TowardsAn Ontology for Software
ProductQuality Attributes

By

Ahmad Abdelhafiz Samhan

Faculty of Information Technology
Middle East University for Graduate Studies

Supervisors

Dr. Mohammad A. Al Fayoumi
Faculty of Information Technology
Middle East University for Graduate Studies

Dr. Ahmad K. A. Kayed

Software Engineering
Applied Science University

A thesis submitted in partial fulfillment
of the requirements for the degree of Master oé S

in Computer Information Systems

Amman, Jordan
May, 2008

Lalad) cibaad jall Jacs) (3 pdl) dnala
s ol 18

e gt 29 50 Lalall el 5all e g1 (5 538 Al (g 9l ¢ laas Budal) a0 saaf Ui
(o8 38U Claglaill Cra Lgalla die Gl SY1 5 cilisell o il gal) of cilasall b
Axalall
gl

<7 3N
Cwl JOSfTY &

Middle East University for Graduate Studies

Authorization Statement

I, Ahmad Abdelhafiz Samhan, authorize the Middle East University for
Graduate Studies to supply copies of my thesis to libraries, establishments or

individuals upon their request, according to the university regulations.

2\/5/2008

Committee Decision

This Thesis (Towards an Ontology for Software Product Quality
Attributes) was successfully defended and approved on May 21°* 2008.

Examination Committee Signatures

Dr. Mohammad A. Al Fayoumi

Associate Professor, Department of Computer Information Systems.
Middle East University for Graduate Studies.

Dr. Musbah Aqel
Associate Professor, Department of Computer Systems.

Middle East University for Graduate Studies.

Dr. Ahmad Kayed

Assistant Professor, Department of Software Engineering.

Applied Science University.

Dr. Jehad Al-Sa’di
Associate Professor, Department of Computer Science.

Arab Open University.

Declaration

I do hereby declare the present work has been carried out by me
under the supervision of Dr. Mohammad Al Fayoumi and Dr.
Ahmad Kayed and this work has not been submitted elsewhere for
any other degree, or any other similar title.

Date: 2\ /6/200% _ O

Ahmad Abdelhafiz Samhan)
Department of Computer Information System
Faculty of Information Technology

Middle East University of Graduate Studies

DEDICATION

| dedicate this work to my Father, Mother, Brotheasd Sisters, for their
love and Support, they were the light in my acadgrath and without them
nothing of this would have been possible.

| also dedicate this work to my Father, Mother, Bers, and Sister in
Law for their kind and patience.

And a special dedication to the rose of my life fiswycée Suhair for her
love, patience, and support.

ACKNOWLEDGMENT

| would like to express my sincere appreciatiorDro Mohammad Al-
Fayoumi and Dr. Ahmad Kayed for their guidance,pewpand motivation
through out my Master’s Thesis.

| would further like to acknowledge all of the Imfisation Technology
faculty members at the Middle East University fara@uate Studies and |
am particularly grateful to Professor Dr. Mohammabthaj Hassan for
helping and encouraging my efforts during the theasgrk.

Also, | would like to especially thank my brotherovtmmad Samhan
for supporting me during the whole time of my stundyand research.

Thank you All.

Vi

CONTENTS

AUTHERIZATION FORMo e e e, I
COMMITTEE DECISIONt e e e e e et et et e e Il
DECLERATION . .ot e e e e e e e e Il
DEDICATION. ...ttt ettt ettt e e e e e e e e s e e e e e e e e e e e e e e e Y
ACKNOWLEDGMENT ...t erene e \%
LIST OF FIGURES. ..o e e IX
LIST OF TABLES. ... e Xl
GLOSSARY OF ACRONYMSot Xl
AB ST RACT e e XMl
ABSTRACT IN ARABIC. ...t e XV
CHAPTER 1: INTRODUCTION.ttt it e e e e e e e e e e 1
1.1 OVERVIEW ... e e e e 1
1.1.1 THE DISCIPLINE OF SOFTWARE ENGINEERING...............ccoviiiin 1
1.1.2 SCOPE OF SOFTWARE QUALITY ... e e 3
1.1.3 THE ROLE OF ONTOLOGY ... ottt e 5
1.1L.3.IWHAT IS AN ONTOLOGY ...ttt e e e e e e 5
1.1.3.2WHY DEVELOP AN ONTOLOGYcciiiiiii i e, 5
1.1.3.3WHAT IS IN AN ONTOLOGYeiiiiiie e e 7
1.1.3.4LEVELS OF ONTOLOGY ... ottt et e et e 7
1.1.3.50NTOLOGY DEVELOPMENT PROCESS AND LIFE CYCLE............... 8
1.2 PROBLEM DEFINITION.o e e e e e e e e 10
1.3 OBIECTIVES . .. e e 11
1.4 MOTIVATION OF THE STUDY ... e e e 12
1.5 REQUIREMENTS ... i e e e 12
1.6 SIGNIFICANCE OF THE STUDY ..ottt e e 12
1.7 CONTRIBUTION OF THE THESIS.......ccoii e e 13

4

1.8 METHODOLOGY ...ttt it it e e e e e e e e e 14

1.9 SOFTWARE USED IN THE WORK ...ttt ittt e e 15
L0, KAON Lt e e e e 15
1.9.2 TEXITOONIO. ...t e e e e e e e e e e e e et e e e et e e e e 16
1.9.3 MS ACCESS AND MS VISIUAL BASIC TOOLS.......cooiiiiiiiieeieeins 18
1.10 HESIS ORGANIZATION ittt e e et e e e e e e e e e 18
CHAPTER 2: RELATED WORK ...0iiiit ettt e e e e e 20
2.1 GENERAL RELATED WORK. ...ttt ittt et et e e e e e Q
2.2 SPECIFIC RELATED WORK ... ottt ittt st et e e e e 23

CHAPTER 3: BUILDING ONTOLOGY DOMAIN CONCEPTS... .. 43
3.1 PARING TEXT CORPORA FOR SOFTWARE PRODUCTUALITY
ATTRIBUTES DOMAIN.ot e e e e 43
3.2 EXTRACTING ONTOLOGY DOMAIN CONCEPTS......coiiiiii 44
3.3 ONTOLOGY EVALUATION PROCESS.......ci i g
3.4 THE COVERAGE PROCESS AND THE EVALUATION RESUST.................. 54
3.5 ENHANCING ONTOLOGY DOMAIN CONCEPTS.......coiiiii i e, 57
3.5.1 THE ENHANCING IDEA AND PROCESS........ccciiiiiiii e 57
3.5.2 EVALUATING THE NEW SUGGESTED ONTOLOGY DOMAIN
CON CE PP T S . 59
CHAPTER 4: EXTRACTING ONTOLOGY DOMAIN RELATIONSHIPS 62
4.1 EXTRACTING RELATIONSHIPS BETWEEN CONCEPTScoiiiiiii i 62
4.2 A LATTICE REPRESENTATION OF THE RELATIONSHIPS.............ccoeneein. 67
4.3 LISTING EACH CONCEPT RELATIONSHIPS WITH OTHRS IN THE
ONTOLOGY DOMAIN . ..ottt e e e e e e e e e 71

VIII

CHAPTER 5: CONCLOSIONS AND FUTURE WORK.......c.coiiiiit e 76

5.1 CONCLUSIONS. .. .o e et e e e e 76

5.1.1 PRESENTING FINAL RESULTS. ... e e e 77

5.1.2 OUR CONTIBUTION.ottt e e 77

5.2 FUTURE WORK ...t e e e e e s 78
REFERENGCES.ottt ee e e e e e e e e e aenens 80
APPENDICES...... ..ottt 89
APPENDEX A ot 89
APPENDIX B 119
APPENDIX €.ttt 140
APPENDIX Do ettt e e 141
APPENDIX E ... 143
APPENDDX Fo et e a e 161

LIST OF FIGURES

Figure 1.1: Methontology ontology development process lifeleycC.............coceeiiiiiiienen.e. 8
Figure 1.2: Steps of the methodology of the study. ..., 15
Figure 1.3: An overview of the KAON Tool Suite and its main gooments; KAON, KAON

Extensions and TeXtTOONTO. ... ettt et e e e e e 16
Figure 1.4: The Front-end of the TextToOnto tool as an extamsf KAON tool................. 17
Figure 1.5: Part of the algorithm used in the Ms Visual Tool..............ccooii i, 18

Figure 2.1: The McCall quality model, organized around thrgeets quality characteristics.....24
Figure 2.2: McCall's Quality Model illustrated through a hiechy of 11 quality factors (on the
left hand side of the Figurelated to 23 quality criteria (on the right handiesof

L0 TS o [0 T P 25
Figure 2.3: Boehm's Software Quality CharacteristicsS Tree......... couwmw e eenieriieievenannns 27
Figure 2.4: Principles of Dromey’s Quality Model..........cccoiiiiiiiii i e, 30

Figure 2.5: The ISO 9000:2000 standards. The crosses andsimnolicate changes made
from the older ISO 9000 stauddarthe new ISO 9000:2000 standard........... 31

Figure 2.6: The 1ISO 9126 quality model............ccoii it e 32

Figure 2.7:1SO 9126: Software Product Evaluation: Quality @leteristics and Guidelines for

BB LS. e 34
Figure 2.8: Maturity Levels of SW-CMM. ... e e e e, 40
Figure 2.9: The staged CMMI-SW/SW representation.......cccce.ooeiiiieviiiiiiiiinieaae e, 41
Figure 2.10: The continuous CMMI-SW/SW representation.c.vvveveviveineciiiennnns. 42
Figure 3.1: Creating a Corpus using TextToONto TOOl. cccccvvviiiiiiiiiii i, 44
Figure 4.1: Part of the resulted relationships using TextT@Qaol......................co v 62
Figure 4.2: Using TexToOnto results as an input for the sddd® Access toal................ 63
Figure 4.3: Part of the resulted relationships groups fromgishe second toal................64

Figure 4.4: Group 1 relationship Lattice representation: Osedl Relationship................... 67

Figure 4.5: Group 2 relationship Lattice representation: Tvewéls Relationship............... 68
Figure 4.6: Group 7 relationship Lattice representation: Oaedl Relationship................. 68
Figure 4.7: Group 10 relationship Lattice representation: & Qavel Relationship............. 69
Figure 4.8: Group 22 relationship Lattice representation: Twgwel Relationship................. 69
Figure 4.9: Group 28 relationship Lattice representation: Twwel Relationship............. 70
Figure 4.10: Group 33 relationship Lattice representation: €Hrevel Relationship........... 70

Xl

LIST OF TABLES

Table 2.1: Comparison between criteria/goals of the McCall Boehm quality models......... 28
Table 2.2: Comparison between criteria/goals of the McCatlieBm and 1SO 9126

QUANTEY MOAEIS et e e e e e e 33
Table 2.3: Maturity levels with corresponding focus and kegqess areas for CMM.......... 40
Table 3.1:the resulted 292 concepts (0Ut Of 2750) ... cccumeiririii it e 46
Table 3.2: The suggested 100 ontology domain CONCEPLS. . . envereneeriierineensiennnnnn. . 48
Table 3.3: SWPQAs and their definitions from various sounafsrences........................ 50
Table 3.4:Coverage ProCess RESUIS.cc.uie ittt i s e e ve e ve e e e e 54
Table 3.5: The top listed 25 uncovered chosen CONCEPtS i iviiiiiiiie i e 58
Table 3.6: The new 125 Ontology domain concepts liSt..........ccooviii i i, 58

Table 3.7: The Coverage process results using the new s@ghesttology domain

(o0} o =7 o 53 59

Table 4.1: The resulted relationships between groups of ouoldgy concepts after

1L 1T 64

Table 4.2: Each Ontology domain concept relationships witieotoncepts in the domain..71

Table A.1: The complete common SWQPAs extracted from diffesenrces and their

EfiNItIONS ... e e e e e e 89
Table B.1: The complete results from the ontology evaluad@p.................ccoceevvene. 119
Table C.1: The final suggested ontology domain concepts list.............cccooveiiiiiniinnnss 140
Table D.1: Relationships between groups of concepts in thel@gy domain................... 141
Table E.1: Each SWPQA definition concepts from our ontologyngin concepts.............143
Table F.1: Each concept relationships with others in the logipdomain concepts........... 161

Xl

GLOSSARY OF ACRONYMS

API

BWW Model
CMM |

DoD

FURPS
GQM

IBM

IEEE
IEEE/EIA

ISO/IEC

ISO-JTC1
KAON
MTBF
NATO
PSM

QA

RDF

SEI
SPICE
SQA
SQuaRE
SWE
SWQ
SWPQAS
UML

VIM
W3C
XML

Application Programming Interface.

Bung_Wand_Weber Model.

Capability Maturity Model Integration.

Department of Defense.

Functionality, Usability, Reliability, PerformancBupportability.
Goal, Question, Metric.

International Business Machines Corporation.

Institute of Electrical and Electronics Engineers.

Institute of Electrical and Electronics Engineetsfffronic Industries
Association.

International Standards Organization / Internati@ectrotechnical
Commission.

International Standards Organization/ Joint Teddr@ommittee 1
KArlsruhe ONtology.

Mean Time Between Failures.

North Atlantic Treaty Organization.

Practical Software Measurement.

Quality Assurance.

Resource Description Framework.

Software Engineering Institute.

Software Process Improvement and Capability dEteatian.
Software Quality Assurance.

Software Product Quality Requirements and Evalunatio
Software Engineering.

Software Quality.

Software Product Quality Attributes.

Unified Modeling Language.

International Vocabulary of Basic and General Terms

World Wide Web Consortium.

Extensible Markup Language.

Xl

ABSTRACT

Towards an Ontology for Software Product Quality Atributes
By
Ahmad AbdelHafiz Samhan
Supervisors
Dr. Mohammad A. Al Fayoumi
Dr. Ahmad K. A. Kayed

This work focuses on studying the most comi8oftware Product Quality Attributes
(SWPQASs) concepts and terminologies that currenP@Ws proposals present, in order
to extract a conceptualization for the SWPQAs domdfe collected and studied many
documents and reports that discussed SWPQAs in ¢batents, we extracted, studied,
evaluated, and enhanced an ontology domain con@reptsthe most common concepts
used in the semantic of the collected documentserLae extracted and presented
general relationships between the suggested ontalmgcepts. Those presented concepts
along with the extracted relationships are intr@dlias an ontology that is considered as
a first in the specific domain of SWPQAs. We corsghthe thousands of concepts used
to define the most common discussed and studiedC@A8®Mto a smaller set of concepts
consists of 125 concepts, with a coverage percerftaghe studied domain of 80%, this
presented ontology can be used by software engineesearchers, practitioners, and
stakeholders as a common agreement of SWPQAs pdwiosvledge in order to solve
the inconsistency problem in the semantic betwbemtwhile defining or using any of
the definintions of the discussed SWPQAs. In additio this, our ontology provides a
base to evaluate any related presented definitemastic for one of the studied
attributes.

Key Words:
Conceptualization, ontology, Software Quality Aitries, Semantic inconsistency,
Relationship Lattice, ontology Text Corpus. Coverdgchnique, ontology Evaluation.

XV

el B3 g pailadd gl gl gy gad
KIK3!
Olaaw Jaidal) Ae daa
) i)
sl daaa) gisal)
LS saaf) gisalf

«LL;M)J\DAP&JM‘;J\«;M\«_AA&@J*QA&»UA‘;;)Sﬁhﬂbu)&)my

oAt Liad lmayall 335 aibiad L gacae 8 cauliil Al G350 5 5)l (e ayaall
Al A e el gD ds e aplieS Leapiy anpliall Gpaas andis dul jo
2285 5 Al a5 paadlainly il I3 amy Aranall (3 gl 5 oyl 8 deadiosall g Aailil) asaliall
Laladl ClEMall diLaYU dadiall aliall o2 = il)iV anlie Gn dale e
YT il L 28] el 30 58 (ailiad Jlae (8 s il J5lS e Lgiy aa i)
S Gl g Al 8 Al glaid) syl Baga palbad (i i B Aeddiual) asslidll
Gl ya b Aasdiball aaliall Ldari iy g ¢ psede 125 (0 0 SE aaliall (e jraal de gana
B (e padid il (Kay dadiall a1 55V 03 ¢ %80 s e Gl il 3258 pailiad
Laladind (S Cany L A8le 4l padd gl cmmaslaall ¢ Cpfialidle Cilima sl igal
VAN apladl Jlee o pleall ade A6 day @A aY) (g laaYl 4dle (S 48 jra puiaS
O Sl Ayl Sl sl Basa e e Al A g el cliiall (e ol iy a8 Aeddiall
il all 33 s ailiadd 40 25 oy 2 gl anii) (ululS axsiiny o (Sae adiall a5l Y]

Ao 5yl

XV

CHAPTER 1

INTRODUCTION

This chapter reviews the thesis. A brief lgsokind about the field to which the thesis
subject belongs is given; Software Engineering ($V@6ftware Quality (SWQ), and the
field of ontology and its role. Then we give anddsbout our research problem and how
it has been addressed. We end the chapter by giviognation about tools used in the
work, our own contribution, and the outline of thesis chapters.

1.1 OVERVIEW

Recently, Quality Assurance (QA) concept has beielely developed to be included
in many of our life existing fields; financial, iodtrial, trading, etc. Software Quality
Attributes (SWQAS) have been created as a matteppfying the QA concept on the
results of software development process, to fitghreducts with the organizational and
global market standards and goals and to providentwith a competitive advantage
value. Software quality is composed of many attabusuch as portability, usability,
reliability, modularity, and other software qualigiated attributes.

During the last years, many researchers (indiveluaid groups) discussed and
presented software attributes in their works whsbbw that till now there is a lack of
consensus on the semantic of many of conceptsandnblogies used in the field of
SWQAs. According to this and in more specific oesearch is focusing on studying the
most common SWPQAs concepts and terminologies ¢bhaient SWQAs proposals
present to extract a conceptualization for the SWQ&fter that we will study this
conceptualization in order to build an ontologyttpeoduce a coherent and consistent
semantics for SWQAs concepts and terminologies ¢hat be used by SW engineers,
researchers, practitioners, and stakeholders asnanon agreement of SWQASs pool of
knowledge. Before defining my research problem,rieflintroduction to the related
fields of this research is given.

1.1.1 THE DISCIPLINE OF SOFTWARE ENGINEERING

Since the dawn of computing in the 1940s, the dseomputer software has been
rising enormously, Nowadays, computer software phagny important roles, and
considered as a way for delivering a product athély are the basis of controlling
operating systems, networks, and other applicatiangl also considered as products
themselves [97]. They serve the human kind in alnadisof the fields of his life;
government, banking and finance, education, tramapon, entertainment, medicine,
agriculture, and law [106].

Computer software is a general term used to desailcollection of computer
programs, procedures, and documentations that rperBbme tasks on a computer
system [120]. The increasingly development of smeand technology makes the need
for software an important issue especially forwafe products that is typically a single
application or suite of applications built by atsafre individuals/companies to be used
by many customers, businesses or consumers [21].

Software products are categorized under two mged, generic products; which are
stand alone products developed to be used by astoroer in the market, and
customized products; which are developed especiallg customer or to a group of
customers [111].

The evolving of software development makes deve®tske a more systematic and
planned way to develop their software productsivane Engineering revealed in order
to help developers to do so. The IEEE Computereédpdiefines software engineering as:
The application of a systematic, disciplined, qifeaftle approach to the development,
operation, and maintenance of software; that esattplication of engineering to software
[54].

The term software engineering first appeared ire |1&050s and early 1960s.
Programmers have always known about civil, elezktriand computer engineering and
debated what engineering might mean for softwatee NATO Science Committee
sponsored two conferences on software engineenii®@68 and 1969 [99], which gave
the field its initial boost. Many believe that teesonferences marked the official start of
the profession of software engineering.

At the early decades of software engineering réwvgalt was motivated to face the
Software Crisis problem appeared at that time,arebers and practitioners tried every
possible way to solve this crisis (Cost and buadgetrun, property damage, and software
life and death), In 1987, Fred Brooks publishedMoeSilver Bullet [18] article, arguing
that no individual technology or practice would eweake a 10-fold improvement in
productivity within 10 years.

Software engineering had been widely affected ey dppearance of the Internet,
programmers and developers were required to dehl wany new revealed issues and
merge it within their developed software (imageaps) animations, web browsers usage,
etc). Simpler and faster methodologies that deveslapinning and inexpensive software
products have been introduced to small organizatiororder to satisfy their demands,
some of these methodologies are: Rapid prototypigle development, Extreme
programming, and others [99].

The need for computer software has grown draméticdiousands of billions of
dollars are spent on the development of computwvace. Software products provide us
with a more productive, safer, and flexible workiagvironment to help us to be more
successful, accurate, trustable, efficient, andipcove [109]. Despite these successes,
Computer Software and Software Engineering face ymiagy challenges such as

heterogeneity challenge, delivery challenge, trlstllenge, cost challenge, timelines
challenge, and quality challenge [111]. Researchers practitioners are continuously
searching to solve these challenges, they solvete sif them, and searching to solve
others. However this is a good characteristic & #volving Software Engineering
discipline.

1.1.2 SCOPE OF SOFTWARE QUALITY

Computer hardware and software are widely disteund used in modern society.
The evolving manner of business, hardware and tdoby, the appearance of the world
wide web, and other revealing factors make useesl medividuals and interconnected
computers, as well as sharing and exchanging irdtbom using a global information
structure, processing algorithms and techniquesage capacity and allocation dealing,
data search and retrieval methodologies, all thegels and more are being met with the
support of software.

This important role of software increases the ddpbiiity of human kind on them
especially because they are used in so many fiéltiss life. Because of that developers
are working hard to ensure not to be failed byrtldeiveloped software by producing
reliable and trusted software.

To be trusted and reliable, software must have Seaweires and characteristics that
satisfy what the customers want, this leads uséoquality world. The term quality is
one of the most discussed terms these days. Athefresearchers agree that quality is
considered as a key business factor, as a mattaciothey considered not including it
will compromise the business. Here are some ofityudfinitions as presented by some
of quality specialists:

 Quality: The totality of characteristics of an éntihat bear on its ability to satisfy
stated and implied needs [11].

* Dr. Barry Boehm [14] thinks of quality as: “Achiexg high levels of user
satisfaction, portability, maintainability, robusss, and fitness for use".

» Watts Humphery [47], of the software engineeringtitnte, presented the quality
as: "Achieving excellent levels of fithess for usmnformance to requirements,
reliability and maintability”.

* Bill Perry [47], head of quality assurance insetutas defined quality as: “High
levels of user satisfaction and adherence to reménts”.

Quality is a general term that can be applied ostipanything in any field. As a
consequence of that, quality is applied more spatly on software products under the
term of software quality or software quality asswe

Conformance to specifications and meeting custemmegéds are two major corners
when discussing the definition of software qud]it§], which is defined as a planned and
systematic set of activities built into softwareetasure its quality. It consists of software
quality assurance, software quality control, anftisre quality engineering.

As an attribute, software quality is defined as The degree to which a system,
component, or process meets specified requirementg?2) The degree to which a
system, component, or process meets customer onesds or expectations [54].

The aimed features of quality differ from custon@rcustomer. Factors differ upon
the required requirements of the system. Qualitgarhputer software must be planned
from the beginning of software developing. So,ahmot be existed at the moment it
needed without planning, it must be kept in mind emery phase of software
development. Before all of that, quality goals aatttibutes must be clearly defined,
effectively monitored, and rigorously enforced.

As a consequence of the need for a planned gudi@yterminology of software
quality assurance has appeared, ESA PSS-05-0 defo@tiware quality assurance
(SWQA) as a ‘Planned and systematic pattern ofaations necessary to provide
adequate confidence that the item or product camgoto established technical
requirements' [37]. SWQA does this by checking {Ba}:

* Plans are defined according to standards.
* Procedures are performed according to plans.

Customers demand quality in the applications thsg, land without making the
customers happy from the software they own or theepusiness will not survive. There
are several reasons why business should be coxcertrequality [42]:

* Quality is a competitive issue now.

* Quality is a must for survival.

» Quality gives you the global reach.

* Quality is cost effective.

* Quality helps retain customers and increase profits
* Quality is a hallmark of world-class business.

As we mentioned earlier, software quality assuraceene as a planned and
systematic pattern to ensure the existence of tguldatures to be in the developed
product.

1.1.3 THE ROLE OF ONTOLOGY

“What's the use of their having names” the Gnatdsaf they won’t answer to them?”
“No us to THEM,” said Alice, “but it's useful to thpeople who name them, | suppose, if
not, why do things have names at all?”

By Lewis Catrroll, through the looking Glass

1.1.3.1WHAT IS AN ONTOLOGY

ontology as seen from philosophical perspectivéheés science of studying beings
(studying of what is, of the kinds and structuréslgects, properties, events, processes
and relationships in every area of reality), tleisrt which was coined in 1613 included in
many philosophical areas from the metaphysics abtéite to the object-theory of
Alexius Meinong [108].

Philosophical ontology handles the precise utilmatof words as descriptors of
entities; it gives an account for those words tielong to entities and those that do not
[35]. In both Computer Science and Information Bcé an ontology is a representation
of a set of concepts within a domain and the @stiips between those concepts. It is
used to reason about the properties of that doraachused to define the domain [14].

1.1.3.2WHY DEVELOP AN ONTOLOGY

Recently, the term ontology has widely includedtie field of computer and
information science. When building frameworks faformation representation of data
and knowledge base systems, designers use a wiggy\af terms and concepts. Studies
showed that there is an inconsistency problemensgmantic of the terms that are used,
e.g. identical databases labels are used but \fiitreht meanings, and also the same
meaning expressed using different names. Methodst rha found to resolve the
terminological and conceptual incompatibilities TLOANn ontology in this context is a
dictionary of terms formulated in a canonical synand with commonly accepted
definitions designed to yield a lexical or taxonoati framework for knowledge-
representation which can be shared by differeatrmétion systems communities [107].

Ontologies are used in variety of current fieldstificial intelligence [45], Software
engineering [92], the Semantic web [89], Biomedicdbrmatics [4] , Library science
[45], Information architecture [92], Ecommerce anitstandard [46], and other fields ,
as a form of knowledge representation about theadtoor some part of it.

In this era the presence of consistent global mé&iion has become an important
issue. In every domain researchers and practisomeed to share information to conduct
their works in a professional manner. To do thad norrect way inconsistencies between
terms and concepts must be reduced. Ontology gefirc@mmon vocabulary for them; it
contains machine-interpretable definitions of basiencepts in the domain and
relationships among them

From studying the role of ontologies in differemokvledge domains, many studies
showed that creating and developing and also emtgnontologies has become
important to many fields and areas of domain kndgde because of its approved
advantages effects when using them in the fielth®&tudied knowledge domain.

Many reasons support our recommendation of creatil@yeloping, and using
ontologies, some of them are:

» Ontologies support applications (especially distilal ones) to exchange
information and to process transactions indepehdfi].

* Ontologies make the reusing of a domain knowledgsiple [31].

* Ontologies provide semantic-aware information syste which can support
enterprise, government, and personal activitidseasame time [31].

» Ontologies can share different applications [90].

» Ontologies can use other ontologies [90].

» Ontologies can analyze, support, and enhance ddmainledge [90].

* Ontologies are used as a semantic support repatieentor many areas [65].

* Ontologies are used to capture the domain infoonathdependently of any
application requirements [66].

Ontology shows enormous potential in making soféenaore efficient, adaptive, and
intelligent. It is recognized as one of the areagctv will bring the next breakthrough in
software development. The idea of ontology has besinomed by visionaries and early
adopters.

Since 1991, the semantic Web initiative, lead byOQ/NBas changed the ontology
landscape completely, through the initiative, resdeers and developers join forces to
provide standard semantics markup languages basedMi, ontology management
systems, and other useful tools. Also, the Web igesv interesting applications of
ontology that are critical to daily life such asas#h and navigation. In addition, people
rediscover the value of ontology in other importapplications such as information and
process integration [73, 74].

1.1.3.3WHAT IS IN AN ONTOLOGY

Different knowledge representation formalisms aodesponding languages exist for
the formalization and implementation of ontologi€ach of them provides different
components that can be used for these tasks. Howteey share the following minimal
set of components [20]:

» Classesrepresent concepts, which are taken in a broadesebiasses in the
ontology are usually organized in taxonomies thloughich inheritance
mechanisms can be applied.

* Relationshipsrepresent a type of association between concepteeoflomain.
They are formally defined as any subset of a proditio sets, that is: R = C1 x
C2 x ... x (. ontologies usually contain binary relationshiplse first argument
is known as the domain of the relationship, ands#eond argument is the range.

* Instancesre used to represent elements or individuals ionaology.

Ontology is an essential data structure for coneding knowledge [117]. It is
commonly used as a fundamental structure for cegguknowledge by analyzing
relevant concepts and relationships in the are@musearch [86]. It depends mostly on
the analysis of textual data over a collectionest tdocuments by using natural language
processing to do that and more such as obtainimgaisiéc graph of a document;
visualization of documents; information extractiaa find relevant concepts; and
visualization of context of named entities in awoent collection [117].

1.1.3.4 LEVELS OF ONTOLOGY

Different authors like P’erez, Jones, StoRebert, Malka, and others have organized
ontology in their studies and reports into diffdri@vels [63, 90, 94, 95, and 100]:

Lexical, vocabulary, or data layérhe focus here is on concepts, facts, etc. that
ontology included, and the vocabulary used to rgrethese concepts.

Hierarchy or taxonomyAn ontology typically includes a hierarchical is-a
relationships, or subsumption relationships betwemrtepts.

. Other semantic relationship¥he ontology may contain other relationships
besides is-a relationship. This typically inclugdesasures such as precision and
recall.

. Context level. Ontology may be a part of a largellection of ontologies.
Another form of context is the application where tintology is to be used

. Syntactic level. The ontology is usually desedbin a particular formal
language and must match the syntactic requirendritsat language (use of the
correct keywords, etc.). Various other syntactiasiderations, such as the
presence of natural-language documentation, awpildiops between definitions,
etc., may also be considered.

. Structure, architecture, desidonlike the first three levels on this list, which
focus on the actual sets of concepts, instanckgjareships, etc. involved in the
ontology, this level focuses on higher-level desigoisions that were used during
the development of the ontology. This is primardy interest in manually
constructed ontologies. For some applications &l$o important that the formal
definitions and statements of the ontology are epamied by appropriate
natural-language documentation, which must be meé#umi coherent, up-to-date
and consistent with the formal definitions, su#icily detailed, etc.

Let us don’t forget that ontologies have been @&opénd played an important role in
different areas of Software Engineering fields gsytdo in other disciplines. They
provide a general framework reference of an agoeedepts and terminologies among
researchers, practitioners, and stakeholders, éhbgnce collaboration, communication,
and knowledge sharing, they represent all assumpti@lated to the entities and
relationships between them that belong to the ameder search, and finally they
contribute in reducing gabs between researchecscreated by conceptual confusion
[104,106,123]. Hence, building an ontology to captthe conceptualization knowledge
about Software Quality Attributes domain will ackeea significant successful solution
for the semantic conflicts problem the field susféom.

1.1.3.5 ONTOLOGY DEVELOPMENT PROCESS AND LIFE CYCLE

The ontology development process refers to theviies that are performed when
building ontologies. It identifies three categoradsactivities as shown in Figure 1.1.

Planification Control

‘ Cuality contral

- Technical activithes
I Specification I » I Conceprualization I ’l Formalization '[Implementation I ‘I Muaintenance] |

Support activities

Acquisition

Integration

Evaluation

—
-

— |

Documenitation ?_

Configuration Management

Figure 1.1: Methontology ontology development pescife cycle [22].

a) Ontology management activities

The management process activities are regdperfor the project management issues
[22, 24, 39].

1. Schedulingis the first activity of the ontology life cycl@he objective is to plan
the main tasks to be done, how they will be arrdreyed the required resources,
i.e. people, software and hardware.

2. Control is performed along the whole ontology life cyatearder to survey that
there are not undesired deviations from the ingciedule.

3. Quality is responsible for checking that the quality ofreanethodology output
(ontology, software and documentation) is assured.

b) Development Process:

The development process includes all the activitlest produce the successive
prototype refinement stages towards the desiredlagy. The process starts with
specification that produces an informal output tthen evolves increasing its level of
formality, as it passes through the different aséis, towards the final computable
model, which can be directly understood by the nmaecfR2, 24, 39]. It consists of:

1. Specification: The specification establishes the ontology pur@oskscope. Why
the ontology is being built, what are the intendesks and end-users. The
specification can be informal, in natural languageeformal, e.g. using a set of
competence questions.

2. Conceptualisation: The objective of this activity is to organize andusture the
knowledge acquired during knowledge acquisitiomgxternal representations
that are independent of the knowledge representatind implementation
paradigms in which the ontology will be formalisadd implemented next. An
informally perceived view of a domain is converietb a semi-formal model
using intermediate representations based on talamdrgraph notations. These
intermediate representations (concept, attribuddgtion, axiom and rule) are
valuable because they can be understood by domgerts and ontology
developers. Therefore, they bridge the gap betvpsaple's domain perception
and ontology implementation languages.

3. Formalisation: The goal of this activity is to formalise the coptieal model.
There are ontology development tools that autoralyicimplement the
conceptual model into several ontology languagesgusanslators. Therefore,
formalisation is not a mandatory activity.

4. Implementation: This activity builds computable models using onggio
implementation languages. There are many ontolagguages and they do not
have the same expressiveness nor do they reaseartteeway.

5. Maintenance: This activity updates and corrects the ontologye#ded due to the
necessities of the current development processhar @rocesses that reuse this
ontology in order to build other ontologies or apations.

c) Support Process:

The support activities are performed in parallekhwthe development-oriented
activities [22, 24, 39].

1. Knowledge Acquisition: First of all, the source knowledge must be captured
using knowledge elicitation techniques. The sourckésknowledge are listed
giving a description and specifying the elicitatitathniques used in each case.
The techniques used to extract knowledge from ssucan be partially automatic
by means of natural language analysis and mackaraihg techniques.

2. Evaluation: The evaluation activity judges the developed omigl®, software
and documentation against a frame of referenceol@gies should be evaluated
before they are used or reused. There are two loh@wvaluation, the technical
one, which is carried out by developers, and usaraluation.

3. Integration, merging and alignment: The integration activity is needed if other
ontologies are reused. There are to options whesn&siogy is integrated in the
current ontological framework. First, there is dagy alignment that consists in
establishing different kinds of mapping between dh#&logies, hence preserving
the original ontologies. Second, ontology mergingt toroduces a new ontology
from the combination of the input ontologies.

4. Documentation: Documentation details each completed stage andiptod

5. Configuration Management: Configuration management records ontologies,
software and documentation versions in order tdrobnhanges.

1.2 PROBLEM DEFINITION

Software quality attributes are one of the key ade@ issues that made significant
influences on Software Engineering. They play ayvienportant role in evaluating
software programs. They are considered by practt® and researchers to be the key
factor for producing high quality competitive softse products to the markets which is
enforced by the appearance of quality assuranaesss

As a matter of fact many initiatives such as IEEihdard releases, ISO/IEC releases,
SPICE (Software Process Improvement and Capabiitgrmination), and many quality
models such as McCall quality model, Boehm quatitydel, Dromey quality model, and
others, consider software quality attributes toameimportant element of reaching a
higher maturity levels while developing and manggine quality of software programs
[68, 94].

10

During the last decades many developments in mehysfhave affected how the
business is done, one of the most important affgctssues are the emerging of the
Internet and the Globalization, which had a hugecefon the individuals and the
organizations business processes. It created afaestiaring information and resources
widely as a matter of collaboration to competecedfitly in market. In order to achieve
this collaboration standards are created to proagieed terminologies and practices that
make participants avoid inconsistencies in thegifess [68].

However, researchers in this domain explained tiate is no single standard that
covers the area of software attributes in its iytabut rather there are many different
standards that focus on specific areas. Withownapcehensive framework considered as
a reference when managing these diverse standacdssistencies arise in the attributes
concepts and terminologies [63].

Recently, a lot of efforts from researchers anchddeds institutes are done to
manipulate the symptoms that software quality gisoe suffers from as it is believed a
young discipline. Software quality attributes captse principles, and terminologies are
considered by those researchers and institute tim la stage that they are still being
defined, consolidated, and agreed [68].

One way in regard to reach to a common solution dor introduced problem;
software product quality attributes concepts archinologies inconsistency among the
current presented studies and reports, is by reptieg the conceptualization of the
software product quality attributes domain by artolwgy in order to reach to an
understandable unified semantic framework for safeaproduct quality attributes.

So the question that points to itself: Can we cosdehe thousands of concepts used
in the semantic of the most common software proditibutes to a smaller set of
concepts, and introduce the result as an ontol@y?work is focusing on that. In our
thesis we studied and analyzed the presented sepddcuments, and proposals
concerned with SWPQAs and so we extracted theowsrconcepts, definitions, and
terminologies from them, after that a general retethips between the resulted concepts
were extracted and introduced as an ontology thas do0 produce a coherent and
consistent conceptualization framework for SWPQ&®liminate gabs and terminology
conflicts between software engineers, researclpeastitioners, and stakeholders when
using it as a common agreement software qualitijpates pool of knowledge.

1.3 OBJECTIVES

In this thesis we aim to:
» Extract concepts used in the semantic of the nmanhwn discussed SWPQASs.
» Extract general relationships between the extracoedepts.

* Introduce the extracted concepts and relationsésgpan ontology for the domain
of SWPQAs.

11

* Introduce ways in order to use the provided ontplég solve the semantic
inconsistency problem found in the field of SWPQAs

1.4 MOTIVATION OF THE STUDY

During the last years, a lot of efforts froesearchers and standards institutes are
done to manipulate the symptoms that SWPQAs diseiguffers from as it is believed a
young discipline.Software quality attributes concepts, principles] &rminologies are
considered by those researchers and institute® tim la stage that they are still being
defined, consolidated, and agreed. Many resear¢hetviduals and groups) discussed
and presented software attributes in their workkwkhow that till now there is a lack of
consensus on the semantic of many concepts aniht#ogies used in this field. This
motivated us to do our research in this field, @novide this work which focuses on
studying the most common SWPQAs concepts and tetagies that current SWPQAsS
proposals present, in order to extract a concepaian for the SWPQAs domain and
introduce it as an ontology for the studied fi@de used in order to reach to a consistent
semantic.

The meaning of consistent as we used in our warkides both generally agreement
“‘consensus” and coherent “without conflicts” measin Consistent as defined in the
Merriam Webster dictionary means “marked by harmomnggularity, or steady
continuity: free from variation or contradiction”.

1.5 REQUIREMENTS

In order to reach to efficient results for our wonkny requirements were needed:

» Hardware device: Personal computer.

* Computer software: Operating system (Windows XByaJDevelopment Kit 5,
Microsoft office suite, KAON tool suit. They willdodiscussed later.

* Human Experts: Professors, Practitioners in tHd ¢ SWE and ontology.

1.6 SIGNIFICANCE OF THE STUDY
This thesis aims to address the needs of two mads lof interested audiences:

» The first kind is the software quality attributegesearchers and standard
developers (e.g., international standardizatiotitutes and committees), who is
responsible for producing concepts, terms, andistals in the field.

 The second kind is the software quality attribupeactitioners, who may be
confused by the terminology differences and cotlia the existing standards
and proposals when they would use them in theiksior

12

1.7 CONTRIBUTION OF THE THESIS

SWPQAs discipline is considered in the emergingsphand it suffers from the
typical symptoms of any relatively evolving disaiyds. SWPQAs are currently in the
phase in which terminologies, principles, and mdshaare still being defined,
consolidated, and agreed. In particular, therelack of consensus on the concepts and
terminologies used in the semantic of this fielthdtes showed that inconsistencies in
the semantic used different research attributegsgsals often occur [24, 39].

In our research we focused on studying SWPQAs giacand terminologies that
current SWQ proposals, documents, and reports qreédée prepared text corpora from
them to be used in tools to extract the most demdiand used concepts from it. After
that experts (doctors and professors in the fiel8WE and SWQ) were asked to study
and filter the resulted concepts and provided tteewms.

An evaluation phase depended on a coverage techmigs done to the resulted
concepts, followed by an enhancing step to theuawadl ontology domain concepts
which leaded us to increase the number of the stigdeconcepts in the ontology
domain, after that a coverage evaluation is doranatp the new suggested ontology
domain concepts.

In order to extract general relationships among shggested ontology domain
concepts, we returned to the prepared text corgashand ran out two tools on it. We
studied them, filtered them, listed them and regmeed part of them using a lattice
representation.

After we have finished our research steps, andrd#pg on the results we had, we
claim that we have presented the conceptualizatibrthe 66 common discussed
SWPQAs by an ontology, which is considered ass ifir this specific domain.

According to the results of the suggested ontolegy,also claim that we condensed
the semantic of thousands of concepts used toalafiy of the discussed SWPQAs into
a smaller set of concepts , and that will help etspesoftware engineers, researchers,
practitioners, and stakeholders in the field of SYAB to share and use a common and
agreed semantic of concepts when defining any efstiadied attributes, and that will
lead us to resolve the inconsistencies of the semappeared among documents and
reports that define any of the studied attributes

In addition to this, our ontology provides a bageevaluate any related presented
definition semantic for one of the studied attrésitThe way of doing that is if a high
percentage of the concepts used in the semantiegbresented definition are covered
by our ontology domain, the presented definitiomaetic can be accepted, but if not we
claim that it is a weak semantic to be used tongefuch an attribute.

13

1.8 METHODOLOGY

This research will be carried out through a thecaétand an empirical study. Our
approach to study the problem as shown in Figwtesldivided into 6 parts:

The first part of this research is a literatureieevon almost about all existing
proposals and ontologies in software quality, wité focus on a specific domain
concerning with the software product quality atitds domain. This review
presented, discussed, and analyzed different soui@e software quality in
general and for software product quality attributes particular, such as
researches, reports, documents, and proposals qaduwy various individuals,
institutes, and committees in the field.

The second part of our work focused on paving thg te capture and extract the
ontology domain concepts from the knowledge donpa@pared in the first step

using some tools. Later a support from experthénfield to study and filter the

results was asked.

The third part of our work handled the evaluatibnhe resulted ontology domain
concepts, by following a technique categorized awerage approach in the
domain.

In the fourth part, enhanced results were reaclkepertiing on the results of the
evaluation step.

In the fifth part, we captured and extracted gdnezkationships between the
suggested ontology domain concepts, by providing pnepared knowledge
domain to two tools, after that we studied andefféd the resulted relationships
into groups, a general lattice representation pard of the resulted relationships
was constructed.

In the sixth and the final part, we showed how thsults contribute in the
domain, and suggested many ways to use them im todeach to a common,
shared, and agreed semantic when defining anyeoktiidied software product
quality attributes.

14

Text corpora
Preparation

I Extracting Ontology
Domain Concepts

(ODCs)

Evaluating The
Suggested ODC{

Enhancing The
ODCs

Relationships
Extraction
And Presentation

How Does Our
Ontology
Contribute?

Figure 1.2: Steps of the methodology of the study

1.9 SOFTWARE USED IN THE WORK

In our work we used many tools in order to reachdime necessary results, below is a
brief description for those tools used in this work

1.9.1 KAON

KAON consists of a number of different modules pdawg a broad bandwidth of
functionalities centered around creation, storaggijeval, maintenance and application
of ontologies. It was and currently is being furtdeveloped in a joint effort mainly by
members of the Institute of Applied Informatics dfamal Description methods (AIFB)
at University of Karlsruhe and the Forschungzenttoformatik (FZI) — Research Center
for Information Technologies, Karlsruhe [79].

15

The KArlsruhe Ontology [79] and Semantic Web toatesa.k.a. KAON Tool Suite
is an open source ontology management infrastreicilowever, there exist also external
components which support functionalities such gs @ntology learning from texts. An
overview of the KAON Tool Suite and its main compats; KAON, KAON Extensions
and TextToOnto, is presented by Figure 1.3.

| KAON ToolSuite |

l |
[KAON Extensions |
I

l ! 1 l
EEET
Server
I

Implementations

- !
Ol-Modeler | KAON API || RDF API | |E“g'gf_$?”g | | RDF Server || APlonRDF |

Open Registry

‘ KAONtoEdit ‘

KAON KAON
Workbench Portal

‘ APIls

Figure 1.3: An overview of the KAON Tool Suite aitsl main components; KAON, KAON Extensions and
TextToOntpr9].

KAON (consisting of KAON Frontend and KAON Cor@&)cludes a variety of
different modules for ontology creation and manageinThe Frontend represented by
two applications developed in order to be usedqaarly by human users:

« KAON Workbench: provides a graphical environment fontology based
applications. It includes the OI-Modeler — a graghiontology editor - and the
Open Registry (a.k.a. ontology Registry), which yiles mechanisms for
registering and searching ontologies in a distadutontext.

 KAON Portal: is a simple tool for multi-lingualptology-based Web portals.
The Core of KAON supports programmatic access tologies by including both
APIs and implementatiorfsr managing local and remote ontology repositoi3&s.

KAON Extensions are a collection of optional comgots not included in the
standard distribution of KAON [36].

« DLP (Description Logic Programs) supports efficiamttology reasoning by
mapping Description Logic into Logic Programs.

« KAON Server can be considered as Application Sefgeithe Semantic Web,

which provides a generic infrastructure to faciétgplug'n’play engineering of
ontology-based applications.

16

KAONTtoEdit is a plug-in for OntoEdit [93], which lalvs working directly on
implementations of the KAON API in order to loadpdify and store KAON
ontology models.

TextToOnto is a KAON-based tool suite supporting timtology engineering
process by providing a collection of independewigdor ontology learning and
maintenance.

In Our work we focused on using the TextToOnto Bgien because of its capability
to help users to learn about ontologies from aipexi/text.

1.9.2 TextToOnto

TextToOnto [83] is a tool suite built upon KAON order to support the ontology
engineering process by text mining techniques. iBimoy a collection of independent
tools for both automatic and semi-automatic ontplegtraction. it assists the user in
creating and extending Ol-Models. Moreover, effitisupport for ontology maintenance
is given by modules for ontology pruning and congmar. In particular, the current
distribution of TextToOnto comprises the followitapls:

TaxoBuilder: for building concept hierarchies

TermExtraction: for adding concepts to an ontology
InstanceExtraction: for adding instances to anlogio

RelationExtraction: for semi-automatic learningcohceptual relationships
RelationLearning: for automatandsemi-automatic relationship learning
OntologyComparison: for comparing two ontologies

OntologyPruner: for adapting an ontology to a dewsgecific corpus

Figure 1.4 shows the front-end of the TextToOntw & an extension of KAON tool.

File Es

ew Procedures

Load Workspace
Save Workspace

Open Ol-model...
Creat levr Ol-model...

Import...

Mew Corpus

Mew Term Extraction

New Instance Extraction
New Associations Extraction
Hew Relation Learning

MNew Pruner

New Taxo Builder

Hew OntoEnricher

Mew Ontology Comparison

Exit

Figure 1.4: The Front-end of the TextToOnto toohasxtension of KAON tool.

17

1.9.3 MS ACCESS AND MS VISIUAL BASIC TOOLS

MS Access and MS Visual Basic have been used ttemgnt algorithms. Screen
shots of the program are provided in Figure 1.6fdgher reading about it you may refer
to [71, 72].

b Wicrosoll Visoal Ravic - Kayed Alg. Con Rel_Fxiracting - [Form_Enhithased (Code)) [N Enchedsilnbed Seates). | S
B g EE Yew just Debig B TockAddIns Wrdow Yl ER-
Ba-R M T e R o HO =
reiet -2 RS ire— 7] [<]
o =) e —— - =
=] r Privare Sdv Commandd? licki) o
3 Eﬂﬂw_mjnﬂjl -0 o
= 53 Moot Aooses Clare © Rapaint
B For_Come DoTmct . vkl LRecords
BB Form_Coeniel
B Fom_Enfacnon
BB rom_Enfuncedome o = ListZ%, Iceminoe [0}
B Form_FrivPhaced e Fhile ¢ > 0
+ 0 Posdules Fepaint

Dord . Inovk] LRncords

conmandil_Click get che beks max,
i= i+l
Geked =

Repaint
Dotmd, Shoval LRecards

Commaradd? Click form the pelect, g=t, edd , Azl
o = Listi?, Icenbata {0}

Leop

Erdd Sub

Frivate Jup Compandls C1igk()

det dbe = CodeDb

det ac =~ dbs(merylels |"DeliecT)
Lom = ="

iz = 200

Comme, = 2

i=4a

Do While difd > Int (DAZET)

Ml | £

Figurel.5: Part of the algorithm used in the Ms VisuablTo

1.10 THESIS ORGANIZATION

- This thesis is organized into 5 chapters:

Chapter 1: This chapter reviews the thesis. A brief backgbabout the field to
which the thesis subject belongs is given; Softvargineering (SWE), Software Quality
(SWQ), and the field of ontology and its role. Thea give an idea about our research
problem and how it has been addressed. We enchdper by giving information about
tools used in the work, our own contribution, ahe dutline of the thesis chapters.

18

Chapter 2: In this chapter we give a brief idea about the trmelevant work in the
literature that are related to our study.

Chapter 3: This chapter is talking about the preparationhaf text corpora for the
SWPQAs knowledge domain. This preparation is dgnedtlecting and studying a large
number of documents and reports related to thd fiélsoftware quality. The chapter
also is discussing how the prepared text corporee wsed to extract and create our
primary ontology domain concepts using TextToOptd tvith support of an MS Access
tool and then with support of human experts. Irs tbhapter, we also focused on
evaluating the suggested ontology domain concegitg i coverage methodology. After
preparing the needed corpus, and by using a teaked by Kayed [72], we counted the
covered concepts and calculated a coverage pegeeifida them. Later, we discussed
what the results would be if we collect and stubg tuncovered concepts from the
domain under discussion. The results showed anneeh@nt of our ontology domain
concepts, and gave a much better coverage pereentag results are shown in the
discussion.

Chapter 4: In this chapter we extracted general relationshgiseen the new concepts
of the suggested ontology domain after studyingfdiading the results of two tools. We
presented the resulted relationships as groupsr &fat, a general lattice representation
for part of the resulted relationships was donget,ave listed each concept in the
ontology domain with other concepts in the samealorthat appeared with them when
studying the extracted relationships.

Chapter 5: In this chapter we present and discuss the caodsi®f our research; our
final results and how we used them to contributdhéstudied domain are presented
among the conclusions. Future work are suggesttak and of this chapter.

19

CHAPTER 2

RELATED WORK

In this chapter we give a brief idea about the melgvant work in the literature that
are related to our study.

2.1 GENERAL RELATED WORK

Ontologies have been widely built and used durhmg last years. Many researches
related to software engineering and measurements baen issued; in particular,
building ontologies for software measurement ergimg using potential elements (such
as goals, viewpoints, data, operations, agentsasios and resources) have been carried
out. Proposals, studies, standards, and contrilmutielated to the work are illustrated
below:

[Balzer, 1983

Has started advocating the benefits of underlyingplogies of precise and formal
specifications, notably for checking a specificatiadequacy through prototyping [5].

[Rumbaugh, 1991]

Has proposed multi-paradigm frameworks to combingltipte languages in a
semantically meaningful way so that different facesin be captured by languages that fit
them best [101].

[VIM, 1993]

The International Vocabulary of Basic and GenemnTs in Metrology [61] covers
120 terms of subjects related to measuremenioAgh its main target is not software,
it has been successfully used by several authoxd) as Alain Abran, for defining
software measurement concepts [1], and is one efbtses for 1ISO-JTC1 software
measurement harmonization efforts. The VIM is aywdetailed, complete and mature
reference. However, its terms remain at a veryilgetdevel; for instance, there are no
definitions for general terms such as “metric” ordasure”. The new version of the VIM,
currently in preparation, is expected to deal wile software measurement specific
needs.

[Kim, 1999]
Henry Kim [76] has proposed a formal model of gmtise quality, called “ontology

of enterprise quality modeling”. This is a globalta@logy, whose main objective is to
help evaluate the conformance of organizationS@/IEC 9000 standards.

20

As part of his global ontology, Kim also proposesasurement ontology. Although
Kim's measurement ontology is not specific to safev products and processes, it
contains many concepts that can be applied witiencbntext of software measurement.
Under this perspective, Kim's proposal mainly fasusn targets-and-goals, including
concepts such as “quality requirement”, “entity&nterprise model of quality”, and
“measured attribute”. It does not define, howewencepts such as “measure”, “metric”
or “scale”, for instance.

[Kitchenham et al., 2001]

Barbara Kitchenham et al. [78] propose a methodsfarcifying models of software
data sets in order to capture the definitions atationships among software measures.
They propose a conceptual model with three compsnéiirst, the generic component
defines concepts such as attributes, units, antk ¢gpes, independently from other
considerations. The development model provideditkebetween measures and entities
of interest. Finally, the project domain represethis data values collected from real
projects, linking data values to actual instanceshe entities that are defined in the
development model domain. This proposal is maiiycerned with both measures and
targets-and-goals, but without considering the mnegsent process in detail. Besides,
their terminology is not completely aligned witretrest of the standards and proposals.
For instance, the concept of “measure” is represehy the term “DM element measure
type", which significantly differs from the termsnétric” or “measure”, probably the
most commonly used terms in the rest of the sodoragpresenting this concept.

[Briand et al. 2002]

Lionel Briand et al. propose the GQM/MEDEA approdch defining measures of
product attributes in software engineering. Thiprapch is driven by the experimental
goals of measurement, expressed via the GQM [%digm and a set of empirical
hypotheses. This proposal provides a UML classrdragwith the concepts involved in
the GQM/MEDEA process. Those GQM/MEDEA conceptsaterl to software
measurement are mainly concerned with measurenaegets-and-goals (e.g., entity,
attribute).It does not consider, for instance, ¢bacepts “measurement” or “scale”, and
does not distinguish between base and derived mesagither. One of the specific
characteristics of this proposal is that its coteepe not defined, but just presented for
their use in the GQM/MEDEA process. This forcedaguess their real meaning when
including them in the comparison analysis.

[Devedzic, 2002]
Has explored that ontologies are needed in all gghad software engineering
lifecycle, each of which must have knowledge, wkettbout data structure, methods and

domain. This makes ontologies everywhere and thayenpossible to smoothly integrate
Atrtificial Intelligence with other software discipkes [26].

21

[Zlot, 2002]

Has defined a structure to represent the task ledyd with support to software
engineers in understanding business problemsrgidrom the understanding of the task,
which comprises these problems. This structure aoesbtask ontologies and problem
solving methods to support capturingnowledge about specific domain throughout the
development process [124].

[Obrst, 2003]

Has discussed the use of ontology for semantiadpggability in homogenous
environments [91].

[Maria Matrtin et al., 2003]

Have presented a semiformal ontology for softwasdrics and indicators based as
much as possible on the concepts from the studsadards which can be useful to
support different assurance processes, methodtalwdin addition to be the foundation
for the cataloging web system used in their worq.[2

[Ahmad Kayed et al, 2005]

Have used the conceptual graphs to implement ampyolbat built for solving
problems in the E-commerce domain, and used the BMttlel to evaluate the work
done by using conceptual graphs, that leaded tlol laumeta-model using some of the
BWW constructs [73].

[Felix Garcia et al, 2005]

Have presented an analysis of the software measmtsrterminology proposals and
provided a comparison framework that can be useddéntify and address the
discrepancies, gabs, and terminology conflicts thatrent software measurement
proposals present, A basic software measurementogt is introduced, that aims at
contributing to the harmonization of the differesaftware measurement proposals and
standards, by providing a coherent set of commoncepupts used in software
measurement. The ontology is also aligned withntie¢rology vocabulary used in other
more mature measurement engineering disciplinds [39

22

2.2 SPECIFIC RELATED WORK

In addition of previously presented related worle separated and illustrated more
specific related work to software quality in a degent subsection, because of its
important role in our work.

* McCall's Quality Model (1977)

One of the more renown predecessors of today’'styuabdels is the quality model
presented by Jim McCall et al. [77,84,87] (alsownas the General Electrics Model of
1977). This model, as well as other contemporaryet® originates from the US
military (it was developed for the US Air Forcepproted within DoD) and is primarily
aimed towards the system developers and the syf#gaiopment process. In this quality
model McCall attempts to bridge the gap betweemsused developers by focusing on a
number of software quality factors that reflecttbtite users’ views and the developers’
priorities.

The McCall quality model has, as shown in Figurk Bhree major perspectives for
defining and identifying the quality of a softwapeoduct: product revision (ability to
undergo changes), product transition (adaptabibtynew environments) and product
operations (its operation characteristics). Prodaetsion includes maintainability (the
effort required to locate and fix a fault in thegram within its operating environment),
flexibility (the ease of making changes requirecchgnges in the operating environment)
and testability (the ease of testing the prograngnisure that it is error-free and meets its
specification). Product transition is all about tpbility (the effort required to transfer a
program from one environment to another), reusglhe ease of reusing software in a
different context) and interoperability (the effoequired to couple the system to another
system). Quality of product operations depends amectness (the extent to which a
program fulfils its specification), reliability (hsystems ability not to fail), efficiency
(further categorized into execution efficiency astbrage efficiency and generally
meaning the use of resources, e.g. processorstorage), integrity (the protection of the
program from unauthorized access) and usability €dise of the software).

23

Maintainability

Flexibility ¢ g
| f
Testability ;
.,“I J
|
|\ Product revision |/
\ fl
'|II |I,I'II
'-,I ."l
.~
\ /o
\‘-. Product operations f \ Product transition
\ /
\ Portability
Correctness Reliability Reusabiliy

Efficiency Integrity
Usability

Interoperability

Figure 2.1: The McCall quality model, organizedward three types quality characteristics.

The model furthermore details the three types odlityu characteristics (major
perspectives) in a hierarchy of factors, critend anetrics:

* 11 Factors (To specify): They describe the externedv of the software, as
viewed by the users.

e 23 quality criteria (To build): They describe tmtarnal view of the software, as
seen by the developer.

» Metrics (To control): They are defined and usegrtovide a scale and method
for measurement.

Figure 2.2 shows the McCall's Quality Model illustied through a hierarchy of 11
quality factors (on the left hand side of the Feurelated to 23 quality criteria (on the
right hand side of the Figure).

24

Tracebility

T — |4-| Complaetisnaess |

| Consistency |

Accuracy’ |

Reliability
Ermor tolerance: |

Execution effiency |
Effiency " |

___'l Storage effiency

Access control |

; -
L Access audit |

O perability |

Usaixility Trainimg |

Communicativeness |

Simplicity |

Conciseness |

Instrumentation |

Self-descriptiveness |

Expandability |

Generality |

Maodularity |

Software-system
independence

Machine
independence

Communication
commonality

Interoperability

Drata commonality |

Figure 2.2: McCall's Quality Model illustrated thrgh a hierarchy of 11 quality factors (on the hefhd
side of the Figure) related to 23 quality critgoa the right hand side of the Figure).

25

The quality factors describe different types oftegs behavioral characteristics, and
the quality criterions are attributes to one or enof the quality factors. The quality
metric, in turn, aims to capture some of the asgpeta quality criterion. The idea behind
McCall’s Quality Model is that the quality factosgnthesized should provide a complete
software quality picture [77]. The actual qualitetmc is achieved by answering yes and
no questions that then are put in relation to eatbler. That is, if answering equally
amount of “yes” and “no” on the questions measudanguality criteria you will achieve
50% on that quality criteria. The metrics can thensynthesized per quality criteria, per
quality factor, or if relevant per product or servi

 Boehm'’s Quality Model (1978)

The second of the basic and founding predeces$dmlay’s quality models is the
quality model presented by Barry W. Boehm [13,Bfehm addresses the contemporary
shortcomings of models that automatically and qtetitely evaluate the quality of
software. In essence his models attempts to gtieditp define software quality by a
given set of attributes and metrics. Boehm's m@dsimilar to the McCall quality model
in that it also presents a hierarchical quality elodtructured around high-level
characteristics, intermediate level characterisficenitive characteristics, each of which
contributes to the overall quality level.

- The high-level characteristics represent basibevel requirements of actual use
to which evaluation of software quality could be ptthe general utility of software. The
high-level characteristics address three main guesthat a buyer of software has:

» As-is utility: How well (easily, reliably, efficiethy) can | use it as-is?

* Maintainability: How easy is it to understand, nfgdind retest?

» Portability: Can I still use it if | change my enmhment?

- The intermediate level characteristic represéddgehm’s 7 quality factors that
together represent the qualities expected fronftavame system:

» Portability (General utility characteristics): Cogmssesses the characteristic
portability to the extent that it can be operatesily and well on computer
configurations other than its current one.

» Reliability (As-is utility characteristics): Codeogsesses the characteristic
reliability to the extent that it can be expectedoerform its intended functions
satisfactorily.

» Efficiency (As-is utility characteristics): Code ggesses the characteristic
efficiency to the extent that it fulfills its purpe without waste of resources.

26

Usability (As-is utility characteristics, Human Enegering): Code possesses the
characteristic usability to the extent that it aiable, efficient and human-
engineered.

Testability (Maintainability characteristics): Codessesses the characteristic
testability to the extent that it facilitates th&tablishment of verification criteria
and supports evaluation of its performance.

Understandability (Maintainability characteristics)Code possesses the
characteristic understandability to the extent thatpurpose is clear to the
inspector.

Flexibility (Maintainability characteristics, Modébility): Code possesses the
characteristic modifiability to the extent thatfécilitates the incorporation of
changes, once the nature of the desired changéd®as determined. (Note the
higher level of abstractness of this characterisis compared with
augmentability).

- The lowest level structure of the characteristicgarchy in Boehm’s model is the
primitive characteristics metrics hierarchy. Thenytive characteristics provide the
foundation for defining qualities metrics-which wase of the goals when Boehm
constructed his quality model. Consequently, theleh@resents one ore more metrics
supposedly measuring a given primitive characterist

Senaral Lhility

.\‘K [Understandability |

Modifiability |-
N
Y

K\ R"\-._l Concisensss
M,
[Legmbility

h"

Augmentability

Figure 2.3: Boehm's Software Quality Charactesslicee [14].

27

Boehm’s and McCall's models might appear very samilthe difference is that
McCall's model primarily focuses on the precise swament of the high-level
characteristics “As-is utility” (see Figure 2.3)hereas Boehm’s quality mode model is
based on a wider range of characteristics with @eneled and detailed focus on

primarily maintainability. Table 2.1 compares thetquality models, quality factor by
quality factor.

Table 2.1: Comparison between criteria/goals ofMic€all and Boehm quality models [53].

Criteria / Goals McCall 1977 Boehm 1978
Correctness * *
Reliability * *
Integrity * *
Usability * *
Efficiency * *
Maintainability * *
Testability * *
Interoperability *
Flexibility * *
Reusability * *
Portability * *
Clarity *
Modifiability *
Documentation *
Resilience *
Understandability *
Validity *
Functionality
Generality *
Economy *

As indicated in Table 2.1 Boehm focuses a lot o ttodels effort on software
maintenance cost-effectiveness — which, he stetdbe primary payoff of an increased
capability with software quality considerations.

28

* FURPS Quality Model

A later, and perhaps somewhat less renown, modelighstructured in basically the
same manner as the previous two quality modelsdfdutvorth at least to be mentioned
in this context) is the FURPS model originally mneted by Robert Grady [43] ,(and
extended by Rational Software [64,80,112]. FURRSdH for:

» Functionality — which may include feature sets,atalities and security.

» Usability - which may include human factors, aestse consistency in the user
interface, online and context-sensitive help, wisarand agents, user
documentation, and training materials.

* Reliability - which may include frequency and setyeof failure, recoverability,
predictability, accuracy, and mean time betweenas (MTBF).

» Performance - imposes conditions on functional ireguents such as speed,
efficiency, availability, accuracy, throughput, pesse time, recovery time, and
resource usage.

» Supportability - which may include testability, ersibility, adaptability,
maintainability, compatibility, configurability, séceability, installability,
localizability (internationalization).

The FURPS-categories are of two different typesicional (F) and Non-functional
(URPS). These categories can be used as both prosmdrements as well as in the
assessment of product quality.

* Dromey's Quality Model

An even more recent model similar to the McCaBsghm’s and the FURPS quality
models, is the quality model presented by R. GBofimey [27, 28]. Dromey proposes a
product based quality model recognizes that quaMgiuation differs for each product
and so a more dynamic idea for modeling the proteseeded to be wide enough to
apply for different systems. Dromey is focusingtba relationships between the quality
attributes and the sub-attributes, as well as atieign to connect software product
properties with software quality attributes.

As illustrated in Figure 2.4, there are three pgpatelements to Dromey's generic
quality model:

1. Product properties that influence quality

2. High level quality attributes
3. Means of linking the product properties with thalify attributes.

29

Implementafion

Correctness Infemal Contetua Descriptive
[[o Mantanabliy,
- Mentanabi, sl
Functionalty,relabilty lanamabiy sty oty
effciency, reiabilty nortably, i
el Uil
/ /\

Figure 2.4: Principles of Dromey’s Quality Model.
Dromey's Quality Model is further structured arown8 steps process:

1. Choose a set of high-level quality attributes neagsfor the evaluation.

2. List components/modules in your system.

3. ldentify quality-carrying properties for the comgorts/modules (qualities of
the component that have the most impact on theugtqoroperties from the
list above).

Determine how each property effects the qualitytattes.

Evaluate the model and identify weaknesses.

S

« ISO 9000

ISO stands for International Standards Organizatibhe ISO organization is
responsible for a whole battery of standards ofctvhihe 1ISO 9000 [55-63] family
probably is the most well known, spread and useglre 1.9 shows The ISO 9000:2000
standards. The crosses and arrows indicate changds from the older 1ISO 9000
standard to the new ISO 9000:2000 standard.

30

] ,A'//;o 8000:2000 >
A R
AC 8000 1cu:h 7 \“"---_ ——

-\..GI'I"‘EFI 1S an

d
Terminology” /
/ /

150 8001:2000
"Requirements for

Cuality Assurance”

/<

S - b e,
,f: IS0 18011:2000 \

|' "Guidelines for Auditing

.,

150 2004:2000
"Guidelines for Quality

Management of Organization y

| 150 8000-2:1807

\

e

Figure 2.5: The ISO 9000:2000 standards. The csemse arrows indicate changes made

N

Quality Management
Systemns”

o

from the older ISO 9000 standard to the new ISQOSD0 standard.

ISO 9001 is an international quality managementesysstandard applicable to
organizations within all type of businesses.
organization’s processes and methods and exteraaliyanaging (controlling, assuring
etc.) the quality of delivered products and semickSO 9001 is a process oriented
approach towards quality management. That is, ap@ses designing, documenting,
implementing, supporting, monitoring, controllingdaimproving (more or less) each of

the following processes [55-63]:

* Quality Management Process.

* Resource Management Process.

* Regulatory Research Process.

e Market Research Process.

* Product Design Process.

* Purchasing Process.

* Production Process.

» Service Provision Process.

e Product Protection Process.

* Customer Needs Assessment Process.
* Product Protection Process.

* Customer Needs Assessment Process.

31

ISO0BO0internally addresses an

* 1SO 9126

Besides the famous ISO 9000, ISO has also reléastSO 9126: Software Product
Evaluation: Quality Characteristics and Guidelifies their Use-standarf60] (among
other standards), Figure 1.10 below shows the 1525 9nodel.

Are the required
functions
available in the
software?

How easy is to
tramsfer the software
to ancther
environment?

How reliable is the

. softwars?
Reliability
How easy is Is the
to modify the software easy
software? to use?

How efficient
s the
software?

Figure 2.6: The ISO 9126 quality model.

This standard was based on the McCall and BoehnelnioBesides being structured
in basically the same manner as these models &de 2.2), ISO 9126 also includes
functionality as a parameter, as well as identdyboth internal and external quality
characteristics of software products. Figure 2.7om&h a comparison between
criteria/goals of the McCall, Boehm and 1SO 912@&lgy models [69].

32

Table 2.2: Comparison between criteria/goals ofMis€all, Boehm and 1SO 9126
qualityodels [69].

Criteria/goals McCall, Boelm, IS0 9124,

1977 1978 1993

Correctness ¥ ¥ matntainability

Reliabulity i * *

Integrity i ¥

Usability ¥ # ¥

Effiency ¥ # i

Maintamability i ¥ *

Testability * * matntainability

Interoperability ¥

Flexibility i i

Reusability i i

Portability ¥ # i

Clanty *

Modiftability i matntainability

Documentation ¥

Resilience *

Understandability ¥

Valdity ¥ matntainability

Functionality *

Generality *

Economy i

ISO 9126, as shown in table 2.2 below, proposeaaradard which specifies six areas
of importance, i.e. quality factors, for softwakakiation.

33

- Subfaciors

Suitabilty P }
Maturity
Factors Accuracy .
~" | Fault Tolerance
\“ Security L
S " Recoverabil
Functonalty meroperabitly [g
| P Compliance
| Compiance |~
| | Reliability Analyzability
i .
|/ ~ "
j | +
@ |/ _1 Time behaviour Change-a5ity
- I — — = T
: j Efficien —— Stabil
i‘; .'”ll i | Resource behawour iy
3 e { Testabil
@ == Complance esahly
‘;'5 ":'"-,II Manianabily [Compiiance
|
a .II III"-., Adaptability
I| ' o
W Install-ahility - Understandability
lII Fortability -
\ Co-existence Learn-ability
|I " i
Repiace-ahility _ Cperability
Usabilty —
Comgliance — Atiractvensss
o Compiance

Figure 2.7: ISO 9126: Software Product EvaluatiQuoality Characteristics and Guidelines for thee.us

- Each quality factor and its corresponding suliefiecare defined as follows:

Functionality: A set of attributes that relate be texistence of a set of functions
and their specified properties. The functions dresé that satisfy stated or
implied needs;

= Suitability: Attribute of software that relates tthe presence and
appropriateness of a set of functions for specifasis.

34

= Accuracy: Attributes of software that bare on thevsion of right or
agreed results or effects.

= Security: Attributes of software that relate to #bility to prevent
unauthorized access, whether accidental or detidyeta programs and
data.

» Interoperability: Attributes of software that redao its ability to interact
with specified systems.

= Compliance: Attributes of software that make thdtveare adhere to
application related standards or conventions ouleggns in laws and
similar prescriptions.

Reliability: A set of attributes that relate to tb@pability of software to maintain
its level of performance under stated conditiomsafetated period of time;

= Maturity: Attributes of software that relate to thhequency of failure by
faults in the software.

» Fault tolerance: Attributes of software that rel@téts ability to maintain a
specified level of performance in cases of softwdaslts or of
infringement of its specified interface.

» Recoverability: Attributes of software that reldtethe capability to re-
establish its level of performance and recoverddia directly affected in
case of a failure and on the time and effort nedded.

= Compliance: Attributes of software that make thdtveare adhere to
application related standards or conventions ouleggns in laws and
similar prescriptions.

Efficiency: A set of attributes that relate to ttedationship between the level of
performance of the software and the amount of messuused, under stated
conditions;

= Time behavior: Attributes of software that relaterésponse and processing
times and on throughput rates in performing ittiom.
= Resource behavior: Attributes of software that teeloo the amount of
resources used and the duration of such use inrparg its function.
» Compliance: Attributes of software that make thdtveare adhere to
application related standards or conventions ouleggns in laws and
similar prescriptions.

Maintainability: A set of attributes that relate tbe effort needed to make
specified modifications;

= Analyzability: Attributes of software that relate the effort needed for

diagnosis of deficiencies or causes of failuresfooridentification of parts
to be modified.

35

» Changeability: Attributes of software that relate the effort needed for
modification, fault removal or for environmentalacige.

= Stability: Attributes of software that relate tethsk of unexpected effect of
modifications.

» Testability: Attributes of software that relate tbe effort needed for
validating the modified software.

» Compliance: Attributes of software that make thdtveare adhere to
application related standards or conventions owulegigpns in laws and
similar prescriptions.

» Portability: A set of attributes that relate to #iality of software to be transferred
from one environment to another;

= Adaptability: Attributes of software that relate ao the opportunity for its
adaptation to different specified environments with applying other
actions or means than those provided for this mepmr the software
considered.

= Installability: Attributes of software that relatie the effort needed to install
the software in a specified environment.

= Conformance: Attributes of software that make tloétvgare adhere to
standards or conventions relating to portability.

» Replaceability: Attributes of software that relate the opportunity and
effort of using it in the place of specified ottsmftware in the environment
of that software.

» Usability: A set of attributes that relate to théod needed for use, and on the
individual assessment of such use, by a statetiad set of users;

= Understandability: Attributes of software that tel@o the users' effort for
recognizing the logical concept and its applic#yili
Learnability: Attributes of software that relate the users' effort for
learning its application (for example, operatiomtrol, input, output).
= Operability: Attributes of software that relate tbe users' effort for
operation and operation control.
= Attractiveness.
= Compliance: Attributes of software that make thdtveare adhere to
application related standards or conventions ouleg@ns in laws and
similar prescriptions.

36

. ISO/IEC 14598 (1999-2001) and 9126 (2001-2004)

ISO/IEC 14598 (Information technology- Software gwot evaluation) [62], is a
series of international standards that provide oughfor measurement, assessment and
evaluation of software product quality. The difigr@arts of this series set out a generic
picture of the process of evaluation, addressirigpin the point of view of developers,
acquirers and (third party) evaluators. The staglaf ISO/IEC 14598 series are mainly
concerned with the set of concepts in the measyeg, and partially covering some of
the measurement process aspects. ISO/IEC 145%& seakes use of the ISO/IEC 9126
series (Software engineering “Product quality” Batt to 4) [60], which propose a
software product quality model, and metrics foreintal quality, external quality, and
quality in use.The SQuaRE project [3] has been iBpaity created to make them
converge, trying to eliminate the gaps, confliciged ambiguities that they currently
present. In fact, ISO/IEC TR 9126-2, 9126-3 and@42vere allowed to be published as
Technical Reports between 2002 and 2004 withoungihg their original terminology,
with the agreement that they would be aligned whth new SC7 measurement terms as
soon as possible.

. ISO/IEC 15939 (2002) and PSM (2002)

ISO/IEC 15939 standards identify the activities dadks needed to successfully
identify, define, select, apply, and improve softevaneasurement within an overall
project or organizational measurement structure.alio provides definitions for
measurement terms commonly used within the softwiadustry. The two key
components included in this standard are softwareasorement process and
measurement information model. The software measeme process is driven by the
information needs of the organization. For eacbrimation need, this process produces
an information product that tries to satisfy it. eTimeasurement information model
establishes the link between measures and infoomaieeds. Measured entities include
processes, products, projects, and resources. Tddelndescribes how the relevant
attributes are quantified, and converted to indiathat provide a basis for decision-
making. It basically rests upon the concepts of /IEO 14598 and ISO/IEC 9126,
although changing some of the terms in order tallgned as much as possible with the
ISO VIM. Hence, it does not use the term “metricglating directly the terms
“measurement” and “measure”. ISO/IEC 15939, togethgh VIM, has become the
standard used by ISO-JTCibtérnational Standards Organization/ Joint Tecdn@ommittee
1), as the basis for its software measurement termgyoharmonization efforts [68].
Another key reference, the PSM (Practical Softwdeasurement) [88], is compatible
with ISO/IEC 15939, and therefore uses the sammeitetogy.

37

- ISO/IEC 15504 (SPICE)

The ISO/IEC 15504: Information Technology - softer@rocess assessment is a large
international standard framework for process assest that intends to address all
processes involved in:

» Software acquisition
» Development
* Operation

* Supply
* Maintenance
* Support

ISO/IEC 15504 consists of 9 component parts cogeconcepts, process reference
model and improvement guide, assessment model @ddgy qualifications of assessors,
and guide for determining supplier process capgbili

ISO/IEC 15504-1 Part 1. Concepts and Introductanjdé.

ISO/IEC 15504-2 Part 2: A Reference Model for Psses and Process
Capability.

ISO/IEC 15504-3 Part 3: Performing an Assessment.

ISO/IEC 15504-4 Part 4: Guide to Performing Assesgs)

ISO/IEC 15504-5 Part 5: An Assessment Model anétatdr Guidance.

ISO/IEC 15504-6 Part 6: Guide to Competency of ASeEs.

ISO/IEC 15504-7 Part 7: Guide for Use in Procegsravement.

ISO/IEC 15504-8 Part 8: Guide for Use in DetermgniBupplier Process
Capability.

9. ISO/IEC 15504-9 Part 9: Vocabulary.

A

©NO Ok W

Given the structure and contents of the ISO/IECO#58ocumentation it is more
closely related to ISO 9000, ISO/IEC 12207 and CMather than the initially discussed
quality models (McCall, Boehm and ISO 9126).

 |EEE

- IEEE has also release several standards, molessrrelated to the topic of our
research. To name a few:

» |EEE Std. 1220-1998: IEEE Standard for Applicatemmd Management of the
systems engineering process.

* |EEE Std 730-1998: IEEE Standard for SWQA Plans.

 |EEE Std 828-1998: IEEE Standard for Software Gumftion Management
Plans — Description.

* |EEE Std 829-1998: IEEE Standard For Software Destumentation.

38

 |EEE Std 830-1998: IEEE recommended practice fdtwsme requirements
specifications.

 |EEE Std 1012-1998: IEEE standard for software figation and validation
plans.

« |EEE Std 1016-1998: IEEE recommended practice foftware design
descriptions.

* |EEE Std 1028-1997: IEEE Standard for Software Bwsi

» |EEE Std 1058-1998: IEEE standard for softwareqmbmanagement plans.

» |EEE Std 1061-1998: IEEE standard for a softwamityjumetrics methodology.

» |EEE Std 1063-2001: IEEE standard for software dseumentation.

« |EEE Std 1074-1997: IEEE standard for developindtwsaoe life cycle
processes.

 |EEE/EIA 12207.0-1996: Standard Industry Implemgata of International
Standard ISO/IEC 12207: 1995 (ISO/IEC 12207) Stehdar Information
Technology Software Life Cycle Processes.

Of the above mentioned standards it is probablyithglementation of ISO/IEC
12207: 1995 that most resembles previously discussedels in that it describes the
processes for the following life-cycle:

 Primary Processes: Acquisition, Supply, Developme@peration, and
Maintenance.

* Supporting Processes: Documentation, Configuratidanagement, Quality
Assurance, Verification, Validation, Joint ReviewAudit, and Problem
Resolution.

» Organization Processes: Management, Infrastruchio@ovement, and Training

In fact, IEEE/EIA 12207.0-1996 is so similar to #80 9000 standard that it could
actually bee seen as a potential replacement f@ V8thin software engineering
organizations.

The IEEE Std 1061-1998 is another standard theglévant from the perspective of
this research as the standard provides a methodofog establishing quality
requirements and identifying, implementing, analgzand validating the process and
product of software quality metrics [54].

» Capability Maturity Model(s) (CMM)

The Carnegie Mellon Software Engineering Instit(teEl), non-profit group
sponsored by the DoD work at getting US softwareemeliable [50, 51, 52]. SEI has
also produced a number of more extensive CapalMayurity Models that in a very
IEEE and ISO 9000 similar manner addresses the td@oftware quality such as:

39

« CMM/SW-CMM [85, 52].
« P-CMM [23].
« CMMI - PDD-CMM - SE-CMM - SA-CMM [109].

The CMM/SW-CMM addresses the issue of software ityjudfom a process

perspective, Figure 2.8 below shows the Maturitelle of SW-CMM, and also table 2.3
shows the Maturity levels with corresponding foaeunsl key process areas for CMM.

Continuous

process
. improvement Level &
rocess [F)
contral Dptimizing
? Lewel 4:
Process Managed I__‘rr Change
definition ﬁ Level 3- managemsnt
Process Defined IiT
discipline Lewvel 2: Suantitative
ﬁ::> Repeatabl I{r managemsent
e Engineering
managemesnt

Lewel 1:
Initial [| Project

management

Figure 2.8: Maturity Levels of SW-CMM.

Table 2.3: Maturity levels with corresponding foeursl key process areas for CMM

Level Focus Key Process Area
Level 5 — Process Change Management
Optimizing Continuous improvement Technology Change Management
level Defect Prevention
Level 4 — . Software Quality Management
Product and process quality -
Managed level - Quantitative Process Management

Organization Process Focus
Organization Process Definition
Peer Reviews

Level 3 - . Trammg Program
Defined level Engineenng process Intergroup Coordination

Software Product Engineering
Integrated Software Management

Requirements Management
Software Project Planning
Software Project Tracking and
Project Management Oversight
Software Subcontract Management
Software Quality Assurance
Software Configuration Management

Level 2 —
Repeatable level

Level 1 —

Initial level Heroes No KPAs at this time

40

The SW-CMM is superseded by the CMMI model whichoalncorporates some
other CMM models into a wider scope. CMMI Integeateystems and software
disciplines into one process improvement framewand is structured around the
following process areas [23, 85]:

* Process management.
* Project management.
» Engineering.

* Support.

And similarly to the SW-CMM the CMMI is structureatound the following maturity
levels [109]:

» Maturity level 5: Optimizing - Focus on process noyement.

» Maturity level 4: Quantitatively managed - Procasmasured and controlled.

» Maturity level 3: Defined - Process characterized the organization and is
proactive.

* Maturity level 2: Managed - Process characterized drojects and is often
reactive.

» Maturity level 1: Initial - Process unpredictabp@orly controlled and reactive.

* Maturity level O: Incomplete.

Figures 2.9 and 2.10 show the two representatibtieedCMMI model.

| Appendixes

Maturity Lewvel S
D2ID. CAR

Maturity Lewel 4
OFP P, QP

Maturity Lewel 3
RECQD, TS, Pl, WER,
“Weal, OPF, O, Om

1IFM, RSN, DA

RECM, PP, PhC,

Maturity Lewe]l 2
| SAM, MMA, PPCA, ChA

Onwwe rwiewwwr
Imtroductiom
Structure of the pAodel
MModel T ermimnolocny
MMaturity Lewvels, Commnmon Features, and Generic Practices
Understanding the haociel
Usimna the hModel

CNMMII-S ESfSWW
Staged

Figure 2.9: The staged CMMI-SW/SW representation.

41

Appendixes

Support
ML, PPOA, RNA
AR, DAR

Enginearirng
Pl WwER, WAL

Project Management
PP, PRC, SAR
IPrAaA, RSKM, C3IFPMA

FProcess Managemen
OFRP P, OID

Crwrerwieww
Imtroduction
Structure of the Model
Model Ternminologry
Capability Lewvels and Generic Model Components
Understanding the Model
Using the hModel

CMMI-SEMSWW
Continuous

Figure 2.10: The continuous CMMI-SW/SW representati

42

CHAPTER 3

BUILDING ONTOLOGY DOMAIN CONCEPTS

This chapter is talking about the preparation & téxt corpora for the SWPQASs
knowledge domain. This preparation is done by ctlg and studying a large number
of documents and reports related to the field dfwsoe quality. The chapter also is
discussing how the prepared text corpora were tsexktract and create our primary
ontology domain concepts using TextToOnto tool wgitipport of an MS Access tool and
then with support of human experts. In this chapter also focused on evaluating the
suggested ontology domain concepts using a covenagigodology. After preparing the
needed corpus, and by using a tool created by K&y2[] we counted the covered
concepts and calculated a coverage percentagédor. tLater, we discussed what the
results would be if we collect and study the uncedeconcepts from the domain under
discussion. The results showed an enhancementrabrdalogy domain concepts, and
gave a much better coverage percentage. The reselshown in the discussion.

3.1 PREPARING TEXT CORPORA FOR SOFTWARE PRODUCT
QUALITY ATTRIBUTES DOMAIN

As mentioned earlier, TextToOnto is a tool providedontology engineering process
depending on text mining techniques and naturguage processing algorithms [83]. To
use this tool we needed to prepare text corpordinguistics, text corpora consists of
large set of electronically processed and storedis.teThey are needed when doing
statistical analysis, checking occurrences, ordeaiing linguistic rules on a specific
domain. TextToOnto tool deals with corpora of texhtml type.

For our research we prepared text corpora to be wghin the TextToOnto tool and
later within an Access tool, software quality reley domain documents, reports, and
publications were collected. In our case, we ct#ié@as much as possible of what we
could reach to of publications, documents, and ntegbat we think they were related to
the field, almost about 85 different related docotado software engineering, quality,
and software quality were collected. We believeat ih such a large collected domain
heterogeneous and homogenous text collection, ptgcand terms can be found. Upon
the discussion of SWPQAs and their definitions, @endeep study was conducted to
these collected documents and they were filteremdaimost 34 much related documents,
reports, and publications. After that from thessuleed files we created a document
contains a summery from their semantic; the padasgpecifically discussed SWPQASs, it
included about 95 pages with almost 33,600 wordger, we converted them into text
files. By that our text corpora for the SWPQAs domaere ready, where the corpus
consisted of the 34 documents were entered intoTeh@ToOnto tool and the corpus
consisted of the summary was entered into the Actmed later on. The discussion later
shows the details of how they had been used.

43

3.2 EXTRACTING ONTOLOGY DOMAIN CONCEPTS

Ontology domain concepts extraction is considereel most important part in
building an ontology. In order to extract ontolodggmain concepts we must study the
semantic of the prepared text corpora. To do sdirsitwe used the TextToOnto tool
[83]. We added the prepared text corpus (34 reldteadiments) to the tool by using the
New Corpus function. Figure 3.1 shows the creasind addition of the prepared corpus

to the tool.

£ KAON Workbench

File Edit View Procedures

IXJ

g

E Text Corpus Editor 1

Corpus Documents

- Document Preview

o= [C:\Documents and SettingsZamhaniDeskiopiTH
o [[3 C:\Documents and SettingslSamhaniDesktopiTH
o [C:\Documents and SettingslSamhaniDeskiopTH
o [C:\Documents and Settings\SamhaniDeskiopiTH
o [C:\Documents and SettingsSamhaniDeskiopiTH
& 3 CADocuments and Settings\SamhaniDeskiopiTH
&[] CiDocuments and SettingslSamhaniDesktopTH
o [Ci\Documents and Settings\SamhanDeskapTH
o [CDocuments and Settings\SamhanDaskamTH
o= 3 CDocuments and Settings\SamhaniDeskopiTH
o= [CiDocuments and Settings\SamhanDeskiopiTH
o= [CiDocuments and Settings\SamhanDeskopiTH
o= [C:\Documents and SettingslSamhaniDeskiopiTH
o= 3 C:\Documents and SettingslSamhaniDeskiopiTH
o [C:\Documents and SettingslSamhaniDeskiopiTH
o [C:\Documents and Settings\SamhaniDeskiopTH
o [C:\Documents and SettingslSamhaniDeskiopiTH
¢ [3 G:\Documents and SettingslSamhaniDesktopiTH
&[] CiDocuments and SettingslSamhaniDesktopTH
o [CDocuments and SettingslSamhaniDesktopiTH
o [CDocuments and Settings\SamhanDaskapTH

o [3/CADosurments and SetingelSamhaniDeskopTH

o= [CiDocuments and Settings\SamhanDeskiopiTH
o= [CiDocuments and Settings\SamhanDeskiopiTH
o= [CiDocuments and Settings\SamhanDeskiopiTH
o= 3 C:\Documents and SettingslSamhaniDeskiopiTH
o [C:\Documents and SettingslSamhaniDeskiopTH
o [C:\Documents and Settings\SamhaniDeskiopiTH
o [C:\Documents and SettingslSamhaniDeskiopiTH
¢ [G:\Documents and SettingslSamhaniDesktopTH

& [CADocuments and Settings\SamhaniDeskopiTH
i Il

my figh-level quality atiribute it helns to formulate an underlying functional model or
sage model (depending anwhather the attribute is a behaviour or a usejand a

| supporting metrics model. Such models help to mirimise overlap of behaviours and
¢l address issues of completenass. We will now look at a functional and a metrics model
[Tar reliability,

f Reliahility charactetises how a software system hehaves in respanse ta four kinds of
j faults (@) faults that lead to abnormal conditians that are generated externally andior

f that show un a3 inputs to the saftware system which violate its capacity o satisfyits

j specified functional behaviour (i) faults that result in errors that occur during the

f course of execution of 3 software systemthat cause itto deviate from its specified

;ﬁ functionality and therehy enter an abnormal state () errors that occurin the outputs of
|5 sofware systern that are caused by faults in the implementation ofthe Unctionaliy
;ﬁ (d) faults that lead to failure of the software system,

:5 A defensible functional madel for reliability inthis context 12 to say that at the highest

evel here are three nan-overlapping classes of functionality that a systemn must

:|implement 1o exhibit reliahle behaviour: eror-detection, error-reporing (through the
| unctionality subordinate guality atiribute visibilitd, errar-resolution. The previous
“|functionality deals only with situations where the systerm is able to avoid failure ithat

=, the system exhibits the behaviour, fault-tolerence), There is also another kind of

“|functionality needed to recoverirestart after failure of the software system

| (recoverahility, Within 2ach of these tymes of functionality there may be vanying

f degrees of sophistication and completeness and altemative strategies for dealing with
| the sityation,

“| uitable metrics which characterise the reliahility of 2 sofware system are the

f behaviours maturity and availability. Maturity may be interpreted a3 a running

| average of the elapsed-time between failures over the life-time ofthe system while
f availahility is a running average ofthe down-ime after each failure

Awallahility- hehaviour (metric)
FaulHtalerance - hehavioutisoftware characteristic
Maturity - behaviour (metric)

Creates anew corpus by taking all files in the directory and opens an editor window for it.

Figure 3.1: Creating a Corpus using TextToOntol.Too

Later we used the New Term Extraction function fdep to extract concepts from
provided the text corpus. This tool depends onmatanguage processing algorithms in
addition to semantic lexicon filtering techniqu@ghen we decided to declare parameters

44

to be used in the tool, at first we used frequehogshold to be 5 and above but the result
included more than 8500 concepts and that was laege to be considered as a initial
result for the ontology domain concepts; it wadicitt to be handled, so we declared 10,
15, and 20 as frequency thresholds to be takem flee results that came we chose to
stick with retrieving concepts that their frequenoythe given text corpus were 10
frequencies or above, we also chose to retrieveeqia that consist on one unique word
as a term; to have a suitable number of conceptst¢o large and also not too small) to
be collected and studied in our work. Figure 3.@wahthis step and some of the resulted
concepts.

5] Term Extraction ‘o @
Corpus: Text Corpus Editor 1 > Ol-model: |0I-mnueler - fileziC:Documents20and%205etting Fa20Dac i 1.kaon |V|
Language: English ¥ | Frequency threshold: |1 1] ‘ ‘ Apphy |
Max. words in term: |1 | Linguistic fitter: [(RERY"(RES (REI LR LS) + |
Extracted terms: 2750 Selected terms: 0
Ward Freguency TFIDF Entrapy C-value ‘
reference 401 4784 1.27 -49 967~

o= adopt B0 5.84 1.199 180531
plug 43 5.84 1.163 -14.313
as0c 79 74919 1 -18.263
necessity 34 54973 1.207 -12.962
broker 19 .31 1.189 -10.992
tranzaction 136 528 1.228 -33.036

o= ghstract 128 5.086 1.283 -21.76
dizgatisfaction T4 £.31 111 -17.582
country 98 B.821 1.091 -19.977
treatment 138 5722 1132 -23.581

o= produc 274 5147 1.207 -37.225
f] 11 74919 1 -12.263
isms <11l 7.919 1 -17.263
dod 25 5521 1.278 -11.647
client 342 5434 1.252 -43.83
feature | 4975 1218 =373
WEISE 12 6821 1.071 -11.799
weh 168 5147 1245 -25475
option 54 5521 1.251 -14.805) |

For vk £ 014 A 4AE S0 Edd =

‘ Start Extraction H Stop Extraction To Ol-madel | Remember selected terms

Figure 3.2: The Term Extraction process using teetToOnto tool.

This step; using TextToOnto tool to extract conseprovided us with about 2750
single concepts having a 10 or above as frequehagpearance in the given text corpus.
After that and in order to refine these resultedoepts we used a tool created by Kayed
[72], it is a combination between MS Access toall &S Visual Basic language. We
provided it with the resulted concepts (2750) anith whe other previously prepared text
corpus (text corpus from the abstract file), It élegs on a semantic counting algorithm
that counts the unique frequencies of the condapsgiven set of texts, so by using this
algorithm it studied which concepts from the pr@dd750 concepts were found in the
semantic of the provided corpus and how many tinids® tool provided us with almost
292 single concepts. Table 3.1 below lists theltedwwoncepts from the tool.

45

Table 3.1: the resulted 292 concepts (out of 2750).

Concept Frequency Concept Frequency Concept Frequency
attribute 99 work 8 independ 3
software 83 capacity 7 nature 3
component 78 control 7 occurrence 3
system 68 express 7 people 3
ability 58 failure 7 portability 3
function 57 manner 7 precision 3
use 56 response 7 presence 3
form 52 scope 7 produce 3
characteristic 42 storage 7 relationship 3
degree 39 adapt 6 relative 3
product 38 case 6 reliability 3
can 37 complex 6 repair 3
perform 35 developer 6 risk 3
capability 32 example 6 show 3
program 30 general 6 speed 3
environment 26 make 6 stability 3
concern 25 objective 6 testability 3
design 25 period 6 transfer 3
end 25 processing 6 verification 3
user 25 support 6 adaptability 2
measure 24 table 6 adaptation 2
code 23 utilization 6 assessment 2
operation 23 communication 5 audit 2
fact 22 computing 5 certification 2
quality 22 definition 5 commonality 2
time 22 demand 5 compliance 2
data 20 documentation 5 concept 2
effort 20 error 5 configurability 2
extent 20 freedom 5 conformance 2
factor 20 impact 5 cost 2
source 19 interval 5 couple 2
requirement 18 respect 5 customer 2
change 17 see 5 database 2
ease 17 structure 5 defect 2
rate 17 sub 5 dependability 2
implementation 16 type 5 dependency 2
number 16 unit 5 descript 2
amount 15 version 5 description 2
level 15 architecture 4 domain 2
part 15 configuration 4 establishment 2
process 15 continuity 4 evaluation 2
computer 14 effectiveness 4 figure 2
interface 14 incorporation 4 flexibility 2
resource 14 mechanism 4 goal 2
state 14 memory 4 independent 2
application 13 order 4 integrity 2
develop 13 organization 4 interaction 2
input 13 platform 4 knowledge 2
performance 12 probability 4 maintainability 2
set 12 property 4 market 2
correct 11 result 4 model 2

46

Concept Frequency Concept Frequency Concept Frequency
functionality 11 throughput 4 modifiability 2
operating 11 understandability 4 network 2
test 11 usability 4 practice 2
understand 11 accuracy 3 protection 2
access 10 availability 3 provision 2
document 10 being 3 range 2
efficiency 10 business 3 reason 2
information 10 completeness 3 reliance 2
mean 10 complexity 3 sense 2
object 10 correctness 3 standardization 2
context 9 custom 3 step 2
fault 9 deploy 3 terminology 2
hardware 9 development 3 testing 2
output 9 disk 3 tolerance 2
performing 9 engine 3 understanding 2
place 9 engineer 3 uniform 2
purpose 9 exchange 3 uniformity 2
specification 9 execution 3 research 1
standard 9 hand 3 responsiveness 1
effect 8 help 3 reusability 1
means 8 idea 3 safety 1
minimum 8 increase 3 second 1
modification 8 independence 1 security 1
service 8 industry 1 self 1
usage 8 interoperate 1 setting 1
utility 2 issue 1 solution 1
valid 2 language 1 specificity 1
value 2 latency 1 suitability 1
way 2 machine 1 survivability 1
absence 1 maintenance 1 top 1
abstract 1 marketing 1 traceability 1
abstraction 1 meaning 1 training 1
accessibility 1 measurement 1 transition 1
appendix 1 method 1 transport 1
applicability 1 metrics 1 try 1
assurance 1 modular 1 validating 1
breadth 1 modularity 1 verifiability 1
build 1 note 1 volume 1
clarity 1 operator 1 web 1
compatibility 1 improvement 1 existence 1
confidence 1 overlap 1 explanation 1
consistency 1 point 1 extendability 1
coupling 1 predict 1 future 1
deployment 1 predictability 1 guide 1
evaluator 1 producibility 1 removal 1
readiness 1 reference 1
replacement 1 report 1

47

After we had the 292 concepts resulted from thel sess tool, we reached to the
final part of extracting the ontology domain cortsepNe took those concepts, and
applied an elimination process for the stoppingdsofextremely common words like
use, can, the, of, etéjom them. The concepts set resulted from the altimn process
was sent to human experts (professors, doctorspautitioners) in the field of SWE and
SWQ, where we asked them to help us in condensiagsént set of concepts into a
smaller one. After a while the results were serdkhi® us, we collected them, studied
them upon the agreement of all experts on the semtepts; they all considered them
related and important to the studied field, andgeérthem into one set of concepts. The
result of this part was 100 concepts, which we sstggl as an ontology domain concept.

Table 3.2 below shows the suggested ontology doominepts.

Table 3.2: The suggested 100 ontology domain cdacep

Concept Concept Concept Concept Concept
ability develop meaning responsiveness control
access developer measure scope data

accessibility development memory service definition
accuracy documentation modification set degree
adapt ease notation setting design
adaptability effect number software information
adaptation effectiveness object source level
amount efficiency objective specification maintenace
applicability effort operating storage manner
application environment operation structure mean
attribute error operator system purpose
capability extent output test quality
change factor performance throughput rate
characteristic failure period time respect
code freedom portability understand response
component function precision understandability usag
computer functionality probability understanding user
computing hardware product uniform utility
concern implementation program uniformity utilizati on
context incorporation property usability work

An evaluation process for the suggested ontolagyian concepts must be done in
order to see how much the reached concepts beboihg tknowledge domain of software
quality , and to know if the resulted concepts emeugh to build a good ontology from
or not. That what we are discussing in the nexptdra

48

3.30NTOLOGY EVALUATION PROCESS

Various methodologies to evaluate ontologies haenlpresented in the last decade,
most of them belong to one of the following catéeggr

» Evaluations based on using the ontology in a cardean application or project,
to evaluate how effective it is. The use of theteasys may reveal weakness or
strength points in the ontology [16for our research it is hard to build an
application in order to be used considering theetire have, also we could not
find an application in the field to use the suggdsintology in its context.

* Evaluations based on the effort done by human é&xpeho try to assess how
well the ontology meets a set of predefined catestandards, and requirements
[96]. To reduce the role of human intervention ur evork especially after we
depended on human experts when extracting the stgghentology domain
concepts, we did not use this approach to evathatsuggested ontology domain
concepts.

» Evaluations based on comparing the ontology witleobntologies in the same
domain [17]. As we declared earlier, our ontologypresented as a first in the
specific domain of SWQPAS, so we could not usedpigroach for evaluation.

» Evaluations based on studying ontology relatiorstdpnsidering some criteria
[17]. For our ontology we extracted and presenttegal and basic relationships
between the extracted concepts from the domamsnibt adequate to be evaluated
using this approach.

* Evaluations based on studying and comparing thedbrepresentation of the
ontology with other ontologies formal representasiocriterions, or measures
[117]. As mentioned earlier, our ontology is presented dsst in the specific
domain of SWQPASs, so we could not use this appréacavaluation.

» Evaluations based on fitting or covering technigbetveen an ontology and a
domain of knowledge that the ontology is created 16, 25].

The last methodology; the coverage methodology, lsandecomposed into two
different coverage approaches. The first is donedwparing the new ontology domain
concepts with a considered existing gold standanshain concepts, to see how much
does the studied domain fit in the resulted ontploihe second approach is done by
comparing the ontology domain concepts with coreept prepared knowledge domain
to see how much does the suggested ontology canceper from the studied domain
concepts.

49

For our research we used a coverage techniqueedueaements for this approach are
available (text corpora, tools, etc). We combireeltivo last discussed approaches of the
coverage methodology. We prepared a corpus thabioaah between the semantic of
golden standards and the semantic of SWQ knowlefigeain. From many related
documents, reports, and publications we extradbedsemantic of the most common
discussed SWPQASs and their various discussed tlefigiin those files. We reached to
almost 66 SWPQAs and a wide range of definitiomghHem. Table 3.3 shows part of the
extracted 66 common discussed SWPQAs. The comphdtacted 66 SWPQAs and
there definitions in addition to the sources theytaken from are presented in Appendix
A.

Table 3.3: SWPQAs and their definitions from vassources references.

Att Quality Definition(s)
ID Attribute
1 Accuracy Attributes of software that bare on the provisionof right or agreed results or effects.

Those attributes of the software which provide theequired precision in calculations
and outputs.

This quality factor addresses the concern that prgrams provide the precision
required for each output. Accuracy is important beause most computer|
manipulations are not exact, but are limited approxmations.

A software product possesses accuracy to the extetiat its outputs are sufficiently
precise to satisfy their intended use

The capability of the software product to provide he right or agreed results or effects
with the needed degree of precision.

The characteristics of the software which providehie required
precision in calculations and outputs

(1) A qualitative assessment of correctness, or dom from error. (2) A quantitative
measure of the magnitude of errorContrast with: precision

Correctness

50

Att
ID

Quality
Attribute

Definition(s)

The degree to which a system, as built, is free fno error, especially with respect to
quantitative outputs. Accuracy differs from corredness; it is a determination of how
well a system does the job it is designed for rathé¢han whether it was implemented

correctly

The capability of the software product to provide he right or agreed results or effects
with the needed degree of precision

The provision of right or agreed results or effects

Complexity

This quality factor addresses the concern that progims not be complex

Is the extent to which it is involved or intricate,composed of many interwoven parts?

The degree to which a component or system has a @gsand/or internal structure
that is difficult to understand, maintain and verify.

A code measure, which is a combination of code, datdata flow, structure and
control flow metrics

(1) The degree to which a system or component haslesign or implementation that

is difficult to understand and verify.
(2) Pertaining to any of a set of structure-based ptrics that measure the attribute in (]

12

Functionality

This characteristic express the ability of a compent to provide the required
services, when used under specified conditions

The responsibilities assigned to the classes of esign, which are made available
by the classes through their public interfaces.

A set of attributes that relate to the existencefa set of functions and their specified
properties. The functions are those that satisfy ated or implied needs

51

Att
ID

Quality
Attribute

Definition(s)

The capability of the software product to provide finctions which meet stated and
implied needs when the software is used under spéed conditions.

The extent to which a component satisfies its spéications and fulfills the stated or
implied needs of the user

The capability of the software product to provide finctions that meets stated and
implied needs when the software is used under spéed conditions.

Is the essential purpose of any product or service

Is expressed as a totality of essential functionkdt the software product provides

Characteristics relating to achievement of the bas purpose for which the software is
being engineered

40

Dependability

This attribute indicates if the component is not dé-contained, i.e. if the component
depend of other component to provide its specifieservices

Is that property of a computer system such that réance can justifiably be placed on
the service it delivers

That property of a system such that reliance carustifiably be
placed in the service it provides

Availability. The degree to which a system or compent is operational and accessible

when required for use.
Dependability is that property of a computer systensuch that reliance can
justifiably be placed on the service it deliver

52

Att
ID

Quality
Attribute

Definition(s)

45

Integrity

The protection of the program from unauthorized acess

Extent to which unauthorized access to the softwarer data can be controlled

Quality factor addresses the concern that programsust continue to perform their
function even under adverse conditions: inputs thaare unexpected, improper, or
harmful

Ability of software to prevent purposeful or accidetal damage to the data or
software

The extent to which access to software or data byhauthorized
persons should be controlled

The degree to which a system or component or appéition prevents unauthorized
access to, or modification of, computer programs odata.

Non-occurrence of improper alterations of informdion

Is the requirement that data and process be proteetd from unauthorized
modification

Protection of the program from unauthorized access.

The extent to which access to a software componeatcomponent-based software
using the software component or the companion datay unauthorized persons can be
controlled

THE degree to which a system prevents unauthorized omproper access or

modification to its code and data or other systemasources and/or the degree to
which it ensures that data or object state is maimined in a coherent and correct
manner. The idea of integrity includes restrictingunauthorized user access as well 4
ensuring that data is accessed properly by its inteled users and other software.

65

Readability

The ease with which a developer can read and undéasd the source code and
technical documentation of a system, especially tite detailed source code statement

level

66

Productivity

The capability of the software product to enable usrs to expend appropriate amounts
of resources in relation to the effectiveness achied in a specified context of use.

53

As shown in the table above, the most common ascudsed 66 software product
guality attributes were extracted from the stuckedwledge domain found in various
documents and reports we collected earlier. Thie &tows that every attribute has many
definitions came from many sources. If we take apdéok to them, we will see
inconsistencies on the semantic of the used cosc&pat really makes the researchers in
the field confused about those attribute semanfiier completing the ontology that we
aim to build through our work, we will show how use it in order to solve the problem
appeared from using various semantics in the digfits of any of the studied attributes.

3.4 THE COVERAGE PROCESS AND THE EVALUATION
RESULTS

After we prepared the text corpus for the evalimjwocess (as seen in the table
before), we used two tools to help us in condudinegcoverage technique. First, for each
quality attribute definition(s) we extracted itsigle and unique concepts using the
TextToOnto tool as used before. After that we elmted the stopping words from the
resulted concepts.

Later, in order to know how much does our suggestedlogy concepts cover from
each attribute definition concepts which were et&d earlier, we used a program
created by Kayed [72]; we provided the program wtio groups of concepts, the first
group consisted of the single concepts of eachbat& definition(s), and the second
group consisted of our suggested ontology domantejats; it is the same tool used in
the refinement process for the extracted ontologypcepts. The results after that
appeared with which concepts from our ontology dontavered concepts from each
attribute definition(s).

Depending on the results provided by the programd, #@r each quality attribute
definition(s), we counted how many concepts did aotology domain concepts cover,
and calculated the average coverage for each amalyFwe calculated the average of all
the resulted coverage averages for all of thebaties definition(s). The result of the
coverage process showed that an average of 73Be alfefinitions concepts was covered
by our ontology domain concepts. That was a verydgooverage percentage for the
studied domain text corpus. Table 3.4 shows pathefresults from these steps. The
complete results are provided in Appendix B.

Table 3.4: Coverage Process Results.

Att. ID Attribute Def. Concepts Onto. Concepts that Count and Average
cover
1 Accuracy assessment accuracy 17 from 24
computer capability 0.708333333
concern computer
determination concern
extent degree
factor error
freedom extent
job factor

54

magnitude freedom
measure measure
output output
quality precision
respect product
capability quality
provision respect
right software
system system
accuracy
correctness
degree
error
product
precision
software
7 Complexity attribute attribute 16 from 19
code code 0.842105263
combination component
component concern
concern control
control data
data degree
degree design
design extent
extent factor
factor implementation
flow measure
implementation quality
measure set
metrics structure
quality system
set
structure
system
12 Functionality ability ability 12 from 16
achievement capability 0.75
capability characteristic
characteristic component
component design
design extent
existence product
express purpose
extent service
product set
purpose software
service user
set
software
totality
user
40 Dependability attribute attribute 7 from 10
availability component 0.7
component computer

55

computer degree
degree property
property service
reliance system
self
service
system
45 Integrity ability ability 21 from 30
access access 0.7
application application
code code
companion component
component computer
computer concern
concern data
damage degree
data extent
degree factor
extent function
factor information
function manner
idea modification
information object
integrity object
manner program
modification quality
object software
occurrence system
process user
program
protection
quality
requirement
software
state
system
User
65 Readability code code 7 from 8
developer developer 0.875
documentation documentation
ease ease
level level
source source
statement system
system
66 Productivity capability capability 5 from 7
context context 0.714285714
effectiveness effectiveness
expend product
product software
relation
software

The Average of Coverage Averages is

0:734520723

56

As shown in the table above, the evaluation processaled that our ontology
domain concepts covered almost 73% from the giveowdedge domain. This result
supports our claim; that we can condense the timolssaf concepts used to define the 66
most common and discussed software product quatttjputes into a smaller set of
concepts (100 concepts), and those 100 conceptyambabout 73% of the semantic
used to define them. In other words, a range of @%he semantic of each studied
SWPQA is covered by our ontology domain concepts.

What about the uncovered concepts? Can we getitsefiein the evaluation process
that had been done to our ontology domain condaptsder to enhance the work? Next
section will be devoted to answer this question.

3.5 ENHANCING ONTOLOGY DOMAIN CONCEPTS

After studying the results of the evaluation pssctor the suggested ontology domain
concepts, we devoted this section for answeringegiic question that says: what the
result would be if we collect and study the uncedeconcepts from the domain under
discussion? The results show that we were ablaeharee our ontology domain concepts
with a much better coverage percentage. Such seatdtshown in the discussion below.

3.5.1 THE ENHANCING IDEA AND PROCESS

As mentioned earlier, ontology domain concepts @vasidered to be the most
important part of the ontology building processaat@ng to coherent ontology domain
concepts is like accomplishing about 70% of thelmgly building process road. In order
to make the reached coverage percentage of outoggtadomain concepts better, an
enhancing idea was suggested.

From the results of the previous section; evalgatire ontology domain concepts
through concepts knowledge domain coverage tecknique could reach to the
uncovered concepts for the studied domain. A qoestopped up in our minds which
says: can we get benefits from those uncoveredepigcin order to enhance our
suggested ontology domain concepts? So we tookkadgain on the concepts of each
definition (mentioned earlier in table 3.4), we leoted and studied the uncovered
concepts for each definition and made a list froemt.

A study for the resulted list of the uncovered apis depending on their appearance
frequency in the domain of SWPQAs has been conduétiter that we rearranged the
list according to the studied criterion, we fouhdttthe frequencies range was between 1
and 5, when we studied them we found that the nurabeoncepts had frequency of
5,4,and 3 were 25 concepts, and concepts that reggiehcy of 2 or/and 1 were in
hundreds, so we chose the top listed 25 conceptstdied them upon if we can add
them to our ontology domain concepts and get acedtibetter covering average
percentage when evaluating the new suggested gytaloncepts. Table 3.5 shows the
new chosen concepts.

57

Table 3.5:

The top listed 25 uncovered chosen quace

Concept Concept Concept
means meeting idea
capacity minimum impact
interface nature interval
requirement people variety
state presence Verification
architecture relationship
availability reliability
demand resource
exchange risk
express testability

We took the new resulted concepts and merged thém our ontology domain
concepts. This gave us a new suggested ontologyaidoooncepts consisted of 125

concepts. Table 3.6 shows the new 125 suggestetbgntdomain concepts.

Table 3.6: The new 125 Ontology domain concepts lis

Concept Concept Concept Concept
ability documentation memory risk
access ease minimum scope

accessibility effect modification service

accuracy effectiveness nature set
adapt efficiency notation setting
adaptability effort number software
adaptation environment object source
amount error objective specification
applicability exchange operating state
application express operation storage
architecture extent operator structure
attribute factor output system
availability failure people test
capability freedom performance testability
capacity function period throughput
change functionality portability time
characteristic hardware precision understand
code idea presence understandability
component impact probability understanding
computer implementation product uniform
computing incorporation program uniformity
concern information property usability
context interface purpose usage
control interval quality user
data level rate utility
definition maintenance relationship utilization
degree manner reliability variety
demand mean requirement verification
design meaning resource
develop means respect
developer measure response
development meeting responsiveness

58

3.5.2 EVALUATING THE NEW SUGGESTED ONTOLOGY
DOMAIN CONCEPTS

In order to see how the new suggested ontologgemis effected on our work, we
evaluated it using the same technique (the coveed®ique) we used to evaluate our
first suggested ontology domain concepts. For esaftware product quality attribute
definition, we counted how many new covered corseg got when we used the new
ontology domain concepts to cover it, and we calea the new coverage percentage for
each one. After that, the average of the coverveyames was calculated. Table 3.7
shows the new results.

Table 3.7: The Coverage process results usingdihesnggested Ontology domain concepts.

Att. ID The Old Count The New Count The new Percentage
1 17 from 24 no change 0.708333333
2 13 from 15 14 from 15 0.933333333
3 6 from 10 no change 0.6
4 4 from 4 no change 1
5 12 from 26 17 from 26 0.653846154
6 9 from 12 no change 0.75
7 16 from 19 no change 0.842105263
8 4 from 7 no change 0.571428571
9 17 from 22 no change 0.772727273
10 4 from 5 no change 0.8
11 38 from 66 42from 66 0.636363636
12 12 from 16 13 from 16 0.8125
13 5from 5 no change 1
14 13 from 17 16 from 17 0.941176471
15 10 from 14 no change 0.714285714
16 39 from 61 45 from 61 0.737704918
17 8 from 12 no change 0.666666667
18 13 from 17 no change 0.764705882
19 32 from 45 36 from 45 0.8
20 29 from 36 30 from 36 0.833333333
21 11 from 12 no change 0.916666667
22 33 from 41 35 from 41 0.853658537
23 7 from 13 8 from 13 0.615384615
24 5 from 8 6 from 8 0.75
25 10 from 19 13 from 19 0.684210526
26 14 from 17 16 from 17 0.941176471
27 20 from 44 24 from 44 0.545454545
28 5 from 9 7 from 9 0.777777778
29 9 from 11 10 from 11 0.909090909
30 22 from 40 27 from 40 0.675
31 12 from 30 14 from 30 0.466666667
32 26 from 35 no change 0.742857143
33 31 from 48 33 from 48 0.6875
34 8 from 10 9 from 10 0.9
35 7 from 9 8 from 9 0.888888889
36 15 from 19 no change 0.789473684
37 19 from 24 20 from 24 0.833333333

59

Att. ID The Old Count The New Count The new Percentage
38 17 from 22 19 from 22 0.863636364
39 12 from 15 13 from 15 0.866666667
40 7 from 10 8 from 10 0.8
41 3from4 4 from4 1
42 3 from 3 no change 1
43 17 from 23 19 from 23 0.826086957
44 20 from 21 no change 0.952380952
45 21 from 30 24 from 30 0.8
46 9 from 13 10 from 13 0.769230769
47 3 from 5 4 from5 0.8
48 7 from 8 no change 0.875
49 10 from 11 11 from 11 1
50 7 from 11 9 from 11 0.818181818
51 13 from 15 14 from 15 0.933333333
52 7 from 8 no change 0.875
53 12 from 17 13 from 17 0.764705882
54 10 from 15 11 from 15 0.733333333
55 11 from 12 no change 0.916666667
56 13 from 14 no change 0.928571429
57 6 from 11 8 from 11 0.727272727
58 10 from 13 11 from 13 0.846153846
59 4 from 6 no change 0.666666667
60 15 from 22 19 from 22 0.863636364
61 5 from 6 no change 0.833333333
62 7 from 13 no change 0.538461538
63 13 from 16 15 from 16 0.9375
64 8 from 13 9 from 13 0.692307692
65 7 from 8 no change 0.875
66 5 from 7 no change 0.714285714

The New Average For Coverage Awges is . 0.79898580.80

From studying the results above, we can see thststep enhanced our ontology
domain concepts coverage percentage from seversy gercent to about eighty percent.
It is clear that the new suggested ontology dongawve us a much better result in the
evaluation process.

The new results of the evaluation process showatdan average of 80% from the
semantic used to define one of the 66 studied softvproduct quality attributes are
covered by our new suggested ontology domain cascé&pis 80% is shared and agreed
knowledge concepts among a very large number ofrex@and practitioners in the field,
who used to define software product quality attieisu These new results enhanced our
claim that we can condense the thousands of canaspt in the semantic of the most 66
common and discussed software product qualitybaties into a smaller set of concepts
consists of 125 concepts, which cover about 80% fitoln other words, a range of 80%
of the semantic used to define 66 software produatity attributes can be condensed by
our ontology domain concepts.

60

What about the remaining 20% uncovered concepts@nWe studied the remaining
20% uncovered concepts, we found that those conbet not been used in a very large
shared manner like the 80% covered concepts irddneain. They were used by some
individuals in the field to define one of the dissad software product quality attributes.
About 50% of the uncovered concepts had an appearfiaquency value of 2 in the
studied domain, and the second half of them hasl &naappearance frequency value in
the semantic of the whole definitions. In addittorthat, and in their semantic, they were
not related to the domain as much as the 80% cowarecepts. So we can claim that a
large percentage of the uncovered concepts arempairtant to the shared knowledge
that we want to reach as much as the 80% covenmeckpts, and we can eliminate them
from the semantic used to define one of the studigtbutes. So not mentioning them as
a part of our ontology domain concepts has a sneglative effect on our work.

The idea of condensing concepts used in the studedantic resulting with
information loss for sure, but if we take a looktbe condensing results, we will see that
we condensed the thousands of concepts used sethantic of the studied domain into
a smaller set of concepts, as we saw earlier weageghto condensed the 2750 extracted
concepts that have a coverage average of almo$b I00the concepts in the domain
into 125 concepts that have a coverage averagbnoisa80% for the concepts used in
the studied domain, we managed to condense abéttod®3he used concepts with just
20% of information loss.

61

CHAPTER 4

EXTRACTING ONTOLOGY DOMAIN RELATIONSHIPS

In this chapter we extracted general relationshigisveen the new concepts of the
suggested ontology domain after studying and iilgerthe results of two tools. We
presented the resulted relationships as groupsr &fat, a general lattice representation
for part of the resulted relationships was donetet,awe listed each concept in the
ontology domain with other concepts in the same alorthat appeared with them when
studying the extracted relationships.

4.1 EXTRACTING RELATIONSHIPS BETWEEN CONCEPTS

Extracting structured information and relationshipsm text between concepts has
been widely studied lately and became a rich sulbpéaesearch. Many works and
documents and even theses have been publishedthizostibject exclusively. When we
decided to proceed in this step; extracting andtorg relationships between concepts of
our ontology domain, we found that if we want teeate a detailed and complete
ontology relation taxonomy, then this work will te#ge enough to be a thesis by itself.
Such details go beyond our work scope, and we stigget to be done in the future
work. So, we went for extracting and presentin@sidand general representation of the
relationships that we could extract between ouologly domain concepts.

In this step, and in order to extract relationsHpsween our suggested ontology
domain concepts, we used and studied the resultsv@ftools. Firstly, we used the
TextToOnto tool in order to extract relationshipsdqociations) between concepts. We
provided the tool with the text corpus we prepgpegliously to extract concepts from,
and also we provided it with the concepts we wansttidy the relationships between.
When we ran this step the used tool provided uls abbut 1467 relationships. Figure 4.1
shows part of the results of this step.

=1

~rlexCaD i i =

£

ply Association Rules

,
i
a0
g

K

I3

Figure 4.1: Part of the resulted relationships giiextToOnto tool.

62

To get benefits from the resulted relationshipsnfrine TextToOnto tool, we used
them as an input for another tool; a tool creatge&ayed et al [71]. Such a tool accepts
the relationships resulted from the TextToOnto tesl an input, and implements a
counting and relevancy algorithm on them. This tpobvided us with about 65
relationships categorized in groups of conceptguféss 4.2 and 4.3 show part of using
this tool and part of its results. Later, we todle 65 resulted groups from this tool,
studied them, filtered them upon containing ourotody domain concepts or not
(because the text corpus we provided to the toelaioed much more concepts than our
ontology domain did). Table 4.1 shows the resuithis step.

Il Microsoft Access

Type a question forhelp =

1441 user 5et TTEM
1442 user softwar 0002320186
1443 user system TTIEM
1444 user understand | 7.73E-M
1!145 util characteist | 7.73E-04
1446 util exectt TTIEM
1447 util measur T304
1448 util ‘mest TTIEM
1&49 util natur TEM
145[] utlI TS0UrC 00 002320185 _
1451 util space \TT3E-04
1:152 util standard T3
1453 varieti campon 1000154679
1454 varieti oper \T.T3EM
1455 verf compan (TT3E4
MSE yeri evalu |T.T3E i
1457 verif interfac \TT3E-04
1458, verif j TTEM
1459 wast ‘ |173E-04
1460 wast purpos 0 00154679
1461 wast rate \TT3E04
1462 work bl TTEM
1463 work effort \1T3E-04
1464 work period T3
1465 wark process k=
1466 work product \TT3EM
1467 work system | 0.00154679
 [hutohumher)

Record: [14] 4 1 [DI]pA] of 1467

Datashest View

Figure 4.2: Using TexToOnto results as an inputtie second MS Access tool.

63

Fd Microsoft Access

| Fle it

Insert Fomat Records Toos Window Help

A0S RN N AR RS NN AR AN RN WA A2

GroupDesc x| Arial

B GroupedCon : Table

GmupNu Levels | Rel | Cons |

20 =B I U|D- A

GroupDesc

Datasheet View

Slealadalala]ada]ala oo o e fea] s ro jea | cad o faa bas el el s
ra e (e o o oo e hen feo feo | s Joo oo |t [as leo [o i [s (on [eofem e [en es | en

00
53 [[MbA] of 59

6 Level: 1
4level 2
6 Level: 1
6 Level: 1
6 Level: 1
4/ Level: 2
6 Level: 1
5/ Level: 1
4 Level 1
A Level: 1
5 Level: 1
4 Level: 2
5 Level: 1
5lLevel: 1
4/Level: 2
3| Level: 1
A Level: 1
4/ Level: 1
4/Level: 1
4/ Level: 1
4|Level: 1
4/ Level: 1

1

1

1

1

1

Rel:5 Cons:
Rel: 3 Cons:
Rel: 5 Cons:
Rel: & Cons:
Rel:5 Cons:
Rel:3 Cons:
Rel: 5 Cons:
Rel- 4 Cons:
Rel: 4 Cans: increas
Rel:4 Cons: sourc
Rel: 4 Cons: risk

Rel: 3 Cons: _ peopl
Rel:4 Cons: factor
Rel:4 Cons: demand
Rel: 3 Cons: readi
Rel: § Cons: coupl certif
Rel:4 Cons: absenc
Rel: 3 Cons: provis
Rel: 3 Cons: | presenc
Rel: 3 Cons: opportun
Rel: 3 Cons: compat
Rel:3 Cons: assess
Rel: 2 Cons: varieti
Rel: 2 Cans: sub

Rel: 2 Cons: relianc
Rel: 2 Cans: natur
Rel: 2 Cons: incorpor

memori
space
manner
structur
_independ
architectur
respect
minimum

3 Level:

3 Level:
3 Level:
3 Level:
3 Level:

| amount efficien space time usag

| memori network util

| correct degre modifi qual usag

| data design measur softwar understand
| architectur attribut degre program softwar
| code design independ

| capabl implement output perform requir
| amount function resourc softwar

| effort modifi product requir

| access attribut code concem

| chang freedom peopl softwar

| compon measur risk

| abl concem qual softwar

| object place rate readi

| demand senic usag

| requir

| environ measur place softwar

| effect precis senic

| abl appropri usag

| adapt emiron softwar

| abl interfac_system

| effort output state

| compon oper

| characterist number

| place system

| chang util

| chang requir

I-(I

Figure 4.3: Part of the resulted relationships gsoiom using the second tool.

Table 4.1: The resulted relationships betweenmggai our Ontology concepts after filtering.

Gr’\c:gp Level Group 1 Group 2
1 1 Software, system, requirement Attribute, design, test ,user
characteristic, function,
2 1 Performance, degree, component Data, effort, figtion, software
,system
2 2 Data, effort Component, degree, performance,
requirement, function ,software,
system, user
3 1 Environment, program, ability Component, requirement, software
4 1 Extent, time ,product software ,system
5 1 Operate (ion), ease, change Environment, softveq system
6 1 Resource, specification, extent
implementation

64

Group

NoO Level Group 1 Group 2
7 1 Capability, code Environment, performance,
requirement
8 1 Madification, measure Ability, requirement
9 1 amount ,state Function, resource, software
10 1 Application, applicability, Modification, requirement, system
understand ,user
11 1 Level, modification Product, software, system
12 1 Service, access Requirement, system, user
13 1 Effect, set Attribute, resource, system, user
14 1 Develop(er), failure Ease, product, software
15 1 Output, computer Amount, system
16 1 Efficiency, quality characteristic
17 1 meeting Madification, performance
18 1 Documentation, concern Software, system
19 1 Hardware, purpose Environment, software
20 1 Number amount ,specification
21 1 information Ability, data, degree,
documentation, exchange, object,
software, system
22 1 control Access, attribute, characteristic,
data, degree, operation, user, idea
22 2 idea Ease
23 1 precision Requirement, service
24 1 Adapt, utility (ization) characteristic
25 1 probability Availability, express, extent falure,
function, performance, program,
time
26 1 interface software
27 1 Mean, context change
28 1 probability Ability, characteristic, code, degee,
function ,time, Verification
28 2 Verification Component, interface, set
29 1 Freedom, uniform Environment
30 1 Storage, reliability code
31 1 response Design, measure, meet ,system
,.throughput, time
31 2 throughput Rate, requirement, response, time
33 1 error Maintenance, measure, precision,
program, requirement, system
33 2 maintenance Adaptability, attribute, ease, eor,
impact ,state
33 3 impact component ,maintenance ,system
34 1 Scope, accuracy extent
35 1 Usage, usability resource
36 1 work ,period system
37 1 relationship Attribute, degree, function,
modification, product
38 1 notation Definition, degree, implementation,

quality, uniform

65

Gr'\c:gp Level Group 1 Group 2

38 2 Definition Implementation, level, notation

39 1 testability Characteristic, code ,effort ,extet,
number

40 1 memory Amount, efficiency, time, usage

41 1 manner degree, modification, quality, usagd

42 1 structure data ,design, measure, software,

understand
43 2 architecture code ,design,
44 1 respect Capability, implementation, output,
performance, requirement

45 1 minimum Amount, function, resource,
software

46 1 source Access, attribute, code ,concern

47 1 risk Change, freedom ,people, software

47 2 people Component, measure, risk

48 1 factor Ability, concern, quality, software

49 1 demand Object, rate,

50 1 presence Ability, usage

51 1 variety Component, operation

52 1 nature Change, utility

53 1 incorporation Change, requirement

If we have a look at the table above, which shthesrelationships between groups of
our ontology concepts, we would see a group nurobkeimn; which refers to the ID of
the group of concepts that had a relationship iwéen. The second column shows the
level number which refers to the number of levdlghe relationships when concepts
from the same group have relationships with otleecepts. Before filtering, every group
was consisted of two levels: level one indicateat tinere is a relationship between a
group of concepts; call it g1, and another groupasfcepts, say g2, while in level 2, the
reverse of the relationship is given, that is taktronship that g2 has with g1. So we
filtered and eliminated them from the table abowd said that g1 had a relationship with
g2 and vise versa instead. Also the second anttittielevel from a group may show that
a concept or (concepts), which considered as a gfag group of concepts, had a
relationship with other concepts from the domaire Wd not eliminate this type of
relationships and we used it later in our repregent. Also, we would see the group 1
column; which refers to a side of the group of @pts that had a relationship with
another group of concepts shown in group 2 column.

66

4.2 A LATTICE REPRESENTATION OF THE RELATIONSHIPS

After we studied and filtered the resulted relasioips from the tools we used, as
shown in table 4.1 above, we considered repreggetiiem in a general form of lattice
representation, but if we did it to all relatioryshigroups it will be a large and complex
representation in addition to time consuming. So te@k part of those groups and
represented them as shown in the Figures as fallows

Software, system
requirement
characteristic, function

Attribute

Design
Test
User

Figure 4.4: Group 1 relationship Lattice represgéoa One Level Relationship.

Figure 4.4 above shows one level relationship, Wwhitdicates that a group of
concepts consists of (software, system, requirenagct function) has a relationship with
another group of concepts consists of (attribuesigh, test, and user) and vice versa.
When we looked at the semantic used to define theiesl attributes, we found that
concepts from group one came in the semantic alitly concepts from the second

group.

67

Performance
Degree
Component

Function, software
System

Data, effort

Requirement
User

Figure 4.5: Group 2 relationship Lattice represeémma Two Levels Relationship.

Figure 4.5 above shows a two levels relationshipich indicates that a group of
concepts consists of (performance, degree, and @oemp) has a relationship with a
group of concepts consists of (function, softwagstem, data, effort) and vise versa. We
separated the second group concepts from eachlmbause we needed to connect a part
from it (data, effort) with a second level group afncepts consists of (requirements,
user). These groups are used together in the semamtn defining some of the studied
attributes. The diamond shape on the arrow betvgeame concepts means that those
concepts together considered as a group, but segdo a needed reason.

Capability, code

Environment
Performance
Requirement

Figure 4.6: Group 7 relationship Lattice represtota One Level Relationship.

68

Application, applicability,
understand

Modification, requirement,
system, user

Figure 4.7: Group 10 relationship Lattice repreatoh: a One Level Relationship.

Access, attribute,
characteristic, data,
degree, operation, user

Figure 4.8: Group 22 relationship Lattice repreagoih: Two Level Relationship

69

Probability

Ability, Characteristic,
Code, Degree,
Function, Time

Component,
interface, set

Figure 4.9: Group 28 relationship Lattice repreatoh: Two Level Relationship.

Similarly, Figures 4.6 to 4.9 show similar ideast for different groups.

Figure 4.10 shows a three levels relationship,fitis¢ level consists of the concept
(error) as the first group, and it has a relatigms¥ith another group of concepts consists
of (measure, precision, program, requirement, sysied maintenance). We separated
(maintenance) and (system) from it because we detmleonnect them with another
group in the second level, the second level cansifthe group (adaptability, attribute,
ease, state, and impact) which has a relationship (wmaintenance) in the first level of
the relationship. We separated (impact) from tleugrbecause it has a relationship with
the third level group of concepts (component) arith Whe concept (system) in the first
level. Again, the diamond shape on the arrows betweoncepts means that those
concepts together considered as a group, but segdaa a needed reason.

So, for all the groups that appears in the talecan make a lattice representation as
shown, either for one or two or three levels relaghip.

70

Measure,
precision,
program,

requirement,

Adaptability,
attribute, ease,
State

Figure 4.10: Group 33 relationship Lattice représton: Three Level Relationship

4. 3LISTING EACH CONCEPT RELATIONSHIPS WITH OTHERS
IN THE ONTOLOGY DOMAIN

Finally, after representing the relationships g®owas shown earlier, we looked at
them again and we knew that if we studied them exddclist each concept relationships
with other concepts in the ontology domain. So aaktthem and reviewed them again,
but this time for each single concept in our ongglalomain. We studied what other
concepts in the ontology domain (in all groups) egypd with each concept in the
previously presented relationships groups. Theltiesinown in table 4.2, gave us each
concept in the ontology domain and other concept® the domain it has a relationship
with.

71

Table 4.2: Each Ontology domain concept relatigmskiith other concepts in the domain.

ID Concept Other Concepts that have relationships with the fist concept

1 ability Component, requirement, software, Modifiation, measure,
information, portability, factor, presence, portability

2 access Requirement, system, user, control, source

3 accessibility Requirement, system, user, contrapurce

4 accuracy Extent

5 adapt Characteristic

6 adaptability Maintenance

7 adaptation Environment, Software, Maintenance, Mdification

8 amount Function, resource, software, Output, comyter, Number,
memory, minimum, computing

9 applicability Maodification, requirement, system pser

10 application Madification, requirement, system ,ser

11 architecture code ,design

12 attribute Software, system, requirement charactestic, function,
Effect, set, control, maintenance, relationship, soce,
quality, meaning, means, portability, property,
responsiveness

13 availability Probability

14 capability Environment, performance, requirement respect

15 capacity Function, System, Requirement, Software

16 change Environment, software, system, Mean, cat, risk, nature,
means

17 characteristic Attribute, design, test ,user, Hiciency, quality, control,
Adapt, utility (ization), portability, testability, property

18 code Environment, performance, requirement, podbility,
Storage, reliability, testability, architecture, sairce

19 component Data, effort, function, software ,systn, Environment,
program, ability, Verification, impact, people, variety

20 computer Amount, system

21 computing Amount, system

22 concern Software, system, source, factor

23 context Change

24 control Access, attribute, characteristic, datagegree, operation,
user, accessibility

25 data Performance, degree, component, Componenlggree,
performance, requirement ,software, system, user,
Information, control, structure

26 definition Notation, Implementation, level, notéion, meaning, means

27 degree Data, effort, function, software ,systenmformation, control,
portability, relationship, notation, manner, level

28 demand Object, rate

29 design Software, system, requirement charactetis, function,
response, structure, architecture

30 develop Ease, product, software

31 developer Ease, product, software

32 development Ease, product, software

33 documentation Software, system, information, medng, means,

72

ID Concept Other Concepts that have relationships with the fist concept
understanding

34 ease Environment, software, system, Develop(efdjlure, idea,
maintenance

35 effect Attribute, resource, system, user

36 effectiveness Efficiency, Quality, Program, Furion, Factor

37 efficiency Characteristic, memory, effectiveness

38 effort Performance, degree, component, requirenm¢ ,software,
system, user, Testability

39 environment Component, requirement, software, Ograte(ion), ease,
change, Capability, code, Hardware, purpose
Freedom, uniform, adaptation

40 error Maintenance, measure, precision, progranrequirement,
system

41 exchange Information

42 express Probability

43 extent software ,system, Resource, specificatiamplementation,
probability, Scope, accuracy, testability

44 factor Ability, concern, quality, software, effetiveness

45 failure Ease, product, software, probability

46 freedom Environment, risk

47 function Attribute, design, test ,user, Performace, degree,
component, amount ,state, probability, relationship
minimum, capacity, effectiveness, responsiveness

48 functionality Attribute, design, test ,user, Pefiormance, degree,
component, amount ,state, probability, relationship
minimum

49 hardware Environment, software

50 idea Ease

51 impact Maintenance, component, system, interval

52 implementation Extent, notation, definition, repect

53 incorporation Change, requirement

54 information Ability, data, degree, documentation exchange, object,
software, system

55 interface Software, Verification

56 interval Time, Period, impact, minimum

57 level Performance, Degree

58 maintenance Error, Adaptability, attribute, ease impact ,state, adaptation

59 manner degree, modification, quality, usage

60 mean Change

61 meaning Definition, Attribute, Documentation

62 means Change, Definition, Attribute, Documentatin

63 measure Ability, requirement, response, error,tsucture, people

64 Meeting (meet) Madification, performance, respose

65 memory Amount, efficiency, time, usage, storage

66 minimum Amount, function, resource, software, iterval

67 modification Ability, requirement, Application, applicability, understand,
Product, software, system, meeting, relationship, emner,
adaptation , understanding

68 nature Change, utility

69 notation Definition, degree, implementation, qukty, uniform

73

ID Concept Other Concepts that have relationships with the fist concept

70 number amount ,specification, testability

71 object Information, demand

72 objective Information, demand

73 operating Environment, software, system, controlariety

74 operation Environment, software, system, controlariety

75 operator Environment, software, system, controlyariety

76 output Amount, system, respect

77 people Risk, Component, measure

78 performance Data, effort, function, software ,sstem, Capability, code,
meeting, probability, respect, level

79 period System, time, interval

80 portability Ability, Program, Software, Attribut e, utilization

81 precision Requirement, service, error

82 presence Ability, usage

83 probability Availability, express, extent ,failure, function, performance,
program, time, Ability, characteristic, code, degre

84 product software ,system, Level, modification, Bvelop(er), failure,
relationship

85 program Component, requirement, software, proballity, error,
effectiveness, portability, responsiveness, utilifian

86 property Characteristic, Attribute, Software

87 purpose Environment, software

88 quality Characteristic, notation, manner, factor, Attribute,
effectiveness

89 rate Throughput, demand

90 relationship Attribute, degree, function, modiftcation, product

91 reliability Code

92 requirement Attribute, design, test ,user, Dataeffort, Environment,
program, ability, Capability, code, Modification, measure
Application, applicability, understand, Service, acess,
precision, throughput, error, respect, incorporation,
accessibility, capacity, understanding

93 resource Extent, amount ,state, Effect, set, U@, usability, minimum

94 respect Capability, implementation, output, perbrmance,
requirement

95 response Design, measure, meet ,system ,throughgime,
responsiveness

96 responsiveness Response, function, software, ititite, program, time

97 risk Change, freedom ,people, software

98 scope Extent

99 service Requirement, system, user, precision,

100 set Attribute, resource, system, user, Verifidion

101 Setting Attribute, resource, system, user, Verification

102 software Attribute, design, test ,user, Performnce, degree,

component, Data, effort, Environment, program, abiity,
Extent, time ,product, Operate(ion), ease, changamount
,State, Level, modification, Develop(er), failureportability
Documentation, concern, Hardware, purpose, informdbn,
interface, structure, minimum, risk, factor, adaptation,

74

ID Concept Other Concepts that have relationships with the fist concept
capacity, property, responsiveness, utilization

103 source Access, attribute, code ,concern, acabiisy

104 specification Extent, Number

105 state Function, resource, software, maintenanceniformity

106 storage Code, memory

107 structure data ,design, measure, software, undgtand, understanding

108 system Attribute, design, test ,user, Performae, degree,
component, Data, effort, Extent, time ,product, Opgeate(ion),
ease, change, Application, applicability, understaah, Level,
modification, Service, access, Effect, set, Outputpmputer
Documentation, concern, information, response, erm
impact, work ,period, accessibility, capacity, compting,
understanding, uniformity

109 test Software, system, requirement characterist function

110 testability Characteristic, code ,effort ,exteh number

111 throughput Response, Rate, requirement, time

112 time Period, software ,system, probability, rggonse, throughput,
memory, interval, responsiveness

113 understand Modification, requirement, system ,ser, structure,
Documentation

114 understandability | Modification, requirement, system ,user, structure,
Documentation

115 understanding Modification, requirement, systemuser, structure,
Documentation

116 uniform Environment, notation, uniformity

117 uniformity State, uniform, System

118 usability Resource

119 usage Resource, memory, manner, presence,

120 user Software, system, requirement characterist function, Data,
effort, Application, applicability, understand, Service, access,
Effect, set, control, accessibility, understandingytilization

121 utility Characteristic, nature

122 utilization Software, User, Program, Portabiliy

123 variety Component, operation

124 verification Component, interface, set

125 work System

Those presented relationships in the table aboyewasvill see later, support us in a way
or another in our contribution and that what thextnehapter is discussing.

75

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this chapter we present and discuss the caondsisof our research; our final
results and how we used them to contribute in thdiesd domain are presented among
the conclusions. Future work are suggested atrttiegthis chapter.

5.1 CONCLUSIONS

SWPQAs discipline is considered in the emergingsphand it suffers from the
typical symptoms of any relatively evolving disaiyds. SWPQAs are currently in the
phase in which terminologies, principles, and mdshaare still being defined,
consolidated, and agreed. In particular, therelack of consensus on the concepts and
terminologies used in the semantic of this fieltudtes showed that inconsistencies in
the semantic used different research attributesqsals often occur.

In our research we focused on studying SWPQAs giacand terminologies that
current software quality proposals, documents, @mbrts present. We prepared text
corpora from them to be used in a tool to extrhetmost discussed and used concepts
from it. After that experts were asked to study difigr the resulted concepts and
provided them to us.

An evaluation phase depended on a coverage techmigs done to the resulted
concepts, followed by an enhancing step to theuatedl ontology domain concepts
which leaded us to increase the number of the stgdeconcepts in the ontology
domain, after that a coverage evaluation is dor@natp the new suggested ontology
domain concepts.

In order to extract general relationships among shggested ontology domain
concepts, we returned to the prepared text corgashand ran out two tools on it. We
studied them, filtered them, listed them and regmeesd part of them using a lattice
representation.

Through completing the steps of our work, whichén@een previously summarized,
we reached to many important results. These reswdisstudied filtered and used to
support our claim. The sections below present oonkvfinal results and how we used
them to support our contribution in the field.

76

5.1.1 PRESENTING FINAL RESULTS

Through completing the steps of our work we readbadany important results, which
could be summarized as follows:

* Ontology domain concepts: resulted from preparatgindying, and filtering a
text corpus related to the domain of software pebdwality attributes. First, we
reached to a result that we can condense the senmdrthousands of concepts
used to define the discussed 66 attributes intmaller set of concepts consisted
of 100 concepts with a coverage percentage fostilndied knowledge domain of
73%. But after an evaluation process and what deone studying its results, we
enhanced our suggested ontology domain conceptbetaonsisted of 125
concepts with an average of 80% of coverage pegentor the studied
knowledge domain, (final results of the new 125gasted ontology domain
concepts are shown in Appendix C).

» Relationships between groups of concepts for tlggested ontology domain:
resulted from studying and filtering the results tefo tools; the associations
resulted from using the TextToOnto tool after wevmled it with a related
knowledge domain text corpus and concepts, Aftatrwe took those associations
and provided another tool created by Kayed et &] vith them. This process
provided us with relationships between groups afcepts from our suggested
ontology domain. Again we studied them, filtere@rth and finally presented
them, (the resulted relationships are shown in AdpeD).

» Each Software product quality attribute conceptst thelong to our ontology
domain: from the evaluation and enhancing phasetler ontology domain
concepts. We reached to every attribute definitoncepts that belong to our
ontology domain concepts, (the resulted concegtslaown in Appendix E).

* Finally, Relationships between each concept indhwlogy domain and other
concepts also in the same domain: resulted frondystg the groups of
relationships that appeared in appendix D in aoldito the domain itself (these
results are shown in appendix F).

5.1.20UR CONTIBUTION

By reaching and providing those final results désad in the previous section, let us
don't forget that our main focus in this work is goovide experts mainly, researchers,
and practitioners in the field of SWQ with an ooigy} to be considered as a base and a
common agreement knowledge. This supports themeiimidg the most common
discussed SWPQAs (66 attributes) that we extrabteoh the fields documents and
reports, and reaching to a common, shared, andstenssemantic for them. This solves
the inconsistencies of the semantic appears irddffi@itions of those attributes among
many documents and reports as shown earlier.

77

We have presented the conceptualization of the comadiscussed SWPQAs by an
ontology, which considered as a first in this sfieciomain.

We also have condensed the semantic of thousarasoépts used to define any of
the 66 discussed SWPQAs into a smaller set of gisa@onsists of 125 concepts with a
high percentage of coverage average for the stutiethin reached to 80% of coverage.

Also by the results of this research, we provide ¢éperts and practitioners in the
field of SWQ who want to define any of the discus66 attributes in the domain with an
ontology which contains a set of common used amdeagconcepts (for each attribute
definition, and for general studied domain), arsgbakith relationships between them (as
groups, or relationships between concepts belonghéosame attribute that can be
inferred from the presented relationships, or reteships between concepts in the studied
domain). So when an expert decide to define aibaté from the discussed domain, we
suggest two ways to use our ontology to have aist@mé semantic with other definitions
in the field. First after an expert wrote down loiwn definition he can compare the
concepts he used in the semantic of his definitith our ontology domain concepts and
try to map from his used concepts to our concapi® the ontology domain if needed,
and try to use the provided relationships betwdmmtto connect the semantic of the
concepts together in a strong, meaningful, andistarg manner. The second way that
we suggest to reach to an agreed semantic is éfatebthe expert write down his own
definition we recommend to take a look on the adgldomain and use its concepts and
relationships along with his experience as a lkasevledge to consist the definition he
wants.

If experts in the field follow one of these suggesstvays when defining one of the
discussed SWPQAs, eventually they will reach toommmon, agreed, and consistent
semantic between them, and this will be a succkasfyito solve the presented problem.

In addition to this, our ontology provides a baseetvaluate any related presented
definition semantic for one of the 66 studied htttes. The way of doing that is if a high
percentage of the concepts used in the semantie qiresented definition are covered by
our ontology domain, the presented definition sdinatan be accepted, but if not we
claim that it is a weak semantic to be used dedirsiuch an attribute.

5.2 FUTURE WORK

By working on our thesis step by step, many ideakissues were appeared but not
accomplished yet because of time, resources, dmel gbnstraints. We would like to
suggest them as a future work. To mention:

* Providing a description for each concept used enpitovided ontology domain in
order to help experts and practitioners who wanige them while defining one
of the discussed software product quality attrisute

» A formal representation for the ontology.

78

Some suggestions for the tools we used to be neaefuendly, as the possibility
of copying records as all in all not a record itinae, and putting some notes in
the interface that help the users to use the @silye

Extracting and presenting the detailed types détimnships between our
ontology domain concepts.

Completing the lattice representation for the arggldomain relationships.

Use another approach to evaluate and enhance tbkgy domain, and compare
the results with the results we already had. Aiquré on evaluating the ontology
may be done by conducting set of experiments andgito deploy the ontology in
some applications to show how effective, useful] anpressive is the proposed
ontology to the audience in a context of softwargimeering domain and especially
to the audience in the context of software qualityibutes domain.

Using our ontology domain and convert it into araic ontology for the same
studied domain but in Arabic language.

79

REFERENCES

[1] Abram A.; Sellami A., “Initial modeling of themeasurement concepts in the ISO
vocabulary of terms in metrology”, In Proc. of IW@0D2, Magdeburg (Germany), Oct. 2002.
[2] Alvero A.; Santana de Almeida E.; Romero de mMdelS.,"Quality Attributes for a
Component Quality Model”, in the proceeding of 1Giternational Workshop on Component-
Oriented Programming, Glasgow, Scotland, at ECOQ®52Glasgow, Scotland, July 25--29,
2005.

[3] Azuma M., “SQuaRE: The next generation of t8OIIEC 9126 and 14598 International
Standards Series on software product quality”. tacPof European Software Control and
Metrics, London (England), April 2001.

[4] Baker G.; Brass A.; Bechhofer S.; Goble C.tdRaN.; Tambis R., “Transparent access to
multiple biological information sources”, Proceeghrof the Sixth International Conference on
Intelligent Systems for Molecular Biology , ISMB-9Blenlow Park, California, AAAI Press,
25-34,June 28-July 1 1998.

[5] Balzer R.; Dayer D.; Feahling M., Sawnders Spécification Based Computing
Environments”, Proceedings of the 8th InternatioBahference on Very Large Data Bases,
ISBN: 0-934613-14-1, PP: 237 — 279, 1982.

[6] Barbacci M., “Software Quality Attributes: Mdidibility and usability”, Software
Engineering Institute, Carnegie Mellon UniversiBittsburgh PA 15213, Sponsored by the
U.S. Department of Defense, 2004.

[7] Barbacci M.; Ellison R.; et al., “Quality Attiute Workshop Participants Handbook”,
special report, CMU/SEI-2000, SR-001, January 2000.

[8] Barbacci M.; et al., “Quality Attributes”, Teakcal report CMU/SEI-95, TR- 021, ESC-TR-
95-021 , Dec. 1995.

[9] Basili V.; Rombach D., “The Tame project: Towarimprovement oriented software
environments”, IEEE Transactions on Software Engiimg, Vol. 14, Issue 6, PP: 758-773,
June 1998.

[10] Berander P.; et al., “Software quality attiési and trade-offs”, Blekinge Institute of
Technology, produced in a Ph.D. course on “Qualityibutes and trade-offs”. The 11 Ph.D.
students that followed the course all worked in shee research project: BESQ (Blekinge —
Engineering Software Qualities), http://www.bthtsesq.June 2005.

[11] Bevan N., “Quality in Use: Meeting User Neefds Quality”, Journal of System and
Software, Vol. 49, Issue 1, PP: 89-96, 15 Dec. 1999

[12] Black A., “Software Quality Assurance In A Reta Client/Contractor Context”, A thesis
submitted in fulfillment of the requirements foretllegree of master of science of Rhodes
University, Dec. 2005.

80

[13] Boehm B.; Brown J.; Lipow M., "Quantitativevauation of software quality,
International Conference on Software Engineeringfoceedings of the 2nd international
conference on Software engineering, IEEE CompubeieBy Press, San Francisco, California,
United States, Pages: 592 — 605, 1976.

[14] Boehm B.; Brown J., Kaspar H.; Lipow M.; MclLeds.; Merritt M., “Characteristics of
Software Quality”, Elsevier, North Holland, 1st Eadin, ISBN: 0444851054, 1978.

[15] Bgarretzen J., "The impact of component-basexyetbpment on software quality
attributes”, borretze@idi.ntnu.no, Essay, DT81MNX

[16] Brank J.; Grobelnik M.; Mlade&iD., “A Survey of Ontology Evaluation Techniquesf,
proc. Of the 8th international multi conferenceoimfiation society, SIKDD, 2005.

[17] Brewster C.; Alani H.; Dasmahapatra S.; Wiks “Data-driven ontology evaluation”. In
Proc. of the 4th International Conference on Laggu&®esources and Evaluation, Lisbon,
2004.

[18] Brooks F., “No Silver Bullet - essence andidents of software engineering”, Compute
magazine, Vol. 20, Issue 4, PP: 10-19, Apr. 1987.

[19] Burnstein 1., “Practical Software Testing”, ri8mer-Verlag, New York, Inc., 1st Edition,
ISBN 0-387-95131-8, 2003.

[20] Calero C.; Ruiz F.; Piattini M., “Ontologie®rf Software Engineering and Software
Technology”, Springer Berlin Heidelberg, New Yolf8BN-10 3-540-34517-5, 1998.

[21] Conde D., “Software Product Management: Mangd@oftware Development from Idea to
Product to Marketing to Sales (Execenablers)”, Am@aBooks, 1st Edition, ISBN 1-58762-
202-5, Sep. 2002.

[22] Corcho O.; Fernandez M.; et al., "Building la¢gontologies with METHONTOLOGY
and WebODE", In Benjamins, R.; Casanovas, P.; Breuk & Gangemi, A. (ed.): "Law and
the Semantic Web".

[23] Curtis B.; Hefley B.; Miller S., "People Caphty Maturity Model® (P-CMM®)”,
Carnegie Mellon University, Software Engineeringtitute, Version 2.0, MM-001, 2001.

[24] De los Angeles Martin M.; Olsina L., “Toward ®ntology for SW metrics and indicators
as the Foundation For Catalog Web system”. Web femsg First Latin American, Santiago,
Chile, Vol. 30, Issue 3, 10-12,PP: 103 -113, ,2003

[25] Dellschaft K.; Staab S., “On How to PerformGold Standard Based Evaluation of
Ontology Learning”. International Semantic Web Goehce, PP: 228-241, 2006.

[26] Devedzic V., “Understanding Ontological Enginieg”. Commune ACM, Vol. 45, Issue
4, PP: 136-144, 2002.

[27] Dromey R., "A model for software product qulj IEEE Transactions on Software
Engineering, Vol. 21, Issue 2, pp: 146-163, 1995.

[28] Dromey R., "Concerning the Chimera [softwarality]", IEEE Software, Vol. 13, Issue.
1, PP: 33-43, 1996.

81

[29] Dromey R., “Software Product Quality: Theokyodel and Practice. Software Quality
Institute”, Griffith University, Nathan, Brisban@LD 4111, Australia, accessed on 2008 April,
Available online at:
http://scholar.google.com/url?sa=U&qg=http://www.ggi.edu.au/docs/sqi/misc/SPQ-
Theory.pdf, 1998.

[30] Ehrig M.; Haase P.; Hefke M.; Stojanovic NSithilarity for ontologies a comprehensive
framework”. In Workshop Enterprise Modelling andt@ogy: Ingredients for Interoperability,
at PAKM 2004, DEC 2004. http://citeseer.ist.psuledtig04similarity. html.

[31] Ernst M., “Ontology building: A survey of edig tools”, Online, accessed 2008 April,
Available from URL: http://www.xml.com/pub/a/2002//06/ontologies.html.

[32] ESA Board for Software Standardisation and t8a#nBSSC),"Guide to software quality
assurance”, european space agency / agence sgatiafgenne, 8-10, rue Mario-Nikis, 75738
Paris Cedex, France, ESA PSS-05-11, Issue 1, RavisiMar. 1995.

[33] Fitzpatrick R.; Higgins C., “Usable softwaradaits attributes: A synthesis of software
quality”, European Community law and human-compirtgraction, In People and Computers
XIll, Proceedings of HCI98 Conference, Springemdon, UK 1998.

[34] Florac W., “Software Quality Measurement: AaRrework for Counting Problems and
Defects” , CMU/SEI-92-TR-22, Software Engineeringstitute -Carnegie Mellon University,
Pittsburgh, Pennsylvania, Sep. 1992.

[35] Floridi L., “Blackwell Guide to the Philosophyf Computing and Information”, Preprint
version of chapter “Ontology”, Oxford: BlackwellPP155— 166, 2003.

[36] FZI Karlsruhe; AIFB Karlsruhe, “KAON: the Kamtuhe ontology and semantic web
framework developer’s guide for KAON 1.2.7”, Unigéy of Karlsruhe, Germany, 2004.

[37] Galin D., “Software Quality Assurance -frormretiry to implementation”, Pearson Addison
Wesely, ISBN 0-201-70945-7, Sep. 2004.

[38] Ganng Z.; Gao Y.; Meersman R., "An ontologyséd approach to business modeling"”, In
Proceedings of the International Conference of Kedge Engineering and Decision Support,
Vol. 31, Issue 7, 2005.

[39] Garcia F.; Bertoa M.; Calero C., “Towards anGigtent Terminology for Software
measurements”, Information of Software Technoldggl. 48, Issue 8, PP: 631-644, 27 June
2005.

[40] Glossary of Computerized System and Softwagedlbpment Terminology, a reference
material for Investigators and other FDA personAghilable on
http://www.fda.gov/oral/inspect_ref/igs/gloss.htiilsited 21-4-2008.

[41] Glossary of Software Engineering terms, SEE&dog, Digital publications LLC Version
1.0d, 2005, available on http://www.shellmethodthfefs/seglossary.pdf.

[42] Godbole N., “Software Quality Assurance - piples and practice”, Alpha science
international Itd., ISBN 1-84265-176-5, 2004.

[43] Grady R., “Practical software metrics for @cj management and process improvement”,
Prentice Hall, ISBN: 978-0137203840, 1992.

82

[44] Gruber T., “Ontology”, to appear in the Enaygkdia of Database Systems, Ling Liu and
M. Tamer Ozsu (Eds.), Springer-Verlag, 2008.

[45] Guarino N.; “Formal ontology and informatiopssems”, Proceedings of the international
conference on Formal Ontology in Information Systeifrento, Italy, Amsterdam: I0OS Press,
Netherlands, PP: 3-15,1998.

[46] Guarino N.; Persidis A., “Evaluation framewdik content standards”, Technical Report,
OntoWeb Deliverable 3.5, Padova; 2003.

[47] Horch J., “Practical Guide to Software Qualityanagement”, 2nd Edition, ISBN:
1580535275, 2003.

[48] Hoyle D., “ISO 9000 Quality Systems HandbooElsevier, Fifth Edition, ISBN 0 7506
6785 0, Dec. 2005.

[49] Http://www.sga.net/is09126.html, “An overvieafithe ISO 9126-1 software quality model
definition, with an explanation of the major chaeaistics”, Article, last visit on 27-4-2008.

[50] Humphrey W., “Introduction to the Personal t3@fre Process”, Addison-Wesley Pub Co,
1st Edition, ISBN: 978-0201548099, 1996.

[51] Humphrey W., “Introduction to the team softwasrocess”, Addison-Wesley Pub Co, 1st
Edition, ISBN: 978-0201477191, 2000.

[52] Humphrey W., “Managing the software processtidison-Wesley Pub. Co, 1st Edition,
ISBN: 978-0201180954, 1989.

[53] Hyatt L.; Rosenberg L., “A Software Quality el and Metrics for Identifying Project
Risks and Assessing Software Quality”, Product Aasce Symposium and Software Product
Assurance Workshop, ESTEC, Noordwijk, the NethelarEuropean Space Agency, p.209,
1996.

[54] IEEE, “IEEE Standard Glossary of Software Ewmgiring Terminology/|IEEE Std 610.12-
1990", (Revision and redesignation of IEEE Std 1283), Sponsor Standards Coordinating
Committee of the IEEE Computer Society, ApprovegtSmber 28, 1990 IEEE Standards
Board, ISBN 978-1559370677, 1990.

[55] ISO, International Organization for Standaadian, "ISO 9000:2000, Quality
management systems - Fundamentals and vocabulbsy'Edition, ISBN: 92-67-10332-6,
2001.

[56] ISO, International Organization for Standaadian, "ISO 9000-2:1997, Quality
management and quality assurance standards — P@grric guidelines for the application
of ISO 9001, ISO 9002 and ISO 9003", 1997.

[57] ISO, International Organization for Standaatfian, "ISO 9000-3:1998 - Quality
management and quality assurance standards — :P@ui@elines for the application of ISO
9001_1994 to the development, supply, installatol maintenance of computer software
(1ISO 9000-3:1997)", 1998.

[58] ISO, International Organization for Standaadian, "ISO 9001:2000, Quality
management systems — Requirementsd, Bdition, 2000.

83

[59] ISO, International Organization for Standaatdian, "ISO 9004:2000, Quality
management systems - Guidelines for performanceoivements”, 2000.

[60] ISO, International Organization for Standaadian, "ISO 9126-1:2001, Software
engineering - Product quality, Part 1: Quality mbd2001.

[61] ISO. International Organization for Standasdian, “International Vocabulary of Basic
and General Terms in Metrology”. International 8@ organization, Geneva, Switzerland,
2nd Edition, 1993.

[62] ISO/IEC, “ISO/IEC 15504-1:2003, Informatiorctenology — Process assessment — Part 1:
Concepts and vocabulary” 2004.

[63] ISO/IEC, “Software and Systems Engineeringsdelines for the Application of ISO/IEC
9001:2000 to Computer Software”. International 8tads Organization, Geneva, witzerland,
2004.

[64] Jacobson I.; Booch G.; Rumbaugh J., “The \éxifiSoftware Development Process”,
Addison Wesley Longman, Inc., ISB201571692, Feb. 1999.

[65] Jarrar M., “Towards methodological principlefer ontology engineering”. PhD
Dissertation, Vrije Universities Brussels, 2005.

[66] Jarrar M.; Demy J.; Meersman R., “On reusiogaeptual data modeling for ontology
engineering”. In: Aberer K, March S, Spaccapietrgeds.), Journal on Data, Vol. 2800, Issue
1,PP: 185-207, 2003.

[67] Jetter A., “Assessing software quality atttdsl, A thesis submitted in fulfillment of the
requirements for the degree of master of scienoftw8re Evolution & Architecture Lab,
Department of Informatics, University of Zurich, izzh, Switzerland, January 2007.

[68] Jones C., “Making measurement work”, Crosstdlhe Journal of Defense Software
Engineering, Vol. 16, Issue 1, PP: 15, 19, Jan1200

[69] Jones B.; Storey V.; Sugumaran V.; Ahluwalia‘A semiotic metrics suite for assessing
the quality of ontologies”. Data and Knowledge Ewgiring, Vol. 55, Issue 1, PP: 84 — 102,
Oct. 2005.

[70] Juran J.; et al., “Juran's Quality HandboolkicGraw-Hill, ISBN: 007034003X, Fifth
Edition, 1999.

[71] Kayed A.; Hirzallah N.; Al Shalabi L. A.; dnNajjar M., “Building Ontological
Relationships: A new approach”, Journal of the Aimaar Society for Information Science and
Technology, John Wiley & Sons Inc, 111 River STopdken , USA , NJ, 07030, 2008.

[72] Kayed A., “Building e-laws ontology: New appch”, Springer, Lecture Notes in
Computer Science ,Springer-Verlag Vol. 3762 , GenyndSBN/ISSN: 0302-9743, pp 826-
830,2006.

[73] Kayed A.; Colomb R.., “Using BWW Model to Ewelte Building Ontologies in CGs
Formalism”. Information Systems. Vol. 30, IssuePR: 379 — 398, ISSN: 0306-4379, July
2005.

[74] Kayed A.; Colomb R., “Extracting Ontologicalo@cepts for Tendering Conceptual
Structures”Data & Knowledge Engineering, Vol. 40, Issue 1,éad1 - 89, 2002.

84

[75] Khosravi KH.; Gael Y, “On issues with softwarpality models”, 2005. Jun. 2006.
Available on www.iro.umontreal.ca/~sahraouh/- q@@895/paper7.pdf.

[76] Kim H., “Representing and Reasoning about @yalsing Enterprise Models”. PhD
thesis, Dept. of Mechanical and Industrial EngiimegrUniversity of Toronto, Canada, 1999.
[77] Kitchenham B.; Pfleeger S., "Software qualitye elusive target [special issues section]",
IEEE Software, Vol.13, Issue 1, pp: 12-21, ISSNM®7459, 2002.

[78] Kitchenham B.; Hughes R.; Linkman S.,”"Modelisgftware measurement data”. IEEE
Transactions on Software Engineering, Vol. 27,ds9) PP: 788-804, ISSN: 0098-5589, Sept.
2001.

[79] Knowledge Management Group (WBS); Researchu@r&nowledge Management
(WIM), “Extensions to the Karlsruhe Ontology andngatic Web Framework, KAON
Extensions, Developer’'s Guide for KAON Extensior®’OUniversity of Karlsruhe, Germany,
Aug. 2003.

[80] Kruchten P., “The Rational Unified Processlatmoduction”, Addison Wesley Longman,
Inc., 3rd Edition|SBN: 978-0321197702, Dec., 2003.

[81] Land R., “Measurements of Software Maintaifigii In Proceedings of Second
Conference on Software Engineering Research arudi¢an Sweden (SERPS), Blekinge
Institute of Technology Research Report 10, 200&ilable on
http://www.mrtc.mdh.se/publications/0436.pdf.

[82] Maedche A.; Motik B.; Stojanovic L.; StudeR.; Volz R., “An infrastructure for
searching, reusing and evolving distributed ont@lsg In Proceedings of the twelfth
international conference on World Wide Web, Budapdsingary, ACM Press., PP 439-448,
2003.

[83] Maedche A.; Volz R.,"The ontology extractiondamaintenance framework text-to-onto”.
In Proceedings of the ICDM'01 Workshop on IntegrgtiData Mining and Knowledge
Management, 2001.

[84] Marciniak J., “Encyclopedia of software engineg”, 2 vol. set, 2nd ed., Chichest
Wiley, ISBN: 978-0-471-37737-5, 2002.

[85] Mark C.; Weber W.; Charles V.; Garcia F.; Suza M.; et al, "Capability Maturity Model
for Software”, Technical Repgor€arnegie Mellon University, Software Engineerimgtitute,
TR-024, Version 1.1, 1993.

[86] Marko G.; Mladeni D., “Automated Knowledge Bavery in Advanced Knowledge
Management”, Journal of Knowledge Management, 9olssue 5, PP: 132-149, 2005.

[87] McCall J.; Richards P.; Walters G., "FactarsSioftware Quality”, Nat'l Tech. Information
Service, General Electronic Co Sunnyvale Calif,.\19I2 and 3, 1977.

[88] McGarry J.; Card D.; et al., “Practical Soft@aMeasurement Objective Information for
Decision Makers”, Addison-WeslelSBN 4-320-09741-6, 2002.

[89] Mika P., “Social networks and the semantic wHie next challenge”, IEEE Intelligent
Systems, Vol. 20, Issue 1, PP: 80-93, 2005.

85

[90] Noy N.; McGuinness D., “Ontology developmer@?li A guide to creating your first
ontology”, Technical Report KSL-01-05, Stanford kwiedge Systems Laboratory, and
Technical Report SMI-2001-0880, Stanford Medicébimatics, California, USA, 2001.

[91] Obrst L., “Ontologies for Semantically Intempble Systems”, Conference on
Information and Knowledge ManagemgRtoceedings of the twelfth international conference
on Information and knowledge managemeéntiustry session 2: meditation and data sharing,
PP: 366 — 369, 2003.

[92] Ontology, computer science, Online, accessed2608 April, Available from URL
http://en.wikipedia.org/wiki/Ontology_(computer_siote)# note-0.

[93] Ontoprise GmbH, “How to work with OntoEdit —ser’'s guide for OntoEdit version 2.6"
Online, accessed 2008 April, available from URLphitevww.ontoprise.de/documents/tutorial
ontoedit.pdf.

[94] P erez G., “Some ideas and examples to evalomtologies”. Technical Report KSL-94-
65, Knowledge Systems Laboratory, Stanford, 1994.

[95] P’erez G., “Towards a framework to verify krdedge sharing technology”, Expert
Systems with applications, Vol. 11, Issue 4, PR-5P29, 1996.

[96] Parekh V.; Gwo J.; Finin T.; “Mining Domain &gific Texts and Glossaries to Evaluate
and Enrich Domain Ontologies”, International Coefae on Information and Knowledge
Engineering, PP: 533-540, USA, CSREA, ISBN 1-932215), 2004.

[97] Pressman R., “Software Engineering, a practéi's approach”, sixth Edition, Mc Graw
Hill Companies, ISBN: 978-0073019338, April 2005.

[98] Presson E.; Tsai J.; Bowen T.; Post J.; SdhrR.,, “Software Interoperability and
Reusability Guidebook for Software Quality Measueeti, Boeing Aerospace Co., Seattle,
WA, Rome Air Development Center (RADC), Griffiss BFNY, RADC-TR-83-174, July
1983.

[99] Randell B.; Naur P., “Software EngineeringReport on a conference sponsored by the
NATO Science Committe&armisch, Germany, 7th to 11th Oct.1968.

[100] Robert P.; Malaka R., “A task-based approfichontology evaluation”. In Proc. ECAI
2004 Workshop on ontology Learning and Populatiti®, 9-16, 2004.

[101] Rumbaugh J.; Balha M.; Premelani W., “Objéetented Modeling and Design with
UML". Printicehall, International Edition, 2nd Edin, ISBN: 9780131968592, Dec. 2004.
[102] Russell R., “Defining Software Quality” - ABssay - www.io.com/~richardr, February
2002 Updated April 2004.

[103] S2ESC Plans and Policies, Fundamental Ps|itieP-03 Software Product Quality”,
online, accessed on 2008 April, available from URL
http://standards.computer.org/sesc/s2esc_pols/eolntn.

[104] Scacchi W.; Jensen C.; Noll J.; Elliott MMulti-Modal Modeling, Analysis and
Validation of Open Source Software Requirementscésses”,Intern J Information
Technologyand Web Engineering, Vol. 1, Issue 3, PP: 49-68620

86

[105] Schulmeyer G.; Mcmanus J., “Software Qualtysurance handbook”, Prentice Hall
PTR, 3 Edition]SBN-13: 978-0130104700, Sep. 1998.

[106] SEI, “Software Engineering 2004”, CurriculuBuidelines for Undergraduate Degree
Programs in Software Engineering, A Volume of tlmrputing Curricula Series, Aug.2004.
[107] Smith B., “Ontology”, Draft version of chaptg@ublished in Luciano Floridi (ed.),
Blackwell Guide to the Philosophy of Computing anfibrmation, Oxford: Blackwell, PP:155-
166, 2003.

[108] Smith B.; Welty C., “Ontology: Towards a Ne®ynthesis”, Ogunquit, Maine,
USA., ACM1-58113-377-4/01/0010, FOIS'01, Oct. 17-2001.

[109] Software Engineering Institute, CMMI® Web &itCarnegie Mellon, online, accessed on
2008 April, available from URL http://www.sei.cmdi@cmmi/cmmi.html, 2004.

[110] Software Measurements Guide Book, Softwaredpetivity Consortium Services
Corporation, Van Nostrand Reinhold CompatyBN: 978-0442020095 Version 02.01.00,
1995.

[111] Sommerville 1., “Software Engineering", PearsAddison Wesely, Seventh Edition,
ISBN: 020139815, 2007.

[112] Spacer IBM Certified Solution Designer, “IBRational Unified Process V7.0", IBM.
online, Accessed on 2008 April, available from URtp://www-
03.ibm.com/certify/certs/38008003.shtml.

[113] Spinellis D., “Software engineering glossarf\2EE Software, version control, part 1.Vol.
22, Issue 5, PP: 107, Sept./Oct. 2005.

[114] Standard glossary of terms used in Softwaestilg, Version 1.2,Produced by the
‘Glossary Working Party’ International Software Tieg Qualification Board, Editor : Erik van
Veenendaal, The Netherlands, 2006.

[115] U.S. Department of Transportation Federalatiein Administration, Handbook Volume
Il Digital Systems Validation, Atlantic city inteational airport, New Jersey 08405, Technical
Center, May 1992.

[116] Usrey M.; Dooley K., “The Dimensions of Sofirve Quality”, Quality Management
Journal, Vol. 3, Issue 3, PP: 67-86, 1996.

[117] V'olker J.; Vrande D.; Sure Y., “Automaticaduation of ontologies (AEON)".In Proc. of
the 4th International Semantic Web Conference (ISW); Springer Verlag Berlin-
Heidelberg, Vol. 3729, PP: 716-731, Nov. 2005.

[118] Wallace D.; Ippolito L.; Kuhn D., “High Intedy Software Standards and Guidelines”,
National Institute of Standards and Technology &péublication 500-204,Gaithersburg, MD
20899 GPO Stock Number is SN003-03171-2, July 1992.

[119] William R.; Pawlowski S.; Volkov V., "Requingents interaction management”, ACM
computing surveys, Vol. 35, Issue 2, PP: 132-100e.2003.

[120] Wordreference.com: WordNet® 2.0, Princetonivdrsity, Princeton, NJ. , online,
Accessed on 2008 April, available from URL WWW .\W@ference.com.

87

[121] Zeyu Gao J.; Jacob Tsao H. S.;Wu Y.; “Testingl Quality Assurance for Component-
Based Software”, Artech House, Inc., ISBN 1-58088-%, 2003.

[122] Zhang J., “Quality Oriented Exploration Te@ues for Component Based
Architectures”, Technische University Eindhoven Bement of Mathematics and Computer
Science, Master’s Thesis, Eindhoven, August 2005.

[123] Zielinski K.; Szmuc T., “Software Engineering: Evolutiand Emerging Technologies”,
IOS Press, ISBN 1-58603-559-2, 2005.

[124] Zolet F.; Oliveira K.; Regina A., “Modeling aBk Knowledge to Support Software
Development”, ACM International Conference Procagdberies, Vol. 27Proceedings of the
14th international conference on Software engimgeand knowledge engineerintschia,
ltaly, PP: : 35 - 42, ISBN:1-58113-556-4 , 2002.

88

APPENDICES

APPENDIX A

The complete common extracted SWPQAs from varioasuhents and reports
related to the field of study, and their differelefinitions found in them.

Table A.1: The complete common SWQPAs extractenh fifferent sources and their definitions.

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
1 Accuracy Attributes of software that bare on the provision of right or agreed 10

results or effects.

Those attributes of the software which provide theequired precision in 98
calculations and outputs.

This quality factor addresses the concern that prgrams provide the 115
precision required for each output. Accuracy is imprtant because most
computer manipulations are not exact, but are limied approximations.

A software product possesses accuracy to the extehit its outputs are 14
sufficiently precise to satisfy their intended use

The capability of the software product to provide he right or agreed 114
results or effects with the needed degree of pre@s.

The characteristics of the software which providehie required 105
precision in calculations and outputs

(1) A qualitative assessment of correctness, or gdom from error. (2) A 54
quantitative measure of the magnitude of errorContrast with: precision

Correctness 116

The degree to which a system, as built, is free fno error, especially with 102
respect to quantitative outputs. Accuracy differsfrom correctness; it is
a determination of how well a system does the jol is designed for
rather than whether it was implemented correctly

The capability of the software product to provide he right or agreed 103
results or effects with the needed degree of pre@s

89

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
The provision of right or agreed results or effects 118
2 Adaptability Attributes of software that relate to on the opportnity for its adaptation 10
to different specified environments without applyirg other actions or
means than those provided for this purpose for theoftware considered
The capability of the software product to be adapté for different 10
specified environments without applying actions omeans other than 114
those provided for this purpose for the software cesidered 103
The ease with which a system or component can be dified for use in 54
applications or environments other than those for wWwich it was
specifically designed
The degree to which a system can be used, withoutodification, in 102
applications or environments other than those for wWwich it was
specifically designed
Characterizes the ability of the system to chang®tnew specifications or 49
operating environments.
The opportunity for its adaptation to different specified environment 118
3 Analyzability Attributes of software that relate to the effort needed for diagnosis of 10
deficiencies or causes of failures, or for identifiation of parts to be
modified.
The capability of the software product to be diagneed for deficiencies 114
or causes of failures in the software, or for the grts to be modified to be
identified.
The capability of the software product to be diagneed for deficiencies 103
or causes of failures in the software, or the capdliy to identify the
parts to bemodified
Characterizes the ability to identify the root caug of a failure within the 49
software
4 | Attractiveness | The capability of the software product to be attrative to the user 114
5 Availability The product’s readiness for use on demand 118
The degree to which a component or system is opefanal and 114,54
accessible when required for use. Often expressed a percentage
(probability)
Readiness for usage 8
Is the requirement that data and processes be prateed from denial of 8

service to authorized userd

90

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
The system’s readiness for delivery of service, eeliability, the 7
system'’s continuity
The policies required to provide a particular levelof availability, such 12
as checkpoint, recovery and restart
The probability that the program (software) is peforming successfully 110
(meeting requirements) , according to specificatio, at a given point of
time
6 Changeability | A set of attributes that bear on the effort neededo make specified 67
modifications.
Attributes of software that relate to the effort needed for modification, 10
fault removal or for environmental change
“The capability of the software product to enable aspecified 10
modification to be implemented.”
Characterizes the amount of effort to change a stem. 49
7 Complexity This quality factor addresses the concern that progims not be complex 115
Is the extent to which it is involved or intricate,composed of many 115
interwoven parts?
The degree to which a component or system has a dgsand/or internal 114
structure that is difficult to understand, maintain and verify..
A code measure, which is a combination of code, datdata flow, 113
structure and control flow metrics
(1) The degree to which a system or component haslesign or 54
implementation that is difficult to understand and verify.
(2) Pertaining to any of a set of structure-based ptrics that measure the
attribute in (1).
8 Compliance Attributes of software that make the software adhee to application 10,
related standards or conventions or regulations itaws and similar 49

prescriptions Where appropriate certain industry (or government) laws
and guidelines need to be complied with, i.e. SOXhis sub-
characteristic addresses the compliant capability fasoftware.

91

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
Adherence to application-related standards, converdns, regulations in 118
laws and protocols.
9 Consistency Those attributes of the software which provide founiform design and 98,105
implementation techniques and notation
This quality factor addresses the concern that theource code syntax 115
and constructs in programs be implemented uniformy
"Those characteristics of software which provide fo uniform design
and implementation technigues and notation"
The degree of uniformity, standardization, and freeom from 114,54
contradiction among the documents or parts of a coponent or system.
Commands consistent with environs 29
Uniform notation, terminology, and symbology throwgh each definition 116
level
10 Co-existence The capability of the software product to co-existvith other 10
independent software in a common environment sharigicommon
resources.
11 Efficiency This characteristic express the ability of a compoent to provide 2
appropriate performance, relative to the amount ofresources useg
Further categorized into execution efficiency andtsrage efficiency and 67,87
generally meaning the use of resources, e.g. prosestime, storage
The code executes its intention without waste of seurces 67,14
A set of attributes that bear on the relationship letween the level of 67, 60
performance of the software and the amount of resaues used, under
stated conditions
(As-is utility characteristics): Code possesseséltharacteristic 10,14
efficiency to the extent that it fulfills its purpose without waste of
resources
Degree of utilization of resources (processing tie) storage, 98
communication time) in performing functions.
Quiality factor addresses the concern that programs optimatluse any 115
computer resources
The amount of computing resources and code requd by the 105,110

Software (program) to perform a function

92

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
Software utilization of resources 105
The degree to which a system or component perfois its designated 54
functions with minimum consumption of resources.
Ability of a software to place as few demands gmssible on hardware 110
resources, such as processor time, memory spaceued, or network
bandwidth, to achieve a given task
Rate of value and waste added per resource consumed 116
Efficient to use 110
Use of resources execution and storage 122
This is an attribute that is used to evaluate theflity of a software 19
system to perform its specified functions under stad or implied
Measurements and TMM Levels conditions within apprgriate time
frames. One useful measure is response time—the #&nit takes for the
system to respond to a user request
Is a characteristic that captures the ability of acorrect software 123
product to provide appropriate performance in relation to the amount
of resources used.
Efficiency can be considered an indication of how all a system works,
provided that the functionality requirements are me.
The measure of resources usage such as: memory, CRiilization, disk 102
space, network bandwidth, screen real estate and amnt of user
interaction to complete key tasks
This characteristic is concerned with the system smurces used wher 49
providing the required functionality. The amount of disk space,
memory, network etc. provides a good indication ofhis characteristic.
As with a number of these characteristics, there @& overlaps.
12 Functionality This characteristic express the ability of a compent to provide the 2
required services, when used under specified condihs
The responsibilities assigned to the classes of esign, which are made 67

available by the classes through their public intefiaces.

93

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
A set of attributes that relate to the existencefa set of functions and 10
their specified properties. The functions are thoséhat satisfy stated or
implied needs
The capability of the software product to provide finctions which meet 114
stated and implied needs when the software is usedder specified
conditions.
The extent to which a component satisfies its spéications and fulfills 121
the stated or implied needs of the user
The capability of the software product to provide finctions that meets 103
stated and implied needs when the software is usedder specified
conditions.
Is the essential purpose of any product or service 49
Is expressed as a totality of essential functionkat the software product 49
provides
Characteristics relating to achievement of the bas purpose for which 118
the software is being engineered 60
13 Installability Attributes of software that relate to the effort needed to install the 10, 60
software in a specified environment.
The capability of the software product to be inslled in a specified 10,60
environment.
Characterizes the effort required to install the sftware 49
14 Interopera_ The effort required to couple the system to an o#r system 67,87
bility
Attributes of software that relate to its ability to interact with specified 10, 60
systems.
The ability of two or more systems or components texchange 10, 87
information and to use the information that has bee exchanged. And 54
The capability of the software product to interactwith one or more 10, 60,103
specified components or systems.
The Effort required to couple the software of onegstem to the 98, 105

software of another system.

94

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
How easy it is to interface the software with arther system 105
Effort required interconnecting or relating two dif ferent applications, 110
running possibly in different computing environment
The degree to which the software can be connectedsdly with other 19
systems and operated.
The extent to which a software component can be asabled with a 121
possibly wide variety of component-based softwarg/stems employing
the component or with other software components
The effort required to couple a software componentvith other 121
programs in general, not necessarily with componertased software
systems employing the component or
with other software components
The extent to which a software system will functiomr communicate 102
correctly, reliably and robustly with other systemusing externally
defined interfaces (hardware or software) or commuitations
protocols.
15 Learnability Attributes of software that relate to the users' ort for learning its 10, 60
application (for example, operation control, input,output).
The capability of the software product to enablehe user to learn its 114,103
application.
Easy to learn how to use 29
Easy to learn; novices can readily start gettingmne work done 6
Learning effort for different users, i.e. novice expert, casual etc. 49
The effort required for the user to learn its application, operation, 118
input, out
16 | Maintainability | This characteristic describes the ability of a compnent to be modified; 2
The effort required to locate and fix a fault inthe program within its 67, 10, 87,
operating environment 118,122

95

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
How easy is it to understand modify and retest? 67,10,14
The ease of maintenance and upgrade 118
To be testable: Code possesses the characteriststability to the extent 10
that it facilitates the establishment of verificaton criteria and supports
evaluation of its performance.
To be understandable: Code possesses the characséid 10
understandability to the extent that its purpose islear to the inspector.
To be flexible and modifiable: Code possesses tblearacteristic 10
modifiability to the extent that it facilitates the incorporation of changes,
once the nature of the desired change has been detaned.
A set of attributes that relate to the effort needd to make specified 10, 60
modifications.
The ease with which a software system or componec&n be modified 10, 81
to correct faults, improve performance, or other atributes, or adapt to
a changed environment.
Average effort to locate , fix a software failure 98
This quality factor addresses the concern that progms be easy to fix, 115
once a failure is identified.
"Ease of effort for locating and fixing a softwarefailure within a 115
specified time period"
The ease with which a software product can be modéfd to correct
defects, modified to meet new requirements, modifieto make future 114
maintenance easier, or adapted to a changed enviment.
Is defined as the effort to perform maintenance tadss, the impact 113
domain of the maintenance actions, and the error i@ caused by those
actions.
The effort required to locate and fix an error inthe operational 105
software, program, it environment
Is concerned with how easy the software is to repai 105

96

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
Extendability 54
(1) The ease with which a software system or compent can be 54,6
modified to correct faults, improve performance orother attributes, or
adapt to a changed environmentSee also: extendability ; flexibility.
(2) The ease with which a hardware system or compent can be
retained in, or restored to, a state in which it ca perform its required
functions.
the probability that a maintenance activity can be carried out whin a 81
stated time interval ranges from 0 to 1
Aptitude to undergo repairs and evolution 8
The capability of the software to be modified. Modications may 11
include corrections, improvements or adaptation othe software to
changes in environment, and in requirements and fuctional
specifications.
Effort required modifying, updating, evolving, or repairing a program 110
during its operation.
The level of maintainability of the system should b specified it terms of 12
the ability for maintenance.
An attribute that relates to the amount of effort needed to make changes 19
in the software
The effort required to replace a software componentith a corrected 121
version, to upgrade a current software component an operational
component-based software system), and to migrate axisting software
component from a current component-based softwareystem to a new
version of the system
Describes the ease with which the software producan be
analyzed, changed and tested. The capability to arbunexpected 123

effects from modifications to the software is alswithin the scope of
this characteristic. All types of modifications, ie. corrections,
improvements and adaptation to changes in requirenmgs and in
environment are covered by this characteristic.

97

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
The ease with which a developer can modify a softm&system to change 102
or add capabilities, improve performance or efficiacy, or correct
defects without adversely affecting other internabr external quality
characteristics.
17 Maturity Attributes of software that relate to (bear on) thefrequency of failure by | 118, 10,
faults in the software 60
(1) The capability of an organization with respecto the effectiveness 114
and efficiency of its processes and work practices. and
(2) The capability of the software product to avoidailure as a result of 103
defects in the software.
18 Operability Attributes of software that relate to the users' efort for operation and 10, 60
operation control.
Those attributes of the software which determine ogrations and 98
procedures concerned with the operation of the sofare
The capability of the software product to enable tk user to operate and | 114, 103
control it.
The characteristics of the software which determin@perations and 105
procedures concerned with operations of the softwarand which
provide useful inputs and outputs which can be assiilated
Easy and efficient to apply functionality 29
The degree to which the operation of the software atches the purpose, 19
environment, and physiological characteristics of sers; this includes
ergonomic factors such as color, shape, sound, fosize, etc.
Ability of the software to be easily operated by given user in a given 49
environment
The ease of operation and control by users 118
19 Performance Imposes conditions on functional requirements suchs speed, efficiency 10
availability, accuracy, throughput, response timerecovery time, and
resource usage
This quality factor addresses the concern of how &l a program
attribute or function is implemented with respect b some standard. 115

Often, this is related to the utilization of resouces
The effectiveness with which resources of the hasystem are utilized

toward meeting the objective of the software system

98

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
The degree to which a system or component acconmgies its
designated functions within given constraints regating processing time| 114, 8, 54
and throughput rate. such as speed, accuracy, or mmry usage.
Performance quality factors characterize how welthe software 105
functions
Performance as a software quality attribute refergo the timeliness 8
aspects of how software systems behave
“Performance refers to responsiveness: either therhe required to
respond to specific events or the number of evengsocessed in a given 8
interval of time”
Performance is that attribute of a computer systenthat characterizes 8
the timeliness of the service delivered by the sysh.
Responsiveness of the system—either the time reged to respond to 8,
specific events or the number of events processeda given interval of 7
time
Primary operating characteristics 116
Speed or throughput: minimizing the time, or perceved time, between 102
a system’s input events and output events - optimiizg or maximizing
the amount of useful work done in a given period aofime. Note that
software can be very fast, but still be a memory o€EPU hog (see
efficiency)
20 Portability The ability of a component to be transferred fromone environment to 2
another
The effort required to transfer a program from one environment to 67,10,122,
another 87
Can | still use it if | change my environment?
67,10 ,14
The code can be operated easily and well on othemgronments
67,14
A set of attributes that bear on the ability of sofware to be transferred
from one environment to another 67,10, 60

99

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
The ease with which a system or component can batrsferred from 10, 54,
one hardware or software environment to another. 114,60
Effort to convert the software for use in anothemperating 98
environment (hardware configuration, software systen environment).
This quality factor addresses the concern that prog@ms be changed
easily to operate on a different set of equipment 115
"How quickly and cheaply the software system can beonverted to
perform the same functions using different equipmeti
Portability is concerned with how easy it is to trasport the system 105
Effort required to transfer a program from one hardware 70
configuration and/or software system environment t@nother
The capability of software to be transferred from me environment to 11,60
The ability for the product to be used on differentmachines or 12
operating systems
The extent to which a software component can be ged to a possibly 121
wide variety of operational environments, includingoperating systems
and hardware, and the amount of effort required forporting
Is a measure of the effort that is needed to mosaftware to another 123
computing platform
The degree to which a system, or a system's compaoitg can be used in 02
an operating environment different from that for which it was originally 1
designed or developed without adversely affectingtlwer quality
characteristics. There are two types of portabity - run time and
compile time
This characteristic refers to how well the softwarecan adopt to changes
in its environment or with its requirements. The sip characteristics of 49
this characteristic include adaptability. Object oriented design and
implementation practices can contribute to the extet to which this
characteristic is present in a given system
the effort required to transport the software for use in other 105

environment

100

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
21 | Recoverability | Attributes (capability) of software that relateto the capability to re- 10,114, 60
establish its level of performance and recover thdata directly affected 103
in case of a failure and on the time and effort neted for it.
Ability to bring back a failed system to full operdion, including data 49
and network connections
Capability and effort needed to reestablish levabf performance and 118
recover affected data after possible failure
22 Reliability This characteristics express the ability of theamponent to maintain a 2
specified level of performance, when used under sgified conditions
The systems ability not to fail 67,10,122,
87
The code performs its intended functions satisfactdy
67, 14
A set of attributes that bear on the capability ofsoftware to maintain its
level of performance under stated conditions for atated period of time | 10, 67, 60
The longevity of product performance
118
Probability that the software will perform its logical operations in the
specified environment without failure 98
This quality factor addresses the concern that prog@ms continue to 115
perform properly over time.
The probability that a software system will operge without failure for 54
at least a given period of time when used under gt conditions
The ability of the software product to perform its required functions 114
under stated conditions for a specified period ofitne, or for a specified
number of operations.
The extent to which the software performs its inteded function 105
without failures for a given time period.
Reliability is concerned with what confidence can be placed the 105

software

101

Source(s)

Att Quality Definition(s)
ID Attribute reference(s)
Extent to which a program can be expected to perfan its intended 70
function with required precision
Continuity of service 8
A measure of the ability of a system to keep operialg over time 8
A measure of the rate of failure in the system thatenders the system 8
unusable. A measure of the ability of a system toelep operating over
time
The capability of the software to maintain its leel of performance 11
when used under specified conditions
Ability of a program to achieve precisely its inteded mission 110
The ability of a software application or componento perform its 41
required functions under design-compliant conditiors for a specified
period of time
The extent to which a component can be expected fufill its functions 121
for a stated period of time under stated conditions
Isdefined as the ability of software to maintain a sgcified level of 123
performance within the specified usage conditions
A system'’s ability to perform its required functionsunder stated 102
conditions whenever required. Also: having a long ®an time between
failures
The probability that software will not cause the &ilure of a system for a 103
specified time under specified conditions
The capability of the system to maintain its servie provision under 49
defined conditions for defined periods of time
The extent to which a program can be expected to ferm its intended 110
function with required precision
The probability that the program performs succesdiilly in compliance 110
with its specification for a given time period
The probability that there are no failures in the ime interval 0-t 110
110

the ability of a system or a component to performts required functions
under stated conditions for a specified period ofiine

102

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
23 | Replaceability | Attributes of software that relate to the opporturity and effort of using 10, 60
it in the place of specified other software in thenvironment of that
software
The capability of the software product to be useéh place of another 10,
specified software product for the same purpose ithe same 114,60
environment. 103
Characterizes theplug and play aspect of software components, that is 49
how easy is it to exchange a given software companevithin a specified
environment.
The opportunity and effort of using it in the place of other software in a 118
particular environment
24 Robustness The degree to which a component or system can fuah correctly in 114, 54,
the presence of invalid inputs or stressful enviromental conditions. 103
Ability of a program to react appropriately to abnormal conditions 110
Marginal cost of surviving unforeseen changes 116
25 Safety Means simply put that the system does not ever penfm anything 10
HbadH’
The capability of the software product to achievecceptable levels of 114
risk of harm to people, business, software, propeytor the environment
in a specified context of use.
Non-occurrence of catastrophic consequences on tBevironment 8
The absence of catastrophic consequences on the ieowment 8
As freedom from accidents and loss. 8
Property of a computer system such that relianceam justifiably be 8
placed in the absence of accidents.
A measure of the absence of unsafe software conditis. The absence of 8
catastrophic consequences to the environment
Freedom from physical danger 116

103

Att
ID

Quality
Attribute

Definition(s)

Source(s)
reference(s)

26

Scalability

The capability of the software product to be upgrded to accommodate

increased loads.

The ability of a system to continue to meet its rg@nse time or
throughput objectives as the demand for the softwar functions
increases

The degree to which a software system'’s capacityffieiency, or
performance is not limited by its design, implemerdtion, the hardware
platform on which it runs, other software systems vth which it
interoperates or communicates.

114

75

102

27

Security

Attributes of software that relate to its ability to prevent unauthorized
access, whether accidental or deliberate, to prognas and data.

A general definition of security is provided in Apgendix F of the
National Research Council’s report, “Computers at Rsk”:

1. Freedom from danger; safety.

2. Protection of system data against disclosure, midication, or
destruction. Protection of computer systems themseds. Safeguards
can be both technical and administrative.

3. The property that a particular security policy is enforced, with some

degree of assurance.
4. Often used in a restricted sense to signify cadéntiality, particularly
in the case of multilevel security

Freedom from risk or doubt

Secure systems are those that can be trusted toegesecrets and
safeguard privacy.

The degree to which the software can detect and gvent information
leak, information loss, illegal use, and system resrce destruction

The extent to which access to a software componeatcomponent-

based software using the software component or tteompanion data by

unauthorized persons
can be controlled

Integrity

The degree to which a system prevents unauthorized omiproper
access or modification to its code and data or otheystem resources
and/or the degree to which it ensures that data asbject state is
maintained in a coherent and correct manner. Thedea of integrity
includes restricting unauthorized user access as Weas ensuring that
data is accessed properly by its intended users amther software.

10,60

116

19

47

121,102

102

104

Definition(s) Source(s)
reference(s)

Att
ID

Quality

103

Attribute
The capability of the software product to protectinformation and data
so that unauthorized persons or systems cannot reat modify them

and authorized persons or systems are not denied@ss to them.

subcharacteristic relates to unauthorized access the software

10, 60

49

28

Stability

functions.
Attributes of software that relate to the risk ofunexpected effect of

modifications

The capability of the software product to avoid uexpected effects
from modifications of the software.

Predictability

Characterizes the sensitivity to change of a givesystem that is the
negative impact that may be caused by system charsye

The risk of unexpected effect of modifications

10, 60

116

49

118

10, 60

29 Suitability

Attribute of software that relates to the presencend appropriateness
of a set of functions for specified tasks.

The capability of the software product to providean appropriate set of
functions for specified tasks and user objectives.

This is the essential Functionality characteristi@and refers to the
appropriateness (to specification) of the functionsf the software

The presence and appropriateness of a set of funatis for specified

114

49

118

67,10, 87
122

30 Testability

tasks
the ease of testing the program, to ensure thatig error-free and meets

its specification

The code eases setting up verification criteria @ahsupports evaluation

of its performance.

modified software.

The degree to which a system or component facilit@s the

whether those criteria have been met.

Addresses the concern that programs be easy to tes
"A software product possesses the characteristiceBtability to the

supports evaluation of its performance."

Attributes of software that relate to the effort needed for validating the
establishment of test criteria and the performancef tests to determine

extent that it facilitates the establishment of aceptance criteria and

67,14

10, 60

10,40

115

105

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
The capability of the software product to enable radified software to 114
be tested
(1) The degree to which a requirement is stated iterms that permit 40
establishment of test criteria and performance ofdsts to determine
whether those criteria have been met.
Effort required to test a program to ensure that t performs its intended 70
function
Effort required to test a program 110
As an indication of the degree of testing effort rguired 19
This attribute is related to the effort needed tdest a software system to 19
ensure it performs its intended functions A quantifcation of testability
could be the number of test cases required to adegtely test a system,
or the cyclomatic complexity of an individual modué.
Which refers to the effort required to ensure thatit performs its 121
intended function and performance, and, for softwae components,
includes the verification of interface, assembly, @rting, and certification
requirements in the scope
The degree to which someone can unit-test, systesst and functionally 102
test a software system. This idea also extends twetease with which a
test plan can be developed from the projects requéments
The capability of the software product to enable radified software to be 103
validated.
) . 49
Characterizes the effort needed to verify
31 Traceability Those attributes of the software which provide ghread of origin from 98
the implementation to the requirements with respecto the specific
development envelope and operational environment.
The ability to identify related items in documentaton and software, 114
such as requirements with associated tests.
The characteristics of the software that provide ahread from the 105

requirements to the implementation with respect tahe specific
development and operational environment

106

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
(1) The degree to which a relationship can be edtiished between two 54
or more products of the development process, espatly products
having a predecessor-successor or master-subordimatelationship to
one another; for example, the degree to which theequirements and
design of a given software component matcl$ee also: consistency.
(2) The degree to which each element in a softwadevelopment
product establishes its reason for existing; for eample, the degree to
which each element in a bubble chart references threquirement that it
satisfies.
Traceability would make it possible to know the rehtionships of a 10
particular entity to other entities,
Allows a modification of one system artefact to braced to other 10
system artefacts that also will be affected.
32 | Understandabil | The code is easy to read in the sense, that insfgs can rapidly 67, 14
ity recognize its purpose.
The properties of the design that enable it to beasily learned and 67
comprehended. This directly relates to the complety of the design
structure
Attributes of software that relate to the users' ort for recognizing the 10, 60
logical concept and its applicability
The degree to which the purpose of the system oomponent is clear to 10, 14
the evaluator.
“The capability of the software product to enablethe user to
understand whether the software is suitable, and it can be used for 10,114
particular tasks and conditions of use.”
This quality factor addresses the concern thatnpegrams be easy to 115
understand
Ease with which the implementation can be understab 115
The amount of effort required to understand the stiware 19
The ease with which someone can comprehend a soft@aystem at both
the system-organizational and detailed-statementvels. 102

Understandability has to do with the coherence andohesiveness of the
system at a more general level than readability. télerstanding includes
not only understanding what the system does, but wht does it. Good
detailed design documents can greatly enhance a ®r®s

107

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
Determines the ease of which the systems functmnan be understood, 49
relates to user mental models in Human Computer Irgraction
methods.
The effort for a user to learn its application , geration, input and 118
output
33 Usability This characteristic express the ability of a compoent to be understood, 2
learned, used, configured, and executed, when usedder specified
conditions;
Its ability to be used by the application developewhen constructing a 2
software product or a system with it.
The ease of the software 67,87
The code is reliable, efficient and human-friendlyengineered 67, 14
A set of attributes that bear on the effort needd for use, and on the 67, 60,33
individual assessment of such use, by a stated onplied set of users.
Effort to convert a software component for use In aother application. 98
Effort for training and software operation -familia rization, input 98
preparation, execution, output interpretation
A software product possesses the characteristic alsility to the extent 115
that it is convenient and practicable to use."
The capability of the software to be understood, krned, used and 114,11
attractive to the user when used under specified oditions.
The ease with which a user can learn to operate, ppare inputs for, 40,54
and interpret outputs of a system or component.
The effort required to learn, operate, prepare iput, and 105,33
interpret output of the software (program)
The extent to which an end-user is able to carry duequired tasks 33
successfully, and without difficulty using the compter application
system.
The extent to which a product can be used by spei@tl users to achieve 33
specified goals with effectiveness, efficiency amsatisfaction in a
specified context of use
The ease with which a user can learn to operatesaftware application 41

108

Att
ID

Quality
Attribute

Definition(s)

Source(s)
reference(s)

Usability: The ease with which a user can learn toperate, prepare
inputs for, and interpret outputs of a system or conponent.

Usability is a measure of how well users can takedaantage of some
system functionality. Usability is different from utility, a measure of
whether that functionality does what is needed

The extent of ease to which a software componentrcae unpacked by
possibly a variety of users, configured by these @ss for selecting the
particular configurations that best satisfy the neds of these users (if
such configurability is provided), and assembled byhese users into the
application environments of their component-basedgplication software
systems (this also includes understandability andase of learning)

The ease with which users can learn about and eftively use a
system. The quality of end user documentation anchnical support
can radically effect this characteristic. This intudes traditional
documentation, on-line help and web based informatin.

Characteristics relating to the effort needed fouse , and on the
individual assessment of such use, by a stated anplied set of users

6

121

102

118

34

Utility

To be portable: Code possesses the characterigtiortability to the
extent that it can be operated easily and well oroenputer
configurations other than its current one.

To be reliable : Code possesses the characteristatiability to the
extent that it can be expected to perform its inteded functions
satisfactorily

To efficiency : Code possesses the characterisgifficiency to the
extent that it fulfills its purpose without waste d resources

To be usable: Code possesses the characteristiabidity to the extent
that it is reliable, efficient and human-engineered

How well (easily, reliably, efficiently) can | uset as-is?

10, 14

10, 14

10, 14

10, 14

67,14

35

fault tolerance

Attributes of software that relate to its ability to maintain a specified
level of performance in cases of software faults af infringement of its
specified interface.

That is the ability of a system to withstand compieent failure

The ability of software to withstand (and recover)rom component, or
environmental, failure.

10, 60

49

49

109

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
Ability to maintain a specified level of performarce in cases of software 118
faults or un expected inputs
36 Reusability The ease of reusing software in a different contéx 10,87
“The degree to which a software module or other wix product can be 10, 87
used in more than one computing program or softwarsystem.”
Addresses the concern that programs be easy to slin a different
application. 115
"Relative effort to convert a software componenfor use in a different
application"
is concerned with how easy it is to convert the #ware for use in 105
another application,
Extent to which a program can be used in other adation—related to 70, 110
the packaging and scope of the functions that progms perform
The extent to which a software component can be read in developing 121
component-based software systems, other softwarersponents or other
software products in general
37 Correctness This attribute evaluates the percentage of the redts obtained with 2
precision, specified by the user requirements
The extent to which a program conforms to its spefication 67,87
The extent to which a program fulfils its specificéion 10, 87
“The degree to which a system or component is frdeom faults in its 10,54
specification, design, and implementation”].
-Extent to which the software satisfies its specifations and fulfills the 98,70
user's mission objectives.
The concern that software design and documentatioformats conform
to the specifications and standards set for themt Is not concerned with 115
any content affecting software operation or perfornance.
"Extent to which the software conforms to its spedications and 115
standards"
Is concerned with how well the software conforms tthe requirements 105
(1) The degree to which software, documentation, ather items meet 54

specified requirements.
(2) The degree to which software, documentation, ather items meet
user needs and expectations, whether specified oom

110

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
Ability of software products to perform their exact tasks, as defined by 110
their specification
The degree to which the software performs its requed functions. 19
The degree to which a system is free from faults iits requirements, 102
scope, specification, architecture, design, implemeation and
deployment
38 Modifiability This attribute indicates the component behavior whie accomplished 2
some modification on it;
The degree to which a system or component facilitas the 10,14
incorporation of changes, once the nature of the deed change has
been determined.
Addresses the concern that programs be easy toafge, regardless of
the reason for the change. 115
"A software product possesses modifiability to thextent that it
facilitates the incorporation of changes, once theature of the desired
change has been determined."
Considers how the system can accommodate anticipdtand
unanticipated changes and is largely a measure obtv changes can be 7
made locally, with little ripple effect on the systm at large.
Modifiability encompasses two aspects:
“Maintainability. (1) The ease with which a software system or 6
component can be modified to correct faults, improg performance or
other attributes, or adapt to a changed environment(2) The ease with
which a hardware system or component can be retaiden, or restored
to, a state in which it can perform its required functions.”
39 | Completeness It is possible that some implementations do not capletely cover the 2
services specified. This attribute measure the nunas of implemented
operations compared to the total number of specifitoperations;
Those attributes (characteristics) of the softwarevhich provide full 98,
implementation of the functions required. 115
Quality factor addresses the concern that progranfunctions be 115
implemented completely
Each part full developed 116
The degree to which the software possesses the reszgy and sufficient 19

functions to satisfy the users needs.

111

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
The degree to which a system implements its plannes¢ope with a 102
particular focus on meeting requirements and deliveng features
40 | Dependability This attribute indicates if the component is not décontained, i.e. if 2
the component depend of other component to providiés specified
services
Is that property of a computer system such that réance can 8
justifiably be placed on the service it delivers
That property of a system such that reliance carustifiably be 7
placed in the service it provides
Availability. The degree to which a system or compent is operational
and accessible when required for use. 6
Dependability is that property of a computer systensuch that reliance
can justifiably be placed on the service it deliver
41 Extensibility This attribute indicates the capacity to extend a@rtain component 2
functionality;
42 | Customizability | This attribute measures the number of customizablparameters that the 2
component offers
43 Modularity This attribute indicates the modularity level of the component, if it has 2
modules, packages or all the source files are ordyouped.
Those attributes of the software which provide a sticture of highly 98
cohesive modules with optimum coupling
Quiality factor addresses the concern that programbe composed of 115
many small, simple, independent steps that are cldg delineated by the
code.
"Formal way of dividing a program into a number of sub-units each
having a well defined function and relationship tahe rest of the
program”
The characteristics of the software which provide &tructure of highly 105
independent modules
The degree to which a system or computer program isomposed of 54
discrete components such that a change to one conmemt has minimal
impact on other components.
44 Flexibility The ease of making changes required by changestire operating 10, 67
environment ,122

112

Att Quality Definition(s) Source(s)
ID Attribute reference(s)

The code is easy to change, when a desired chahgs been
determined 67
Characteristics that allow the incorporation of ctanges in a design. The
ability of a design to be adapted to provide functinal related 67
capabilities

The ease with which a system or component can be dified for use in

applications or environments other than those for Wwich it was 10

specifically designed.

Effort to extend the software missions, functionsor data to satisfy

other requirements. 98
This quality factor addresses the concern that prgrams be easy to
change to meet different requirements, with no chage in the context. 115
Ease of effort for changing the software mission$unctions, or data to
satisfy other requirements
The effort required to modify operational software

105, 70
Marginal cost to extend Features 116

The extent to which a developer can modify a sofave system for uses 102

or environments other than those for which it was gecifically designed
without adversely affecting other internal or extenal quality
characteristics

113

Att
ID

Quality
Attribute

Definition(s)

Source(s)
reference(s)

45

Integrity

The protection of the program from unauthorized acess

Extent to which unauthorized access to the softwarer data can be
controlled

Quality factor addresses the concern that programsust continue to
perform their function even under adverse conditiors: inputs that are
unexpected, improper, or harmful

Ability of software to prevent purposeful or accidental damage to the
data or software

The extent to which access to software or data byhauthorized
persons should be controlled

The degree to which a system or component or appéition prevents
unauthorized access to, or modification of, computeprograms or
data.

Non-occurrence of improper alterations of informaion

Is the requirement that data and process be proteetl from
unauthorized modification

Protection of the program from unauthorized access.

The extent to which access to a software componeatcomponent-based
software using the software component or the compéan data by
unauthorized persons can be controlled

THE degree to which a system prevents unauthorized omiproper
access or modification to its code and data or otheystem resources
and/or the degree to which it ensures that data aobject state is
maintained in a coherent and correct manner. Thedea of integrity
includes restricting unauthorized user access as Weas ensuring that
data is accessed properly by its intended users amdher software.

67,10

98

115

105,70,110

54

122

121

102

46

Accessibility

Means that the system allows usage of its parts aselective manner,
which helps testing as test cases can be construtteith higher
flexibility

System accessibility : Those attributes of the swfare which provide
for control and audit of access of software and dat

10

98, 105

a7

Communicat_
iveness

Means that it is possible to easily specify and uegstand inputs to and
outputs from the system , which again facilitateshte construction of
test cases

Those attributes of the software which provide usel inputs and
outputs which can be assimilated

10

98

114

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
The degree to which the software is designed in @ardance with the 19
psychological characteristics of the users
48 Self Those attributes of the software which provide exanation of the 98
Descriptivenesy implementation of a function.
The degree to which a system or component contairsough 54
information to explain its objectives and properties.
49 Conciseness | Those attributes of the software which provide foimplementation of 98
a function with a minimum amount of code.
This quality factor addresses the concern that rgrams not contain
any extraneous information. 115
The ability to satisfy functional requirements with minimum amount
of software
No excess information is present 116
50 Extendability Refers to the presence and usage of propertiesan exiting design that 67
allow for the incorporation of new requirements inthe design
The ease with which a system or component can beodified to 54
increase its storage or functional capacity
51 Effectivenes This refers to a design’s ability to achieve thdesired functionality and 67
behavior using object-oriented design concepts ae¢hniques
Those attributes of the software which provide fominimum 98
utilization of resources (processing time, storag@perator time) in
performing functions.
The capability of the software product to enableisers to achieve 103
specified goals with accuracy and completeness irspecified context of
use.
52 Resource The amount of resources used and the duration of sh use in 118
Utilization performing its function
The capability of the software product to use apprpriate amounts and 114, 103
types of resources, for example the amounts of maand secondary
memory used by the program and the sizes of requidetemporary or
overflow files, when the software performs its funton under stated
conditions.
53 | Compatibility A measure (characteristics) of the hardware, softwa and 98,105

communication compatibility of two systems

115

Att
ID

Quality
Attribute

Definition(s)

Source(s)
reference(s)

(1) The ability of two or more systems or componeas to perform their
required functions while sharing the same hardwarer software
environment.

(2) The ability of two or more systems or componestto exchange
information.

The degree to which new software can be installedithout changing
environments and conditions that were prepared fothe replaced
software.

The extent to which a software system will functio or communicate
correctly, reliably and robustly with other similar systems that share
the same data types, file formats, or user interfaes. Backward
compatibility specifically applies to a software sgtems' ability to work
with previously versions from which it was derivedor with versions
ported to other systems

54

19

102

54

Independence

APPLICATION INDEPENDENCE Attributes of the software which
determine its dependency on the software applicatio(database system,
data structure, system libraries routines, microcod, computer
architecture and algorithms)

INDEPENDENCE Those attributes of the software whichdetermine its
non-dependency on the software environment (compuig system,
operating system, utilities ,input/output routines libraries

Executable in hardware environment other than curret one

98

98

116

55

Simplicity

Those attributes of the software which provide fothe definition and
implementation of functions in the most non-complexand
understandable manner.

Quality factor addresses the concern that, as mudis possible,
programs be implemented in strictly sequential stepthat depend only
on the step before it

Those characteristics of software which provide fodefinition and
implementation of functions in the most noncomplexand
understandable manner

The degree to which a system or component has a dgsand
implementation that is straightforward and easy tounderstand

How complicated

98

115

54

116

56

Expandability

How easy to add new functionality to it

Quality factor addresses the concern that programimitations be easy
to extend

The "Relative effort [required] to increase the sofware capability or
performance by enhancing current functions or by ading new
functions or data"

10

115,105

116

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
Concerned with how easy it is to expand or upgradihe software 105
capability or performance.
The degree of effort required to improve or modifythe efficiency or 19
functions of the software.
The effort required to increase the capability of asoftware component 121
57 Generality Means general solutions that by nature are preparefbr being utilized 10
in other contexts than the ones for which they wereonstructed
Those attributes of the software which provide bredth to the 98,105
functions performed with respect to the application
The degree to which a system or component perfosra broad range 54
of functions
58 | System Clarity Those attributes (characteristics) of the softwaravhich provide clear 98,105
description of program structure in the most non-conplex, easily
understandable and modifiable manner.
This quality factor addresses the concern that progums be easily 115
understood by people
Measure of how clear a program is, i.e., how eadlyis to read,
understand, and use
Then clarity only addresses the ease of reading anchderstanding the 115
program.
59 Survivability The extent (Probability that) to which the softwarewill continue to 98,105
perform or support critical functions when a portion of the system is
inoperable
Is concerned with how well the software will perfom under adverse 105
conditions. The attributes which support survivabiity
60 Verifiability Effort to verity the specified software operation,and performance 98
The effort required to test and verify (ensure) that the software 105, 110
performs its intended designed function
Is concerned with how easy it is to verify the softare performance. 105

The attributes which support verifiability are these'

117

Att

Quality
Attribute

Definition(s)

Source(s)
reference(s)

The effort required to verify, with or without access to the source code,
architecture, design and the developers, that theoffware design and
implementation satisfies the specifications of theoftware component
(This goes beyond the testabilitywhich refers to the effort required to
ensure that it performs its intended function and grformance, and, for
software components, includes the verification ohterface, assembly,
porting, and certification requirements in the Scop.

(The extent to which a software component can be itéied), the extent
to which certification implies the quality of the ®ftware component, and
the effort required for such extents of certificaton

121

121

61

Repeatability

Reproducibility

The degree to which a system will repeatedly prodecthe same results
given a consistent set of inputs and a consisterperating
environment. Sometimes called Reproducibility

102

62

Conformance

Attributes of software that make the software adhee to standards or
conventions relating to portability

Degree to which a products design and operating checteristics meet
the stated requirements ; "all parts present” portion of
"Completeness" Characteristic

Similar to compliance for functionality, but this characteristic relates
to portability. One example would be Open SQL confamance which
relates to portability of database used.

10

116

49

63

Capacity

Ability to produce at least at the rate of demand

How much demand can be placed on the system whilerginuing to
meet latency and throughput requirements?

Is a measure of the amount of work a system can dferm

The ability or suitability for holding, storing, or accommodating data or
information. The maximum amount or number of sometling that can be
contained or accommodated. Capacity may be dictadeby design, hard
coded limits or requirements. It may also be dicteed by the operating
environment .

116

102

64

Buildablitiy

The easewith which a software product can be reliably builtfrom its
individual components. Typically this focuses ongople other than the
original developer. However, it also applies to thecenario where the
original developer has not built the system for axtended period of
time. The use of SCM tools typically focuses on thicharacteristic. The
term reliably is important: it implies that the bui ld system is
repeatable, dependable, timely and that when givethe same inputs it
will always build the same thing.

102

118

Att Quality Definition(s) Source(s)
ID Attribute reference(s)
65 Readability The ease with which a developer can read and undé¢asnd the source 102
code and technical documentation of a system, esgly at the
detailed source code statement level
66 Productivity The capability of the software product to enable usrs to expend 102
appropriate amounts of resources in relation to theffectiveness
achieved in a specified context of use.

APPENDIX B

The complete results from the ontology evaluatsdep; each SWPQA extracted
concepts and the covered concepts from our ontologgddition to the coverage
percentage.

Table B.1: The complete results from the ontologgiaation step.

Att. | Attribute Def. Concepts Onto. Concepts that Count and Average
ID cover
1 Accuracy assessment accuracy 17 from 24
computer capability 0.708333333
concern computer
determination concern
extent degree
factor error
freedom extent
job factor
magnitude freedom
measure measure
output output
quality precision
respect product
capability quality
provision respect
right software
system system
accuracy
correctness
degree
error
product
precision
software
2 Adaptability product ability 13 from 15
environment adaptation 0.866666667
ease change
operating component
component degree
degree ease
modification environment
ability modification

119

Att. | Attribute Def. Concepts Onto. Concepts that Count and Average
ID cover
change operating
purpose product
opportunity purpose
means software
adaptation system
system
software
3 Analyzability diagnosis ability 6 from 10
identification capability 0.6
cause effort
failure failure
ability product
root software
effort
product
capability
software
4 Attractiveness product capability 4 from 4
user product 1
software software
capability user
5 Availability availability component 12 from 26
checkpoint data 0.461538462
component degree
continuity level
data probability
degree program
delivery service
demand software
denial specification
level system
meeting time
percentage usage
point
probability
program
readiness
recovery
reliability
requirement
restart
service
software
specification
system
time
usage
6 Changeability amount amount 9 from 12
capability capability 0.75
change change
effort effort
fault modification
make product
modification set
product software
removal system
set

120

Att. | Attribute Def. Concepts Onto. Concepts that Count and Average
ID cover
software
system
7 Complexity attribute attribute 16 from 19
code code 0.842105263
combination component
component concern
concern control
control data
data degree
degree design
design extent
extent factor
factor implementation
flow measure
implementation quality
measure set
metrics structure
quality system
set
structure
system
8 Compliance adherence application 4 from 7
application capability 0.571428571
capability characteristic
characteristic software
government
industry
software
Consistency code code 17 from 22
component component 0.772727273
concern concern
contradiction definition
definition degree
degree design
design factor
factor freedom
freedom implementation
implementation level
level notation
notation quality
quality software
software source
source system
standardization uniform
symbology uniform
syntax uniformity
system
terminology
uniform
uniformity
10 Co-existence capability capability 4 from5
environment environment 0.8
independent product
product software
software
11 Efficiency ability ability 38 from 65
amount amount 0.575757576

121

Att. | Attribute Def. Concepts Onto. Concepts that Count and Average
ID cover
attribute attribute
bandwidth characteristic
characteristic code
code component
communication computer
component computing
computer concern
computing degree
concern efficiency
consumption extent
cpu factor
degree function
disk function
efficiency function
estate functionality
execution hardware
express level
extent meaning
factor measure
function memory
functionality number
hardware performance
indication product
intention program
interaction purpose
issue quality
key rate
level response
meaning set
measure software
memory storage
minimum system
network time
number usability
performance usage
place user
processor utility
product utilization
program
purpose
quality
rate
relation
relationship
relative
request
resource
response
screen
set
software
space
storage
system
task
time
usability

122

Att. | Attribute Def. Concepts Onto. Concepts that Count and Average
ID cover
usage
user
utility
utilization
value
waste
works
12 Functionality ability ability 12 from 16
achievement capability 0.75
capability characteristic
characteristic component
component design
design extent
existence product
express purpose
extent service
product set
purpose software
service user
set
software
totality
user
13 Installability capability capability 5from 5
effort effort 1
environment environment
product product
software software
14 Interoperability ability ability 13 from 17
capability capability 0.764705882
component component
computing computing
couple degree
degree effort
effort environment
environment extent
exchange hardware
extent information
hardware product
information software
interface system
product
software
system
variety
15 Learnability application application 10 from 14
capability capability 0.714285714
control control
effort effort
expert operation
input output
learning product
novice software
operation user
output work
product
software

123

Att. | Attribute Def. Concepts Onto. Concepts that Count and Average
ID cover
user
work
16 Maintainability ability ability 39 from 61
activity adaptation 0.639344262
adaptation amount
amount attribute
aptitude capability
attribute change
average characteristic
capability code
change component
characteristic concern
code developer
component ease
concern efficiency
developer effort
domain environment
ease error
efficiency extent
effort factor
environment failure
error hardware
establishment incorporation
evaluation level
evolution maintenance
extendability operating
extent operation
factor performance
failure period
fault probability
fix product
flexibility program
hardware purpose
impact quality
incorporation rate
inspector scope
interval set
level software
maintainability system
maintenance time
modifiability understandability
nature
operating
operation
performance
period
probability
product
program
purpose
quality
rate
repair
scope
set
software
state

124

Att. | Attribute Def. Concepts Onto. Concepts that Count and Average
ID cover
system
testability
time
understandability
verification
version
17 Maturity bear capability 8 from 12
capability effectiveness 0.666666667
effectiveness efficiency
efficiency failure
failure product
frequency respect
organization software
product work
respect
result
software
work
18 Operability ability ability 13 from 17
capability capability 0.764705882
color control
control degree
degree ease
ease effort
effort environment
environment functionality
functionality operation
operation product
product purpose
purpose software
shape user
size
software
sound
user
19 Performance accuracy accuracy 32 from 45
amount amount 0.711111111
attribute attribute
availability component
component computer
computer concern
concern degree
cpu effectiveness
degree efficiency
effectiveness factor
efficiency function
factor memory
function number
host objective
input operating
interval output
meeting performance
memory period
note program
number quality
objective rate
operating respect

125

Onto. Concepts that

Count and Average

Att. | Attribute Def. Concepts
ID cover
output response
performance responsiveness
period service
processing software
program system
quality throughput
rate time
recovery usage
resource utilization
respect work
response
responsiveness
service
software
speed
standard
system
throughput
time
timeliness
usage
utilization
work
20 Portability ability ability 29 from 36
adaptability adaptability 0.805555556
amount amount
capability capability
characteristic characteristic
code code
component component
computing computing
concern concern
configuration degree
degree design
design ease
ease effort
effort environment
environment extent
equipment factor
extent hardware
factor implementation
hardware measure
implementation object
measure operating
move portability
object product
operating program
platform quality
portability set
product software
program system
quality time
set time
software
system
time
transfer

126

Att. | Attribute Def. Concepts Onto. Concepts that Count and Average
ID cover
transport
variety
21 Recoverability ability ability 11 from 12
capability capability 0.916666667
data data
effort effort
failure failure
level level
network operation
operation performance
performance software
software system
system time
time
22 Reliability ability ability 33 from 41
application application 0.804878049
capability capability
code code
compliance component
component concern
concern design
confidence environment
continuity extent
design factor
environment fail
extent failure
factor function
fail level
failure mean
function measure
interval number
level operating
longevity performance
mean period
measure precision
mission probability
number product
operating program
performance quality
period rate
precision service
probability set
product software
program specification
provision system
quality time
rate usage
reliability
service
set
software
specification
system
time
usage
23 Replaceability aspect capability 7 from 13
capability component 0.538461538

127

Att. | Attribute Def. Concepts Onto. Concepts that Count and Average
ID cover
component effort
effort environment
environment product
exchange purpose
opportunity software
place
play
plug
product
purpose
software
24 Robustness ability ability 5 from 8
component component 0.625
cost degree
degree program
invalid system
presence
program
system
25 Safety absence capability 10 from 19
business computer 0.526315789
capability context
computer environment
context freedom
danger measure
environment product
freedom property
loss software
means system
measure
occurrence
people
product
property
reliance
risk
software
system
26 Scalability ability ability 14 from 17
capability capability 0.823529412
capacity degree
degree design
demand efficiency
design hardware
efficiency implementation
hardware performance
implementation product
performance response
platform software
product system
response throughput
software time
system
throughput
Time

128

Onto. Concepts that

Count and Average

Att. | Attribute Def. Concepts
ID cover
27 Security ability ability 20 from 44
access access 0.454545455
assurance capability
capability code
case component
code computer
companion data
component definition
computer degree
confidentiality extent
danger freedom
data information
definition manner
degree modification
destruction object
disclosure product
doubt property
extent software
freedom system
idea user
information
integrity
leak
loss
manner
modification
multilevel
object
policy
privacy
product
property
protection
report
research
resource
risk
safety
security
sense
software
state
system
user
28 Stability change change 5 from 9
effect effect 0.555555556
impact product
predictability software
product system
risk
sensitivity
software
system
29 Suitability appropriateness attribute 9 from 11
attribute capability 0.818181818
capability characteristic
characteristic functionality

129

Att. | Attribute Def. Concepts Onto. Concepts that Count and Average
ID cover
functionality product
presence set
product software
set specification
software user
specification
user
30 Testability acceptance attribute 22 from 39
assembly capability 0.55
attribute characteristic
capability code
certification component
characteristic concern
code degree
complexity ease
component effort
concern error
degree extent
ease function
effort number
error performance
establishment product
evaluation program
extent scope
function setting
idea software
indication specification
interface system
module test
number
performance
plan
product
program
quantification
requirement
scope
setting
software
specification
system
test
testability
unit
validating
verification
31 Traceability ability ability 12 from 30
artefact component 0.4
bubble degree
chart design
component development
consistency documentation
degree environment
design modification
development product
documentation respect
element software

130

Att. | Attribute Def. Concepts Onto. Concepts that Count and Average
ID cover
entity system
envelope
environment
master
match
modification
origin
predecessor
process
product
reason
relationship
requirement
respect
software
successor
system
thread
traceability 26 from 35
32 Understandability amount amount 0.742857143
applicability applicability
application application
code code
coherence component
cohesiveness computer
complexity concern
component degree
computer design
concept ease
concern effort
degree factor
design implementation
ease level
effort operation
evaluator output
factor product
implementation purpose
interaction quality
level software
operation structure
output system
product understand
purpose understandability
quality understanding
readability user
sense
software
statement
structure
system
understand
understandability
understanding
user
33 Usability ability ability 31 from 48
advantage application 0.645833333
application capability

131

Def. Concepts

Onto. Concepts that

Count and Average

Att. | Attribute
ID cover
assessment characteristic
capability code
characteristic component
code computer
component context
computer developer
configurability documentation
context ease
developer effect
difficulty effectiveness
documentation efficiency
ease effort
effect end
effectiveness extent
efficiency functionality
effort information
end measure
execution operation
express output
extent product
familiarization program
functionality quality
help set
information software
interpretation system
line understandability
measure usability
operation user
output utility
preparation
product
program
quality
satisfaction
set
software
support
system
training
understandability
usability
user
utility
variety
web
34 Utility characteristic characteristic 8 from 10
code code 0.8
computer computer
efficiency efficiency
extent extent
portability portability
purpose purpose
reliability usability
usability
waste
35 fault tolerance ability ability 7 from 9
component component 0.777777778

132

Att. | Attribute Def. Concepts Onto. Concepts that Count and Average
ID cover
failure failure
infringement level
interface performance
level software
performance system
software
system
36 Reusability application application 15 from 19
component component 0.789473684
computing computing
concern concern
context context
convert degree
degree ease
ease effort
effort extent
extent product
module program
packaging scope
product software
program system
reusing work
scope
software
system
work
37 Correctness ability ability 19 from 24
architecture attribute 0.791666667
attribute component
component concern
concern degree
content design
degree documentation
deployment extent
design implementation
documentation operation
extent performance
implementation precision
mission program
operation scope
percentage set
performance software
precision specification
program system
scope user
set
software
specification
system
user
38 Modifiability attribute attribute 17 from 22
change change 0.772727273
component component
concern concern
degree degree
ease ease
effect effect

133

Att. | Attribute Def. Concepts Onto. Concepts that Count and Average
ID cover
environment environment
extent extent
hardware hardware
incorporation incorporation
measure measure
modifiability modification
modification performance
nature product
performance software
product system
reason
ripple
software
state
system
39 Completeness attribute attribute 12 from 15
concern concern 0.8
degree degree
factor factor
focus implementation
implementation measure
measure number
meeting program
number quality
part scope
program software
quality system
scope
software
system
40 Dependability attribute attribute 7 from 10
availability component 0.7
component computer
computer degree
degree property
property service
reliance system
self
service
system
41 Extensibility attribute attribute 3 from4
capacity component 0.75
component functionality
functionality
42 Customizability attribute attribute 3 from 3
component component 1
number number
43 Modularity attribute attribute 17 from 23
change change 0.739130435
code code
component component
computer computer
concern concern
coupling degree
degree factor
factor function
function level

134

Att. | Attribute Def. Concepts Onto. Concepts that Count and Average
ID cover
impact number
level program
modularity quality
number software
program source
quality structure
relationship system
rest
software
source
structure
system
way
44 Flexibility ability ability 20 from 21
change change 0.952380952
code code
component component
concern concern
context context
cost data
data design
design developer
developer ease
ease effort
effort environment
environment extent
extent factor
factor incorporation
incorporation operating
operating quality
quality software
software system
system use
use
45 Integrity ability ability 21 from 30
access access 0.7
application application
code code
companion component
component computer
computer concern
concern data
damage degree
data extent
degree factor
extent function
factor information
function manner
idea modification
information object
integrity object
manner program
modification quality
object software
occurrence system
process user

135

Att. | Attribute Def. Concepts Onto. Concepts that Count and Average
ID cover
program
protection
quality
requirement
software
state
system
User
46 Accessibility access access 9 from 13
accessibility accessibility 0.692307692
audit control
control data
data manner
flexibility software
manner system
means test
software usage
system
test
testing
usage
47 Communicativeness construction degree 3 from 5
degree software 0.6
means system
software
system
48 Self Descriptiveness component component 7 from 8
degree degree 0.875
explanation function
function implementation
implementation information
information software
software system
system
49 Conciseness ability ability 10 from 11
amount amount 0.909090909
code code
concern concern
factor factor
function function
implementation implementation
information information
minimum quality
quality software
software
50 Extendability capacity component 7 from 11
component design 0.636363636
design ease
ease incorporation
exiting storage
incorporation system
increase usage
presence
storage
system
usage

136

Att. | Attribute Def. Concepts Onto. Concepts that Count and Average
ID cover
51 Effectiveness ability ability 13 from 15
accuracy accuracy 0.866666667
capability capability
completeness context
context design
design functionality
functionality object
minimum operator
object product
operator software
product storage
software time
storage utilization
time
utilization
52 Resource Utilization amount amount 7 from 8
capability capability 0.875
duration function
function memory
memory product
product program
program software
software
53 Compatibility ability ability 12 from 17
communication data 0.705882353
compatibility degree
data environment
degree extent
environment hardware
exchange information
extent measure
file software
hardware system
information user
measure work
share
software
system
user
work
54 Independence application application 10 from 15
architecture computer 0.666666667
computer computing
computing data
data environment
database hardware
dependency operating
environment software
hardware structure
independence system
microcode
operating
software
structure
system
55 Simplicity component component 11 from 12
concern concern 0.916666667

137

Onto. Concepts that

Count and Average

Att. | Attribute Def. Concepts
ID cover
definition definition
degree degree
design design
factor factor
implementation implementation
manner manner
quality quality
software software
step system
system
56 Expandability capability capability 13 from 14
component component 0.928571429
concern concern
data data
degree degree
efficiency efficiency
effort effort
factor factor
functionality functionality
increase performance
performance program
program quality
quality software
software
57 Generality application application 6 from 11
being component 0.545454545
breadth degree
component respect
degree software
means system
nature
range
respect
software
system
58 System Clarity clarity concern 10 from 13
concern ease 0.769230769
description factor
ease manner
factor measure
manner program
measure quality
people software
program structure
quality understanding
software
structure
understanding
59 Survivability extent extent 4 from 6
portion probability 0.666666667
probability software
software system
survivability
system
60 Verifiability access access 15 from 22
architecture code 0.681818182
assembly component

138

Att. | Attribute Def. Concepts Onto. Concepts that Count and Average
ID cover
certification design
code effort
component extent
design function
effort implementation
extent operation
function performance
implementation quality
interface scope
operation software
performance source
quality test
scope
software
source
test
testability
verifiability
verification
61 Repeatability degree degree 5 from 6
= environment environment 0.833333333
Reproducibility operating operating
reproducibility set
set system
system
62 Conformance characteristic characteristic 7 from 13
completeness degree 0.538461538
compliance design
conformance functionality
database operating
degree portability
design software
functionality
operating
portability
portion
software
sql
63 Capacity ability ability 13 from 16
amount amount 0.8125
capacity data
data design
demand environment
design information
environment measure
information number
measure operating
number rate
operating system
rate throughput
suitability work
system
throughput
work
64 Buildabilitiy build characteristic 8 from 13
characteristic developer 0.615384615
developer ease

139

Att. | Attribute Def. Concepts Onto. Concepts that Count and Average
ID cover
ease period
people product
period software
product system
scenario time
software
system
term
thing
Time
65 Readability code code 7 from 8
developer developer 0.875
documentation documentation
ease ease
level level
source source
statement system
system
66 Productivity capability capability 5 from 7
context context 0.714285714
effectiveness effectiveness
expend product
product software
relation
software
The Average of Coverage Averages is 0.734520723
APPENDIX C

The suggested ontology domain concepts:

Table C.1: The final suggested ontology domain eptsclist.

Concept Concept Concept Concept
ability documentation memory risk
access ease minimum scope

accessibility effect modification service
accuracy effectiveness nature set
adapt efficiency notation setting
adaptability effort number software
adaptation environment object source
amount error objective specification
applicability exchange operating state
application express operation storage
architecture extent operator structure
attribute factor output system
availability failure people test
capability freedom performance testability

140

capacity function period throughput
change functionality portability time
characteristic hardware precision understand
code idea presence understandability
component impact probability understanding
computer implementation product uniform
computing incorporation program uniformity
concern information property usability
context interface purpose usage
control interval quality user
data level rate utility
definition maintenance relationship utilization
degree manner reliability variety
demand mean requirement verification
design meaning resource
develop means respect
developer measure response
development meeting responsiveness

APPENDIX D

Relationships between groups of concepts in thgestgd ontology domain:

Table D.1: Relationships between groups of condegtse ontology domain.

el Level Conl Con2
No
1 1 Software, system, requirement Attribute, design, test ,user
characteristic, function,
2 1 Performance, degree, component Data, effort, fation, software
,System

2 2 Data, effort Component, degree, performance,

requirement, function ,software,
system, user

3 1 Environment, program, ability Component, requirement, software

4 1 Extent, time ,product software ,system

5 1 Operate (ion), ease, change Environment, softvea system

6 1 Resource, specification, extent

implementation
7 1 Capability, code Environment, performance,
requirement

8 1 Madification, measure Ability, requirement

9 1 amount ,state Function, resource, software

10 1 Application, applicability, Modification, requirement, system

understand ,user

11 1 Level, modification Product, software, system

12 1 Service, access Requirement, system, user

13 1 Effect, set Attribute, resource, system, user

14 1 Develop (er), failure Ease, product, software

141

Group

No Level Conl Con2
15 1 Output, computer Amount, system
16 1 Efficiency, quality characteristic
17 1 meeting Madification, performance
18 1 Documentation, concern Software, system
19 1 Hardware, purpose Environment, software
20 1 Number amount ,specification
21 1 information Ability, data, degree,
documentation, exchange, object,
software, system
22 1 control Access, attribute, characteristic,
data, degree, operation, user, idea
22 2 idea Ease
23 1 precision Requirement, service
24 1 Adapt, utility (ization) characteristic
25 1 probability Availability, express, extent falure,
function, performance, program,
time
26 1 interface software
27 1 Mean, context change
28 1 probability Ability, characteristic, code, degee,
function ,time, Verification
28 2 Verification Component, interface, set
29 1 Freedom, uniform Environment
30 1 Storage, reliability code
31 1 response Design, measure, meeting ,systein
,.throughput, time
31 2 throughput Rate, requirement, response, time
33 1 error Maintenance, measure, precision,
program, requirement, system
33 2 maintenance Adaptability, attribute, ease, eor,
impact ,state
33 3 impact component ,maintenance ,system
34 1 Scope, accuracy extent
35 1 Usage, usability resource
36 1 work ,period system
37 1 relationship Attribute, degree, function,
modification, product
38 1 notation Definition, degree, implementation,
quality, uniform
38 2 definition Implementation, level, notation
39 1 testability Characteristic, code ,effort ,extet,
number
40 1 memory Amount, efficiency, time, usage
41 1 manner degree, modification, quality, usagd
42 1 structure data ,design, measure, software,
understand
43 2 architecture code ,design,
44 1 respect Capability, implementation, output,

142

e Level Conl Con2
No
performance, requirement
45 1 minimum Amount, function, resource,
software
46 1 source Access, attribute, code ,concern
47 1 risk Change, freedom ,people, softwarg
47 2 people Component, measure, risk
48 1 factor Ability, concern, quality, software
49 1 demand Object, rate,
50 1 presence Ability, usage
51 1 variety Component, operation
52 1 nature Change, utility
53 1 incorporation Change, requirement
APPENDIX E

Each SWPQA concepts that belong to our ontologgaio:

Table E.1: Each SWPQA definition concepts from atiology domain concepts.

Def.
1D

Attribute

From Ontology Domain

Def. Concepts

1

Accuracy

accuracy

capability

computer

concern

degree

error

extent

factor

freedom

measure

output

precision

product

quality

respect

software

system

Adaptability

ability

adaptation

change

component

degree

ease

environment

modification

operating

product

purpose

143

Def.
1D

Attribute

Def. Concepts
From Ontology Domain

software

system

means

Analyzability

ability

capability

effort

failure

product

software

Attractiveness

capability

product

software

user

Availability

component

data

degree

level

probability

program

service

software

specification

system

time

usage

availability

meeting

reliability

requirement

demand

Changeability

amount

capability

change

effort

modification

product

set

software

System

Complexity

attribute

code

component

concern

control

data

degree

design

extent

factor

implementation

measure

quality

144

Def.
1D

Attribute

Def. Concepts
From Ontology Domain

set

structure

system

Compliance

application

capability

characteristic

software

Consistency

code

component

concern

definition

degree

design

factor

freedom

implementation

level

notation

quality

software

source

system

uniform

uniform

uniformity

10

11

Co-existence

capability

environment

product

software

Efficiency

ability

amount

attribute

characteristic

code

component

computer

computing

concern

degree

efficiency

extent

factor

function

function

function

functionality

hardware

level

meaning

measure

memory

number

145

Def.
1D

Attribute

Def. Concepts
From Ontology Domain

performance

product

program

purpose

quality

rate

response

set

software

storage

system

time

usability

usage

user

utility

utilization

minimum

relationship

resource

express

12

Functionality

ability

capability

characteristic

component

design

extent

product

purpose

service

set

software

user

express

13

Installability

capability

effort

environment

product

software

14

Interoperability

ability

capability

component

computing

degree

effort

environment

extent

hardware

information

product

software

system

146

Def.
1D

Attribute

Def. Concepts
From Ontology Domain

exchange

variety

interface

15

Learnability

application

capability

control

effort

operation

output

product

software

user

work

16

Maintainability

ability

adaptation

amount

attribute

capability

change

characteristic

code

component

concern

developer

ease

efficiency

effort

environment

error

extent

factor

failure

hardware

incorporation

level

maintenance

operating

operation

performance

period

probability

product

program

purpose

quality

rate

scope

set

software

system

time

understandability

147

Def.

ID

Attribute

Def. Concepts
From Ontology Domain

17

impact

interval

verification

testability

state

Nature

Maturity

capability

effectiveness

efficiency

failure

product

respect

software

Work

18

Operability

ability

capability

control

degree

ease

effort

environment

functionality

operation

product

purpose

software

user

19

Performance

accuracy

amount

attribute

component

computer

concern

degree

effectiveness

efficiency

factor

function

memory

number

objective

operating

output

performance

period

program

quality

rate

respect

response

responsiveness

service

148

Def.
1D

Attribute

Def. Concepts
From Ontology Domain

software

system

throughput

time

usage

utilization

work

availability

interval

meeting

Resource

20

Portability

ability

adaptability

amount

capability

characteristic

code

component

computing

concern

degree

design

ease

effort

environment

extent

factor

hardware

implementation

measure

object

operating

portability

product

program

quality

set

software

system

time

time

variety

21

Recoverability

ability

capability

data

effort

failure

level

operation

performance

software

system

149

Def.
1D

Attribute

Def. Concepts
From Ontology Domain

time

22

Reliability

ability

application

capability

code

component

concern

design

environment

extent

factor

fail

failure

function

level

mean

measure

number

operating

performance

period

precision

probability

product

program

quality

rate

service

set

software

specification

system

time

usage

interval

reliability

23

Replaceability

capability

component

effort

environment

product

purpose

software

exchange

24

Robustness

ability

component

degree

program

system

presence

25

Safety

capability

computer

150

Def.
1D

Attribute

Def. Concepts
From Ontology Domain

context

environment

freedom

measure

product

property

software

system

means

people

risk

26

Scalability

ability

capability

degree

design

efficiency

hardware

implementation

performance

product

response

software

system

throughput

time

capacity

Demand

27

Security

ability

acCess

capability

code

component

computer

data

definition

degree

extent

freedom

information

manner

modification

object

product

property

software

system

user

idea

resource

risk

state

151

Def.

ID

Attribute

Def. Concepts
From Ontology Domain

28

Stability

change

effect

product

software

system

impact

risk

29

Suitability

attribute

capability

characteristic

functionality

product

set

software

specification

user

Presence

30

Testability

attribute

capability

characteristic

code

component

concern

degree

ease

effort

error

extent

function

number

performance

product

program

scope

setting

software

specification

system

test

idea

interface

reguirement

testability

verification

31

Traceability

ability

component

degree

design

development

documentation

environment

152

Def.
1D

Attribute

Def. Concepts
From Ontology Domain

32

modification

product

respect

software

system

relationship

requirement

Understandability

amount

applicability

application

code

component

computer

concern

degree

design

ease

effort

factor

implementation

level

operation

output

product

purpose

quality

software

structure

system

understand

understandability

understanding

User

33

Usability

ability

application

capability

characteristic

code

component

computer

context

developer

documentation

ease

effect

effectiveness

efficiency

effort

end

extent

functionality

information

153

Def.
1D

Attribute

Def. Concepts
From Ontology Domain

measure

operation

output

product

program

quality

set

software

system

understandability

usability

user

utility

express

variety

34

Utility

characteristic

code

computer

efficiency

extent

portability

purpose

usability

reliability

35

fault tolerance

ability

component

failure

level

performance

software

system

interface

36

Reusability

application

component

computing

concern

context

degree

ease

effort

extent

product

program

scope

software

system

work

37

Correctness

ability

attribute

component

concern

degree

154

Def.
1D

Attribute

Def. Concepts
From Ontology Domain

design

documentation

extent

implementation

operation

performance

precision

program

scope

set

software

specification

system

user

architecture

38

Modifiability

attribute

change

component

concern

degree

ease

effect

environment

extent

hardware

incorporation

measure

modification

performance

product

software

system

state

39

Completeness

attribute

concern

degree

factor

implementation

measure

number

program

quality

scope

software

system

meeting

40

Dependability

attribute

component

computer

degree

property

service

155

Def.

ID

Attribute

Def. Concepts
From Ontology Domain

system

Availability

41

Extensibility

attribute

component

functionality

capacity

42

Customizability

attribute

component

number

43

Modularity

attribute

change

code

component

computer

concern

degree

factor

function

level

number

program

quality

software

source

structure

system

impact

relationship

44

Flexibility

ability

change

code

component

concern

context

data

design

developer

ease

effort

environment

extent

factor

incorporation

operating

quality

software

system

use

45

Integrity

ability

aCCess

application

156

Def.
1D

Attribute

Def. Concepts
From Ontology Domain

code

component

computer

concern

data

degree

extent

factor

function

information

manner

modification

object

object

program

quality

software

system

user

idea

requirement

state

46

Accessibility

acCCess

accessibility

control

data

manner

software

system

test

usage

means

a7

Communicativeness|

degree

software

system

means

48

Self Descriptiveness

component

degree

function

implementation

information

software

system

49

Conciseness

ability

amount

code

concern

factor

function

implementation

information

quality

157

Def.

ID

Attribute

Def. Concepts
From Ontology Domain

software

minimum

50

Extendability

component

design

ease

incorporation

Sto rage

system

usage

capacity

presence

51

Effectiveness

ability

accuracy

capability

context

design

functionality

object

operator

product

software

storage

time

utilization

Minimum

52

Resource Utilization

amount

capability

function

memory

product

program

software

53

Compatibility

ability

data

degree

environment

extent

hardware

information

measure

software

system

user

work

exchange

54

Independence

application

computer

computing

data

environment

hardware

operating

158

Def.
1D

Attribute

Def. Concepts
From Ontology Domain

software

structure

system

architecture

55

Simplicity

component

concern

definition

degree

design

factor

implementation

manner

quality

software

system

56

Expandability

capability

component

concern

data

degree

efficiency

effort

factor

functionality

performance

program

quality

Software

57

Generality

application

component

degree

respect

software

system

means

nature

58

System Clarity

concern

ease

factor

manner

measure

program

quality

software

structure

understanding

people

59

Survivability

extent

probability

software

system

60

aCCess

Verifiability

159

Def.
1D

Attribute

Def. Concepts
From Ontology Domain

code

component

design

effort

extent

function

implementation

operation

performance

quality

scope

software

source

test

architecture

interface

testability

verification

61

Repeatability

degree

environment

Reproducibility

operating

set

system

62

Conformance

characteristic

degree

design

functionality

operating

portability

Software

63

Capacity

ability

amount

data

design

environment

information

measure

number

operating

rate

system

throughput

work

capacity

demand

64

Buildablitiy

characteristic

developer

ease

period

product

software

system

160

Def.
1D

Def. Concepts
From Ontology Domain

Attribute

time
people

65

Readability code
developer
documentation
ease
level
source
system

66

capability
context
effectiveness
product
software

Productivity

APPENDIX F

Relationships between each concept in the ontadogyain and other concepts also

in the domain:

Table F.1: Each concept relationships with othethé ontology domain concepts.

ID Concept Other Concepts that have relationships with the fist concept

1 ability Component, requirement, software, Modifiation, measure,
information, portability, factor, presence, portability

2 access Requirement, system, user, control, source

3 accessibility Requirement, system, user, contradpurce

4 accuracy Extent

5 adapt Characteristic

6 adaptability Maintenance

7 adaptation Environment, Software, Maintenance, Mdification

8 amount Function, resource, software, Output, comyuter, Number,
memory, minimum, computing

9 applicability Madification, requirement, system pser

10 application Madification, requirement, system ,ser

11 architecture code ,design

12 attribute Software, system, requirement charactestic, function,
Effect, set, control, maintenance, relationship, soce,
quality, meaning, means, portability, property,
responsiveness

13 availability Probability

14 capability Environment, performance, requirement respect

15 capacity Function, System, Requirement, Software

16 change Environment, software, system, Mean, cat, risk, nature,
means

17 characteristic Attribute, design, test ,user, Hiciency, quality, control,
Adapt, utility (ization), portability, testability, property

18 code Environment, performance, requirement, powdbility,

161

ID Concept Other Concepts that have relationships with the fist concept
Storage, reliability, testability, architecture, sairce

19 component Data, effort, function, software ,systn, Environment,
program, ability, Verification, impact, people, variety

20 computer Amount, system

21 computing Amount, system

22 concern Software, system, source, factor

23 context Change

24 control Access, attribute, characteristic, datagegree, operation,
user, accessibility

25 data Performance, degree, component, Componenlggree,
performance, requirement ,software, system, user,
Information, control, structure

26 definition Notation, Implementation, level, notéion, meaning, means

27 degree Data, effort, function, software ,systenmformation, control,
portability, relationship, notation, manner, level

28 demand Obiject, rate

29 design Software, system, requirement charactetis, function,
response, structure, architecture

30 develop Ease, product, software

31 developer Ease, product, software

32 development Ease, product, software

33 documentation Software, system, information, mesng, means,
understanding

34 ease Environment, software, system, Develop(efdjlure, idea,
maintenance

35 effect Attribute, resource, system, user

36 effectiveness Efficiency, Quality, Program, Furion, Factor

37 efficiency Characteristic, memory, effectiveness

38 effort Performance, degree, component, requirenm¢ ,software,
system, user, Testability

39 environment Component, requirement, software, Ograte(ion), ease,
change, Capability, code, Hardware, purpose
Freedom, uniform, adaptation

40 error Maintenance, measure, precision, progranrequirement,
system

41 exchange Information

42 express Probability

43 extent software ,system, Resource, specificatiamplementation,
probability, Scope, accuracy, testability

44 factor Ability, concern, quality, software, effetiveness

45 failure Ease, product, software, probability

46 freedom Environment, risk

47 function Attribute, design, test ,user, Performace, degree,
component, amount ,state, probability, relationship
minimum, capacity, effectiveness, responsiveness

48 functionality Attribute, design, test ,user, Pefiormance, degree,
component, amount ,state, probability, relationship
minimum

49 hardware Environment, software

50 idea Ease

162

ID Concept Other Concepts that have relationships with the fist concept

51 impact Maintenance, component, system, interval

52 implementation Extent, notation, definition, repect

53 incorporation Change, requirement

54 information Ability, data, degree, documentation exchange, object,
software, system

55 interface Software, Verification

56 interval Time, Period, impact, minimum

57 level Performance, Degree

58 maintenance Error, Adaptability, attribute, ease impact ,state, adaptation

59 manner degree, maodification, quality, usage

60 mean Change

61 meaning Definition, Attribute, Documentation

62 means Change, Definition, Attribute, Documentatin

63 measure Ability, requirement, response, error,tsucture, people

64 Meeting (meet) Madification, performance, respose

65 memory Amount, efficiency, time, usage, storage

66 minimum Amount, function, resource, software, iterval

67 modification Ability, requirement, Application, applicability, understand,
Product, software, system, meeting, relationship, emner,
adaptation , understanding

68 nature Change, utility

69 notation Definition, degree, implementation, quiity, uniform

70 number amount ,specification, testability

71 object Information, demand

72 objective Information, demand

73 operating Environment, software, system, controlariety

74 operation Environment, software, system, controlvariety

75 operator Environment, software, system, controlyariety

76 output Amount, system, respect

77 people Risk, Component, measure

78 performance Data, effort, function, software ,sstem, Capability, code,
meeting, probability, respect, level

79 period System, time, interval

80 portability Ability, Program, Software, Attribut e, utilization

81 precision Requirement, service, error

82 presence Ability, usage

83 probability Availability, express, extent ,failure, function, performance,
program, time, Ability, characteristic, code, degre

84 product software ,system, Level, modification, 8velop(er), failure,
relationship

85 program Component, requirement, software, proballity, error,
effectiveness, portability, responsiveness, utilizian

86 property Characteristic, Attribute, Software

87 purpose Environment, software

88 quality Characteristic, notation, manner, factor, Attribute,
effectiveness

89 rate Throughput, demand

90 relationship Attribute, degree, function, modifcation, product

91 reliability Code

163

ID Concept Other Concepts that have relationships with the fist concept

92 requirement Attribute, design, test ,user, Dataeffort, Environment,
program, ability, Capability, code, Modification, measure
Application, applicability, understand, Service, acess,
precision, throughput, error, respect, incorporation,
accessibility, capacity, understanding

93 resource Extent, amount ,state, Effect, set, Uga, usability, minimum

94 respect Capability, implementation, output, perbrmance,
requirement

95 response Design, measure, meet ,system ,throughpime,
responsiveness

96 responsiveness Response, function, software, ititite, program, time

97 risk Change, freedom ,people, software

98 scope Extent

99 service Requirement, system, user, precision,

100 set Attribute, resource, system, user, Verifidion

101 Setting Attribute, resource, system, user, Vdication

102 software Attribute, design, test ,user, Perforimnce, degree,
component, Data, effort, Environment, program, abiity,
Extent, time ,product, Operate(ion), ease, changamount
,state, Level, modification, Develop(er), failureportability
Documentation, concern, Hardware, purpose, informabn,
interface, structure, minimum, risk, factor, adaptation,
capacity, property, responsiveness, utilization

103 source Access, attribute, code ,concern, acdbiity

104 specification Extent, Number

105 state Function, resource, software, maintenanceniformity

106 storage Code, memory

107 structure data ,design, measure, software, undgtand, understanding

108 system Attribute, design, test ,user, Performae, degree,
component, Data, effort, Extent, time ,product, Opeate(ion),
ease, change, Application, applicability, understaah, Level,
modification, Service, access, Effect, set, Outputpmputer
Documentation, concern, information, response, erm
impact, work ,period, accessibility, capacity, compting,
understanding, uniformity

109 test Software, system, requirement characterist function

110 testability Characteristic, code ,effort ,exteh number

111 throughput Response, Rate, requirement, time

112 time Period, software ,system, probability, rgmonse, throughput,
memory, interval, responsiveness

113 understand Modification, requirement, system ,ser, structure,
Documentation

114 understandability | Modification, requirement, system ,user, structure,
Documentation

115 understanding Modification, requirement, systemuser, structure,
Documentation

116 uniform Environment, notation, uniformity

117 uniformity State, uniform, System

118 usability Resource

119 usage Resource, memory, manner, presence,

120 user Software, system, requirement characterist function, Data,

164

ID Concept Other Concepts that have relationships with the fist concept
effort, Application, applicability, understand, Service, access,
Effect, set, control, accessibility, understandingytilization

121 utility Characteristic, nature

122 utilization Software, User, Program, Portabiliy

123 variety Component, operation

124 verification Component, interface, set

125 work System

165

	MethontologyLifeCycle
	OLE_LINK1
	OLE_LINK10
	OLE_LINK2
	OLE_LINK3
	OLE_LINK4
	OLE_LINK5
	OLE_LINK6
	OLE_LINK7
	OLE_LINK8
	OLE_LINK9

