performance,

program, time, Ability, characteristic, code, degree
84 product software ,system, Level, modification, Develop(er), failure,

relationship
85 program Component, requirement, software, probability, error,

effectiveness, portability, responsiveness, utilization
86 property Characteristic, Attribute, Software
87 purpose Environment, software
88 quality Characteristic, notation, manner, factor, Attribute,

effectiveness
89 rate Throughput, demand
90 relationship Attribute, degree, function, modification, product
91 reliability Code
92 requirement Attribute, design, test ,user, Data, effort, Environment,

program, ability, Capability, code, Modification, measure
Application, applicability, understand, Service, access,
precision, throughput, error, respect, incorporation,
accessibility, capacity, understanding

93 resource Extent, amount ,state, Effect, set, Usage, usability, minimum
94 respect Capability, implementation, output, performance,

requirement
95 response Design, measure, meet ,system ,throughput, time,

responsiveness
96 responsiveness Response, function, software, Attribute, program, time
97 risk Change, freedom ,people, software
98 scope Extent
99 service Requirement, system, user, precision,
100 set Attribute, resource, system, user, Verification
101 Setting

Attribute, resource, system, user, Verification

102 software Attribute, design, test ,user, Performance, degree,
component, Data, effort, Environment, program, ability,
Extent, time ,product, Operate(ion), ease, change, amount
,state, Level, modification, Develop(er), failure, portability
Documentation, concern, Hardware, purpose, information,
interface, structure, minimum, risk, factor, adaptation,

 75

ID Concept Other Concepts that have relationships with the first concept
capacity, property, responsiveness, utilization

103 source Access, attribute, code ,concern, accessibility
104 specification Extent, Number
105 state Function, resource, software, maintenance, uniformity
106 storage Code, memory
107 structure data ,design, measure, software, understand, understanding
108 system Attribute, design, test ,user, Performance, degree,

component, Data, effort, Extent, time ,product, Operate(ion),
ease, change, Application, applicability, understand, Level,
modification, Service, access, Effect, set, Output, computer
Documentation, concern, information, response, error,
impact, work ,period, accessibility, capacity, computing,
understanding, uniformity

109 test Software, system, requirement characteristic, function
110 testability Characteristic, code ,effort ,extent, number
111 throughput Response, Rate, requirement, time
112 time Period, software ,system, probability, response, throughput,

memory, interval, responsiveness
113 understand Modification, requirement, system ,user, structure,

Documentation
114 understandability Modification, requirement, system ,user, structure,

Documentation
115 understanding Modification, requirement, system ,user, structure,

Documentation
116 uniform Environment, notation, uniformity
117 uniformity State, uniform, System
118 usability Resource
119 usage Resource, memory, manner, presence,
120 user Software, system, requirement characteristic, function, Data,

effort, Application, applicability, understand, Service, access,
Effect, set, control, accessibility, understanding, utilization

121 utility Characteristic, nature
122 utilization Software, User, Program, Portability
123 variety Component, operation
124 verification Component, interface, set
125 work System

Those presented relationships in the table above as you will see later, support us in a way
or another in our contribution and that what the next chapter is discussing.

 76

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

 In this chapter we present and discuss the conclusions of our research; our final
results and how we used them to contribute in the studied domain are presented among
the conclusions. Future work are suggested at the end of this chapter.

5.1 CONCLUSIONS

SWPQAs discipline is considered in the emerging phase, and it suffers from the
typical symptoms of any relatively evolving disciplines. SWPQAs are currently in the
phase in which terminologies, principles, and methods are still being defined,
consolidated, and agreed. In particular, there is a lack of consensus on the concepts and
terminologies used in the semantic of this field. Studies showed that inconsistencies in
the semantic used different research attributes proposals often occur.

In our research we focused on studying SWPQAs concepts and terminologies that
current software quality proposals, documents, and reports present. We prepared text
corpora from them to be used in a tool to extract the most discussed and used concepts
from it. After that experts were asked to study and filter the resulted concepts and
provided them to us.

An evaluation phase depended on a coverage technique was done to the resulted
concepts, followed by an enhancing step to the evaluated ontology domain concepts
which leaded us to increase the number of the suggested concepts in the ontology
domain, after that a coverage evaluation is done again to the new suggested ontology
domain concepts.

In order to extract general relationships among the suggested ontology domain
concepts, we returned to the prepared text corpus again and ran out two tools on it. We
studied them, filtered them, listed them and represented part of them using a lattice
representation.

Through completing the steps of our work, which have been previously summarized,

we reached to many important results. These results are studied filtered and used to
support our claim. The sections below present our work final results and how we used
them to support our contribution in the field.

 77

5.1.1 PRESENTING FINAL RESULTS

Through completing the steps of our work we reached to many important results, which
could be summarized as follows:

• Ontology domain concepts: resulted from preparation, studying, and filtering a
text corpus related to the domain of software product quality attributes. First, we
reached to a result that we can condense the semantic of thousands of concepts
used to define the discussed 66 attributes into a smaller set of concepts consisted
of 100 concepts with a coverage percentage for the studied knowledge domain of
73%. But after an evaluation process and what came from studying its results, we
enhanced our suggested ontology domain concepts to be consisted of 125
concepts with an average of 80% of coverage percentage for the studied
knowledge domain, (final results of the new 125 suggested ontology domain
concepts are shown in Appendix C).

• Relationships between groups of concepts for the suggested ontology domain:

resulted from studying and filtering the results of two tools; the associations
resulted from using the TextToOnto tool after we provided it with a related
knowledge domain text corpus and concepts, After that we took those associations
and provided another tool created by Kayed et al [71] with them. This process
provided us with relationships between groups of concepts from our suggested
ontology domain. Again we studied them, filtered them, and finally presented
them, (the resulted relationships are shown in Appendix D).

• Each Software product quality attribute concepts that belong to our ontology

domain: from the evaluation and enhancing phase for the ontology domain
concepts. We reached to every attribute definition concepts that belong to our
ontology domain concepts, (the resulted concepts are shown in Appendix E).

• Finally, Relationships between each concept in the ontology domain and other

concepts also in the same domain: resulted from studying the groups of
relationships that appeared in appendix D in addition to the domain itself (these
results are shown in appendix F).

5.1.2 OUR CONTIBUTION

By reaching and providing those final results discussed in the previous section, let us
don’t forget that our main focus in this work is to provide experts mainly, researchers,
and practitioners in the field of SWQ with an ontology to be considered as a base and a
common agreement knowledge. This supports them in defining the most common
discussed SWPQAs (66 attributes) that we extracted from the fields documents and
reports, and reaching to a common, shared, and consistent semantic for them. This solves
the inconsistencies of the semantic appears in the definitions of those attributes among
many documents and reports as shown earlier.

 78

We have presented the conceptualization of the common discussed SWPQAs by an
ontology, which considered as a first in this specific domain.

We also have condensed the semantic of thousands of concepts used to define any of

the 66 discussed SWPQAs into a smaller set of concepts consists of 125 concepts with a
high percentage of coverage average for the studied domain reached to 80% of coverage.

Also by the results of this research, we provide the experts and practitioners in the

field of SWQ who want to define any of the discussed 66 attributes in the domain with an
ontology which contains a set of common used and agreed concepts (for each attribute
definition, and for general studied domain), and also with relationships between them (as
groups, or relationships between concepts belong to the same attribute that can be
inferred from the presented relationships, or relationships between concepts in the studied
domain). So when an expert decide to define an attribute from the discussed domain, we
suggest two ways to use our ontology to have a consistent semantic with other definitions
in the field. First after an expert wrote down his own definition he can compare the
concepts he used in the semantic of his definition with our ontology domain concepts and
try to map from his used concepts to our concepts from the ontology domain if needed,
and try to use the provided relationships between them to connect the semantic of the
concepts together in a strong, meaningful, and consistent manner. The second way that
we suggest to reach to an agreed semantic is that before the expert write down his own
definition we recommend to take a look on the ontology domain and use its concepts and
relationships along with his experience as a base knowledge to consist the definition he
wants.

If experts in the field follow one of these suggested ways when defining one of the
discussed SWPQAs, eventually they will reach to a common, agreed, and consistent
semantic between them, and this will be a successful way to solve the presented problem.

In addition to this, our ontology provides a base to evaluate any related presented
definition semantic for one of the 66 studied attributes. The way of doing that is if a high
percentage of the concepts used in the semantic of the presented definition are covered by
our ontology domain, the presented definition semantic can be accepted, but if not we
claim that it is a weak semantic to be used defining such an attribute.

5.2 FUTURE WORK

By working on our thesis step by step, many ideas and issues were appeared but not
accomplished yet because of time, resources, and other constraints. We would like to
suggest them as a future work. To mention:

• Providing a description for each concept used in the provided ontology domain in
order to help experts and practitioners who want to use them while defining one
of the discussed software product quality attributes.

• A formal representation for the ontology.

 79

• Some suggestions for the tools we used to be more user friendly, as the possibility

of copying records as all in all not a record in a time, and putting some notes in
the interface that help the users to use the tool easily.

• Extracting and presenting the detailed types of relationships between our

ontology domain concepts.

• Completing the lattice representation for the ontology domain relationships.

• Use another approach to evaluate and enhance the ontology domain, and compare

the results with the results we already had. A critique on evaluating the ontology
may be done by conducting set of experiments and trying to deploy the ontology in
some applications to show how effective, useful, and expressive is the proposed
ontology to the audience in a context of software engineering domain and especially
to the audience in the context of software quality attributes domain.

• Using our ontology domain and convert it into an Arabic ontology for the same

studied domain but in Arabic language.

 80

REFERENCES

[1] Abram A.; Sellami A., “Initial modeling of the measurement concepts in the ISO

vocabulary of terms in metrology”, In Proc. of IWSM2002, Magdeburg (Germany), Oct. 2002.

[2] Alvero A.; Santana de Almeida E.; Romero de Meira S.,”Quality Attributes for a

Component Quality Model”, in the proceeding of 10th International Workshop on Component-

Oriented Programming, Glasgow, Scotland, at ECOOP 2005, Glasgow, Scotland, July 25--29,

2005.

[3] Azuma M., “SQuaRE: The next generation of the ISO/IEC 9126 and 14598 International

Standards Series on software product quality”. In Proc. of European Software Control and

Metrics, London (England), April 2001.

[4] Baker G.; Brass A.; Bechhofer S.; Goble C.; Paton N.; Tambis R., “Transparent access to

multiple biological information sources”, Proceedings of the Sixth International Conference on

Intelligent Systems for Molecular Biology , ISMB-98, Menlow Park, California, AAAI Press,

25-34,June 28-July 1 1998.

[5] Balzer R.; Dayer D.; Feahling M., Sawnders S.,”Specification Based Computing

Environments”, Proceedings of the 8th International Conference on Very Large Data Bases,

ISBN: 0-934613-14-1, PP: 237 – 279, 1982.

[6] Barbacci M., “Software Quality Attributes: Modifiability and usability”, Software

Engineering Institute, Carnegie Mellon University, Pittsburgh PA 15213, Sponsored by the

U.S. Department of Defense, 2004.

[7] Barbacci M.; Ellison R.; et al., “Quality Attribute Workshop Participants Handbook”,

special report, CMU/SEI-2000, SR-001, January 2000.

[8] Barbacci M.; et al., “Quality Attributes”, Technical report CMU/SEI-95, TR- 021, ESC-TR-

95-021 , Dec. 1995.

[9] Basili V.; Rombach D., “The Tame project: Towards improvement oriented software

environments”, IEEE Transactions on Software Engineering, Vol. 14, Issue 6, PP: 758-773,

June 1998.

[10] Berander P.; et al., “Software quality attributes and trade-offs”, Blekinge Institute of

Technology, produced in a Ph.D. course on “Quality attributes and trade-offs”. The 11 Ph.D.

students that followed the course all worked in the same research project: BESQ (Blekinge –

Engineering Software Qualities), http://www.bth.se/besq, June 2005.

[11] Bevan N., “Quality in Use: Meeting User Needs for Quality”, Journal of System and

Software, Vol. 49, Issue 1, PP: 89-96, 15 Dec. 1999.

[12] Black A., “Software Quality Assurance In A Remote Client/Contractor Context”, A thesis

submitted in fulfillment of the requirements for the degree of master of science of Rhodes

University, Dec. 2005.

 81

[13] Boehm B.; Brown J.; Lipow M., ”Quantitative evaluation of software quality,

International Conference on Software Engineering”, Proceedings of the 2nd international

conference on Software engineering, IEEE Computer Society Press, San Francisco, California,

United States, Pages: 592 – 605, 1976.

[14] Boehm B.; Brown J., Kaspar H.; Lipow M.; McLeod G.; Merritt M., “Characteristics of

Software Quality”, Elsevier, North Holland, 1st Edition, ISBN: 0444851054, 1978.

[15] Børretzen J., "The impact of component-based development on software quality

attributes”, borretze@idi.ntnu.no, Essay, DT8100, 2005.

[16] Brank J.; Grobelnik M.; Mladenić D., “A Survey of Ontology Evaluation Techniques”, in

proc. Of the 8th international multi conference information society, SIKDD, 2005.

[17] Brewster C.; Alani H.; Dasmahapatra S.; Wilks Y., “Data-driven ontology evaluation”. In

Proc. of the 4th International Conference on Language Resources and Evaluation, Lisbon,

2004.

[18] Brooks F., “No Silver Bullet - essence and accidents of software engineering”, Computer

magazine, Vol. 20, Issue 4, PP: 10-19, Apr. 1987.

[19] Burnstein I., “Practical Software Testing”, Springer-Verlag, New York, Inc., 1st Edition,

ISBN 0-387-95131-8, 2003.

[20] Calero C.; Ruiz F.; Piattini M., “Ontologies for Software Engineering and Software

Technology”, Springer Berlin Heidelberg, New York, ISBN-10 3-540-34517-5, 1998.

[21] Conde D., “Software Product Management: Managing Software Development from Idea to

Product to Marketing to Sales (Execenablers)”, Aspatore Books, 1st Edition, ISBN 1-58762-

202-5, Sep. 2002.

[22] Corcho O.; Fernandez M.; et al., "Building Legal Ontologies with METHONTOLOGY

and WebODE", In Benjamins, R.; Casanovas, P.; Breuker, J. & Gangemi, A. (ed.): "Law and

the Semantic Web".

[23] Curtis B.; Hefley B.; Miller S., "People Capability Maturity Model® (P-CMM®)”,

Carnegie Mellon University, Software Engineering Institute, Version 2.0, MM-001, 2001.

[24] De los Angeles Martin M.; Olsina L., “Toward an Ontology for SW metrics and indicators

as the Foundation For Catalog Web system”. Web Congress, First Latin American, Santiago,

Chile, Vol. 30 , Issue 3, 10-12,PP: 103 -113, ,2003.

[25] Dellschaft K.; Staab S., “On How to Perform a Gold Standard Based Evaluation of

Ontology Learning”. International Semantic Web Conference, PP: 228-241, 2006.

[26] Devedzic V., “Understanding Ontological Engineering”. Commune ACM, Vol. 45, Issue

4, PP: 136-144, 2002.

[27] Dromey R., "A model for software product quality", IEEE Transactions on Software

Engineering, Vol. 21, Issue 2, pp: 146-163, 1995.

[28] Dromey R., "Concerning the Chimera [software quality]", IEEE Software, Vol. 13, Issue.

1, PP: 33-43, 1996.

 82

[29] Dromey R., “Software Product Quality: Theory, Model and Practice. Software Quality

Institute”, Griffith University, Nathan, Brisbane, QLD 4111, Australia, accessed on 2008 April,

Available online at:

http://scholar.google.com/url?sa=U&q=http://www.sqi.gu.edu.au/docs/sqi/misc/SPQ-

Theory.pdf, 1998.

[30] Ehrig M.; Haase P.; Hefke M.; Stojanovic N., “Similarity for ontologies a comprehensive

framework”. In Workshop Enterprise Modelling and Ontology: Ingredients for Interoperability,

at PAKM 2004, DEC 2004. http://citeseer.ist.psu.edu/ehrig04similarity.html.

[31] Ernst M., “Ontology building: A survey of editing tools”, Online, accessed 2008 April,

Available from URL: http://www.xml.com/pub/a/2002/11/06/ontologies.html.

[32] ESA Board for Software Standardisation and Control (BSSC),”Guide to software quality

assurance”, european space agency / agence spatiale européenne, 8-10, rue Mario-Nikis, 75738

Paris Cedex, France, ESA PSS-05-11, Issue 1, Revision 1, Mar. 1995.

[33] Fitzpatrick R.; Higgins C., “Usable software and its attributes: A synthesis of software

quality”, European Community law and human-computer interaction, In People and Computers

XIII, Proceedings of HCI98 Conference, Springer, London, UK 1998.

[34] Florac W., “Software Quality Measurement: A Framework for Counting Problems and

Defects” , CMU/SEI-92-TR-22, Software Engineering Institute -Carnegie Mellon University,

Pittsburgh, Pennsylvania, Sep. 1992.

[35] Floridi L., “Blackwell Guide to the Philosophy of Computing and Information”, Preprint

version of chapter “Ontology”, Oxford: Blackwell, PP: 155– 166, 2003.

[36] FZI Karlsruhe; AIFB Karlsruhe, “KAON: the Karlsruhe ontology and semantic web

framework developer’s guide for KAON 1.2.7”, University of Karlsruhe, Germany, 2004.

[37] Galin D., “Software Quality Assurance -from theory to implementation”, Pearson Addison

Wesely, ISBN 0-201-70945-7, Sep. 2004.

[38] Ganng Z.; Gao Y.; Meersman R., "An ontology-based approach to business modeling", In

Proceedings of the International Conference of Knowledge Engineering and Decision Support,

Vol. 31, Issue 7, 2005.

[39] Garcia F.; Bertoa M.; Calero C., “Towards a Consistent Terminology for Software

measurements”, Information of Software Technology, Vol. 48, Issue 8, PP: 631-644, 27 June

2005.

[40] Glossary of Computerized System and Software Development Terminology, a reference

material for Investigators and other FDA personnel. Available on

http://www.fda.gov/ora/inspect_ref/igs/gloss.html, Visited 21-4-2008.

[41] Glossary of Software Engineering terms, SEGlossary, Digital publications LLC Version

1.0d, 2005, available on http://www.shellmethod.com/refs/seglossary.pdf.

[42] Godbole N., “Software Quality Assurance - principles and practice”, Alpha science

international ltd., ISBN 1-84265-176-5, 2004.

[43] Grady R., “Practical software metrics for project management and process improvement”,

Prentice Hall, ISBN: 978-0137203840, 1992.

 83

[44] Gruber T., “Ontology”, to appear in the Encyclopedia of Database Systems, Ling Liu and

M. Tamer Özsu (Eds.), Springer-Verlag, 2008.

[45] Guarino N.; “Formal ontology and information systems”, Proceedings of the international

conference on Formal Ontology in Information Systems, Trento, Italy, Amsterdam: IOS Press,

Netherlands, PP: 3-15,1998.

[46] Guarino N.; Persidis A., “Evaluation framework for content standards”, Technical Report,

OntoWeb Deliverable 3.5, Padova; 2003.

[47] Horch J., “Practical Guide to Software Quality Management”, 2nd Edition, ISBN:

1580535275, 2003.

[48] Hoyle D., “ISO 9000 Quality Systems Handbook”, Elsevier, Fifth Edition, ISBN 0 7506

6785 0, Dec. 2005.

[49] Http://www.sqa.net/iso9126.html, “An overview of the ISO 9126-1 software quality model

definition, with an explanation of the major characteristics”, Article, last visit on 27-4-2008.

[50] Humphrey W., “Introduction to the Personal Software Process”, Addison-Wesley Pub Co,

1st Edition, ISBN: 978-0201548099, 1996.

[51] Humphrey W., “Introduction to the team software process”, Addison-Wesley Pub Co, 1st

Edition, ISBN: 978-0201477191, 2000.

[52] Humphrey W., “Managing the software process”, Addison-Wesley Pub. Co, 1st Edition,

ISBN: 978-0201180954, 1989.

[53] Hyatt L.; Rosenberg L., “A Software Quality Model and Metrics for Identifying Project

Risks and Assessing Software Quality”, Product Assurance Symposium and Software Product

Assurance Workshop, ESTEC, Noordwijk, the Netherlands, European Space Agency, p.209,

1996.

[54] IEEE, “IEEE Standard Glossary of Software Engineering Terminology/IEEE Std 610.12-

1990”, (Revision and redesignation of IEEE Std 729-1983), Sponsor Standards Coordinating

Committee of the IEEE Computer Society, Approved September 28, 1990 IEEE Standards

Board, ISBN: 978-1559370677, 1990.

[55] ISO, International Organization for Standardization, "ISO 9000:2000, Quality

management systems - Fundamentals and vocabulary", 1st Edition, ISBN: 92-67-10332-6,

2001.

[56] ISO, International Organization for Standardization, "ISO 9000-2:1997, Quality

management and quality assurance standards — Part 2: Generic guidelines for the application

of ISO 9001, ISO 9002 and ISO 9003", 1997.

[57] ISO, International Organization for Standardization, "ISO 9000-3:1998 - Quality

management and quality assurance standards – Part 3: Guidelines for the application of ISO

9001_1994 to the development, supply, installation and maintenance of computer software

(ISO 9000-3:1997)", 1998.

[58] ISO, International Organization for Standardization, "ISO 9001:2000, Quality

management systems – Requirements", 3 rd Edition, 2000.

 84

[59] ISO, International Organization for Standardization, "ISO 9004:2000, Quality

management systems - Guidelines for performance improvements", 2000.

[60] ISO, International Organization for Standardization, "ISO 9126-1:2001, Software

engineering - Product quality, Part 1: Quality model", 2001.

[61] ISO. International Organization for Standardization, “International Vocabulary of Basic

and General Terms in Metrology”. International Standard organization, Geneva, Switzerland,

2nd Edition, 1993.

[62] ISO/IEC, “ISO/IEC 15504-1:2003, Information technology – Process assessment – Part 1:

Concepts and vocabulary” 2004.

[63] ISO/IEC, “Software and Systems Engineering - Guidelines for the Application of ISO/IEC

9001:2000 to Computer Software”. International Standards Organization, Geneva, witzerland,

2004.

[64] Jacobson I.; Booch G.; Rumbaugh J., “The Unified Software Development Process”,

Addison Wesley Longman, Inc., ISBN: 0201571692, Feb. 1999.

[65] Jarrar M., “Towards methodological principles for ontology engineering”. PhD

Dissertation, Vrije Universities Brussels, 2005.

[66] Jarrar M.; Demy J.; Meersman R., “On reusing conceptual data modeling for ontology

engineering”. In: Aberer K, March S, Spaccapietra S (eds.), Journal on Data, Vol. 2800, Issue

1,PP: 185-207, 2003.

[67] Jetter A., “Assessing software quality attributes”, A thesis submitted in fulfillment of the

requirements for the degree of master of science, Software Evolution & Architecture Lab,

Department of Informatics, University of Zurich, Zurich, Switzerland, January 2007.

[68] Jones C., “Making measurement work”, Crosstalk, The Journal of Defense Software

Engineering, Vol. 16, Issue 1, PP: 15, 19, Jan. 2001.

[69] Jones B.; Storey V.; Sugumaran V.; Ahluwalia P., “A semiotic metrics suite for assessing

the quality of ontologies”. Data and Knowledge Engineering, Vol. 55, Issue 1, PP: 84 – 102,

Oct. 2005.

[70] Juran J.; et al., “Juran's Quality Handbook”, McGraw-Hill, ISBN: 007034003X, Fifth

Edition, 1999.

[71] Kayed A.; Hirzallah N.; Al Shalabi L. A.; and Najjar M., “Building Ontological

Relationships: A new approach”, Journal of the American Society for Information Science and

Technology, John Wiley & Sons Inc, 111 River ST , Hoboken , USA , NJ, 07030, 2008.

[72] Kayed A., “Building e-laws ontology: New approach”, Springer, Lecture Notes in

Computer Science ,Springer-Verlag Vol. 3762 , Germany, ISBN/ISSN: 0302-9743, pp 826-

830,2006.

[73] Kayed A.; Colomb R.., “Using BWW Model to Evaluate Building Ontologies in CGs

Formalism”. Information Systems. Vol. 30, Issue 5, PP: 379 – 398, ISSN: 0306-4379, July

2005.

[74] Kayed A.; Colomb R., “Extracting Ontological Concepts for Tendering Conceptual

Structures”, Data & Knowledge Engineering, Vol. 40, Issue 1, Pages: 71 - 89, 2002.

 85

[75] Khosravi KH.; Gael Y, “On issues with software quality models”, 2005. Jun. 2006.

Available on www.iro.umontreal.ca/~sahraouh/- qaoose2005/paper7.pdf.

[76] Kim H., “Representing and Reasoning about Quality using Enterprise Models”. PhD

thesis, Dept. of Mechanical and Industrial Engineering, University of Toronto, Canada, 1999.

[77] Kitchenham B.; Pfleeger S., "Software quality: the elusive target [special issues section]",

IEEE Software, Vol.13, Issue 1, pp: 12-21, ISSN: 0740-7459, 2002.

[78] Kitchenham B.; Hughes R.; Linkman S.,”Modeling software measurement data”. IEEE

Transactions on Software Engineering, Vol. 27, Issue: 9, PP: 788-804, ISSN: 0098-5589, Sept.

2001.

[79] Knowledge Management Group (WBS); Research Group Knowledge Management

(WIM), “Extensions to the Karlsruhe Ontology and Semantic Web Framework, KAON

Extensions, Developer’s Guide for KAON Extensions 0.6”, University of Karlsruhe, Germany,

Aug. 2003.

[80] Kruchten P., “The Rational Unified Process an Introduction”, Addison Wesley Longman,

Inc., 3rd Edition, ISBN: 978-0321197702, Dec., 2003.

[81] Land R., “Measurements of Software Maintainability”, In Proceedings of Second

Conference on Software Engineering Research and Practice in Sweden (SERPS), Blekinge

Institute of Technology Research Report 10, 2002. Available on

http://www.mrtc.mdh.se/publications/0436.pdf.

[82] Maedche A.; Motik B.; Stojanovic L.; Studer R.; Volz R., “An infrastructure for

searching, reusing and evolving distributed ontologies”. In Proceedings of the twelfth

international conference on World Wide Web, Budapest, Hungary, ACM Press., PP 439–448,

2003.

[83] Maedche A.; Volz R.,”The ontology extraction and maintenance framework text-to-onto”.

In Proceedings of the ICDM’01 Workshop on Integrating Data Mining and Knowledge

Management, 2001.

[84] Marciniak J., “Encyclopedia of software engineering”, 2 vol. set, 2nd ed., Chichester

Wiley, ISBN: 978-0-471-37737-5, 2002.

[85] Mark C.; Weber W.; Charles V.; Garcia F.; Suzanne M.; et al, "Capability Maturity Model

for Software”, Technical Report, Carnegie Mellon University, Software Engineering Institute,

TR-024, Version 1.1, 1993.

[86] Marko G.; Mladeni D., “Automated Knowledge Discovery in Advanced Knowledge

Management”, Journal of Knowledge Management, Vol. 9, Issue 5, PP: 132–149, 2005.

[87] McCall J.; Richards P.; Walters G., "Factors in Software Quality", Nat'l Tech. Information

Service, General Electronic Co Sunnyvale Calif, Vol. 1, 2 and 3, 1977.

[88] McGarry J.; Card D.; et al., “Practical Software Measurement Objective Information for

Decision Makers”, Addison-Wesley, ISBN 4-320-09741-6, 2002.

[89] Mika P., “Social networks and the semantic web: the next challenge”, IEEE Intelligent

Systems, Vol. 20, Issue 1, PP: 80-93, 2005.

 86

[90] Noy N.; McGuinness D., “Ontology development 101: A guide to creating your first

ontology”, Technical Report KSL-01-05, Stanford Knowledge Systems Laboratory, and

Technical Report SMI-2001-0880, Stanford Medical Informatics, California, USA, 2001.

[91] Obrst L., “Ontologies for Semantically Interoperable Systems”, Conference on

Information and Knowledge Management, Proceedings of the twelfth international conference

on Information and knowledge management, Industry session 2: meditation and data sharing,

PP: 366 – 369, 2003.

[92] Ontology, computer science, Online, accessed on 2008 April, Available from URL

http://en.wikipedia.org/wiki/Ontology_(computer_science)#_note-0.

[93] Ontoprise GmbH, “How to work with OntoEdit — user’s guide for OntoEdit version 2.6”

Online, accessed 2008 April, available from URL http://www.ontoprise.de/documents/tutorial

ontoedit.pdf.

[94] P´erez G., “Some ideas and examples to evaluate ontologies”. Technical Report KSL-94-

65, Knowledge Systems Laboratory, Stanford, 1994.

[95] P´erez G., “Towards a framework to verify knowledge sharing technology”, Expert

Systems with applications, Vol. 11, Issue 4, PP: 519–529, 1996.

[96] Parekh V.; Gwo J.; Finin T.; “Mining Domain Specific Texts and Glossaries to Evaluate

and Enrich Domain Ontologies”, International Conference on Information and Knowledge

Engineering, PP: 533-540, USA, CSREA, ISBN 1-932415-27-0, 2004.

[97] Pressman R., “Software Engineering, a practitioner's approach”, sixth Edition, Mc Graw

Hill Companies, ISBN: 978-0073019338, April 2005.

[98] Presson E.; Tsai J.; Bowen T.; Post J.; Schmidt R., “Software Interoperability and

Reusability Guidebook for Software Quality Measurement”, Boeing Aerospace Co., Seattle,

WA, Rome Air Development Center (RADC), Griffiss AFB, NY, RADC-TR-83-174, July

1983.

[99] Randell B.; Naur P., “Software Engineering”, Report on a conference sponsored by the

NATO Science Committee, Garmisch, Germany, 7th to 11th Oct.1968.

[100] Robert P.; Malaka R., “A task-based approach for ontology evaluation”. In Proc. ECAI

2004 Workshop on ontology Learning and Population, PP: 9–16, 2004.

[101] Rumbaugh J.; Balha M.; Premelani W., “Object-Oriented Modeling and Design with

UML”. Printicehall, International Edition, 2nd Edition, ISBN: 9780131968592, Dec. 2004.

[102] Russell R., “Defining Software Quality” - An Essay - www.io.com/~richardr, February

2002 Updated April 2004.

[103] S2ESC Plans and Policies, Fundamental Policies, “FP-03 Software Product Quality”,

online, accessed on 2008 April, available from URL

http://standards.computer.org/sesc/s2esc_pols/polndex.htm.

[104] Scacchi W.; Jensen C.; Noll J.; Elliott M.," Multi-Modal Modeling, Analysis and

Validation of Open Source Software Requirements Processes", Intern. J. Information

Technology and Web Engineering, Vol. 1, Issue 3, PP: 49-63, 2006.

 87

[105] Schulmeyer G.; Mcmanus J., “Software Quality Assurance handbook”, Prentice Hall

PTR, 3 Edition, ISBN-13: 978-0130104700, Sep. 1998.

[106] SEI, “Software Engineering 2004”, Curriculum Guidelines for Undergraduate Degree

Programs in Software Engineering, A Volume of the Computing Curricula Series, Aug.2004.

[107] Smith B., “Ontology”, Draft version of chapter published in Luciano Floridi (ed.),

Blackwell Guide to the Philosophy of Computing and Information, Oxford: Blackwell, PP:155-

166, 2003.

[108] Smith B.; Welty C., “Ontology: Towards a New Synthesis”, Ogunquit, Maine,

USA.,ACM1-58113-377-4/01/0010, FOIS’01, Oct. 17-19, 2001.

[109] Software Engineering Institute, CMMI® Web Site, Carnegie Mellon, online, accessed on

2008 April, available from URL http://www.sei.cmu.edu/cmmi/cmmi.html, 2004.

[110] Software Measurements Guide Book, Software productivity Consortium Services

Corporation, Van Nostrand Reinhold Company, ISBN: 978-0442020095 Version 02.01.00,

1995.

[111] Sommerville I., “Software Engineering", Pearson Addison Wesely, Seventh Edition,

ISBN: 020139815, 2007.

[112] Spacer IBM Certified Solution Designer, “IBM Rational Unified Process V7.0”, IBM.

online, Accessed on 2008 April, available from URL http://www-

03.ibm.com/certify/certs/38008003.shtml.

[113] Spinellis D., “Software engineering glossary”, IEEE Software, version control, part I.Vol.

22, Issue 5, PP: 107, Sept./Oct. 2005.

[114] Standard glossary of terms used in Software Testing, Version 1.2,Produced by the

‘Glossary Working Party’ International Software Testing Qualification Board, Editor : Erik van

Veenendaal, The Netherlands, 2006.

[115] U.S. Department of Transportation Federal Aviation Administration, Handbook Volume

II Digital Systems Validation, Atlantic city international airport, New Jersey 08405, Technical

Center, May 1992.

[116] Usrey M.; Dooley K., “The Dimensions of Software Quality”, Quality Management

Journal, Vol. 3, Issue 3, PP: 67-86, 1996.

[117] V¨olker J.; Vrande D.; Sure Y., “Automatic evaluation of ontologies (AEON)”.In Proc. of

the 4th International Semantic Web Conference (ISWC’05), Springer Verlag Berlin-

Heidelberg, Vol. 3729, PP: 716-731, Nov. 2005.

[118] Wallace D.; Ippolito L.; Kuhn D., “High Integrity Software Standards and Guidelines”,

National Institute of Standards and Technology Special Publication 500-204,Gaithersburg, MD

20899 GPO Stock Number is SN003-03171-2, July 1992.

[119] William R.; Pawlowski S.; Volkov V., "Requirements interaction management", ACM

computing surveys, Vol. 35, Issue 2, PP: 132-190, June 2003.

[120] Wordreference.com: WordNet® 2.0, Princeton University, Princeton, NJ. , online,

Accessed on 2008 April, available from URL WWW.Wordreference.com.

 88

[121] Zeyu Gao J.; Jacob Tsao H. S.;Wu Y.; “Testing and Quality Assurance for Component-

Based Software”, Artech House, Inc., ISBN 1-58053-480-5, 2003.

[122] Zhang J., “Quality Oriented Exploration Techniques for Component Based

Architectures”, Technische University Eindhoven Department of Mathematics and Computer

Science, Master’s Thesis, Eindhoven, August 2005.

[123] Zieliński K.; Szmuc T., “Software Engineering: Evolution and Emerging Technologies”,

IOS Press, ISBN 1-58603-559-2, 2005.

[124] Zolet F.; Oliveira K.; Regina A., “Modeling Task Knowledge to Support Software

Development”, ACM International Conference Proceeding Series, Vol. 27, Proceedings of the

14th international conference on Software engineering and knowledge engineering, Ischia,

Italy, PP: : 35 - 42 , ISBN:1-58113-556-4 , 2002.

 89

APPENDICES

APPENDIX A

 The complete common extracted SWPQAs from various documents and reports
related to the field of study, and their different definitions found in them.

Table A.1: The complete common SWQPAs extracted from different sources and their definitions.

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

1 Accuracy

 Attributes of software that bare on the provision of right or agreed
results or effects.

Those attributes of the software which provide the required precision in
calculations and outputs.

 This quality factor addresses the concern that programs provide the
precision required for each output. Accuracy is important because most
computer manipulations are not exact, but are limited approximations.

A software product possesses accuracy to the extent that its outputs are
sufficiently precise to satisfy their intended use

The capability of the software product to provide the right or agreed
results or effects with the needed degree of precision.

The characteristics of the software which provide the required
precision in calculations and outputs

(1) A qualitative assessment of correctness, or freedom from error. (2) A
quantitative measure of the magnitude of error. Contrast with: precision

Correctness

The degree to which a system, as built, is free from error, especially with
respect to quantitative outputs. Accuracy differs from correctness; it is
a determination of how well a system does the job it is designed for
rather than whether it was implemented correctly

The capability of the software product to provide the right or agreed
results or effects with the needed degree of precision

10

98

115

14

114

105

54

116

102

103

 90

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

The provision of right or agreed results or effects

118

2 Adaptability Attributes of software that relate to on the opportunity for its adaptation
to different specified environments without applying other actions or
means than those provided for this purpose for the software considered

The capability of the software product to be adapted for different
specified environments without applying actions or means other than
those provided for this purpose for the software considered

The ease with which a system or component can be modified for use in
applications or environments other than those for which it was
specifically designed

The degree to which a system can be used, without modification, in
applications or environments other than those for which it was
specifically designed

Characterizes the ability of the system to change to new specifications or
operating environments.

The opportunity for its adaptation to different specified environment

10

10
114
103

54

102

49

118

3 Analyzability Attributes of software that relate to the effort needed for diagnosis of
deficiencies or causes of failures, or for identification of parts to be
modified.

The capability of the software product to be diagnosed for deficiencies
or causes of failures in the software, or for the parts to be modified to be
identified.

The capability of the software product to be diagnosed for deficiencies
or causes of failures in the software, or the capability to identify the
parts to be modified

Characterizes the ability to identify the root cause of a failure within the
software

10

114

103

49

4 Attractiveness The capability of the software product to be attractive to the user 114

5 Availability The product’s readiness for use on demand

The degree to which a component or system is operational and
accessible when required for use. Often expressed as a percentage
(probability)

Readiness for usage

Is the requirement that data and processes be protected from denial of
service to authorized users?

118

114 , 54

8

8

 91

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

The system’s readiness for delivery of service, or reliability, the
system’s continuity

The policies required to provide a particular level of availability, such
as checkpoint, recovery and restart

The probability that the program (software) is performing successfully
(meeting requirements) , according to specification , at a given point of
time

7

12

110

6 Changeability A set of attributes that bear on the effort needed to make specified
modifications.

Attributes of software that relate to the effort needed for modification,
fault removal or for environmental change

“The capability of the software product to enable a specified
modification to be implemented.”

 Characterizes the amount of effort to change a system.

67

10

10

49

7 Complexity This quality factor addresses the concern that programs not be complex

Is the extent to which it is involved or intricate, composed of many
interwoven parts?

The degree to which a component or system has a design and/or internal
structure that is difficult to understand, maintain and verify..

A code measure, which is a combination of code, data, data flow,
structure and control flow metrics

 (1) The degree to which a system or component has a design or
implementation that is difficult to understand and verify.
(2) Pertaining to any of a set of structure-based metrics that measure the
attribute in (1).

115

115

114

113

54

8 Compliance Attributes of software that make the software adhere to application
related standards or conventions or regulations in laws and similar
prescriptions Where appropriate certain industry (or government) laws
and guidelines need to be complied with, i.e. SOX. This sub-
characteristic addresses the compliant capability of software.

10,
49

 92

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

Adherence to application-related standards, conventions, regulations in
laws and protocols.

118

9 Consistency Those attributes of the software which provide for uniform design and
implementation techniques and notation

This quality factor addresses the concern that the source code syntax
and constructs in programs be implemented uniformly
"Those characteristics of software which provide for uniform design
and implementation techniques and notation"

The degree of uniformity, standardization, and freedom from
contradiction among the documents or parts of a component or system.

Commands consistent with environs

 Uniform notation, terminology, and symbology through each definition
level

98,105

115

114,54

29

116

10 Co-existence The capability of the software product to co-exist with other

independent software in a common environment sharing common
resources.

10

11 Efficiency This characteristic express the ability of a component to provide
appropriate performance, relative to the amount of resources used;

 Further categorized into execution efficiency and storage efficiency and
generally meaning the use of resources, e.g. processor time, storage

The code executes its intention without waste of resources

A set of attributes that bear on the relationship between the level of
performance of the software and the amount of resources used, under
stated conditions

 (As-is utility characteristics): Code possesses the characteristic
efficiency to the extent that it fulfills its purpose without waste of
resources

Degree of utilization of resources (processing time, storage,
communication time) in performing functions.

Quality factor addresses the concern that programs optimally use any
computer resources

 The amount of computing resources and code required by the

Software (program) to perform a function

2

67 , 87

67 , 14

67, 60

10 , 14

98

115

105,110

 93

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

 Software utilization of resources

 The degree to which a system or component performs its designated
functions with minimum consumption of resources.

 Ability of a software to place as few demands as possible on hardware
resources, such as processor time, memory space occupied, or network
bandwidth, to achieve a given task.

Rate of value and waste added per resource consumed

Efficient to use

Use of resources execution and storage

This is an attribute that is used to evaluate the ability of a software
system to perform its specified functions under stated or implied
Measurements and TMM Levels conditions within appropriate time
frames. One useful measure is response time—the time it takes for the
system to respond to a user request

 Is a characteristic that captures the ability of a correct software
product to provide appropriate performance in relation to the amount
of resources used.
Efficiency can be considered an indication of how well a system works,
provided that the functionality requirements are met.

The measure of resources usage such as: memory, CPU utilization, disk
space, network bandwidth, screen real estate and amount of user
interaction to complete key tasks

This characteristic is concerned with the system resources used when
providing the required functionality. The amount of disk space,
memory, network etc. provides a good indication of this characteristic.
As with a number of these characteristics, there are overlaps.

105

54

110

116

110

122

19

123

102

49

12 Functionality This characteristic express the ability of a component to provide the
required services, when used under specified conditions

The responsibilities assigned to the classes of a design, which are made
available by the classes through their public interfaces.

2

67

 94

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

 A set of attributes that relate to the existence of a set of functions and
their specified properties. The functions are those that satisfy stated or
implied needs

The capability of the software product to provide functions which meet
stated and implied needs when the software is used under specified
conditions.

The extent to which a component satisfies its specifications and fulfills
the stated or implied needs of the user

The capability of the software product to provide functions that meets
stated and implied needs when the software is used under specified
conditions.

Is the essential purpose of any product or service

Is expressed as a totality of essential functions that the software product
provides

Characteristics relating to achievement of the basic purpose for which
the software is being engineered

10

114

121

103

49

49

118
60

13 Installability Attributes of software that relate to the effort needed to install the
software in a specified environment.

 The capability of the software product to be installed in a specified
environment.

 Characterizes the effort required to install the software

10 , 60

10 ,60

49

14 Interopera_
bility

 The effort required to couple the system to an other system

Attributes of software that relate to its ability to interact with specified
systems.

The ability of two or more systems or components to exchange
information and to use the information that has been exchanged.

The capability of the software product to interact with one or more
specified components or systems.

The Effort required to couple the software of one system to the
software of another system.

67 , 87

10 , 60

10, 87
And 54

10, 60,103

98, 105

 95

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

 How easy it is to interface the software with another system

Effort required interconnecting or relating two dif ferent applications,
running possibly in different computing environment

The degree to which the software can be connected easily with other
systems and operated.

 The extent to which a software component can be assembled with a
possibly wide variety of component-based software systems employing
the component or with other software components

 The effort required to couple a software component with other
programs in general, not necessarily with component-based software
systems employing the component or
with other software components

 The extent to which a software system will function or communicate
correctly, reliably and robustly with other system using externally
defined interfaces (hardware or software) or communications
protocols.

105

110

19

121

121

102

15 Learnability Attributes of software that relate to the users' effort for learning its
application (for example, operation control, input, output).

 The capability of the software product to enable the user to learn its
application.

 Easy to learn how to use

 Easy to learn; novices can readily start getting some work done

 Learning effort for different users, i.e. novice, expert, casual etc.

 The effort required for the user to learn its application, operation,
input, out

10, 60

114 , 103

29

6

49

118

16 Maintainability This characteristic describes the ability of a component to be modified;

 The effort required to locate and fix a fault in the program within its
operating environment

2

67, 10 , 87,
118,122

 96

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

How easy is it to understand modify and retest?

The ease of maintenance and upgrade

To be testable: Code possesses the characteristic testability to the extent
that it facilitates the establishment of verification criteria and supports
evaluation of its performance.

To be understandable: Code possesses the characteristic
understandability to the extent that its purpose is clear to the inspector.

 To be flexible and modifiable: Code possesses the characteristic
modifiability to the extent that it facilitates the incorporation of changes,
once the nature of the desired change has been determined.

 A set of attributes that relate to the effort needed to make specified
modifications.

The ease with which a software system or component can be modified
to correct faults, improve performance, or other attributes, or adapt to
a changed environment.

Average effort to locate , fix a software failure

This quality factor addresses the concern that programs be easy to fix,
once a failure is identified.

"Ease of effort for locating and fixing a software failure within a
specified time period"

The ease with which a software product can be modified to correct
defects, modified to meet new requirements, modified to make future
maintenance easier, or adapted to a changed environment.

Is defined as the effort to perform maintenance tasks, the impact
domain of the maintenance actions, and the error rate caused by those
actions.

 The effort required to locate and fix an error in the operational
software, program, it environment

Is concerned with how easy the software is to repair

67,10,14

118

10

10

10

10 , 60

10, 81

98

115

115

114

113

105

105

 97

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

Extendability

 (1) The ease with which a software system or component can be
modified to correct faults, improve performance or other attributes, or
adapt to a changed environment. See also: extendability ; flexibility.
(2) The ease with which a hardware system or component can be
retained in, or restored to, a state in which it can perform its required
functions.

the probability that a maintenance activity can be carried out within a
stated time interval ranges from 0 to 1

 Aptitude to undergo repairs and evolution

 The capability of the software to be modified. Modifications may
include corrections, improvements or adaptation of the software to
changes in environment, and in requirements and functional
specifications.

Effort required modifying, updating, evolving, or repairing a program
during its operation.

The level of maintainability of the system should be specified it terms of
the ability for maintenance.

An attribute that relates to the amount of effort needed to make changes
in the software

The effort required to replace a software component with a corrected
version, to upgrade a current software component (of an operational
component-based software system), and to migrate an existing software
component from a current component-based software system to a new
version of the system

Describes the ease with which the software product can be
analyzed, changed and tested. The capability to avoid unexpected
effects from modifications to the software is also within the scope of
this characteristic. All types of modifications, i.e. corrections,
improvements and adaptation to changes in requirements and in
environment are covered by this characteristic.

54

54,6

81

8

11

110

12

19

121

123

 98

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

The ease with which a developer can modify a software system to change
or add capabilities, improve performance or efficiency, or correct
defects without adversely affecting other internal or external quality
characteristics.

102

17 Maturity Attributes of software that relate to (bear on) the frequency of failure by
faults in the software

(1) The capability of an organization with respect to the effectiveness
and efficiency of its processes and work practices.
(2) The capability of the software product to avoid failure as a result of
defects in the software.

118, 10 ,
60

114
and
103

18 Operability Attributes of software that relate to the users' effort for operation and
operation control.

Those attributes of the software which determine operations and
procedures concerned with the operation of the software

The capability of the software product to enable the user to operate and
control it.

 The characteristics of the software which determine operations and
procedures concerned with operations of the software and which
provide useful inputs and outputs which can be assimilated

 Easy and efficient to apply functionality

The degree to which the operation of the software matches the purpose,
environment, and physiological characteristics of users; this includes
ergonomic factors such as color, shape, sound, font size, etc.

 Ability of the software to be easily operated by a given user in a given
environment

The ease of operation and control by users

10 , 60

98

114, 103

105

29

19

49

118

19 Performance Imposes conditions on functional requirements such as speed, efficiency,
availability, accuracy, throughput, response time, recovery time, and
resource usage

 This quality factor addresses the concern of how well a program
attribute or function is implemented with respect to some standard.
Often, this is related to the utilization of resources
The effectiveness with which resources of the host system are utilized
toward meeting the objective of the software system

10

115

 99

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

 The degree to which a system or component accomplishes its
designated functions within given constraints regarding processing time
and throughput rate. such as speed, accuracy, or memory usage.

 Performance quality factors characterize how well the software
functions

 Performance as a software quality attribute refers to the timeliness
aspects of how software systems behave

“Performance refers to responsiveness: either the time required to
respond to specific events or the number of events processed in a given
interval of time”

Performance is that attribute of a computer system that characterizes
the timeliness of the service delivered by the system.

Responsiveness of the system—either the time required to respond to
specific events or the number of events processed in a given interval of
time

Primary operating characteristics

 Speed or throughput: minimizing the time, or perceived time, between
a system’s input events and output events - optimizing or maximizing
the amount of useful work done in a given period of time. Note that
software can be very fast, but still be a memory or CPU hog (see
efficiency)

114, 8, 54

105

8

8

8

8,
7

116

102

 20 Portability The ability of a component to be transferred from one environment to
another

The effort required to transfer a program from one environment to
another

Can I still use it if I change my environment?

The code can be operated easily and well on other environments

A set of attributes that bear on the ability of software to be transferred
from one environment to another

2

67,10,122,
87

67,10 ,14

67,14

67,10, 60

 100

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

The ease with which a system or component can be transferred from
one hardware or software environment to another.

 Effort to convert the software for use in another operating
environment (hardware configuration, software system environment).

This quality factor addresses the concern that programs be changed
easily to operate on a different set of equipment
"How quickly and cheaply the software system can be converted to
perform the same functions using different equipment"

Portability is concerned with how easy it is to transport the system

 Effort required to transfer a program from one hardware
configuration and/or software system environment to another

The capability of software to be transferred from one environment to

The ability for the product to be used on different machines or
operating systems

 The extent to which a software component can be ported to a possibly
wide variety of operational environments, including operating systems
and hardware, and the amount of effort required for porting

 Is a measure of the effort that is needed to move software to another
computing platform

The degree to which a system, or a system's components, can be used in
an operating environment different from that for which it was originally
designed or developed without adversely affecting other quality
characteristics. There are two types of portability - run time and
compile time

This characteristic refers to how well the software can adopt to changes
in its environment or with its requirements. The sub characteristics of
this characteristic include adaptability. Object oriented design and
implementation practices can contribute to the extent to which this
characteristic is present in a given system

 the effort required to transport the software for use in other
environment

10, 54,
114,60

98

115

105

70

11,60

12

121

123

102

49

105

 101

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

21 Recoverability Attributes (capability) of software that relate to the capability to re-
establish its level of performance and recover the data directly affected
in case of a failure and on the time and effort needed for it.

Ability to bring back a failed system to full operation, including data
and network connections

 Capability and effort needed to reestablish level of performance and
recover affected data after possible failure

10,114, 60
103

49

118

22 Reliability This characteristics express the ability of the component to maintain a
specified level of performance, when used under specified conditions

The systems ability not to fail

The code performs its intended functions satisfactorily

A set of attributes that bear on the capability of software to maintain its
level of performance under stated conditions for a stated period of time

The longevity of product performance

Probability that the software will perform its logical operations in the
specified environment without failure

This quality factor addresses the concern that programs continue to
perform properly over time.

 The probability that a software system will operate without failure for
at least a given period of time when used under stated conditions

 The ability of the software product to perform its required functions
under stated conditions for a specified period of time, or for a specified
number of operations.

The extent to which the software performs its intended function
without failures for a given time period.

 Reliability is concerned with what confidence can be placed in the
software

2

67,10,122,
87

67, 14

10, 67, 60

118

98

115

54

114

105

105

 102

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

 Extent to which a program can be expected to perform its intended
function with required precision

Continuity of service

A measure of the ability of a system to keep operating over time

A measure of the rate of failure in the system that renders the system
unusable. A measure of the ability of a system to keep operating over
time

 The capability of the software to maintain its level of performance
when used under specified conditions

Ability of a program to achieve precisely its intended mission

 The ability of a software application or component to perform its
required functions under design-compliant conditions for a specified
period of time

The extent to which a component can be expected to fulfill its functions
for a stated period of time under stated conditions

 Is defined as the ability of software to maintain a specified level of
performance within the specified usage conditions

A system’s ability to perform its required functions under stated
conditions whenever required. Also: having a long mean time between
failures

 The probability that software will not cause the failure of a system for a
specified time under specified conditions

The capability of the system to maintain its service provision under
defined conditions for defined periods of time.

The extent to which a program can be expected to perform its intended
function with required precision

The probability that the program performs successfully in compliance
with its specification for a given time period

The probability that there are no failures in the time interval 0-t

the ability of a system or a component to perform its required functions
under stated conditions for a specified period of time

70

8

8

8

11

110

41

121

123

102

103

49

110

110

110

110

 103

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

23 Replaceability Attributes of software that relate to the opportunity and effort of using
it in the place of specified other software in the environment of that
software

 The capability of the software product to be used in place of another
specified software product for the same purpose in the same
environment.

 Characterizes the plug and play aspect of software components, that is
how easy is it to exchange a given software component within a specified
environment.

 The opportunity and effort of using it in the place of other software in a
particular environment

10 , 60

10 ,
114,60

103

49

118

24 Robustness The degree to which a component or system can function correctly in
the presence of invalid inputs or stressful environmental conditions.

Ability of a program to react appropriately to abnormal conditions

 Marginal cost of surviving unforeseen changes

114 , 54,
103

110

116

25 Safety Means simply put that the system does not ever perform anything
“bad”,

 The capability of the software product to achieve acceptable levels of
risk of harm to people, business, software, property or the environment
in a specified context of use.

Non-occurrence of catastrophic consequences on the environment

The absence of catastrophic consequences on the environment

As freedom from accidents and loss.

 Property of a computer system such that reliance can justifiably be
placed in the absence of accidents.

A measure of the absence of unsafe software conditions. The absence of
catastrophic consequences to the environment

Freedom from physical danger

10

114

8

8

8

8

8

116

 104

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

26 Scalability The capability of the software product to be upgraded to accommodate
increased loads.

The ability of a system to continue to meet its response time or
throughput objectives as the demand for the software functions
increases

The degree to which a software system's capacity, efficiency, or
performance is not limited by its design, implementation, the hardware
platform on which it runs, other software systems with which it
interoperates or communicates.

114

75

102

27 Security Attributes of software that relate to its ability to prevent unauthorized
access, whether accidental or deliberate, to programs and data.

A general definition of security is provided in Appendix F of the
National Research Council’s report, “Computers at Risk”:
1. Freedom from danger; safety.
2. Protection of system data against disclosure, modification, or
destruction. Protection of computer systems themselves. Safeguards
can be both technical and administrative.
3. The property that a particular security policy is enforced, with some
degree of assurance.
4. Often used in a restricted sense to signify confidentiality, particularly
in the case of multilevel security.

Freedom from risk or doubt

 Secure systems are those that can be trusted to keep secrets and
safeguard privacy.

 The degree to which the software can detect and prevent information
leak, information loss, illegal use, and system resource destruction

 The extent to which access to a software component, a component-
based software using the software component or the companion data by
unauthorized persons
can be controlled

Integrity

 The degree to which a system prevents unauthorized or improper
access or modification to its code and data or other system resources
and/or the degree to which it ensures that data or object state is
maintained in a coherent and correct manner. The idea of integrity
includes restricting unauthorized user access as well as ensuring that
data is accessed properly by its intended users and other software.

10,60

8

.
.
.

8

116

6

19

47

121,102

102

 105

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

 The capability of the software product to protect information and data
so that unauthorized persons or systems cannot read or modify them
and authorized persons or systems are not denied access to them.

 subcharacteristic relates to unauthorized access to the software
functions.

103

49

28 Stability Attributes of software that relate to the risk of unexpected effect of
modifications

 The capability of the software product to avoid unexpected effects
from modifications of the software.

 Predictability

 Characterizes the sensitivity to change of a given system that is the
negative impact that may be caused by system changes

 The risk of unexpected effect of modifications

10, 60

10, 60

116

49

118

29 Suitability Attribute of software that relates to the presence and appropriateness
of a set of functions for specified tasks.

 The capability of the software product to provide an appropriate set of
functions for specified tasks and user objectives.

 This is the essential Functionality characteristic and refers to the
appropriateness (to specification) of the functions of the software

The presence and appropriateness of a set of functions for specified
tasks

10 , 60

114

49

118

30 Testability the ease of testing the program, to ensure that it is error-free and meets
its specification

 The code eases setting up verification criteria and supports evaluation
of its performance.

 Attributes of software that relate to the effort needed for validating the
modified software.

 The degree to which a system or component facilitates the
establishment of test criteria and the performance of tests to determine
whether those criteria have been met.

 Addresses the concern that programs be easy to test
 "A software product possesses the characteristic Testability to the
extent that it facilitates the establishment of acceptance criteria and
supports evaluation of its performance."

67,10, 87
122

67, 14

10, 60

10,40

115

 106

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

 The capability of the software product to enable modified software to
be tested

(1) The degree to which a requirement is stated in terms that permit
establishment of test criteria and performance of tests to determine
whether those criteria have been met.

 Effort required to test a program to ensure that it performs its intended
function

 Effort required to test a program

As an indication of the degree of testing effort required

 This attribute is related to the effort needed to test a software system to
ensure it performs its intended functions A quantification of testability
could be the number of test cases required to adequately test a system,
or the cyclomatic complexity of an individual module.

 Which refers to the effort required to ensure that it performs its
intended function and performance, and, for software components,
includes the verification of interface, assembly, porting, and certification
requirements in the scope

 The degree to which someone can unit-test, system test and functionally
test a software system. This idea also extends to the ease with which a
test plan can be developed from the projects requirements

 The capability of the software product to enable modified software to be
validated.

 Characterizes the effort needed to verify

114

40

70

110

19

19

121

102

103

49

31

Traceability

 Those attributes of the software which provide a thread of origin from
the implementation to the requirements with respect to the specific
development envelope and operational environment.

The ability to identify related items in documentation and software,
such as requirements with associated tests.

The characteristics of the software that provide a thread from the
requirements to the implementation with respect to the specific
development and operational environment

98

114

105

 107

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

 (1) The degree to which a relationship can be established between two
or more products of the development process, especially products
having a predecessor-successor or master-subordinate relationship to
one another; for example, the degree to which the requirements and
design of a given software component match. See also: consistency.
(2) The degree to which each element in a software development
product establishes its reason for existing; for example, the degree to
which each element in a bubble chart references the requirement that it
satisfies.

Traceability would make it possible to know the relationships of a
particular entity to other entities,

Allows a modification of one system artefact to be traced to other
system artefacts that also will be affected.

54

10

10

32 Understandabil
ity

 The code is easy to read in the sense, that inspectors can rapidly
recognize its purpose.

 The properties of the design that enable it to be easily learned and
comprehended. This directly relates to the complexity of the design
structure

 Attributes of software that relate to the users' effort for recognizing the
logical concept and its applicability

 The degree to which the purpose of the system or component is clear to
the evaluator.

 “The capability of the software product to enable the user to
understand whether the software is suitable, and how it can be used for
particular tasks and conditions of use.”

 This quality factor addresses the concern that programs be easy to
understand

Ease with which the implementation can be understood

 The amount of effort required to understand the software

The ease with which someone can comprehend a software system at both
the system-organizational and detailed-statement levels.
Understandability has to do with the coherence and cohesiveness of the
system at a more general level than readability. Understanding includes
not only understanding what the system does, but why it does it. Good
detailed design documents can greatly enhance a systems

67, 14

67

10, 60

10, 14

10,114

115

115

19

102

 108

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

 Determines the ease of which the systems functions can be understood,
relates to user mental models in Human Computer Interaction
methods.

 The effort for a user to learn its application , operation, input and
output

49

118

33 Usability This characteristic express the ability of a component to be understood,
learned, used, configured, and executed, when used under specified
conditions;

Its ability to be used by the application developer when constructing a
software product or a system with it.

The ease of the software

The code is reliable, efficient and human-friendly-engineered

 A set of attributes that bear on the effort needed for use, and on the
individual assessment of such use, by a stated or implied set of users.

Effort to convert a software component for use In another application.

Effort for training and software operation -familia rization, input
preparation, execution, output interpretation

 A software product possesses the characteristic Usability to the extent
that it is convenient and practicable to use."

The capability of the software to be understood, learned, used and
attractive to the user when used under specified conditions.

The ease with which a user can learn to operate, prepare inputs for,
and interpret outputs of a system or component.

 The effort required to learn, operate, prepare input, and
interpret output of the software (program)

The extent to which an end-user is able to carry out required tasks
successfully, and without difficulty using the computer application
system.

The extent to which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction in a
specified context of use

 The ease with which a user can learn to operate a software application

2

2

67,87

67, 14

67, 60,33

98

98

115

114,11

40,54

105,33

33

33

41

 109

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

Usability: The ease with which a user can learn to operate, prepare
inputs for, and interpret outputs of a system or component.

Usability is a measure of how well users can take advantage of some
system functionality. Usability is different from utility, a measure of
whether that functionality does what is needed

 The extent of ease to which a software component can be unpacked by
possibly a variety of users, configured by these users for selecting the
particular configurations that best satisfy the needs of these users (if
such configurability is provided), and assembled by these users into the
application environments of their component-based application software
systems (this also includes understandability and ease of learning)

 The ease with which users can learn about and effectively use a
system. The quality of end user documentation and technical support
can radically effect this characteristic. This includes traditional
documentation, on-line help and web based information.

 Characteristics relating to the effort needed for use , and on the
individual assessment of such use, by a stated or implied set of users

6

6

121

102

118

34 Utility To be portable: Code possesses the characteristic portability to the
extent that it can be operated easily and well on computer
configurations other than its current one.

To be reliable : Code possesses the characteristic reliability to the
extent that it can be expected to perform its intended functions
satisfactorily

To efficiency : Code possesses the characteristic efficiency to the
extent that it fulfills its purpose without waste of resources

 To be usable: Code possesses the characteristic usability to the extent
that it is reliable, efficient and human-engineered.

 How well (easily, reliably, efficiently) can I use it as-is?

10, 14

10, 14

10, 14

10, 14

67, 14

35 fault tolerance Attributes of software that relate to its ability to maintain a specified
level of performance in cases of software faults or of infringement of its
specified interface.

 That is the ability of a system to withstand component failure

 The ability of software to withstand (and recover) from component, or
environmental, failure.

10 , 60

49

49

 110

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

 Ability to maintain a specified level of performance in cases of software
faults or un expected inputs

118

36 Reusability The ease of reusing software in a different context

 “The degree to which a software module or other work product can be
used in more than one computing program or software system.”

 Addresses the concern that programs be easy to reuse in a different
application.
 "Relative effort to convert a software component for use in a different
application"

 is concerned with how easy it is to convert the software for use in
another application,

 Extent to which a program can be used in other application—related to
the packaging and scope of the functions that programs perform

The extent to which a software component can be reused in developing
component-based software systems, other software components or other
software products in general

10,87

10, 87

115

105

70, 110

121

37

Correctness

This attribute evaluates the percentage of the results obtained with
precision, specified by the user requirements

The extent to which a program conforms to its specification

The extent to which a program fulfils its specification

“The degree to which a system or component is free from faults in its
specification, design, and implementation”].

-Extent to which the software satisfies its specifications and fulfills the
user's mission objectives.

The concern that software design and documentation formats conform
to the specifications and standards set for them. It is not concerned with
any content affecting software operation or performance.

"Extent to which the software conforms to its specifications and
standards"

Is concerned with how well the software conforms to the requirements

(1) The degree to which software, documentation, or other items meet
specified requirements.
(2) The degree to which software, documentation, or other items meet
user needs and expectations, whether specified or not.

2

67 , 87

10 , 87

10,54

98,70

115

115

105

54

 111

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

Ability of software products to perform their exact tasks, as defined by
their specification

The degree to which the software performs its required functions.

The degree to which a system is free from faults in its requirements,
scope, specification, architecture, design, implementation and
deployment

110

19

102

38 Modifiability This attribute indicates the component behavior when accomplished
some modification on it;

The degree to which a system or component facilitates the
incorporation of changes, once the nature of the desired change has
been determined.

 Addresses the concern that programs be easy to change, regardless of
the reason for the change.
"A software product possesses modifiability to the extent that it
facilitates the incorporation of changes, once the nature of the desired
change has been determined."

Considers how the system can accommodate anticipated and
unanticipated changes and is largely a measure of how changes can be
made locally, with little ripple effect on the system at large.

 Modifiability encompasses two aspects:
“Maintainability. (1) The ease with which a software system or
component can be modified to correct faults, improve performance or
other attributes, or adapt to a changed environment. (2) The ease with
which a hardware system or component can be retained in, or restored
to, a state in which it can perform its required functions.”

2

10,14

115

7

6

39 Completeness It is possible that some implementations do not completely cover the
services specified. This attribute measure the number of implemented
operations compared to the total number of specified operations;

Those attributes (characteristics) of the software which provide full
implementation of the functions required.

 Quality factor addresses the concern that program functions be
implemented completely

Each part full developed

The degree to which the software possesses the necessary and sufficient
functions to satisfy the users needs.

2

98,
115

115

116

19

 112

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

The degree to which a system implements its planned scope with a
particular focus on meeting requirements and delivering features

102

40

Dependability

This attribute indicates if the component is not self-contained, i.e. if
the component depend of other component to provide its specified
services

Is that property of a computer system such that reliance can
justifiably be placed on the service it delivers

 That property of a system such that reliance can justifiably be
placed in the service it provides

Availability. The degree to which a system or component is operational
and accessible when required for use.
Dependability is that property of a computer system such that reliance
can justifiably be placed on the service it delivers

2

8

7

6

41 Extensibility This attribute indicates the capacity to extend a certain component
functionality;

2

42

Customizability

This attribute measures the number of customizable parameters that the
component offers

2

43

Modularity

This attribute indicates the modularity level of the component, if it has
modules, packages or all the source files are only grouped.

Those attributes of the software which provide a structure of highly
cohesive modules with optimum coupling

Quality factor addresses the concern that programs be composed of
many small, simple, independent steps that are clearly delineated by the
code.
 "Formal way of dividing a program into a number of sub-units each
having a well defined function and relationship to the rest of the
program"

The characteristics of the software which provide a structure of highly
independent modules

The degree to which a system or computer program is composed of
discrete components such that a change to one component has minimal
impact on other components.

2

98

115

105

54

44 Flexibility The ease of making changes required by changes in the operating
environment

10 , 67
,122

 113

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

 The code is easy to change, when a desired change has been
determined

 Characteristics that allow the incorporation of changes in a design. The
ability of a design to be adapted to provide functional related
capabilities

The ease with which a system or component can be modified for use in
applications or environments other than those for which it was
specifically designed.

 Effort to extend the software missions, functions, or data to satisfy
other requirements.

 This quality factor addresses the concern that programs be easy to
change to meet different requirements, with no change in the context.
 Ease of effort for changing the software missions, functions, or data to
satisfy other requirements

 The effort required to modify operational software

 Marginal cost to extend Features

 The extent to which a developer can modify a software system for uses
or environments other than those for which it was specifically designed
without adversely affecting other internal or external quality
characteristics

67

67

10

98

115

105, 70

116

102

 114

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

45 Integrity The protection of the program from unauthorized access

Extent to which unauthorized access to the software or data can be
controlled

Quality factor addresses the concern that programs must continue to
perform their function even under adverse conditions: inputs that are
unexpected, improper, or harmful
Ability of software to prevent purposeful or accidental damage to the
data or software

The extent to which access to software or data by unauthorized
persons should be controlled

The degree to which a system or component or application prevents
unauthorized access to, or modification of, computer programs or
data.

 Non-occurrence of improper alterations of information

Is the requirement that data and process be protected from
unauthorized modification

Protection of the program from unauthorized access.

 The extent to which access to a software component, a component-based
software using the software component or the companion data by
unauthorized persons can be controlled

THE degree to which a system prevents unauthorized or improper
access or modification to its code and data or other system resources
and/or the degree to which it ensures that data or object state is
maintained in a coherent and correct manner. The idea of integrity
includes restricting unauthorized user access as well as ensuring that
data is accessed properly by its intended users and other software.

67,10

98

115

105,70,110

54

8

8

122

121

102

46 Accessibility Means that the system allows usage of its parts in a selective manner,

which helps testing as test cases can be constructed with higher
flexibility

 System accessibility : Those attributes of the software which provide
for control and audit of access of software and data

10

98, 105

47 Communicat_
iveness

Means that it is possible to easily specify and understand inputs to and
outputs from the system , which again facilitates the construction of
test cases

Those attributes of the software which provide useful inputs and
outputs which can be assimilated

10

98

 115

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

 The degree to which the software is designed in accordance with the
psychological characteristics of the users

19

48 Self
Descriptiveness

 Those attributes of the software which provide explanation of the
implementation of a function.

The degree to which a system or component contains enough
information to explain its objectives and properties.

98

54

49 Conciseness Those attributes of the software which provide for implementation of
 a function with a minimum amount of code.

 This quality factor addresses the concern that programs not contain
any extraneous information.
The ability to satisfy functional requirements with minimum amount
of software

 No excess information is present

98

115

116
50 Extendability Refers to the presence and usage of properties in an exiting design that

allow for the incorporation of new requirements in the design

 The ease with which a system or component can be modified to
increase its storage or functional capacity

67

54

51 Effectivenes This refers to a design’s ability to achieve the desired functionality and
behavior using object-oriented design concepts an techniques

Those attributes of the software which provide for minimum
utilization of resources (processing time, storage, operator time) in
performing functions.

 The capability of the software product to enable users to achieve
specified goals with accuracy and completeness in a specified context of
use.

67

98

103

52 Resource
 Utilization

The amount of resources used and the duration of such use in
performing its function

The capability of the software product to use appropriate amounts and
types of resources, for example the amounts of main and secondary
memory used by the program and the sizes of required temporary or
overflow files, when the software performs its function under stated
conditions.

118

114, 103

53

Compatibility

A measure (characteristics) of the hardware, software and
communication compatibility of two systems

98,105

 116

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

 (1) The ability of two or more systems or components to perform their
required functions while sharing the same hardware or software
environment.
(2) The ability of two or more systems or components to exchange
information.

The degree to which new software can be installed without changing
environments and conditions that were prepared for the replaced
software.

 The extent to which a software system will function or communicate
correctly, reliably and robustly with other similar systems that share
the same data types, file formats, or user interfaces. Backward
compatibility specifically applies to a software systems' ability to work
with previously versions from which it was derived or with versions
ported to other systems

54

19

102

54 Independence APPLICATION INDEPENDENCE Attributes of the software which
determine its dependency on the software application (database system,
data structure, system libraries routines, microcode, computer
architecture and algorithms)

INDEPENDENCE Those attributes of the software which determine its
non-dependency on the software environment (computing system,
operating system, utilities ,input/output routines, libraries

Executable in hardware environment other than current one

98

98

116
55 Simplicity Those attributes of the software which provide for the definition and

implementation of functions in the most non-complex and
understandable manner.

Quality factor addresses the concern that, as much as possible,
programs be implemented in strictly sequential steps that depend only
on the step before it

 Those characteristics of software which provide for definition and
implementation of functions in the most noncomplex and
understandable manner

The degree to which a system or component has a design and
implementation that is straightforward and easy to understand

 How complicated

98

115

54

116

56 Expandability How easy to add new functionality to it

Quality factor addresses the concern that program limitations be easy
to extend
The "Relative effort [required] to increase the software capability or
performance by enhancing current functions or by adding new
functions or data"

10

115,105

 117

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

Concerned with how easy it is to expand or upgrade the software
capability or performance.

The degree of effort required to improve or modify the efficiency or
 functions of the software.

The effort required to increase the capability of a software component

105

19

121

57 Generality Means general solutions that by nature are prepared for being utilized
in other contexts than the ones for which they were constructed

Those attributes of the software which provide breadth to the
functions performed with respect to the application

 The degree to which a system or component performs a broad range
of functions

10

98,105

54

58 System Clarity Those attributes (characteristics) of the software which provide clear
description of program structure in the most non-complex, easily
understandable and modifiable manner.

This quality factor addresses the concern that programs be easily
understood by people

 Measure of how clear a program is, i.e., how easy it is to read,
understand, and use

Then clarity only addresses the ease of reading and understanding the
program.

98,105

115

115

59 Survivability The extent (Probability that) to which the software will continue to
perform or support critical functions when a portion of the system is
inoperable

 Is concerned with how well the software will perform under adverse
conditions. The attributes which support survivability

98,105

105

60 Verifiability Effort to verity the specified software operation, and performance

 The effort required to test and verify (ensure) that the software
performs its intended designed function

Is concerned with how easy it is to verify the software performance.
The attributes which support verifiability are these'

98

105, 110

105

 118

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

 The effort required to verify, with or without access to the source code,
architecture, design and the developers, that the software design and
implementation satisfies the specifications of the software component
(This goes beyond the testability, which refers to the effort required to
ensure that it performs its intended function and performance, and, for
software components, includes the verification of interface, assembly,
porting, and certification requirements in the Scope.

(The extent to which a software component can be certified), the extent
to which certification implies the quality of the software component, and
the effort required for such extents of certification

121

121

61 Repeatability
=

Reproducibility

The degree to which a system will repeatedly produce the same results
given a consistent set of inputs and a consistent operating
environment. Sometimes called Reproducibility

102

62 Conformance Attributes of software that make the software adhere to standards or
conventions relating to portability

Degree to which a products design and operating characteristics meet
the stated requirements ; "all parts present" portion of
"Completeness" Characteristic

 Similar to compliance for functionality, but this characteristic relates
to portability. One example would be Open SQL conformance which
relates to portability of database used.

10

116

49

63 Capacity Ability to produce at least at the rate of demand

How much demand can be placed on the system while continuing to
meet latency and throughput requirements?

Is a measure of the amount of work a system can perform

 The ability or suitability for holding, storing, or accommodating data or
information. The maximum amount or number of something that can be
contained or accommodated. Capacity may be dictated by design, hard
coded limits or requirements. It may also be dictated by the operating
environment .

116

8

8

102

64 Buildablitiy The ease with which a software product can be reliably built from its
individual components. Typically this focuses on people other than the
original developer. However, it also applies to the scenario where the
original developer has not built the system for a extended period of
time. The use of SCM tools typically focuses on this characteristic. The
term reliably is important: it implies that the bui ld system is
repeatable, dependable, timely and that when given the same inputs it
will always build the same thing.

102

 119

Att
ID

Quality
Attribute

Definition(s) Source(s)
reference(s)

65 Readability The ease with which a developer can read and understand the source
code and technical documentation of a system, especially at the
detailed source code statement level

102

66 Productivity The capability of the software product to enable users to expend
appropriate amounts of resources in relation to the effectiveness
achieved in a specified context of use.

102

APPENDIX B

 The complete results from the ontology evaluation step; each SWPQA extracted
concepts and the covered concepts from our ontology in addition to the coverage
percentage.

Table B.1: The complete results from the ontology evaluation step.

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

assessment accuracy 17 from 24
computer capability 0.708333333
concern computer

determination concern
extent degree
factor error

freedom extent
job factor

magnitude freedom
measure measure
output output
quality precision
respect product

capability quality
provision respect

right software
system system

accuracy
correctness

degree
error

product
precision

1

Accuracy

software
product ability 13 from 15

environment adaptation 0.866666667
ease change

operating component
component degree

degree ease
modification environment

2 Adaptability

ability modification

 120

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

change operating
purpose product

opportunity purpose
means software

adaptation system
system

software
diagnosis ability 6 from 10

identification capability 0.6
cause effort
failure failure
ability product
root software

effort
product

capability

3 Analyzability

software
product capability 4 from 4

user product 1
software software

4 Attractiveness

capability user
availability component 12 from 26
checkpoint data 0.461538462
component degree
continuity level

data probability
degree program

delivery service
demand software
denial specification
level system

meeting time
percentage usage

point
probability
program
readiness
recovery
reliability

requirement
restart
service

software
specification

system
time

5 Availability

usage
amount amount 9 from 12

capability capability 0.75
change change
effort effort
fault modification
make product

modification set
product software
removal system

6 Changeability

set

 121

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

software
system

attribute attribute 16 from 19
code code 0.842105263

combination component
component concern

concern control
control data

data degree
degree design
design extent
extent factor
factor implementation
flow measure

implementation quality
measure set
metrics structure
quality system

set
structure

7 Complexity

system
adherence application 4 from 7
application capability 0.571428571
capability characteristic

characteristic software
government

industry

8 Compliance

software
code code 17 from 22

component component 0.772727273
concern concern

contradiction definition
definition degree

degree design
design factor
factor freedom

freedom implementation
implementation level

level notation
notation quality
quality software

software source
source system

standardization uniform
symbology uniform

syntax uniformity
system

terminology
uniform

9 Consistency

uniformity
capability capability 4 from 5

environment environment 0.8
independent product

product software

10 Co-existence

software
ability ability 38 from 65 11 Efficiency

amount amount 0.575757576

 122

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

attribute attribute
bandwidth characteristic

characteristic code
code component

communication computer
component computing
computer concern
computing degree

concern efficiency
consumption extent

cpu factor
degree function
disk function

efficiency function
estate functionality

execution hardware
express level
extent meaning
factor measure

function memory
functionality number

hardware performance
indication product
intention program

interaction purpose
issue quality
key rate
level response

meaning set
measure software
memory storage

minimum system
network time
number usability

performance usage
place user

processor utility
product utilization
program
purpose
quality

rate
relation

relationship
relative
request
resource
response
screen

set
software

space
storage
system
task
time

usability

 123

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

usage
user

utility
utilization

value
waste
works
ability ability 12 from 16

achievement capability 0.75
capability characteristic

characteristic component
component design

design extent
existence product
express purpose
extent service

product set
purpose software
service user

set
software
totality

12 Functionality

user
capability capability 5 from 5

effort effort 1
environment environment

product product

13 Installability

software software
ability ability 13 from 17

capability capability 0.764705882
component component
computing computing

couple degree
degree effort
effort environment

environment extent
exchange hardware

extent information
hardware product

information software
interface system
product
software
system

14 Interoperability

variety
application application 10 from 14
capability capability 0.714285714

control control
effort effort
expert operation
input output

learning product
novice software

operation user
output work

product

15 Learnability

software

 124

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

user
work
ability ability 39 from 61
activity adaptation 0.639344262

adaptation amount
amount attribute
aptitude capability
attribute change
average characteristic

capability code
change component

characteristic concern
code developer

component ease
concern efficiency

developer effort
domain environment

ease error
efficiency extent

effort factor
environment failure

error hardware
establishment incorporation

evaluation level
evolution maintenance

extendability operating
extent operation
factor performance
failure period
fault probability
fix product

flexibility program
hardware purpose

impact quality
incorporation rate

inspector scope
interval set

level software
maintainability system

maintenance time
modifiability understandability

nature
operating
operation

performance
period

probability
product
program
purpose
quality

rate
repair
scope

set
software

16

Maintainability

state

 125

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

system
testability

time
understandability

verification
version

bear capability 8 from 12
capability effectiveness 0.666666667

effectiveness efficiency
efficiency failure

failure product
frequency respect

organization software
product work
respect
result

software

17 Maturity

work
ability ability 13 from 17

capability capability 0.764705882
color control

control degree
degree ease
ease effort

effort environment
environment functionality
functionality operation

operation product
product purpose
purpose software
shape user
size

software
sound

18 Operability

user
accuracy accuracy 32 from 45
amount amount 0.711111111
attribute attribute

availability component
component computer
computer concern
concern degree

cpu effectiveness
degree efficiency

effectiveness factor
efficiency function

factor memory
function number

host objective
input operating

interval output
meeting performance
memory period

note program
number quality
objective rate

19 Performance

operating respect

 126

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

output response
performance responsiveness

period service
processing software
program system
quality throughput

rate time
recovery usage
resource utilization
respect work

response
responsiveness

service
software

speed
standard
system

throughput
time

timeliness
usage

utilization
work
ability ability 29 from 36

adaptability adaptability 0.805555556
amount amount

capability capability
characteristic characteristic

code code
component component
computing computing

concern concern
configuration degree

degree design
design ease
ease effort

effort environment
environment extent
equipment factor

extent hardware
factor implementation

hardware measure
implementation object

measure operating
move portability
object product

operating program
platform quality

portability set
product software
program system
quality time

set time
software
system
time

20 Portability

transfer

 127

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

transport
variety
ability ability 11 from 12

capability capability 0.916666667
data data
effort effort
failure failure
level level

network operation
operation performance

performance software
software system
system time

21 Recoverability

time
ability ability 33 from 41

application application 0.804878049
capability capability

code code
compliance component
component concern

concern design
confidence environment
continuity extent

design factor
environment fail

extent failure
factor function

fail level
failure mean

function measure
interval number

level operating
longevity performance

mean period
measure precision
mission probability
number product

operating program
performance quality

period rate
precision service

probability set
product software
program specification
provision system
quality time

rate usage
reliability

service
set

software
specification

system
time

22 Reliability

usage
aspect capability 7 from 13 23 Replaceability

capability component 0.538461538

 128

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

component effort
effort environment

environment product
exchange purpose

opportunity software
place
play
plug

product
purpose
software
ability ability 5 from 8

component component 0.625
cost degree

degree program
invalid system

presence
program

24 Robustness

system
absence capability 10 from 19
business computer 0.526315789

capability context
computer environment
context freedom
danger measure

environment product
freedom property

loss software
means system

measure
occurrence

people
product
property
reliance

risk
software

25 Safety

system

ability ability 14 from 17
capability capability 0.823529412
capacity degree
degree design

demand efficiency
design hardware

efficiency implementation
hardware performance

implementation product
performance response

platform software
product system
response throughput
software time
system

throughput

26 Scalability

Time

 129

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

ability ability 20 from 44
access access 0.454545455

assurance capability
capability code

case component
code computer

companion data
component definition
computer degree

confidentiality extent
danger freedom
data information

definition manner
degree modification

destruction object
disclosure product

doubt property
extent software

freedom system
idea user

information
integrity

leak
loss

manner
modification

multilevel
object
policy

privacy
product
property

protection
report

research
resource

risk
safety

security
sense

software
state

system

27 Security

user
change change 5 from 9
effect effect 0.555555556

impact product
predictability software

product system
risk

sensitivity
software

28 Stability

system
appropriateness attribute 9 from 11

attribute capability 0.818181818
capability characteristic

29 Suitability

characteristic functionality

 130

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

functionality product
presence set
product software

set specification
software user

specification
user

acceptance attribute 22 from 39
assembly capability 0.55
attribute characteristic
capability code

certification component
characteristic concern

code degree
complexity ease
component effort

concern error
degree extent
ease function

effort number
error performance

establishment product
evaluation program

extent scope
function setting

idea software
indication specification
interface system
module test
number

performance
plan

product
program

quantification
requirement

scope
setting

software
specification

system
test

testability
unit

validating

30

Testability

verification
ability ability 12 from 30

artefact component 0.4
bubble degree
chart design

component development
consistency documentation

degree environment
design modification

development product
documentation respect

31 Traceability

element software

 131

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

entity system
envelope

environment
master
match

modification
origin

predecessor
process
product
reason

relationship
requirement

respect
software
successor

system
thread

traceability 26 from 35
amount amount 0.742857143

applicability applicability
application application

code code
coherence component

cohesiveness computer
complexity concern
component degree
computer design
concept ease
concern effort
degree factor
design implementation
ease level

effort operation
evaluator output

factor product
implementation purpose

interaction quality
level software

operation structure
output system

product understand
purpose understandability
quality understanding

readability user
sense

software
statement
structure
system

understand
understandability

understanding

32 Understandability

user
ability ability 31 from 48

advantage application 0.645833333
33 Usability

application capability

 132

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

assessment characteristic
capability code

characteristic component
code computer

component context
computer developer

configurability documentation
context ease

developer effect
difficulty effectiveness

documentation efficiency
ease effort

effect end
effectiveness extent

efficiency functionality
effort information
end measure

execution operation
express output
extent product

familiarization program
functionality quality

help set
information software

interpretation system
line understandability

measure usability
operation user

output utility
preparation

product
program
quality

satisfaction
set

software
support
system

training
understandability

usability
user

utility
variety

web
characteristic characteristic 8 from 10

code code 0.8
computer computer
efficiency efficiency

extent extent
portability portability

purpose purpose
reliability usability
usability

34 Utility

waste
ability ability 7 from 9 35 fault tolerance

component component 0.777777778

 133

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

failure failure
infringement level

interface performance
level software

performance system
software
system

application application 15 from 19
component component 0.789473684
computing computing

concern concern
context context
convert degree
degree ease
ease effort

effort extent
extent product

module program
packaging scope
product software
program system
reusing work
scope

software
system

36 Reusability

work
ability ability 19 from 24

architecture attribute 0.791666667
attribute component

component concern
concern degree
content design
degree documentation

deployment extent
design implementation

documentation operation
extent performance

implementation precision
mission program

operation scope
percentage set

performance software
precision specification
program system

scope user
set

software
specification

system

37 Correctness

user
attribute attribute 17 from 22
change change 0.772727273

component component
concern concern
degree degree
ease ease

38 Modifiability

effect effect

 134

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

environment environment
extent extent

hardware hardware
incorporation incorporation

measure measure
modifiability modification
modification performance

nature product
performance software

product system
reason
ripple

software
state

system
attribute attribute 12 from 15
concern concern 0.8
degree degree
factor factor
focus implementation

implementation measure
measure number
meeting program
number quality

part scope
program software
quality system
scope

software

39 Completeness

system
attribute attribute 7 from 10

availability component 0.7
component computer
computer degree

degree property
property service
reliance system

self
service

40 Dependability

system
attribute attribute 3 from 4
capacity component 0.75

component functionality

41 Extensibility

functionality
attribute attribute 3 from 3

component component 1
42 Customizability

number number
attribute attribute 17 from 23
change change 0.739130435
code code

component component
computer computer
concern concern
coupling degree
degree factor
factor function

43 Modularity

function level

 135

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

impact number
level program

modularity quality
number software
program source
quality structure

relationship system
rest

software
source

structure
system

way
ability ability 20 from 21
change change 0.952380952
code code

component component
concern concern
context context

cost data
data design

design developer
developer ease

ease effort
effort environment

environment extent
extent factor
factor incorporation

incorporation operating
operating quality

quality software
software system
system use

use

44 Flexibility

ability ability 21 from 30
access access 0.7

application application
code code

companion component
component computer
computer concern
concern data
damage degree

data extent
degree factor
extent function
factor information

function manner
idea modification

information object
integrity object
manner program

modification quality
object software

occurrence system

45

Integrity

process user

 136

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

program
protection

quality
requirement

software
state

system

User

access access 9 from 13
accessibility accessibility 0.692307692

audit control
control data

data manner
flexibility software
manner system
means test

software usage
system

test
testing

46 Accessibility

usage
construction degree 3 from 5

degree software 0.6
means system

software

47 Communicativeness

system
component component 7 from 8

degree degree 0.875
explanation function

function implementation
implementation information

information software
software system

48 Self Descriptiveness

system
ability ability 10 from 11

amount amount 0.909090909
code code

concern concern
factor factor

function function
implementation implementation

information information
minimum quality

quality software

49 Conciseness

software
capacity component 7 from 11

component design 0.636363636
design ease
ease incorporation

exiting storage
incorporation system

increase usage
presence
storage
system

50 Extendability

usage

 137

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

ability ability 13 from 15
accuracy accuracy 0.866666667
capability capability

completeness context
context design
design functionality

functionality object
minimum operator

object product
operator software
product storage
software time
storage utilization

time

51 Effectiveness

utilization
amount amount 7 from 8

capability capability 0.875
duration function
function memory
memory product
product program
program software

52 Resource Utilization

software
ability ability 12 from 17

communication data 0.705882353
compatibility degree

data environment
degree extent

environment hardware
exchange information

extent measure
file software

hardware system
information user

measure work
share

software
system
user

53 Compatibility

work
application application 10 from 15
architecture computer 0.666666667

computer computing
computing data

data environment
database hardware

dependency operating
environment software

hardware structure
independence system

microcode
operating
software
structure

54 Independence

system
component component 11 from 12 55 Simplicity

concern concern 0.916666667

 138

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

definition definition
degree degree
design design
factor factor

implementation implementation
manner manner
quality quality

software software
step system

system
capability capability 13 from 14
component component 0.928571429

concern concern
data data

degree degree
efficiency efficiency

effort effort
factor factor

functionality functionality
increase performance

performance program
program quality
quality software

56 Expandability

software
application application 6 from 11

being component 0.545454545
breadth degree

component respect
degree software
means system
nature
range

respect
software

57 Generality

system
clarity concern 10 from 13

concern ease 0.769230769
description factor

ease manner
factor measure

manner program
measure quality
people software

program structure
quality understanding

software
structure

58 System Clarity

understanding
extent extent 4 from 6

portion probability 0.666666667
probability software

software system
survivability

59 Survivability

system
access access 15 from 22

architecture code 0.681818182
60 Verifiability

assembly component

 139

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

certification design
code effort

component extent
design function
effort implementation
extent operation

function performance
implementation quality

interface scope
operation software

performance source
quality test
scope

software
source

test
testability

verifiability
verification

degree degree 5 from 6
environment environment 0.833333333

operating operating
reproducibility set

set system

61 Repeatability
=

Reproducibility

system
characteristic characteristic 7 from 13
completeness degree 0.538461538
compliance design

conformance functionality
database operating
degree portability
design software

functionality
operating
portability

portion
software

62 Conformance

sql
ability ability 13 from 16

amount amount 0.8125
capacity data

data design
demand environment
design information

environment measure
information number

measure operating
number rate

operating system
rate throughput

suitability work
system

throughput

63 Capacity

work
build characteristic 8 from 13

characteristic developer 0.615384615
64 Buildabilitiy

developer ease

 140

Att.
ID

Attribute Def. Concepts Onto. Concepts that
cover

Count and Average

ease period
people product
period software

product system
scenario time
software
system
term
thing

Time

code code 7 from 8
developer developer 0.875

documentation documentation
ease ease
level level

source source
statement system

65 Readability

system
capability capability 5 from 7

context context 0.714285714
effectiveness effectiveness

expend product
product software
relation

66 Productivity

software

The Average of Coverage Averages is :

0.734520723

APPENDIX C

 The suggested ontology domain concepts:

Table C.1: The final suggested ontology domain concepts list.

Concept Concept Concept Concept
ability documentation memory risk
access ease minimum scope

accessibility effect modification service
accuracy effectiveness nature set

adapt efficiency notation setting
adaptability effort number software
adaptation environment object source

amount error objective specification
applicability exchange operating state
application express operation storage
architecture extent operator structure

attribute factor output system
availability failure people test
capability freedom performance testability

 141

capacity function period throughput
change functionality portability time

characteristic hardware precision understand
code idea presence understandability

component impact probability understanding
computer implementation product uniform
computing incorporation program uniformity

concern information property usability
context interface purpose usage
control interval quality user

data level rate utility
definition maintenance relationship utilization

degree manner reliability variety
demand mean requirement verification
design meaning resource
develop means respect

developer measure response
development meeting responsiveness

APPENDIX D

Relationships between groups of concepts in the suggested ontology domain:

Table D.1: Relationships between groups of concepts in the ontology domain.

Group
 No

Level Con1 Con2

1 1 Software, system, requirement
characteristic, function,

Attribute, design, test ,user

2 1 Performance, degree, component Data, effort, function, software
,system

2 2 Data, effort Component, degree, performance,
requirement, function ,software,

system, user
3 1 Environment, program, ability Component, requirement, software
4 1 Extent, time ,product software ,system
5 1 Operate (ion), ease, change Environment, software, system
6 1 Resource, specification,

implementation
extent

7 1 Capability, code Environment, performance,
requirement

8 1 Modification, measure Ability, requirement
9 1 amount ,state Function, resource, software
10 1 Application, applicability,

understand
Modification, requirement, system

,user
11 1 Level, modification Product, software, system
12 1 Service, access Requirement, system, user
13 1 Effect, set Attribute, resource, system, user
14 1 Develop (er), failure Ease, product, software

 142

Group
 No

Level Con1 Con2

15 1 Output, computer Amount, system
16 1 Efficiency, quality characteristic
17 1 meeting Modification, performance
18 1 Documentation, concern Software, system
19 1 Hardware, purpose Environment, software
20 1 Number amount ,specification
21 1 information Ability, data, degree,

documentation, exchange, object,
software, system

22 1 control Access, attribute, characteristic,
data, degree, operation, user, idea

22 2 idea Ease
23 1 precision Requirement, service
24 1 Adapt, utility (ization) characteristic
25 1 probability Availability, express, extent ,failure,

function, performance, program,
time

26 1 interface software
27 1 Mean, context change
28 1 probability Ability, characteristic, code, degree,

function ,time, Verification
28 2 Verification Component, interface, set
29 1 Freedom, uniform Environment
30 1 Storage, reliability

code

31 1 response Design, measure, meeting ,system
,throughput, time

31 2 throughput Rate, requirement, response, time
33 1 error Maintenance, measure, precision,

program, requirement, system
33 2 maintenance Adaptability, attribute, ease, error,

impact ,state
33 3 impact component ,maintenance ,system
34 1 Scope, accuracy extent
35 1 Usage, usability resource
36 1 work ,period system
37 1 relationship Attribute, degree, function,

modification, product
38 1 notation Definition, degree, implementation,

quality, uniform
38 2 definition Implementation, level, notation
39 1 testability Characteristic, code ,effort ,extent,

number
40 1 memory Amount, efficiency, time, usage
41 1 manner degree, modification, quality, usage
42 1 structure data ,design, measure, software,

understand
43 2 architecture code ,design,
44 1 respect Capability, implementation, output,

 143

Group
 No

Level Con1 Con2

performance, requirement
45 1 minimum Amount, function, resource,

software
46 1 source Access, attribute, code ,concern
47 1 risk Change, freedom ,people, software
47 2 people Component, measure, risk
48 1 factor Ability, concern, quality, software
49 1 demand Object, rate,
50 1 presence Ability, usage
51 1 variety Component, operation
52 1 nature Change, utility
53 1 incorporation Change, requirement

APPENDIX E

 Each SWPQA concepts that belong to our ontology domain:

Table E.1: Each SWPQA definition concepts from our ontology domain concepts.

Def.
ID

Attribute Def. Concepts
From Ontology Domain

accuracy
capability
computer
concern
degree
error
extent
factor

freedom
measure
output

precision
product
quality
respect

software

1 Accuracy

system
ability

adaptation
change

component
degree
ease

environment
modification

operating
product

2 Adaptability

purpose

 144

Def.
ID

Attribute Def. Concepts
From Ontology Domain

software
system
means
ability

capability
effort
failure

product

3 Analyzability

software
capability
product
software

4 Attractiveness

user
component

data
degree
level

probability
program
service

software
specification

system
time
usage

availability
meeting

reliability
requirement

5 Availability

demand
amount

capability
change
effort

modification
product

set
software

6 Changeability

System
attribute

code
component

concern
control

data
degree
design
extent
factor

implementation
measure

7 Complexity

quality

 145

Def.
ID

Attribute Def. Concepts
From Ontology Domain

set
structure
system

application
capability

characteristic

8 Compliance

software
code

component
concern

definition
degree
design
factor

freedom
implementation

level
notation
quality

software
source
system

uniform
uniform

9 Consistency

uniformity
capability

environment
product

10 Co-existence

software
ability

amount
attribute

characteristic
code

component
computer
computing

concern
degree

efficiency
extent
factor

function
function
function

functionality
hardware

level
meaning
measure
memory

11 Efficiency

number

 146

Def.
ID

Attribute Def. Concepts
From Ontology Domain

performance
product
program
purpose
quality

rate
response

set
software
storage
system
time

usability
usage
user

utility
utilization
minimum

relationship
resource
express
ability

capability
characteristic
component

design
extent

product
purpose
service

set
software

user

12 Functionality

express
capability

effort
environment

product

13 Installability

software
ability

capability
component
computing

degree
effort

environment
extent

hardware
information

product
software

14 Interoperability

system

 147

Def.
ID

Attribute Def. Concepts
From Ontology Domain

exchange
variety

interface
application
capability

control
effort

operation
output

product
software

user

15 Learnability

work
ability

adaptation
amount
attribute
capability

change
characteristic

code
component

concern
developer

ease
efficiency

effort
environment

error
extent
factor
failure

hardware
incorporation

level
maintenance

operating
operation

performance
period

probability
product
program
purpose
quality

rate
scope

set
software
system
time

16

Maintainability

understandability

 148

Def.
ID

Attribute Def. Concepts
From Ontology Domain

impact
interval

verification
testability

state
Nature

capability
effectiveness

efficiency
failure

product
respect

software

17

Maturity

Work
ability

capability
control
degree
ease

effort
environment
functionality

operation
product
purpose
software

18 Operability

user
accuracy
amount
attribute

component
computer
concern
degree

effectiveness
efficiency

factor
function
memory
number
objective
operating

output
performance

period
program
quality

rate
respect

response
responsiveness

19 Performance

service

 149

Def.
ID

Attribute Def. Concepts
From Ontology Domain

software
system

throughput
time
usage

utilization
work

availability
interval
meeting

Resource
ability

adaptability
amount

capability
characteristic

code
component
computing

concern
degree
design
ease

effort
environment

extent
factor

hardware
implementation

measure
object

operating
portability

product
program
quality

set
software
system
time
time

20 Portability

variety
ability

capability
data
effort
failure
level

operation
performance

software

21 Recoverability

system

 150

Def.
ID

Attribute Def. Concepts
From Ontology Domain

time
ability

application
capability

code
component

concern
design

environment
extent
factor

fail
failure

function
level
mean

measure
number

operating
performance

period
precision

probability
product
program
quality

rate
service

set
software

specification
system
time
usage

interval

22 Reliability

reliability
capability
component

effort
environment

product
purpose
software

23 Replaceability

exchange
ability

component
degree

program
system

24 Robustness

presence
capability 25 Safety
computer

 151

Def.
ID

Attribute Def. Concepts
From Ontology Domain

context
environment

freedom
measure
product
property
software
system
means
people

risk
ability

capability
degree
design

efficiency
hardware

implementation
performance

product
response
software
system

throughput
time

capacity

26 Scalability

Demand
ability
access

capability
code

component
computer

data
definition

degree
extent

freedom
information

manner
modification

object
product
property
software
system
user
idea

resource
risk

27 Security

state

 152

Def.
ID

Attribute Def. Concepts
From Ontology Domain

change
effect

product
software
system
impact

28 Stability

risk
attribute
capability

characteristic
functionality

product
set

software
specification

user

29 Suitability

Presence

attribute
capability

characteristic
code

component
concern
degree
ease

effort
error
extent

function
number

performance
product
program

scope
setting

software
specification

system
test
idea

interface
requirement
testability

30

Testability

verification
ability

component
degree
design

development
documentation

31 Traceability

environment

 153

Def.
ID

Attribute Def. Concepts
From Ontology Domain

modification
product
respect

software
system

relationship
requirement

amount
applicability
application

code
component
computer
concern
degree
design
ease

effort
factor

implementation
level

operation
output

product
purpose
quality

software
structure
system

understand
understandability

understanding

32 Understandability

User
ability

application
capability

characteristic
code

component
computer
context

developer
documentation

ease
effect

effectiveness
efficiency

effort
end

extent
functionality

33 Usability

information

 154

Def.
ID

Attribute Def. Concepts
From Ontology Domain

measure
operation

output
product
program
quality

set
software
system

understandability
usability

user
utility

express
variety

characteristic
code

computer
efficiency

extent
portability

purpose
usability

34 Utility

reliability
ability

component
failure
level

performance
software
system

35 fault tolerance

interface
application
component
computing

concern
context
degree
ease

effort
extent

product
program

scope
software
system

36 Reusability

work
ability

attribute
component

concern

37 Correctness

degree

 155

Def.
ID

Attribute Def. Concepts
From Ontology Domain

design
documentation

extent
implementation

operation
performance

precision
program

scope
set

software
specification

system
user

architecture
attribute
change

component
concern
degree
ease

effect
environment

extent
hardware

incorporation
measure

modification
performance

product
software
system

38 Modifiability

state
attribute
concern
degree
factor

implementation
measure
number
program
quality
scope

software
system

39 Completeness

meeting
attribute

component
computer

degree
property

40 Dependability

service

 156

Def.
ID

Attribute Def. Concepts
From Ontology Domain

system
Availability

attribute

component
functionality

41 Extensibility

capacity
attribute

component
42 Customizability

number
attribute
change
code

component
computer
concern
degree
factor

function
level

number
program
quality

software
source

structure
system
impact

43 Modularity

relationship
ability
change
code

component
concern
context

data
design

developer
ease

effort
environment

extent
factor

incorporation
operating

quality
software
system

44 Flexibility

use
ability
access

45

Integrity

application

 157

Def.
ID

Attribute Def. Concepts
From Ontology Domain

code
component
computer
concern

data
degree
extent
factor

function
information

manner
modification

object
object

program
quality

software
system
user
idea

requirement

state
access

accessibility
control

data
manner
software
system

test
usage

46 Accessibility

means
degree

software
system

47 Communicativeness

means
component

degree
function

implementation
information

software

48 Self Descriptiveness

system
ability

amount
code

concern
factor

function
implementation

information

49 Conciseness

quality

 158

Def.
ID

Attribute Def. Concepts
From Ontology Domain

software
minimum

component
design
ease

incorporation
storage
system
usage

capacity

50 Extendability

presence
ability

accuracy
capability

context
design

functionality
object

operator
product
software
storage

time
utilization

51 Effectiveness

Minimum
amount

capability
function
memory
product
program

52 Resource Utilization

software
ability
data

degree
environment

extent
hardware

information
measure
software
system
user
work

53 Compatibility

exchange
application
computer
computing

data
environment

hardware

54 Independence

operating

 159

Def.
ID

Attribute Def. Concepts
From Ontology Domain

software
structure
system

architecture
component

concern
definition

degree
design
factor

implementation
manner
quality

software

55 Simplicity

system
capability
component

concern
data

degree
efficiency

effort
factor

functionality
performance

program
quality

56 Expandability

Software
application
component

degree
respect

software
system
means

57 Generality

nature
concern

ease
factor

manner
measure
program
quality

software
structure

understanding

58 System Clarity

people
extent

probability
software

59 Survivability

system
60 Verifiability access

 160

Def.
ID

Attribute Def. Concepts
From Ontology Domain

code
component

design
effort
extent

function
implementation

operation
performance

quality
scope

software
source

test
architecture

interface
testability

verification
degree

environment
operating

set

61 Repeatability
=

 Reproducibility

system
characteristic

degree
design

functionality
operating
portability

62 Conformance

Software
ability

amount
data

design
environment
information

measure
number

operating
rate

system
throughput

work
capacity

63 Capacity

demand
characteristic

developer
ease

period
product
software

64 Buildablitiy

system

 161

Def.
ID

Attribute Def. Concepts
From Ontology Domain

time
people
code

developer
documentation

ease
level

source

65 Readability

system
capability

context
effectiveness

product

66 Productivity

software

APPENDIX F

Relationships between each concept in the ontology domain and other concepts also
in the domain:

Table F.1: Each concept relationships with others in the ontology domain concepts.

ID Concept Other Concepts that have relationships with the first concept
1 ability Component, requirement, software, Modification, measure,

information, portability, factor, presence, portability
2 access Requirement, system, user, control, source
3 accessibility Requirement, system, user, control, source
4 accuracy Extent
5 adapt Characteristic
6 adaptability Maintenance
7 adaptation Environment, Software, Maintenance, Modification
8 amount Function, resource, software, Output, computer, Number,

memory, minimum, computing
9 applicability Modification, requirement, system ,user
10 application Modification, requirement, system ,user
11 architecture code ,design
12 attribute Software, system, requirement characteristic, function,

Effect, set, control, maintenance, relationship, source,
quality, meaning, means, portability, property,
responsiveness

13 availability Probability
14 capability Environment, performance, requirement, respect
15 capacity Function, System, Requirement, Software
16 change Environment, software, system, Mean, context, risk, nature,

means
17 characteristic Attribute, design, test ,user, Efficiency, quality, control,

Adapt, utility (ization), portability, testability, property
18 code Environment, performance, requirement, portability,

 162

ID Concept Other Concepts that have relationships with the first concept
Storage, reliability, testability, architecture, source

19 component Data, effort, function, software ,system, Environment,
program, ability, Verification, impact, people, variety

20 computer Amount, system
21 computing Amount, system
22 concern Software, system, source, factor
23 context Change
24 control Access, attribute, characteristic, data, degree, operation,

user, accessibility
25 data Performance, degree, component, Component, degree,

performance, requirement ,software, system, user,
Information, control, structure

26 definition Notation, Implementation, level, notation, meaning, means
27 degree Data, effort, function, software ,system, information, control,

portability, relationship, notation, manner, level
28 demand Object, rate
29 design Software, system, requirement characteristic, function,

response, structure, architecture
30 develop Ease, product, software
31 developer Ease, product, software
32 development Ease, product, software
33 documentation Software, system, information, meaning, means,

understanding
34 ease Environment, software, system, Develop(er), failure, idea,

maintenance
35 effect Attribute, resource, system, user
36 effectiveness Efficiency, Quality, Program, Function, Factor
37 efficiency Characteristic, memory, effectiveness
38 effort Performance, degree, component, requirement ,software,

system, user, Testability
39 environment Component, requirement, software, Operate(ion), ease,

change, Capability, code, Hardware, purpose
Freedom, uniform, adaptation

40 error Maintenance, measure, precision, program, requirement,
system

41 exchange Information
42 express Probability
43 extent software ,system, Resource, specification, implementation,

probability, Scope, accuracy, testability
44 factor Ability, concern, quality, software, effectiveness
45 failure Ease, product, software, probability
46 freedom Environment, risk
47 function Attribute, design, test ,user, Performance, degree,

component, amount ,state, probability, relationship,
minimum, capacity, effectiveness, responsiveness

48 functionality Attribute, design, test ,user, Performance, degree,
component, amount ,state, probability, relationship,
minimum

49 hardware Environment, software
50 idea Ease

 163

ID Concept Other Concepts that have relationships with the first concept
51 impact Maintenance, component, system, interval
52 implementation Extent, notation, definition, respect
53 incorporation Change, requirement
54 information Ability, data, degree, documentation, exchange, object,

software, system
55 interface Software, Verification
56 interval Time, Period, impact, minimum
57 level Performance, Degree
58 maintenance Error, Adaptability, attribute, ease, impact ,state, adaptation
59 manner degree, modification, quality, usage
60 mean Change
61 meaning Definition, Attribute, Documentation
62 means Change, Definition, Attribute, Documentation
63 measure Ability, requirement, response, error, structure, people
64 Meeting (meet) Modification, performance, response
65 memory Amount, efficiency, time, usage, storage
66 minimum Amount, function, resource, software, interval
67 modification Ability, requirement, Application, applicability, understand,

Product, software, system, meeting, relationship, manner,
adaptation , understanding

68 nature Change, utility
69 notation Definition, degree, implementation, quality, uniform
70 number amount ,specification, testability
71 object Information, demand
72 objective Information, demand
73 operating Environment, software, system, control, variety
74 operation Environment, software, system, control, variety
75 operator Environment, software, system, control, variety
76 output Amount, system, respect
77 people Risk, Component, measure
78 performance Data, effort, function, software ,system, Capability, code,

meeting, probability, respect, level
79 period System, time, interval
80 portability Ability, Program, Software, Attribut e, utilization
81 precision Requirement, service, error
82 presence Ability, usage
83 probability Availability, express, extent ,failure, function, performance,

program, time, Ability, characteristic, code, degree
84 product software ,system, Level, modification, Develop(er), failure,

relationship
85 program Component, requirement, software, probability, error,

effectiveness, portability, responsiveness, utilization
86 property Characteristic, Attribute, Software
87 purpose Environment, software
88 quality Characteristic, notation, manner, factor, Attribute,

effectiveness
89 rate Throughput, demand
90 relationship Attribute, degree, function, modification, product
91 reliability Code

 164

ID Concept Other Concepts that have relationships with the first concept
92 requirement Attribute, design, test ,user, Data, effort, Environment,

program, ability, Capability, code, Modification, measure
Application, applicability, understand, Service, access,
precision, throughput, error, respect, incorporation,
accessibility, capacity, understanding

93 resource Extent, amount ,state, Effect, set, Usage, usability, minimum
94 respect Capability, implementation, output, performance,

requirement
95 response Design, measure, meet ,system ,throughput, time,

responsiveness
96 responsiveness Response, function, software, Attribute, program, time
97 risk Change, freedom ,people, software
98 scope Extent
99 service Requirement, system, user, precision,
100 set Attribute, resource, system, user, Verification
101 Setting Attribute, resource, system, user, Verification
102 software Attribute, design, test ,user, Performance, degree,

component, Data, effort, Environment, program, ability,
Extent, time ,product, Operate(ion), ease, change, amount
,state, Level, modification, Develop(er), failure, portability
Documentation, concern, Hardware, purpose, information,
interface, structure, minimum, risk, factor, adaptation,
capacity, property, responsiveness, utilization

103 source Access, attribute, code ,concern, accessibility
104 specification Extent, Number
105 state Function, resource, software, maintenance, uniformity
106 storage Code, memory
107 structure data ,design, measure, software, understand, understanding
108 system Attribute, design, test ,user, Performance, degree,

component, Data, effort, Extent, time ,product, Operate(ion),
ease, change, Application, applicability, understand, Level,
modification, Service, access, Effect, set, Output, computer
Documentation, concern, information, response, error,
impact, work ,period, accessibility, capacity, computing,
understanding, uniformity

109 test Software, system, requirement characteristic, function
110 testability Characteristic, code ,effort ,extent, number
111 throughput Response, Rate, requirement, time
112 time Period, software ,system, probability, response, throughput,

memory, interval, responsiveness
113 understand Modification, requirement, system ,user, structure,

Documentation
114 understandability Modification, requirement, system ,user, structure,

Documentation
115 understanding Modification, requirement, system ,user, structure,

Documentation
116 uniform Environment, notation, uniformity
117 uniformity State, uniform, System
118 usability Resource
119 usage Resource, memory, manner, presence,
120 user Software, system, requirement characteristic, function, Data,

 165

ID Concept Other Concepts that have relationships with the first concept
effort, Application, applicability, understand, Service, access,
Effect, set, control, accessibility, understanding, utilization

121 utility Characteristic, nature
122 utilization Software, User, Program, Portability
123 variety Component, operation
124 verification Component, interface, set
125 work System

	MethontologyLifeCycle
	OLE_LINK1
	OLE_LINK10
	OLE_LINK2
	OLE_LINK3
	OLE_LINK4
	OLE_LINK5
	OLE_LINK6
	OLE_LINK7
	OLE_LINK8
	OLE_LINK9

