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English Abstract 

Data compression algorithms are designed to reduce the size of data so that it requires 

less disk space for storage and less bandwidth to be transmitted over data communication 

channels. An additional benefit of data compression is in wireless communications 

devices, where it reduces the transmission power consumption of the device as the power 

consumption is directly proportional to the size of the transmitted data. Data compression 

can play a big role in improving the Quality-of-Service (QoS) in Multimedia Messaging 

Service (MMS) on mobile phones, where MMS is facing three main challenging: limited 

message size, high power consumption, and long delay. 

In this thesis, we develop a new data compression algorithm for stand still image 

compression, which can be used for MMS and Internet applications on mobile networks. 

The new algorithm is a modified version of the lossless bit-level Hamming Codes based 

Data Compression (HCDC) algorithm, and it is characterized as an image-based 

adjustable-quality algorithm; therefore, it is referred to as Adjustable-Quality HCDC 

(AQ-HCDC) algorithm.  

The AQ-HCDC algorithm is implemented using VB.NET, and to evaluate the 

performance of the algorithm, two types of experiments are carried-out for large-size and 

small-size images compression. The images used in these experiments are widely-used as 

a test images by many researchers due to their standard features. In particular, six images 

are selected, namely, AirPlane, Baboon, CornField, Flowers, Girl, and Monarch. 

The performance of the AQ-HCDC algorithm is evaluated in terms of Compression ratio 

(C), Mean Square Error (MSE), and Peak Signal to Noise Ratio (PSNR). In all 

experiments, the performance of the AQ-HCDC algorithm is compared against the 

performance of a number of lossless compressed image formats (e.g., GIF and PNG), 

lossy image format (e.g., JPEG), and lossless compression tools (e.g., ZIP and WinRAR). 

For both experiments the AQ-HCDC algorithm provides a compression ratio of ≈1.6 and 

a PNSR of more than 30 dB, which ranks the algorithm between the most widely-used 

formats PNG and JPEG. 
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Chapter One 

Introduction 

1.1 Overview 

The last two decades have witnessed a tremendous revolution and growth in the field of 

Information and Communication Technology (ICT), and still more and more to emerge. 

The revolution has been notably recorded in a number of related fields of ICT; these may 

include: 

(1) Computer technology: Development of very high performance computing resources, 

especially those of mobile characteristics, such as: laptops, netbooks, notebooks, 

smart phones (e.g., IPhones), Personal Digital Assistants (PDAs), IPads, etc. 

(Patterson & Hennessy, 2011). 

(2) Communications technology: Emergent of various wire/wireless networks designs, 

such as: Local Area Networks (LANs), Wide Area Network (WAN), Personal Area 

Networks (PAN), wireless networks, cellular networks, satellite communications 

(Forouzan, 2007) (Stallings, 2010). 

(3) Internet technology: Development of masses of applications and tools (e.g., World 

Wide Web (Web)) open the door towards an amazing world of all kinds of 

information and knowledge exchange. Internet facilities are easily accessible in 

almost every parts of the world (Duffy, 2012) (Bentley & Barrett, 2012). 

(4) Multimedia technology: Production of very high resolution and high quality 

multimedia devices, such as: digital cameras, display screens, audio systems, etc. 

(Ze-Nian Li & Mark, 2004).   

(5) Mobile technology: Emergent of high performance, small-size, low-power, and 

mobile devices (e.g., laptops, notebooks, smart phones, etc.), which have led to the 

emergent of a wide range of tools and applications (Duffy, 2012) (Bentley & Barrett, 

2012). 
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In addition to its many advanced characteristics (e.g., small size, high processing speed, 

relatively large memories, low power consumption, long life batteries), digital cameras 

nowadays can produce very high quality or high resolution images. The term resolution is 

often used for a pixel count in digital imaging, which gives an indication on the digital 

image quality. The higher the resolution, the better the image is. A low resolution digital 

image (640x480 pixels), for instance, may look acceptable for displaying on the Internet 

but it can appear fuzzy when printed or enlarged. By comparison, high resolution images, 

such as those at 1280x1024 pixels, contain enough pictorial information (sharp contrasts, 

rich colors, and picture details) to look good on the internet as well as when printed or 

enlarged. 

Storing high resolution images require high storage capacities (memories); for example, a 

1280x1024 image size using RGB color requires 3.894 MB space. Fortunately, modern 

digital cameras are supplied with reasonably huge memories of Giga Bytes (GB) that can 

store large number of high resolution images or videos. Digital cameras are also equipped 

with wire and wireless interface technologies. Wire interface technologies like the 

Universal Serial Bus (USB), and wireless interface technologies like Bluetooth (IEEE 

802.15 protocol) and Wireless LAN (WLAN) (IEEE 802.11 protocol) (Forouzan, 2007) 

(Stallings, 2010). Thus, digital cameras memories can be cleared by copying images' data 

into more permanent or external storage media.  

Most modern mobile phones are equipped with high technology digital camera(s), 

encouraging users taking more and more pictures or videos while they are on the move; 

and despite the high storage capacity of modern mobile phones, the memory may not be 

enough to accommodating all users’ generated data, therefore, users may need to clear or 

flash-out their mobile's memory to a remote end. The most obvious way to exchange 

these pictures or videos is through the available cellular bandwidth.  

In this direction, researchers developed a standard service to send messages that include 

multimedia content to and from mobile phones, namely, the Multimedia Messaging 

Service (MMS). It extends the core Short Message Service (SMS) capability that allowed 

exchange of text messages only up to 160 characters in length. Comparing the current 
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cellular bandwidth cannot meet the growing demands for satisfactory performance for 

multimedia exchange through cellular systems, and more powerful algorithms or 

protocols are required. 

MMS can be divided into two main interrelated tasks; these are: data processing and data 

communication. Data processing may include the following main activities: data 

capturing, encoding, compression, decompression, decoding, storing, and displaying. 

Data communication may include the following main activities: data packetization, 

routing, error-detection, and data re-assembling.  

One of the influential factors on the performance of MMS is the maximum size of the 

message that can be exchanged. Although the standard does not specify a maximum size 

for a message, 300 KB is the current recommended size used by networks due to some 

limitations on the available bandwidth. It at the end depends on the performance of the 

local cellular infrastructure. Furthermore, exchanging large amount of data facing two 

more challenges, these are high power consumption and long delay. One obvious 

approach to address the concerns of MMS is to compress the exchange data using 

powerful reversible data compression algorithms, while maintaining image quality. 

Which is the main concept discussed in this thesis. 

1.2 Data Compression 

Data compression aims to reduce the size of data so that it requires less disk space for 

storage and less bandwidth to be transmitted over data communication channels (Sayood, 

2012) (Salomon, 2007). Data compression also reduces the amount of accumulated errors 

during data transmission over error-prone data communication channels by decreasing 

the size of information to be exchanged over such channels (Adiego, Navarro, & de la 

Fuente, 2007) (Freschi & Bogliolo, 2004). An additional benefit of data compression is in 

wireless communication devices where it may introduce a significant power saving. 

Power savings is possible by compressing data prior to transmission, where the power 

consumed is directly proportional to the size of the transmitted data. In fact, in wireless 

devices, transmission of a single bit requires over 103 times more power than a single 32-

bit processing.  
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Data compression is usually obtained by substituting a shorter symbol for an original 

symbol in the source data, containing the same information but with a smaller 

representation in length. The symbols may be characters, words, phrases, or any other 

unit that may be stored in a dictionary of symbols and processed by a computing system 

(Witten I. H., 2004). The data compression process requires efficient algorithmic 

transformations of a source message to produce representations (also called codewords) 

that are more compact. Such algorithms are known as data compression algorithms or 

data encoding algorithms. On the other hand, the data compression process must be 

reversible process, such that each data compression algorithm needs to be complemented 

by its inverse, which is known as a data decompression algorithm (or data decoding 

algorithm), to restore an exact or an approximate form of the original data (Al-Bahadili & 

Hussain, 2008) (Gryder & Hake, 1991).  

1.2.1 Data compression models 

Different data compression models have been recommended and used throughout the 

years. These data compression models can be classified into four major models; these are 

(Sayood, 2012): 

1) Substitution data compression model 

2) Statistical data compression model 

3) Dictionary-based data compression model 

4) Bit-level data compression model 

A substitution model involves the swapping of repeating characters by a shorter 

representation. Algorithms that are based on this model include: Null Suppression, Run-

Length Encoding (RLE), Bit Mapping and Half Byte Packing (Pandya, 2000). 

A statistical model involves the generation of the shortest average code length based on 

an estimated probability of the characters. Examples of algorithms that are based on this 

model include: Shannon-Fano coding (Rueda & Oommen, 2006), static/dynamic 

Huffman coding (Huffman, 1952) (Knuth, 1985) (Vitter, 1989), and arithmetic coding 

(Howard & Vitter, 1994) (Witten & Neal, 1987).  
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A dictionary-based model involves the substitution of substrings by indices or pointer 

code, relative to a dictionary of the substrings; algorithms that can be classified as a 

dictionary-based model include the LZ compression technique and its variations (Ziv & 

Lempel, 1977) (Ziv & Lempel, 1978) (Nelson, 1989) (Brittain & El-Sakka, 2007).  

Finally, since data files could be represented in binary digits, a bit-level processing can be 

performed to reduce the size of data. In bit-level data compression algorithms, the binary 

sequence is usually divided into groups of bits that are called minterms, blocks, 

subsequences, etc. These minterms might be considered as representing a Boolean 

function. Then, algebraic simplifications are performed on these Boolean functions to 

reduce the size or the number of minterms, and hence, the number of bits representing the 

output (compressed) data is reduced as well.  

Examples of bit-level data compression algorithms include: The Polynomial Codes Data 

Compression (PCDC) (Sirbu & Cleju, 2011), the Hamming Codes based Data 

Compression (HCDC) algorithm (Al-Bahadili H. , 2008) (Al-Bahadili & Rababa’a, 

2010), the Adaptive Character Wordlength (ACW(n)) algorithm (Al-Bahadili & Hussain, 

2008), the Adaptive Character Wordlength (ACW(n,s)) scheme (Al-Bahadili & Hussain, 

2010), the logic-function simplification algorithm (Nofal, 2007), the neural network 

based algorithm (Mahoney, 2000).  

1.2.2 Categorization of data compression algorithms 

There are many data compression algorithms that have been developed throughout the 

years utilizing the different models discussed in previous section and are designed for 

various applications and purposes. Therefore, it is necessary to have some methodologies 

to classify these algorithms in a way that helps academicians, researchers, developers and 

professionals to understand these algorithms. In this direction, data compression 

algorithms are categorized by several characteristics, such as (Sayood, 2012) (Salomon, 

2004) (Salomon, 2002): 

(1) Data compression fidelity  

(2) Length of data compression symbols 
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(3) Data compression symbol table  

(4) Data compression cost 

In what follows, I shall provide a brief explanation for each of them: 

(1) Data compression fidelity 

One of the most important characteristics is the fidelity with which the original and the 

decompressed data agree with each other. The decompressed (restored) data can either 

represent an exact or an approximate form of the original data set (Shapira & Daptardar, 

2006). Therefore, two fundamentally different styles of data compression can be 

recognized, depending on the fidelity of the restored data, these are: lossless and lossy 

data compression. 

• Lossless data compression  

It involves a transformation of the representation of the original data set such that it is 

possible to reproduce exactly the original data (exact copy). Lossless compression is used 

in compressing text files, executable codes, word processing files, database files, 

tabulation files, and whenever it is important that the original and the decompressed files 

must be identical. Lossless compression is used in many applications, e.g., the popular 

ZIP file format and in the UNIX tool gzip. It is also used as a component within lossy 

data compression technologies. Lossless compression algorithms can usually achieve a 2 

to 8 compression ratio (Rueda & Oommen, 2006) (Brittain & El-Sakka, 2007). 

• Lossy data compression 

It involves a transformation of the representation of the original data set such that it is 

impossible to reproduce exactly the original data set, but an approximate representation is 

reproduced by performing a decompression transformation. This type of compression is 

used frequently on the Internet and especially in streaming media and telephony 

applications. Because some information is discarded, it achieves better data compression 

ratios that reach 100 to 200, depending on the type of information being compressed. In 
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addition, higher compression ratio can be achieved if more errors are allowed to be 

introduced into the original data (Brittain & El-Sakka, 2007) (Witten I. H., 2004). 

(2) Length of data compression symbols 

Data compression algorithms are characterized by the length of the symbols an algorithm 

process, regardless of whether the algorithm uses variable length symbols in the original 

data or in the compressed data, or both. For example, RLE uses fixed length symbols in 

both the original and the compressed data. Huffman encoding uses variable length 

compressed symbols to represent fixed-length original symbols. Other methods compress 

variable-length original symbols into fixed-length or variable-length encoded data.     

(3) Data compression symbol tables 

Another distinguishing feature of the compression algorithms is the source of the symbol 

table. According to this feature, compression algorithms can be classified into: static or 

fixed, dynamic or adaptive, and semi-adaptive compression algorithms 

• Static or fixed data compression algorithms 

Some data compression algorithms operate on a static symbol table, or a fixed dictionary 

of compression symbols. Because the dictionary is fixed, it needs not be combined with 

the compressed data. Such algorithms are dependent on the format and content of the data 

to be compressed. However, a fixed dictionary is usually optimized for a particular data 

type,   whereas if the same dictionary used for other types of information the efficiency of 

the algorithm suffers and provides a lower compression ratio.  

• Dynamic or adaptive data compression algorithms 

Some data compression algorithms are relatively independent, and some make two passes 

at the data. The first pass determines the frequency of the symbols that will be processed; 

and builds a symbol table based on that frequency. The custom symbol table needs to 

combine the compressed data, and the second pass uses the custom symbol table to 

encode and decode data. Adaptive compression algorithms build a custom symbol table 



8 
 

 
 

as they compress the data. Such algorithms encode each character based on the frequency 

of preceding characters in the original data file. The decompression algorithm builds an 

identical dynamic table as the information is decompressed. Adaptive methods usually 

start with a minimal symbol table to bias the compression algorithm toward the type of 

data they are expecting.  

• Semi-adaptive data compression algorithms 

In a semi-adaptive algorithm the data to be compressed are first analyzed in their entirety, 

an appropriate model is then built, afterwards the data is encoded. The model is stored as 

part of the encoded data, as it is required by the decompressor to reverse the encoding. 

Static schemes are similar to this, but a representative selection of data is used to build a 

fixed model, which is hard-coded into compressors and decompressors. This has the 

advantage that no model must be explicitly stored with the compressed data, but the 

disadvantage that poor compression will result if the model is not representative of data 

presented for compression. Concerning the type of adaptively being adopted, focus has 

remained on static and semi-adaptive techniques, and little attention has been paid to the 

class of adaptive algorithms (Klein, 2000) (Xie, Wolf, & Lekatsas, 2003) (Gilbert & 

Abrahamson, 2006). 

(4) Data compression cost 

The cost of data compression is an important feature that can be used to distinguish 

between the different data compression algorithms. Most importantly is that compression 

algorithms should be performed in as minimum as possible cost. This cost is measured in 

terms of time and storage requirement; however, in many applications, and with the 

revolutionary advancement in computer technology, the time is the most important factor. 

For example, on-the-fly compression algorithms, such as between application programs 

and storage devices, the algorithm should operate as quickly as the storage devices 

themselves. Likewise, if a compression algorithm is built into a hardware data 

communications component, the algorithm should not prevent the full bandwidth of the 

communication media from being continuously utilized. 
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The data compression cost for a particular algorithm consists of the time required by the 

algorithm to compress the original data and the time it takes to decompress the data back 

to its original form. In the context of the data compression for minimal storage 

applications, the cost of compression can be viewed as a one-time cost and hence as 

relatively less significant than the cost of decompression, which must be incurred every 

time the data is to be retrieved from storage. In the context of compression designed for 

fast data transmission applications, the relative costs of compression at one end and 

decompression at the other may be equally significant.  

According to the compression-decompression processing time, data compression 

algorithms are classified into two classes, these are: symmetric and asymmetric data 

compression algorithms. In symmetric algorithms, the processing times are almost the 

same for compression and decompression processes; while in asymmetric algorithms the 

compression processing time is more than the decompression processing time. 

1.3 Image Compression 

Before I proceed with our discussion on image compression, let us discuss first the 

standard uncompressed image file format, namely, the bitmap (BMP) image file format, 

which is used as the standard bitmap storage format in the Microsoft Windows 

environment. Although it is based on Windows internal bitmap data structures, it is 

supported by many non-Windows and non-PC applications.  

The BMP, also known as Device Independent Bitmap (DIB) file format, is a raster 

graphics image file format used to store bitmap digital images, independently of the 

display device (such as a graphics adapter), especially on Microsoft Windows and OS/2 

operating systems. The BMP file format is capable of storing 2D digital images of 

arbitrary width, height, and resolution, both monochrome and color, in various color 

depths, and optionally with data compression, alpha channels, and color profiles (BMP 

file format, 2012). 

The standard BMP files contain four sections, these are: file information, bitmap 

information header, color palette, and bitmap data, as shown in Figure (1.1). Of these 
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four sections, only the palette information may be optional, depending on the bit depth of 

the bitmap data. The BMP file header is 14 Bytes in length. The file header is followed 

by a second header (called the bitmap information header), a variable-sized palette, and 

the bitmap data. There are four versions of BMP formats, they all have the same file 

information length (14 Bytes) but have various lengths for the remaining sections.  

 

File Header 

Bitmap 

Data 

File 

Information 

Bitmap 

Information 

Header 

Color 

Palette 

(a) Structure of a generic BMP image. 

File Header 

Bitmap 

Data 

File 

Information 

Bitmap Information 

Header 

14-Byte 40-Byte 

(3*ImageWidth*ImageHeight) 

54-Byte 

(b) Structure of Version 3.0 24-bit BMP image. 

Figure (1.1). Structure of BMP image. 
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However, in this work I consider BMP Version 3 (Microsoft Windows 3.x), in which for 

24-bit (RGB) color depth, the file size in Bytes is calculated as: 

 ImageSize = 54 + 3 * ImageWidth * ImageHeight    (1.1) 

Where ImageSize the size of the image file in Bytes. 

 ImageWidth the image width in pixels. 

 ImageHeight the image height in pixels. 

The 54 is the total file header length, 14 Bytes of which is for file information, and 40 

Bytes for bitmap information header.  

A number of compressed image formats have been developed in the past for various 

applications, some of these algorithms are lossless (such as the Graphics Interchange 

Format (GIF) and the Portable Network Graphics (PNG) and other are lossy (such as the 

Joint Photographic Experts Group (JPEG)). The reduction in file size allows more images 

to be stored in a given amount of disk or memory space. It also reduces the time required 

for images to be sent over communication channels or downloaded through the Internet. 

Furthermore, it reduces the power consumption during transmission and also reduces 

accumulated transmission errors (Talukder & Harada, 2007). 

Lossless compression is preferred for archival purposes and often for medical imaging, 

technical drawings, clip art, or comics. This is because lossy compression methods, 

especially when used at low bit rates, introduce compression artifacts. Lossy methods are 

especially suitable for natural images such as photographs in applications where minor 

(sometimes imperceptible) loss of fidelity is acceptable to achieve a substantial reduction 

in bit rate. The lossy compression that produces imperceptible differences may be called 

visually lossless (Bandyopadhyay, Paul, & Raychoudhury, 2011). 
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1.3.1 Image Compression Tools 

While most BMP files have a relatively large file size due to lack of any compression (or 

generally low-ratio RLE on palletized images), many BMP files can be considerably 

compressed with well-known and widely-used lossless data compression tools, such as 

ZIP (http://www.winzip.com) and WinRAR (http://www.win-rar.com) (BMP file format, 

2012). 

ZIP is a compression and file packaging utility for Unix, VMS, MSDOS, OS/2, Windows 

9x/NT/XP, Minix, Atari, Macintosh, MVS, z/OS, Amiga, Acorn RISC, and other 

Operating Systems (OS). It is analogous to a combination of the Unix commands tar and 

compress (or tar and gzip) and is compatible with PKZIP (Phil Katz's ZIP for MSDOS 

systems) and other major ZIP utilities (ZIP, 2011). ZIP is not a single algorithm; there are 

many possible compression algorithms which may be used in ZIP archives (sometimes 

even several different algorithms in the same archive). The PK in PKZIP stands for the 

author Phil Katz, but the “ZIP” is just the name of the product and it means “spead” (i.e., 

not an acronym). 

The second tool that is considered in this work is the WinRAR, which is a Windows 

compression utility developed by Alexandar Roshal to handle RAR (Roshal Archive) 

files and other compression formats; therefore, it is abbreviated as WinRAR. It supports 

the following features:  

• Complete support of RAR and ZIP archives.  

• Highly sophisticated, original lossless compression algorithm.  

• Special algorithms optimized for text, audio, graphics, 32-bit and 64-bit Intel 

executable compression.  

• Shell interface including drag-and-drop facility and wizard.  

• Command line interface.  
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• Non-RAR archives (7Z, ACE, ARJ, BZ2, CAB, GZ, ISO, JAR, LZH, TAR, UUE, Z) 

management.  

• Solid archiving, which can raise compression ratio by 10%-50% over common 

methods, particularly when packing a large number of small, similar files.  

• Multivolume archives.  

• Creation of self-extracting archives (also multivolume) using the default or optional 

SFX modules.  

• Recovering physically damaged archives and it has recovery volumes allowing 

reconstructing missing parts of multivolume archives.  

• Unicode support in file names. 

• Other service functions, such as encryption, archive comments, error logging, etc.  

1.3.2 Standard Compressed Image Formats 

As it has been discussed above that there are a number of standard compressed image 

formats, such as GIF, PNG, and JPEG. The GIF and PNG are lossless, while the JPEG is 

lossy. In what follows, I provide a brief description for each of them: 

• Graphics Interchange Format (GIF) 

It is a bitmap image format that was introduced by CompuServe in 1987 and has since 

come into widespread usage on the Web due to its wide support and portability. The 

format supports up to 8 bits per pixel thus allowing a single image to reference a palette 

of up to 256 distinct colors. The colors are chosen from the 24-bit RGB color space. It 

also supports animations and allows a separate palette of 256 colors for each frame. The 

color limitation makes the GIF format unsuitable for reproducing color photographs and 

other images with continuous color, but it is well-suited for simpler images such as 

graphics or logos with solid areas of color.  
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GIF images are compressed using the Lempel-Ziv-Welch (LZW) lossless data 

compression technique to reduce the file size without degrading the visual quality. This 

compression technique was patented in 1985. Controversy over the licensing agreement 

between the patent holder, Unisys, and CompuServe in 1994 spurred the development of 

the Portable Network Graphics (PNG) standard; however, all the relevant patents have 

now expired (Graphics Interchange Format, 2012). 

• Portable Network Graphics (PNG) 

It is a bitmapped image format that employs lossless data compression. PNG was created 

to improve upon and replace GIF as an image-file format not requiring a patent license. 

PNG supports palette-based images (with palettes of 24-bit RGB or 32-

bit RGBA colors), grayscale images (with or without alpha channel), and full-color non-

palette-based RGB images (with or without alpha channel). PNG was designed for 

transferring images on the Internet, not for professional-quality print graphics, and 

therefore does not support non-RGB color spaces such as Cyan, Magenta, Yellow, and 

Key (CMYK). PNG files nearly always use file extension PNG or png and are 

assigned Multipurpose Internet Mail Extensions (MIME) media type image/png; it was 

approved for this use by the Internet Engineering Steering Group (IESG) on 14 October 

1996. PNG was published as an ISO/IEC standard in 2004 (Portable Network Graphics, 

2013). 

• Joint Photographic Experts Group (JPEG) 

It is a commonly used method of lossy compression for digital photography (image). The 

degree of compression can be adjusted, allowing a selectable trade-off between storage 

size and image quality. JPEG typically achieves 10:1 compression with little perceptible 

loss in image quality. JPEG compression is used in a number of image file formats. 

JPEG/Exif is the most common image format used by digital cameras and other 

photographic image capture devices; along with JPEG/JFIF, it is the most common 

format for storing and transmitting photographic images on the Web. These format 

variations are often not distinguished, and are simply called JPEG.  
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The compression method is usually lossy, meaning that some original image information 

is lost and cannot be restored, possibly affecting image quality. There is an optional 

lossless mode defined in the JPEG standard; however, this mode is not widely supported 

in products. 

There is also an interlaced "Progressive JPEG" format, in which data is compressed in 

multiple passes of progressively higher detail. This is ideal for large images that will be 

displayed while downloading over a slow connection, allowing a reasonable preview 

after receiving only a portion of the data. However, progressive JPEGs are not as widely 

supported, and even some software which does support them (such as versions of Internet 

Explorer before Windows 7) only displays the image after it has been completely 

downloaded. There are also many medical imaging and traffic systems that create and 

process 12-bit JPEG images, normally grayscale images. The 12-bit JPEG format has 

been part of the JPEG specification for some time, but again, this format is not as widely 

supported (JPEG, 2012). 
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1.4 Performance Measures 

The performance of image compression algorithms is mainly measured in terms of the 

following performance metrics. 

(1) Compression ratio (C) 

It is the most important and widely-used performance metric. It is defined as the ratio 

between the size of the original image file (So) and the size of the compressed image file 

(Sc). It is expressed mathematically as (Sayood, 2012):  

 o

c

S
C

S
=          (1.2) 

Where C Compression ratio. 

 So size of the original image file. 

 Sc size of the compressed image file. 

For lossy compression algorithms, two more performance metrics are introduced, 

namely, the Mean Square Error (MSE) and the Peak Signal to Noise Ratio (PSNR).  

(2) Mean Square Error (MSE) 

The MSE is the cumulative squared error between the compressed and the original 

images. A lower value for MSE means lesser error, and it is expressed as: 
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Where MSE Mean Square Error. 

 I(x,y) Value of pixel at position (x,y) of the original image. 

 K(x,y) Value of pixel at position (x,y) of the decompressed image. 
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 (3) Peak Signal to Noise Ratio (PSNR) 

The PSNR is a measure of the peak error. The PSNR is most commonly used as a 

measure of quality of reconstruction of lossy compression images, and it is usually 

expressed in terms of the logarithmic decibel (dB) scale  as follows (Huynh-Thu & 

Ghanbari, 2008): 

���� � 20 · !"#�$ %   �&�'     
√���  ) (1.4) 

Where MAXI the maximum possible pixel value of the image. 

 MSE Mean Square Error. 

When the pixels are represented using 8-bit per pixel, this is 255. More generally, when 

samples are represented using linear Pulse Code Modulation (PCM) with n-bit per pixel, 

MAXI is 2n−1. For color images with three RGB values per pixel, the definition of PSNR 

is the same except the MSE is the sum over all squared value differences divided by 

image size and by three. Alternately, for color images the image is converted to a 

different color space and PSNR is reported against each channel of that color space. 

As seen from the inverse relation between the MSE and PSNR, this translates to a high 

value of PSNR. Logically, a higher value of PSNR is good because it means that the ratio 

of signal-to-noise is higher. Here, the signal is the original image, and the noise is the 

error in reconstruction. So, if a compression scheme having a lower MSE (and a high 

PSNR), it can be recognized as a better one.  

A higher PSNR would normally indicate that the reconstruction is of higher quality 

image. Typical values for the PSNR in lossy image and video compression are between 

30 and 50 dB, where higher is better. Acceptable values for wireless transmission quality 

loss are considered to be about 20 dB to 25 dB (Thomos, Boulgouris, & Strintzis, 2006). 

In lossless compression, the two images are identical, and thus the MSE is zero. In this 

case the PSNR is undefined (Salomon, 2007). 
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In this thesis, the performance metrics for evaluating the performance of an image 

compression algorithm are represented in a performance triangle as shown in Figure 

(1.2). These metrics include: C, PSNR, and the processing resources (processor speed and 

memory). The first two metrics should be at their highest values, while the third should 

be minimized to its lowest value. 

 

 

Figure (1.2). Performance metrics triangle. 
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1.5 The HCDC Data Compression Algorithm 

A novel bit-level lossless data compression algorithm that is based on the error correcting 

Hamming codes, namely the Hamming Codes based Data Compression (HCDC) 

algorithm was initially developed and investigated for text compression (Al-Bahadili H. , 

2008) (Al-Bahadili & Rababa’a, 2010) . In this algorithm, the binary sequence to be 

compressed is divided into blocks of n-bit length. To utilize the Hamming codes, the 

block is considered as a Hamming codeword that consists of p parity bits and d data bits 

(n=d+p). Then each block is tested to find if it is a valid or a non-valid Hamming 

codeword. For a valid block, only the d data bits preceded by 0 are written to the 

compressed file, while for a non-valid block all n bits preceded by 1 are written to the 

compressed file. These additional 0 and 1 bits are used to distinguish the valid and the 

non-valid blocks during the decompression process. 

In this work, I propose a new high performance algorithm for image compression that is 

based on the novel lossless bit-level HCDC algorithm (Al-Bahadili H. , 2008). The 

HCDC algorithm has demonstrated an excellent performance and got the attention by 

many researchers around the world ( (Wang, Chang, Chen, & Li, 2010) (Al-Bahadili & 

Rababa’a, 2010) (Al-Saab, 2011) (AlZboun, 2011) (Amro, Zitar, & Bahadili, 2010) 

(Khancome, 2011) and many others)) due to the tremendous performance of the 

algorithm and the potential it has. This encourages us to take a step ahead to investigate 

its performance for image compression, and introduce any necessary modification to 

achieve the optimum performance, in particular, high compression ratio and high image 

quality. A detail description of the HCDC algorithm will be presented in Chapter 2. 

1.6 Multimedia Messaging 

Camera-equipped mobile phones nowadays can produce very high quality or resolution 

images or videos, which encourage mobile users to take more and more pictures or 

videos while they are on the move and exchange them as MMS. This of course requires 

high storage capacity to store the generated image data and also wide bandwidth to 

exchange data across the network. However, with tremendous advancement in processor, 



20 
 

 
 

memory, and storage media technologies, most mobiles are supplied with large storage 

capacities of GB that can store large number of high resolution images or videos. Most 

mobiles are also equipped with wire and wireless interface technologies to flash-out 

images into more permanent or external storage media.  

Despite the high storage capacity of current mobile devices, the device storage media 

may not be enough accommodating all generated data, or for other reasons users may 

need to clear or flash-out their mobile's storage media to a remote end while they are on 

the move or using wireless technologies. There are two possible ways: either utilizing the 

relatively expensive cellular network, which is usually available within range of 

commercial cell phone towers (nearly 10 Km range) and it has limited bandwidth, or 

utilize the high speed wireless LAN, which is free but it has very limited range (less than 

200 m range), and also rarely available in urban areas. The most obvious way is to 

exchange these pictures or videos through the limited cellular bandwidth.  

Furthermore, one important service provided for mobile users is MMS, which involves 

exchange of multimedia data. To improve the quality of this service, it is necessary to 

overcome problems of mobile memory requirement, mobile power consumption and life 

time, cellular network limited communication bandwidth, and meet all others users and 

application needs.  

In this sense, one important factor to be considered is the mobile limited power and 

bandwidth recourses; so it is vital to manage power and bandwidth utilization efficiently, 

by identifying ways to use less energy and bandwidth preferably with no impact on the 

Quality-of-Services (QoSs). 

The standard MMS can be divided into two main interrelated tasks: data processing and 

data communication. However, comparing the current cellular bandwidth in many areas 

around the world cannot meet the growing demands for satisfactory performance for 

multimedia exchange through cellular systems. Thus, more powerful compression 

algorithms and tools are required to minimize the size of the generated images while 

maintaining their quality. 
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1.7 Problem Statement  

In order to enhance the performance of multimedia messaging, in particular stand-still 

images, through MMS across a mobile phone system (cellular network), it is necessary to 

reduce the size of the exchanged image to the minimum possible size while maintaining 

the maximum possible image quality. As a result of that more images can be stored in 

less storage space; reduces the communication time required for the image to be sent over 

communication networks or downloaded through the Internet (i.e., reduces bandwidth 

resources); and reduces power consumption. The same problem faces other applications, 

such as: satellite image exchange, Geographical Information System (GIS) applications, 

satellite and TV broadcast, and other image applications. 

As it has been mentioned above that the HCDC algorithm has been successfully used for 

English text compression due to the almost exponential distribution of characters 

frequencies, where the sum of the frequencies of the first sixteen most common 

characters usually forms more than 85% of the total text. On the other side, the characters 

frequencies of color photographs and other images with continuous color are almost flat 

or equally distributed, as a result of that the original HCDC algorithm cannot achieve 

significant compression ratio and sometimes inflated. However, it may be well-suited for 

simpler images such as graphics or logos with solid areas of color.  

In order to enhance the compression ratio of the HCDC algorithm for image compression, 

the algorithm needs to be modified, in particular, by increasing the frequencies of the 

most common characters to ensure satisfactory compression ratios, and also by 

decreasing the range of colors without affecting the compressed image color quality. 
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1.8 Objectives of this Work 

This thesis develops a modified version of the HCDC algorithm to be used for standstill 

image compression. The modified version of the HCDC algorithm is characterized as an 

image-based adjustable-quality algorithm with high compression ratio; therefore, it is 

referred to as Adjustable-Quality HCDC and abbreviated as AQ-HCDC algorithm. It can 

be used efficiently and effectively for MMS or Internet applications on mobile cellular 

devices to provide high performance, where it can provide high compression ratio while 

maintaining high image quality, which means reduces MMS session bandwidth 

requirement and power consumption.  

The main objectives of this work can be summarized as follows: 

(1) Develop a new version of the HCDC algorithm for image compression, namely, the 

Adjustable-Quality HCDC (AQ-HCDC) algorithm. 

(2) Evaluate the performance of the AQ-HCDC algorithm in terms of C, MSE, and 

PNSR by using the algorithm to compression a number of standard images of large 

and small sizes images.  

(3) Compare the performance (C, MSE, and PNSR) of the AQ-HCDC algorithm against 

the performance of a number compressed image formats (GIF, PNG, JPEG) and a 

number of lossless compression tools (ZIP and WinRAR). 

(4) Discuss the results obtained, draw some conclusions and point-out some 

recommendation for further development and future research. 

  



23 
 

 
 

1.9 Organization of the Thesis  

The thesis is divided into five chapters. This chapter provides an introduction to the 

concept of data compression, data compression algorithms classification methodologies, 

data compression model, and data compression performance algorithms measures. It also 

introduces the problems statement and the objectives of this research. The rest of this 

thesis is organized as follows. Chapter 2 presents a literature review that provides a 

description of the core algorithm in this work, namely, the HCDC algorithm. Chapter 2 

also summarizes the most recent and related work.  

Chapter 3 provides a detail description of the AQ-HCDC algorithm. It also discusses the 

compressed image file header, the decompression process of the algorithm, and an 

analytical analysis of the performance of the AQ-HCDC algorithm. Chapter 4 presents a 

number of experiments that are performed to evaluate the compression ratio of the AQ-

HCDC algorithm over a number of large and small images. Chapter 4 also presents a 

comparison between the compression ratios achieved by the AQ-HCDC algorithm 

against the compression ratios of a number of well-known compressed image formats and 

compression tools. In Chapter 5 and based on the results obtained conclusions are drawn 

and a number of recommendations for future work are pointed-out. 
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Chapter Two 

Literature Review and Previous Work 

There are a large number of data compression algorithms that have been developed and 

used throughout the years. Some of which are of general use, i.e., can be used to 

compress files of different types (e.g., text files, image files, video files, etc.). Others are 

developed to compress efficiently a particular type of files (Sayood, 2012) (Salomon, 

2004) (Salomon, 2002). In this work, I concern with image compression, which has been 

developed using the two modes of compression, namely, lossless and lossy. Examples of 

lossless compression include: the Graphics Interchange Format (GIF), and the Portable 

Network Graphics (PNG), while as an example of lossy compression is the Joint 

Photographic Experts Group (JPEG). Furthermore, there are a number of general purpose 

tools that have been developed for general data compression including images, such as 

ZIP and WinRAR, which all have been discussed in Chapter 1.  

This thesis is mainly concerned with the development and performance evaluation of a 

new algorithm for standstill image compression. The new algorithm is based on the 

lossless bit-level Hamming Codes based Data Compression (HCDC) algorithm (Al-

Bahadili H. , 2008). The algorithm is originally developed and used for text compression 

(Al-Bahadili & Rababa’a, 2010). It also used by many researchers for compressing Web 

applications (Al-Saab, 2011), for speech compression (Amro et al., 2010) (AlZboun, 

2011), and for lossless image compression (Wang et al., 2009).  

The new algorithm is neither lossless nor lossy, as it is designed to act as adjustable-

quality algorithm based on the range colors within the image.  Therefore, it is referred to 

as Adjustable-Quality HCDC (AQ-HCDC) algorithm.  

This chapter presents a detail description of the HCDC algorithm as it is the core of this 

research and also it provides a literature review on most recent research on image 

compression. 
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2.1 The HCDC Algorithm 

This section presents a detail description of the HCDC algorithm, which is classified as a 

lossless, bit level, and asymmetric data compression algorithm (Al-Bahadili H. , 2008). 

Then it provides an analytical analysis of the performance of the algorithm. However, let 

us first discuss the concept of bit-level data compression.  

In bit-level data compression, first, the data file should be represented in binary digits 

(bits). A data file can be represented in bits by concatenating the binary sequences of the 

characters within the file using a specific mapping or coding format, such as ASCII 

codes, Huffman codes, adaptive codes. Afterwards, a bit-level processing can be 

performed to reduce the size of the data files. The coding format has a huge influence on 

the entropy of the generated binary sequence and consequently the compression ratio (C) 

or the coding rate (Cr) that can be achieved.  

Usually, in bit-level data compression algorithms, the binary sequence is subdivided into 

groups of bits that are called minterms, blocks, sub sequences, etc. In this thesis, I shall 

use the term blocks to refer to each group of bits. These blocks might be considered as 

representing a Boolean function. Then, algebraic simplifications for bit-reduction are 

performed on these Boolean functions to reduce the size or the number of blocks, and 

hence, the number of bits representing the data file is reduced as well.  

2.1.1 Description of the HCDC algorithm 

The error-correcting Hamming code has been widely used in computer networks and 

digital data communication systems as a single bit error correcting code or two bits errors 

detection code. It can also be tricked to correct burst errors. The key to Hamming code is 

the use of extra parity bits (p) to allow the identification of a single bit and a detection of 

two bits errors.  
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Thus, for a message having d data bits and to be coded using Hamming code, the coded 

message (also called codeword) will then have a length of n-bit, which is given by: 

n = d + p        (2.1)  

Where n length of codeword. 

 d length of data bits. 

 p length parity bits. 

This would be called a (n,d) Hamming code or simply code. The optimum length of the 

codeword (n) depends on p, and it can be calculated as: 

 n = 2
p - 1        (2.2) 

The data and the parity bits are located at particular locations in the codeword. The parity 

bits are located at positions 2
0
, 2

1
, 2

2
, …, 2

p-1
 in the coded message, which has at most n 

positions. The remaining positions are reserved for the data bits, as shown in Figure (2.1). 

Each parity bit is computed on different subsets of the data bits, so that it forces the parity 

of some collection of data bits, including itself, to be even or odd.  

A lossless binary data compression algorithm based on the error correcting Hamming 

codes, namely the HCDC algorithm, was proposed by (Al-Bahadili H. , 2008). In this 

algorithm, the data symbols (characters) of a source file are converted to binary sequence 

by concatenated the individual binary codes of the data symbols.  
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The binary sequence is, then, subdivided into a number of blocks, each of n-bit length as 

shown in Figure (2.1b). The last block is padded with 0s if its length is less than n. For a 

binary sequence of So bits length, the number of blocks B (where B is a positive integer 

number) is given by: 

 

oS
B

n

 
=  
 

        (2.3)
 

Where B number of blocks. 

 So size of the original image file. 

 n length of codeword. 

The number of padding bits (g), which may be added to the last block is calculated by:  

 g = B · n – So        (2.4) 

The number of parity bits (p) within each block is given by: 

ln ( 1)

ln (2)

n
p

 +
=  
 

       (2.5)
 

For a block of n-bit length, there are 2
n
 possible binary combinations (codeword) having 

decimal values ranging from 0 to 2
n
-1, only 2

d
 of them are valid codewords and 2

n
-2

d
 are 

non-valid codewords. 

Each block is then tested to find if it is a valid block (valid codeword) or a non-valid 

block (non-valid codeword). During the compression process, for each valid block the 

parity bits are omitted, in other words, the data bits are extracted and written into a 

temporary compressed file. However, these parity bits can be easily retrieved back during 

the decompression process using Hamming codes. The non-valid blocks are stored in the 

temporary compressed file without change. 
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In order to be able to distinguish between the valid and the non-valid blocks during the 

decompression process, each valid block is preceded by 0, and each non-valid block is 

preceded by 1 as shown in Figure (2.1c). Figures (2.2) and (2.3) summarize the flow of 

the compressor and the decompressor of the HCDC algorithm.  

 

Figure (2.1). (a) Locations of data and parity bits in 7-bit codeword, (b) an 

uncompressed binary sequence of 21-bit length divided into 3 blocks of 7-bit 

length, where B1 and B3 are valid blocks, and B2 is a non-valid block, and (c) the 

compressed binary sequence (18-bit length). 

Initialization 

Select p 

Calculate n = 2
p

 - 1 

Calculate d = n - p 

Calculate B = ceiling(So/n) 

Calculate g = B * n - So 

Initialize i = 0 

Reading binary data 

While (i<B) 
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{ 

Read a block of n-bit length 

Add 1 to i 

Check for block validity 

If  (block = valid codeword) then 

Add 1 to v   // v is the number of valid blocks 

Extract the data bits (d-bit) 

Write 0 followed by the extracted d-bits to the temporary compressed file 

Else (block = non-valid codeword) 

Add 1 to w  // w is the number non-valid blocks 

Write 1 followed by all n-bits to the temporary compressed file 

End if 

} 

Figure (2.2). The main steps of the HCDC compressor. 

Initialization 

Select p 

Calculate n = 2p
 - 1 

Calculate d = n - p 

Initialize i = 0 

Reading binary data 

While (not end of data) 

{ 

Read one bit (h)  

Add 1 to i 

Check for block validity 

If  (h = 0) then 

Add 1 to v // v is the number of valid blocks 
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Figure (2.3). The main steps of the HCDC decompressor. 

2.1.2 Derivation and analysis of HCDC algorithm compression ratio 

This section presents the analytical derivation of a formula that can be used to compute 

the compression ratio achievable using the HCDC algorithm. The derived formula can be 

used to compute C as a function of two parameters:  

(1) The block size (n). 

(2) The fraction of valid blocks (r). 

In the HCDC algorithm, the original binary sequence is divided into B blocks of n-bit 

length. These B blocks are either valid or non-valid blocks; therefore, the total number of 

blocks is given by: 

B = v + w        (2.6) 

Where B number of blocks. 

 v the number of valid blocks. 

 w the number non-valid blocks. 

Read the following d data bits 

Compute the Hamming codes for these d data bits 

Write the coded block the temporary decompressed binary sequence 

Else (h = 1) then 

Add 1 to w  // w is the number of non-valid blocks 

Read a block of n bits length 

Write n bits block to the  temporary decompressed  binary sequence 

End if 

} 
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For a valid block only the d data bits preceded by 0 are appended to the compressed 

binary sequence (i.e., d+1 bits for each valid block). So that the length of the compressed 

valid blocks (Sv) is given by: 

 Sv = v (d + 1)        (2.7) 

Where Sv length of the compressed valid blocks. 

 v the number of valid blocks. 

 d Length of data bits. 

 

For a non-valid block all bits are appended to compressed binary sequence (i.e., n+1 bits 

for each non-valid block). The number of bits appended to the compressed binary 

sequence is given by:  

 Sw = w (n + 1)        (2.8) 

Where Sw length of the compressed non-valid blocks. 

 w the number of non-valid blocks. 

 n length of the codeword. 

Thus, the length of the compressed binary sequence (Sc) can be calculated by: 

 Sc = Sv + Sw = v (d + 1) + w (n + 1)     (2.9) 

Using Eqns. (2.6) and (2.7), Eqn. (2.9) can be simplified to 

 Sc = Bn + B – v · p       (2.10) 
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Substituting So=nB and Sc as it is given by Eqn. (2.10) into the equation of the 

compression ratio (C) yields: 

 1
o

c

S n
C

S n r p
= =

+ −  
     (2.11) 

Where R v/B. 

r it represents the fraction of valid blocks. Substitute Eqn. (2.2) into Eqn. (2.11) gives: 

 

2 1

2

p

p
C

r p

−
=

−  
       (2.12)

 

It is clear from Eqn. (2.12) that, for a certain value of p, C is inversely proportional to r, 

and C is varied between a maximum value (Cmax) when r=1 and a minimum value (Cmin) 

when r=0. It can also be seen from Eqn. (2.12) that for each value of p, there is a value of 

r at which C=1. This value of r is referred to as r1, and it can be found that r1=1/p. 

Table (2.1) lists the values of Cmax, Cmin, and r1 for various values of p. These results are 

also shown in Figures (2.4) and (2.5), where Figure (2.4) shows the variation of Cmax and 

Cmin with p, and Figure (2.5) shows the variation of r1 with p.   

Table (2.1) 

Variation of Cmin, Cmax, and r1 with number of parity bits (p). 

P Cmin Cmax r1 

2 0.750 1.500 0.500 

3 0.875 1.400 0.333 

4 0.938 1.250 0.250 

5 0.969 1.148 0.200 

6 0.984 1.086 0.167 

7 0.992 1.050 0.143 

8 0.996 1.028 0.125 



33 
 

 
 

 

Figure (2.4). Variation of Cmin and Cmax with p. 

 

Figure (2.5). Variation of r1 with p. 

Furthermore, in order to demonstrate the effect of r on C for various p, Table (2.2) lists 

the values for C when r varies between 0 and 1 in step of 0.1 and p varies between 2 to 8 

in step of 1. These values are also plotted in Figure (2.6). It can be deduced from Table 

(2.2) and Figure (2.6) that satisfactory values of C can be achieved when p≤4 and r>r1. 
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Table (2.2) 
Variations of C with respect to r for various values of p. 

R 
Number of the parity bits (p) 

2 3 4 5 6 7 8 

0.0 0.750 0.875 0.938 0.969 0.984 0.992 0.996 

0.1 0.789 0.909 0.962 0.984 0.994 0.998 0.999 

0.2 0.833 0.946 0.987 1.000 1.003 1.003 1.002 

0.3 0.882 0.986 1.014 1.016 1.013 1.009 1.006 

0.4 0.938 1.029 1.042 1.033 1.023 1.014 1.009 

0.5 1.000 1.077 1.071 1.051 1.033 1.020 1.012 

0.6 1.071 1.129 1.103 1.069 1.043 1.026 1.015 

0.7 1.154 1.186 1.136 1.088 1.054 1.032 1.018 

0.8 1.250 1.250 1.172 1.107 1.064 1.038 1.022 

0.9 1.364 1.321 1.210 1.127 1.075 1.044 1.025 

1.0 1.500 1.40 1.250 1.148 1.086 1.050 1.028 

 

Figure (2.6). Variations of C with respect to r for various values of p. 
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One important feature of the HCDC algorithm is that it can be repeatedly applied on the 

binary sequence, and an equation can be derived to compute, what I refer to as the 

accumulated compression ratio (Ck): 

 
1

1 1

k k
i

k i
i i

i

S
C C

S

−

= =

= =∏ ∏       (2.13) 

Where k number of repetitions. 

 Si and Si-1 sizes of the binary file after and before the ith compression 

loop. 

 Ci is the compression ratio of the ith compression loop. 

For i=1, So represents the size of the original file. 

2.2 Previous Work 

The section reviews some of the researches that have been developed during the last two 

decades. The reviewed work is ordered chronologically from the most recent to the oldest 

and for the same year it is ordered alphabetically using the first author family name.  

• (Douak, Benzid, & Benoudjit, 2011) designed a lossy image compression algorithm 

dedicated to color still images. After a preprocessing step (mean removing and RGB 

to YCbCr transformation), the DCT transform is applied and followed by an iterative 

phase (using the bisection method) including the thresholding, the quantization, 

dequantization, the inverse DCT, YCbCr to RGB transform and the mean recovering. 

This is done in order to guarantee that a desired quality (fixed in advance using the 

well-known PSNR metric) is checked. To obtain the best possible compression ratio, 

the next step is the application of a proposed adaptive scanning providing, for each (n, 

n) DCT block a corresponding (n×n) vector containing the maximum possible run of 

zeros at its end. The last step is the application of a modified systematic lossless 

encoder. The efficiency of the proposed scheme is demonstrated by results, 

especially, when faced to the method presented in recent research based on the block 

truncation coding using pattern fitting principle. 
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Image enhancement and data compression methods arose from the distinct and 

largely separate disciplines of image processing and communications respectively, 

yet both are important components of current and future digital imaging systems 

technology. (Rahman, Jobson, & Woodell, 2011) examined the relationship of these 

two components with special emphasis on image enhancement and lossy JPEG 

image compression. When transmission channel capacity is limited, image/data 

compression is often performed to increase the data throughput. However, this 

compression has a significant impact on the quality of the final data that is received. 

In most cases, image enhancement performed after image compression tends to 

bring out the artifacts injected into the data due to the compression. However, if 

image enhancement is performed before image compression, there are two issues 

that arise:  (i) image enhancement typically increases the contrast, amount of 

observable detail, in an image which leads to poorer compression ratios, and (ii) the 

radiometric information in the original data is typically irretrievably lost.  

(Rahman et al., 2011) addressed the impact of image enhancement specifically that of 

the Multi-Scale Retinex with Color Restoration (MSRCR) on image compression, 

and vice versa. We also look at the impact of compression on recovering original data 

from enhanced imagery given certain parameters about the enhancement process. In 

this context, we also develop an inversion process for the MSRCR. 

• (Singh & Kumar, 2011) developed an Image Dependent Color space Transform (ID-

CCT), exploiting the inter-channel redundancy optimally and which is very much 

suitable compression for large class of images. The comparative performance 

evaluated and a significant improvement was observed, objectively as well as 

subjectively over other quantifiable methods. 

• (Telagarapu, 2011) analyzed the performance of a hybrid data compression scheme 

that uses the Discrete Cosine Transform (DCT) and Wavelet transform. They carried-

out extensive experimentation and concluded that selecting proper threshold method, 

better result for Peak Signal to Noise Ratio (PSNR) can be obtained.  
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• Binary Wavelet Transform (BWT) has several distinct advantages over the Real 

Wavelet Transform (RWT), such as the conservation of alphabet size of wavelet 

coefficients, no quantization introduced during the transform and the simple Boolean 

operations involved. Thus, less coding passes are engaged and no sign bits are 

required in the compression of transformed coefficients. However, the use of BWT 

for the embedded grayscale image compression is not well established.  

(Pan, Jin, Yuan, Xia, & Xia, 2010) proposed a novel Context-based Binary Wavelet 

Transform Coding approach (CBWTC) that combines the BWT with a high-order 

context-based arithmetic coding scheme to embedded compression of grayscale 

images. In the CBWTC algorithm, BWT is applied to decorrelate the linear 

correlations among image coefficients without expansion of the alphabet size of 

symbols. In order to match up with the CBWTC algorithm, they employed the Gray 

Code Representation (GCR) to remove the statistical dependencies among bi-level 

bit-plane images and developed a combined arithmetic coding scheme.  

In the proposed combined arithmetic coding scheme, three high-pass BWT 

coefficients at the same location are combined to form an octave symbol and then 

encoded with a ternary arithmetic coder. In this way, the compression performance of 

the CBWTC algorithm is improved in that it not only alleviate the degradation of 

predictability caused by the BWT, but also eliminate the correlation of BWT 

coefficients in the same level sub-bands. The conditional context of the CBWTC is 

properly modeled by exploiting the characteristics of the BWT as well as taking 

advantages of non-causal adaptive context modeling. Experimental results show that 

the average coding performance of the CBWTC is superior to that of the state-of-the-

art grayscale image coders, and always outperforms the JBIG2 algorithm and other 

BWT-based binary coding technique for a set of test images with different 

characteristics and resolutions. 
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• (Ameer & Basir, 2009) described a simple scheme to compress images through plane 

fitting. The scheme can achieve better than 60:1 compression ratio, while maintaining 

acceptable image quality. The results are superior to those of JPEG at comparable 

compression ratios. The scheme does not require any multiplication or division 

operations, making it a perfect candidate for online and/or progressive compression. 

The scheme is scalable in the context of computations required to magnify the image. 

Blocking effects were reduced up to 0.85 dB of PSNR through simple line fitting on 

block boundaries. The performance of the scheme is further improved by optimizing 

its predicted model parameters based on previously coded neighboring blocks. It is 

found that less than 2 bits (on average) are enough to index the position of the 

candidate neighbor, making a 100:1 compression ratio possible. The improvement in 

the compression ratio came at the expense of moderate to small quality degradations. 

• (Dudek, Borys, & Grzywna, 2007) reported on the new method of image 

compression. The method is based on LZ77 dictionary algorithm. They introduced 

two modifications such as quantization and noise levels. Their experimental results 

prove that the new method of image compression gives promising results as 

compared with original LZ77 dictionary algorithm and JPEG2000. 

• (Krinidis, Nikolaidis, & Pitas, 2007) This paper introduces the Discrete Modal 

Transform (DMT), a 1D and 2D discrete, non-separable transform for signal 

processing, which, in the mathematical sense, is a generalization of the well-known 

Discrete Cosine Transform (DCT). A 3D deformable surface model is used to 

represent the image intensity and the introduced discrete transform is a by-product of 

the explicit surface deformation governing equations. The properties of the proposed 

transform are similar to those of the DCT. To illustrate these properties, the proposed 

transform is applied to lossy image compression and the obtained results are 

compared to those of a DCT-based compression scheme. Experimental results show 

that DMT, which includes an embedded compression ratio selection mechanism, has 

excellent energy compaction properties and achieves comparable compression results 

to DCT at low compression ratios, while being in general better than DCT at high 

compression ratios. 
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• (Krishnamoorthi & Seetharaman, 2007) proposed a family of stochastic models for 

image compression, where images are assumed to be Gaussian Markov random field. 

This model is based on stationary Full Range Auto Regressive (FRAR) process. The 

parameters of the model are estimated with the Monte-Carlo integration technique 

based on Bayesian approach. The advantage of the proposed model is that it helps to 

estimate the finite number of parameters for the infinite number of orders. They used 

arithmetic coding to store seed values and parameters of the model as it gives 

furthermore compression. They also studied the use of Metropolis–Hastings 

algorithm to update the parameters, through which some image contents such as 

untexturedness are captured. Different types–both textured and untextured images–

are used for experiment to illustrate the efficiency of the proposed model and the 

results are encouraging. 

• (Velisavljevic, Beferull-Lozano, & Vetterli, 2007) combined the directionlets with the 

Space-Frequency Quantization (SFQ) image compression method, originally based 

on the standard 2-D wavelet transform. They showed that their compression method 

outperforms the standard SFQ as well as the state-of-the-art image compression 

methods, such as SPIHT and JPEG-2000, in terms of compressed image quality, 

especially in a low-rate compression regime. They also showed that the order of 

computational complexity remains the same, as compared to the complexity of the 

SFQ algorithm. 

• A very interesting comparison of different image compression formats can be found 

in (Aguilera, 2006), in which she made a comparison of some of the most used image 

representation formats on a set of different types of images: true color, greyscale, 

scanned documents and high resolution photographs. She performed many 

investigations to find-out how well the different formats work for each of the images, 

and concluded that some formats that match some images better than others 

depending in what users are looking for, and the type of image they are working with. 
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• (Cagnazzo, Cicala, Poggi, & Verdoliva, 2006) considered the class-based 

multispectral image coder originally proposed in (Gelli & Poggi, 1999), and modify it 

to allow its use in real time with limited hardware resources. Experiments carried out 

on several multispectral images showed that the resulting unsupervised coder has a 

fully acceptable complexity, and a rate–distortion performance which is superior to 

that of the original supervised coder, and comparable to that of the best coders known 

in the literature. 

• The standard separable two-dimensional (2-D) Wavelet Transform (WT) achieved a 

great success in image processing because it provides a sparse representation of 

smooth images. (Velisavljevic, Beferull-Lozano, Vetterli, & Dragotti, 2006) proposed 

a construction of critically sampled perfect reconstruction anisotropic transform with 

Directional Vanishing Moments (DVM) imposed in the corresponding basis 

functions, called directionlets. Later on, they showed that the computational 

complexity of their transform is comparable to the complexity of the standard 2-D 

WT and substantially lower than the complexity of other similar approaches. They 

also presented a zero tree-based image compression algorithm using directionlets that 

strongly outperforms the corresponding method based on the standard wavelets at low 

bit rates. 

• One particular approach for image compression is the image cluster compression, 

surprisingly little previous work can be found about this approach. However, a 

number of special cases are available, though, most notably the approach of 

hyperspectral compression, which deals with the coding of a number (heavily 

correlated) images of the same dimensions. (Saghri, Tescher, & Reagan, 2005) 

developed a multispectral 3D image compression algorithm, which is then refined and 

adapted in a number of other papers, for example (Du & Chang, 2004). Lossless 

compression of correlated hyperspectral images is discussed in (Wang, Babacan, & 

Sayood, 2007). (Keshava, 2004) dealt with distance metrics between spectra. Another 

special case for cluster compression is the area of digital video compression, e.g., 

(Wen, et al., 2004) gave an overview over the current state-of-the-art. Lately, 

(Kramm, 2007) extended the Karhunen-Loeve compression algorithm to multiple 
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images. The resulting algorithm is compared against single-image Karhunen Loeve as 

well as algorithms based on the DCT. Furthermore, various methods for obtaining 

compressible clusters from large image databases were evaluated. 

• (Edirisinghe, Nayan, & Bez, 2004) proposed a novel, Discrete Wavelet Transform 

(DWT) domain implementation of the pioneering block-based disparity compensated 

predictive coding algorithm for stereo image compression. They performed predictive 

coding in the form of pioneering block search in the sub-band domain. The resulting 

transform domain predictive error image is subsequently converted to a so-called 

wavelet-block representation, before being quantized and entropy coded by a JPEG-

like CODEC. They showed that their novel implementation is able to effectively 

transfer the inherent advantages of DWT-based image coding technology to efficient 

stereo image pair compression. At equivalent bit rates, the proposed algorithm 

achieves peak signal to noise ratio gains of up to 5.5 dB, for reconstructed predicted 

images, as compared to traditional and state of the art DCT and DWT-based 

predictive coding algorithms. 

• Vector quantization (VQ) is an important technique in digital image compression. To 

improve its performance, (Li, Kim, & Al-Shamakhi, 2002) worked on speeding up 

the design process and achieve the highest compression ratio possible. To speed up 

the process, they used a fast Kohonen self-organizing neural network algorithm to 

achieve big saving in codebook construction time. To obtain better reconstructed 

images, they proposed an approach called the Transformed Vector Quantization 

(TVQ), combining the features of transform coding and VQ. They used several data 

sets to demonstrate the feasibility of the TVQ approach. A comparison of 

reconstructed image quality is made between the TVQ and VQ. Also, a comparison is 

made between a TVQ and a standard JPEG approach. 
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• (Mateu-Villarroya & Prades-Nebot, 2001) developed a lossless compression 

algorithm for images based on Ordered Binary-Decision Diagrams (OBDDs). The 

algorithm finds an OBDD which represents the image exactly and then codes the 

OBDD efficiently. The results obtained show a great improvement with respect to a 

previous work. 

• (Hu & Chang, 2000) proposed a novel lossless image-compression scheme. A two-

stage structure is embedded in this scheme. A linear predictor is used to decorrelate 

the raw image data in the first stage. Then in the second stage, an effective scheme 

based on the Huffman coding method is developed to encode the residual image. This 

newly proposed scheme could reduce the cost for the Huffman coding table while 

achieving high compression ratio. With this algorithm, a compression ratio higher 

than that of the lossless JPEG method for 512×512 images can be obtained. In other 

words, the newly proposed algorithm provides a good means for lossless image 

compression.  
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Chapter Three 

The Adjustable-Quality HCDC Algorithm 

It has been shown in Chapter 2 that the compression ratio (C) of the lossless Hamming 

Codes based Data Compression (HCDC) algorithm, and consequently the algorithm 

compression efficiency (Ec), depends on the distribution of the characters frequencies of 

the file (data) it is compressing (Al-Bahadili H. , 2008). Practically, C and Ec are 

increasing when the sum of the frequencies of a certain range of the most common 

characters increase, for example, for 7-bit Hamming codewords length, the frequencies of 

the first sixteen most common characters. This requirement is typically achieved in 

Standard English text, where the sum of the frequencies of the first sixteen most common 

characters usually forms more than 85% of the total text. 

The characters frequencies of color photographs and other images with continuous color 

are almost flat or equally distributed, as a result of that the original HCDC algorithm 

cannot achieve significant compression ratio and sometimes inflated. However, it may be 

well-suited for simpler images such as graphics or logos with solid areas of color. In 

order to enhance the compression ratio of the HCDC algorithm for image compression, 

the algorithm needs to be modified, in particular, by increasing the frequencies of the 

most common characters to ensure satisfactory compression ratios, and also by 

decreasing the range of colors without affecting the compressed image color quality. 

This chapter develops a modified version of the HCDC algorithm to be used for standstill 

image compression. The modified version of the HCDC algorithm is characterized as an 

image-based adjustable-quality lossless/lossy algorithm with high compression ratio; 

therefore, it is referred to as Adjustable-Quality HCDC and abbreviated as AQ-HCDC 

algorithm. It can be used efficiently and effectively for Multimedia Messaging Service 

(MMS) applications on mobile cellular devices to provide high performance, where it can 

provide high compression ratio while maintaining image quality, which means reduces 

bandwidth requirement and power consumption during MMS.  
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Section 3.1 presents a detail description of the compression process of the AQ-HCDC 

algorithm. The compressed image file header is described in Section 3.2. In Section 3.3, 

the decompression process of the algorithm is explained. An analytical analysis of the 

performance of the AQ-HCDC algorithm is discussed in Section 3.4.  

3.1 The Compression Process of the AQ-HCDC Algorithm 

The AQ-HCDC algorithm is an adjustable-quality bit-level data compression algorithm 

especially develops for standstill image compression, where the quality of the 

compressed image depends on the range of colors values in the original image. The 

algorithm performs lossless or lossy compression depending on the image data. It is 

similar to the HCDC algorithm, where it relies on Hamming codes representations to 

replace longer valid and non-valid binary Hamming codewords into shorter 

representations plus a pre-fix bit. This section describes in details how the lossless HCDC 

algorithm is modified to performing adjustable-quality image compression.  

At the beginning, it is important to remember that the HCDC algorithm can use different 

block length (n=2p-1 and n=p+d, where p is the number of parity bits and d is the number 

of data bits in Hamming codes) as explained in Chapter 2. However, as it has been 

discussed in (Al-Bahadili H. , 2008) and approved in (Al-Bahadili & Rababa’a, 2010) 

that the most suitable value for n is 7, where in this case p=3 and d=4, and that what will 

be used in this work.  

The AQ-HCDC algorithm consists of two main phases, these are:  

(1) The Encoding Phase. 

(2) The Compression Phase. 

These two phases will be described in details below: 
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Encoding Phase 

In this thesis, in order to re-encode the image data using 7-bit color depth, the AQ-HCDC 

algorithm performs the following pre-processing phase, which I will call the Encoding 

Phase. In this phase, the data of the uncompressed image is read one byte or character at a 

time; where each byte represents 8-bit color value (Vi) between 0-255 (from now onward 

I shall use the term color instead of byte or character to distinguish it from text 

compression), and the following steps are performed: 

(1) Find the number of colors (Nco), according to their decimal values (8-bit color 

depth). 

(2) Find the occurrence (counts) of each color (Oi). 

(3) Calculate the colors frequencies (Fi) by dividing the counts of the color by the sum 

of counts of all colors; i.e., Fi=Oi/N. i is the color index (i=1, 2, …, Nco), and N is the 

sum of counts of all colors and it is expressed mathematically as:  

� � 
*+

,-.

+��
 (3.1) 

Where N counts of all colors. 

 Oi counts of each color. 

 Nco number of color (8-bit color depth). 

(4) Sort the colors frequencies from the most common to the least common color. 

If Nco exceeds 128 colors (Nco>128), discard the Least-Significant-Bit (LSB) of the color 

value and shifts the remaining color bits one place to the right, which in turn, converts the 

8-bit color to 7-bit color producing Vi between 0-127 (in other words, this is equivalent to 

subtracting 128 from each original Vi). This is illustrated in Figure (3.1).  
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Original 8-bit color value 

(0-255) 
b7 b6 b5 b4 b3 b2 b1 b0 

 

Discard LSB and right shift 

(0-127) 
 b7 b6 b5 b4 b3 b2 b1 

 

New 7-bit color value     

(0-127) 
 b7 b6 b5 b4 b3 b2 b1 

 

Figure (3.1). Illustration of the 8-bit to 7-bit encoding process. 

If Nco is equal to or less than 128 (Nco≤128), then I use the adaptive coding described in 

(Al-Bahadili & Rababa’a, 2010). In the adaptive coding, the colors values are sorted in 

descending order from the most common to the least common and stored in the 

compressed file header preceded by Nco. Then each color will be given a 7-bit value 

equivalent to its sorted sequence number, which is given the values from 0 to Nco-1. This 

means that the most common color value will be given a 0 decimal value or 0000000 in 

binary. The second most common color will assign a value of 1 in decimal or 0000001 in 

binary, and so on. 

By the end of this pre-processing Encoding Phase, I end-up with a new number of colors 

(Nce) that is equal to or less than Nco (Nce≤Nco), where Nce is the number of colors after the 

Encoding Phase, practically, Nce=Nco when Nco≤128 otherwise Nce<Nco.  

When Nco≤128, the compression process is still lossless as I have not changed the colors 

values; otherwise, I enter the lossy region as some of the colors have their values 

changed. For color photographs and other images with continuous color, I always expect 

Nco>128. In this case, if the size of the compressed file header is neglected as compared 

to the size of the compressed image, the Encoding Phase provides a compression ratio of 

1.125. 
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According to the Encoding Phase, there two main points that can be recognized:  

(1) Encoding 8-bit color value to right-shifted 7-bit color value looks very acceptable in 

image compression as it achieves 12.5% reduction in image size while either reduces 

color value by 1 or keep it unchanged.      

(2) It is not recommended using the AQ-HCDC algorithm to compress compressed 

images due to the lossy behavior of the algorithm. However, it can be used to 

compress 8-bit, 16-bit, 24-bit uncompressed images. 

Based on the discussion above, Figure (3.2) outlines the procedure of the Encoding Phase 

of the AQ-HCDC algorithm. 

Procedure of the Encoding Phase of the AQ-HCDC Algorithm. 

Read image data one Byte (8-bit color depth) after another. 

Find the number of colors (Nco). 

Find the occurrence (Oi) or counts of each color. 

Calculate the sum of counts of all colors (N) (Eqn. 3.1) 

Calculate the colors frequencies (Fi), where Fi=Oi/N.  

Sort the colors frequencies from the most common to the least common color. 

If (Nco > 128),  

Convert 8-bit color to 7-bit color producing Vi between 0-127.  

Calculate the new number of colors (Nce) 

Else 

Use adaptive coding described above to represent the colors values. 

Nce=Nco 

End If 

Figure (3.2). Procedure of the Encoding Phase of the AQ-HCDC algorithm. 
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Compression Phase 

This is the second and the main core of the AQ-HCDC algorithm. This phase consists of 

a number of steps, which can be summarized as follows:  

(1) If Nce≤16: The image data can be compressed using one of the following modes.  

a. Mode 1:  

i. Set Ncc=Nce, where Ncc represents the number of colors that will be presented 

in the compressed image. 

ii. Calculate m as the number of bits required to represent the colors in the 

compressed image, and m is calculated as: 

/ � 0    12
 ,--�  12
�� 3       (3.2) 

Where M number of bits required to represent the colors in the 

compressed image. 

 Ncc Ncc represents the number of colors that will be presented in the 

compressed image. 

So that m can be 1 (1<Ncc≤2), 2 (2<Ncc≤4), 3 (4<Ncc≤8), or 4 (8<Ncc≤16) depending on 

the number of colors.   

iii. Construct a header for the compressed image containing all information 

necessary for the decompression process, create a compressed image file, 

and store the header into the compressed image file. Description of the 

compressed image header will be given in the next section. 

iv. Read the image data and replace each color with m-bit binary value 

equivalent to its sorted sequence number; starting from 0 to Ncc-1.  

v. Convert the compressed binary sequence to bytes (8-bit characters). 
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vi. Append the compressed image data to the image header and save them into 

the compressed image file, and, in this case, the size of the compressed 

image file is given as: 

   
�4 � 5 6 0 78,  

9 3      (3.3) 

Where Sc size of the compressed image file. 

 H size of the image file header. 

 N Number of colors. 

Figure (3.3) outlines the procedure of Mode 1 of the Compression Phase of the AQ-

HCDC algorithm. 

Procedure of Mode 1 of the Compression Phase of the AQ-HCDC Algorithm. 

Set Ncc=Nce    // Ncc represents No. of colors that will be presented in the compressed image. 

Calculate m   // Number of bits required to represent each color, Eqn. (3.2). 

Construct the compressed image header containing information that is required for the decompression                           

process. 

Read image data and replace each 8-bit color value with m-bit binary value equivalent to its sorted sequence 

number; starting from 0 to Ncc-1.  

Convert the compressed binary sequence to bytes (8-bit characters). 

Append the compressed image data to the image header.  

Create a compressed image file. 

Save the header and the compressed image data into the compressed image file. 

Figure (3.3). Procedure of Mode 1 of the Compression Phase of the AQ-HCDC 

algorithm. 
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b. Mode 2: 

i. Start from the most common colors, add counts of colors that have the 1st, 

2nd, or 3rd bit differs from that for the most common color, which I shall call 

the associated colors. This can be expressed as follows:  

Oi = Oi + Oa = Oi + O1st + O2nd + O3rd     (3.4)  

Where Oi is the initial counts for color i; Oa is the total number of associative colors; and 

O1st, O2nd, O3rd are counts of color that have their 1st, 2nd, and 3rd bits differs from that for 

the initial color. 

For example, assume the equivalent decimal value of the most common color is 35 

(0100011), then the counts of associated colors 34 (0100010), 33 (0100001), and 39 

(0100111) are added to the counts of the color 35 and the colors 34, 33, and 39 are 

replaced by 35. So that if the initial counts of 35 is 10, 34 is 8, 33 is 6, and 39 is 4, then 

the new counts for 35 is 28.  

ii. Reduce Nce by the number of associated colors (e) found in the sorted colors, 

which varies between 0 and 3 as it is explained in Table (3.1). 

Table (3.1) - Associated colors. 

e Explanation 

0 No associated color is found 

1 Only one associated color is found (33 or 34 or 39) 

2 Two associated colors are found (33 & 34 or 33 & 39 or 34 & 39) 

3 Three associated colors are found (33 & 34 & 39) 

iii. Discard the associated colors and shift the colors up to fill the gap left-out 

by merging the associated colors. 

iv. Set the new number of colors to Nce, where Nce=Nce-e. 
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v. Repeat Steps (1.b.i) to (1.b.iv) until all possible associated colors are 

merged. 

vi. Sort the new colors list in descending order from the most common to the 

least common. 

vii. Perform Step (1.a). 

Figure (3.4) outlines the procedure of Mode 2 of the Compression Phase of the AQ-

HCDC algorithm. As it can be seen that Mode 1 (Step (1.a)) provides lossless 

compression to the input colors, while Mode 2 (Step (1.b)) provides either lossless or 

lossy depending whether there are associated colors on the colors list or not. However, it 

is also very important to realize that performing lossy compression (Step (1.b)) can be 

advantageous only if Nce after merging the associated colors can reduce the value of m; 

otherwise it is not beneficial to go through this Mode. 

For example, for Nce=11, m=4, and due to merging the associated colors, Nce is reduced to 

7, which means m=3. As a result of that the compression ratio is increased by 4/3. 

However, if Nce is only reduced to 9, then applying Eqn. (3.2), m remains unchanged 

(m=4). In this case, I loss quality without achieving any increases in the compression 

ratio and it will better to proceed as lossless compression to the input color list Mode 1. 

So that I must let the program determine the best compression mode. Furthermore, it can 

be well recognized that until this moment the compression algorithm is similar to fix-

length compression benefiting from the concept of Hamming codes in realizing the 

associated colors.  
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Procedure of Mode 2 of the Compression Phase of the AQ-HCDC Algorithm. 

Do (i=1; i==Nce; i++) 

Read Color i 

Do (j=i+1; j==Nce; j++) 

Set e = 0 

Read Color j 

Add Counts of Color j to Counts of Color i if it has the 1st, 2nd, or 3rd bit differs. 

e=e+1 

Keep record of the match colors. 

Nce = Nce - e 

Sort the new color list. 

Perform the procedure in Figure (3.3). 

Figure (3.4). Procedure of Mode 2 of the Compression Phase of the AQ-HCDC 

algorithm. 

(2) If Nce>16, then 

a. Perform Steps (1.b.i) to (1.b.vi) in Mode 2.  

b. If Nce≤16, then perform Steps (1.a.i) to (1.a.vi) in Mode 1, else continue. 

c. Divide the list of colors into two groups as follows: 

i. Group 1 contains G1 colors and G1=Nce-16. 

ii. Group 2 contains G2 colors and G2=16. 

d. Construct a header for the compressed image containing all information 

necessary for the decompression process, create a compressed image file, and 

store the header into the compressed image file. Description of the compressed 

image header will be given in the next section. 
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e. Represent each color with m-bit binary value equivalent to its sorted sequence 

number; starting from 0 to G1-1 for Group 1 and from 0 to 15 for Group 2. In 

this case, m1 is the number of bits for Group 1 and m2 is the number of bits for 

Group 2. m1 and m2 are calculated using Eqn. (3.2) with G1 and G2 replaces Ncc 

for m1 and m2, respectively. m2 is usually 4-bit, while m1 could be equal to or 

less than 4-bit depending on the number of colors in Group 1 (G1).   

f. Replace each 8-bit color in the uncompressed image with its equivalent m-bit 

color (either m1 or m2), and then convert the compressed binary sequence to 

bytes (8-bit characters). Each color in Group 1 is represented by m1-bit binary 

sequence preceded by 0, while colors in Group 2 are represented by m2-bit 

binary sequence preceded by 1. 

g. Append the compressed image data to the image header and store them into the 

compressed image file, and, in this case, the size of the compressed image file is 

given as: 

�4 � 5 6/� ∑ *; 6 /� ∑ *;<=��>;��
<?;��     (3.4) 

Where Sc size of the compressed image file. 

 H size of the image file header. 

 m1 number of bits required to represent the colors in the group1. 

 G1 Number of colors inside group1. 

 M2 number of bits required to represent the colors in the group2. 

 G2 Number of colors inside group2. 

 Oj counts for color j. 
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Procedure for the Compression Phase when Nce>16. 

Perform the procedure in Figure (3.4) except the last step.  

If (Nce≤16) 

Perform the procedure in Figure (3.3) 

Else  

Divide the list of colors into two groups:  

Group 1 contains G1 colors and G1=Nce-16 

Group 2 contains G2 colors and G2=16 

Calculate m1 

Calculate m2 

Construct the compressed image header containing information for the decompression process. 

Read image data and replace each 8-bit color value with either m1 or m2 -bit binary value equivalent to its 

sorted sequence number; starting from 0 to G1-1 for Group 1 or from 0 to 15 for Group 2.  

Convert the compressed binary sequence to bytes (8-bit characters). 

Append the compressed image data to the image header.  

Create a compressed image file. 

Save the header and the compressed image data into the compressed image file. 

Figure (3.5) outline the procedure for the Compression Phase when Nce>16. 
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3.2 The Compressed File Header 

The AQ-HCDC algorithm compressed file header contains all additional information that 

is required by the decompression algorithm. It consists of three main fields; these are: 

(a) HCDC field  

(b) Colors field  

(c) Original file header field  

These three fields will be followed by the image compressed data. In what follows a brief 

description is given for the fields of the compressed file header. 

(a) HCDC field 

The HCDC field of the AQ-HCDC algorithm is designed to keep the same structure of 

original HCDC field for consistency purposes. It is an 8-byte field encloses information 

related to the algorithm, such as: algorithm name (HCDC), algorithm version (V), number 

of symbols (colors) in the original image, coding format (F), number of compression 

loops (k). It can be seen that some of the data is redundant, however, they have 

insignificant effect due their very small (negligible size). 

The original HCDC algorithm (Al-Bahadili H. , 2008) was designated as Version-0 (i.e., 

V is set to 0), the HCDC(k) scheme (Al-Bahadili & Rababa’a, 2010)  is designated as 

Version-1 (i.e., V is set to 1), while the AQ-HCDC algorithm is designated as Version 2. 

The coding format (F) is set to 0 for ASCII coding, 1 for Huffman coding, 2 for adaptive 

coding, etc.  Table (3.2) lists the components of this field and their description. 
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(b) Colors field  

The colors field is designed to include minimum information, it encloses information 

related to: number of colors in Group 1 (G1), number of colors in Group 2 (G2), and 

values (Vi) of colors sorted from the most common to the least common. Table (3.3) lists 

the components of the colors field, their wordlength, and brief description. The values of 

m1 and m2 can be calculated using Eqn. (3.2) for Group 1 and Group 2, and also Ncc can 

be calculates as Ncc= G1+G2. 

  

Table (3.2) 

Components of the HCDC field of the AQ-HCDC compressed file header. 

Components 
Length 

(Byte) 
Description 

HCDC 4 Name of the compression algorithm. 

V 1 Version of the HCDC algorithm. 

Nc 1 Number of symbols (colors) within the original text (image) file. 

F 1 
Coding format (0 for ASCII coding, 1 for Huffman coding, 2 for 

adaptive coding, etc.) 

K 1 The number of compression loops. 
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(c) Original File Header Field 

 This field contains a copy of the header of the original image, e.g., the 54-Byte header of 

the uncompressed image. This field cannot be compressed as the image data, because the 

AQ-HCDC algorithm may perform lossy compression, which means it will be difficult to 

retrieve the original header of the image.  

Figure (3.6) shows the structure of the AQ-HCDC compressed file header. It can be seen 

that the total length has a maximum size of 96 Bytes, and generally it is given by: 

H = 64 + Ncc        (3.6) 

Where H size of the image file header. 

 Ncc number of colors that will be presented in the compressed 

image. 

 

  

Table (3.3) 

Components of the colors field of the AQ-HCDC compressed file header. 

Components 

Length 

(Byte) 

Description 

G1 1 Number of colors in Group 1 (0≤G1≤ Nce-16). 

G2 1 Number of colors in Group 2 (0≤G2≤16). 

Vi Ncc 
The colors values in the compressed image, where i=1 to Ncc, and 

Ncc=G1+G2. 
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The 64 Byte in Eqn. (3.6) is the sum of 8-Byte for the HCDC field, 2-Byte for the fix-part 

of the color field, and 54-Byte the original BMP image header.   

H C D C V Nc F K G1 G2 Vi, Vi, Vi, …, VNcc 
Original Image 

Header 

Compressed Image 

Data 

Figure (3.6). The structure of the AQ-HCDC compressed file header. 

3.3 The Decompression Process of the AQ-HCDC Algorithm 

The decompression process of the AQ-HCDC algorithm is very simple and 

straightforward and it is accomplished much faster than the compression process, 

therefore, the algorithm is classified as an asymmetric compression algorithm where the 

there is a difference in the processing time between the compression and the 

decompression processes.  

The decompression algorithm of the AQ-HCDC algorithm can be divided into two main 

phases. In the first phase, the algorithm reads in the header data and prepares the list of 

the colors values. In particular, the decompression algorithm (decompressor) starts by 

reading the compressed image header. After approving the algorithm’s name and version, 

it reads the values of G1 and G2 and computes m1, m2, and Ncc. Then it reads the sorted 

colors values from Vi to VNcc.  

In the second phase, which is the core of the decompressor, the algorithm reads in the 

image data based on the total number of compressed colors in the image header (Ncc). If 

Ncc≤16, then it reads in the image data as m1-bit colors. For each m1-bit, it calculates its 

equivalent decimal number (D) between 0 and 2m1-1, then it set the uncompressed color 

to color value in file header with index number D+1, i.e., the uncompressed color value is 

Vi(D+1). Setting the index to D+1 because the colors are numbered from 1 to Ncc, while 

the decimal values starts from 0. 

If Ncc>16, the decompressor starts by reading in 1-bit, if it is 0, it reads in m1-bit, 

calculates D, and then set the color to the color value VD+1 in Group 1; otherwise (1-bit 

value is 1), it reads in m2-bit, calculate D, and then set the color to the color value VD+1 in 
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Group 2. This process continues until readings in all image data. Figure (3.7) outlines the 

procedure for the AQ-HCDC algorithm decompressor. 

3.4 Analytical Analysis of Performance of the AQ-HCDC Algorithm 

This section presents the analytical analysis of the performance of the AQ-HCDC 

algorithm. From the description of the algorithm in previous sections, it can be 

recognized that the algorithm replaces an 8-bit original color to a shorter representation 

depending on the original image colors values. In worst case the algorithm replaces 8-bit 

colors by 5-bit colors; 1-bit as a prefix and 4-bit represents the sequence number of the 

color within its group. Therefore, the minimum compression ratio that can be achieved by 

the algorithm is 1.6, which comes from dividing 8 by 5, and assuming a negligible header 

size. 

The compression ratio can be increased to 8 for images with 2 colors, where one color 

will be replaced by 0 while the other color by 1. Similarly, it is increased to 4, 2.67, and 2 

for images with 4, 8, and 16 colors or approximated to have these numbers of colors 

inside the image. However, in all cases, due to the nature of approximating the colors, the 

AQ-HCDC algorithm can achieve better compressed image quality than other algorithms 

as I shall demonstrate in the next chapter.  

Procedure for the AQ-HCDC algorithm decompressor. 

Read in the image header. 

Extract the values of G1 and G2. 

Calculate m1, m2 (using Eqn. (3.2)) and Ncc=G1+G2. 

Reads in the colors values (Vi for i=1 to Ncc). 

If  (Ncc≤16) Then 

Do 

Reads in m1-bit 

Calculate its equivalent decimal value (D) 

Find the associate color from the colors list with index D+1 from Group 1. 
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Set this value to the uncompressed image data. 

Loop until end of image data 

Else 

Do 

Reads in 1-bit (B) 

If (B=0) then 

Reads in m1-bit 

Calculate its equivalent decimal value (D) 

Find the associate color from the colors list with index D+1 from Group 1. 

Set this value to the uncompressed image data. 

Else 

Reads in m2-bit 

Calculate its equivalent decimal value (D) 

Find the associate color from the colors list with index D+1 from Group 2. 

Set this value to the uncompressed image data. 

End If 

Loop until end of image data 

End If 

Figure (3.7). Procedure for the AQ-HCDC algorithm decompressor. 
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Chapter Four 

Experimental Results and Discussions 

The Adjustable-Quality Hamming Codes based Data Compression (AQ-HCDC) 

algorithm is implemented using VB.Net programming language. The resultant code 

allows a wide range of investigations and experiments to be performed on a wide range 

of image compression applications. However, in this thesis, I only present a limited 

number of image compression results to demonstrate the performance of the algorithm in 

providing a high performance adjustable quality image compression, especially useful for 

mobile and Internet applications.   

In order to demonstrate the performance of the algorithm, I carried out two types of 

experiments; one experiment for large-size image compression and the second 

experiment for small-size image compression. The images used in these experiments are 

widely-used by many researchers as a test images due to their standard features. In 

particular, I have selected six large-size images, namely, AirPlane, Baboon, CornField, 

Flowers, Girl, and Monarch, which are shown in Figure (4.1). Small-size images are 

created by reducing the dimensions of the images. The dimensions and sizes of the large-

size images are given in Tables (4.1) and shown in Figure (4.1), while those for small-

size images are given in Table (4.2) and shown in Figure (4.2). The images are listed 

according to their sizes from the smaller to larger size. 

Table (4.1) 

Large-Size test images. 

 Table (4.2) 

Small-Size test images. 

# Image 
Dimensions 

(Pixel) 
Size (Byte) # Image 

Dimensions 
(Pixel) 

Size (Byte) 

1 Flowers 500x362 543,054 1 AirPlane 239x240 172,854 

2 Baboon 500x480 720,054 2 Baboon 250x240 180,534 

3 CornField 512x480 737,334 3 CornField 256x240 184,374 

4 AirPlane 512x512 786,486 4 Monarch 320x213 204,534 

5 Monarch 768x512 1,179,702 5 Girl 300x240 216,054 

6 Girl 720x576 1,244,214 6 Flowers 320x231 221,814 
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Flowers.BMP Baboon.BMP 

 

 

CornField.BMP AirPlane.bmp 

  

Monarch.BMP Girl.BMP 

Figure (4.1). The uncompressed large-size test images (BMP format). 
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AirPlane.bmp Baboon.BMP 

  

CornField.BMP Monarch.BMP 

  

Girl.BMP Flowers.BMP 

Figure (4.2). The uncompressed small-size test images (BMP format). 
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The performance of the AQ-HCDC algorithm is evaluated in terms of three performance 

measures, namely, Compression ratio (C), Mean Square Error (MSE), and Peak Signal to 

Noise Ratio (PSNR), which are defined in Chapter 1. At this stage, it is important to 

indicate that little efforts have been taken to optimize the runtime of the 

compression/decompression code, therefore will not present timing results. However, in 

general, through our investigations, I have found that the AQ-HCDC algorithm 

demonstrate an asymmetric timing behavior, where the compression processing time is 

higher than the time required for decompression. 

In both experiments, the performance of the AQ-HCDC algorithm is compared against 

the performance of a number of standard lossless and lossy compressed image formats, 

and lossless compression tools. The image formats and tools that are considered in this 

thesis are: 

• Uncompressed 

o Bitmap (BMP)  

• Lossless compressed image formats: 

o Graphics Interchange Format (GIF) 

o Portable Network Graphics (PNG) 

• Lossy compressed image formats: 

o Joint Photographic Experts Group (JPEG) 

• Lossless tools 

o Windows Roshal ARchive (WinRAR) 

o Phil Katz's ZIP (ZIP) 

A brief description of these image formats and tools were given in Chapter 1. It is also 

important to mention that the AQ-HCDC compressed file header is taken into 

considerations in both experiments.  
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4.1 Experiment #1: Compressing Large-Size Images 

This experiment evaluates the performance measures (C, MSE, and PNSR) achieved by 

the AQ-HCDC algorithm for compression the six large-size images that are described in 

Table (4.1). Furthermore, it compares these performance measures for the AQ-HCDC 

algorithm against those for the standard lossless and lossy compressed image formats, 

and lossless compression tools that are described above. The results for the sizes of 

images before and after compression, C, MSE, and PNSR are listed in Tables (4.3), (4.4), 

(4.5), and (4.6), respectively, and also plotted in Figures (4.3) to (4.6). 

Comparing the compression ratio between the AQ-HCDC algorithm and the compressed 

image formats and lossless compression tools, it can be seen in Tables (4.3) and (4.4), 

and Figures (4.3) and (4.4) that: 

• The AQ-HCDC algorithm achieves a compression ratio of ≈1.6. This is because 

the compressed colors span over two groups, each of 16 colors; so that each 

uncompressed 8-bit color is expressed with only 5-bit (1-bit identifying the group 

number and 4-bit identifying the sequence of the color within the group). The 

colors span over two complete group because the images selected have a 

continuous color distribution, where after discarding the color’s Least Significant 

Bit (LSB) and shift each color’s bits one place to the right, all images are turn-out 

to have all possible color values (i.e., 0-127). It also important to recognize that 

the size of the compressed image header is 96 (Eqn. 3.6), and this value is 

negligible as compared to the images sizes. 

• The compression ratio achieved by the AQ-HCDC algorithm is higher than (≈1.6) 

that achieved by the lossless PNG (≈1.2 except for Baboon image where it is 2.6) 

and less than that achieved by the lossy JPEG (from 4.2 to 9.1). This is at the cost 

of some reduction/improvement in the image quality, where the AQ-HCDC 

algorithm provides better image quality than that produced by the JPEG format 

and of course less image quality in comparison with PNG, which I will discuss 

next. 
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• The AQ-HCDC algorithm provides higher compression ratio than ZIP and 

competitive performance to WinRAR for all images except for Baboon, where 

both tools are higher due to the image structure and characters frequencies.  

Although, this doesn’t look a fare comparison as these tools are lossless and 

multi-algorithms tools, while the AQ-HCDC algorithm is behaving likes lossy but 

it is a single algorithm. However, it is very useful to demonstrate the compression 

power of the AQ-HCDC algorithm. 

Comparing the compressed image quality between the AQ-HCDC algorithm and the 

compressed image formats and lossless compression tools, it can be seen in Tables (4.5) 

and (4.6), and Figures (4.5) and (4.6) that: 

• The AQ-HCDC algorithm provides better image quality that the lossy JPEG 

algorithm, which is also meeting the standards for acceptable image quality. It 

provides a PNSR of more than 30 dB, where the typical values for the PSNR in 

lossy image and video compression are between 30 and 50 dB, where higher is 

better (Barni, 2006); and the acceptable values for wireless transmission quality 

loss are considered to be about 20 dB to 25 dB (Thomos et al., 2006). However, 

these values are than that for the JPEG compression format. 

Due to the wide range of colors values in the test images, the AQ-HCDC algorithm 

provides a compression ratio of 1.6, which represents the minimum it can achieve. At the 

same time, it can be easily realized that for such images with wide colors range the 

compression ratio has no effect on the compressed image quality, and in fact the 

compressed image quality improves (increases) as the compression ratio increase above 

1.6. Because, for example, with reference to our discussion in Chapter 3, if the total 

number of compressed colors in the last group is less than 16 colors and they require less 

than 4-bit to represent them, then the compression ratio increases, and at the same time 

this means that I made less color approximation, which in turn reduces MSE and 

consequently increases PNSR. 

 



67 
 

 
 

 

Figure (4.3). Experiment #1: Comparing the sizes of the uncompressed and compressed 

images for various compressed image formats and compression tools. 

  

Table (4.3) – Experiment #1 – Large-Size Images 

Comparing the sizes of the uncompressed and compressed images for various compressed image 
formats and compression tools. 

Image 

Un-
compressed 
Image Size 

(BMP) 
(Byte) 

Lossless Compressed 
Formats 

Lossy 
Compressed 

Format 

Lossless Compression 
Tools 

AQ-HCDC 

GIF PNG JPEG ZIP WinRAR 

Flowers 543,054 101,431 498,897 91,286 442,875 338,807 339505 

Baboon 720,054 161,823 281,327 167,834 215,198 226,663 450130 

Corn Field 737,334 110,699 654,745 103,289 581,545 434,208 460930 

Air Plane 786,486 96,638 639,736 89,900 561,678 416,430 491650 

Monarch 1,179,702 190,991 946,312 130,164 812,905 529,232 737410 

Girl 1,244,214 193,615 1,041,310 144,626 921,290 538,736 777730 
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Figure (4.4). Experiment #1: Comparing C for various compressed image formats and 

compression tools. 

 

Table (4.4) – Experiment #1 – Large-Size Images 

Comparing C for various compressed image formats and compression tools. 

Image 

Un-
compressed 
Image Size 

(BMP)   
(Byte) 

Lossless Compressed 
Formats 

Lossy 
Compressed 

Format 

Lossless Compression 
Tools 

AQ-HCDC 

GIF PNG JPEG ZIP WinRAR 

Flowers 543,054 5.354 1.089 5.949 1.226 1.603 1.600 

Baboon 720,054 4.450 2.559 4.290 3.346 3.177 1.600 

Corn Field 737,334 6.661 1.126 7.139 1.268 1.698 1.600 

Air Plane 786,486 8.138 1.229 8.748 1.400 1.889 1.600 

Monarch 1,179,702 6.177 1.247 9.063 1.451 2.229 1.600 

Girl 1,244,214 6.426 1.195 8.603 1.351 2.310 1.600 
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Figure (4.5). Experiment #1: Comparing MSE for various compressed image formats. 

 

 

Table (4.5) – Experiment #1 – Large-Size Images 

Comparing MSE for various compressed image formats and compression tools. 

Image 

Un-
compressed 
Image Size 

(BMP)   
(Byte) 

Lossless Compressed 
Formats 

Lossy 
Compressed 

Format 

Lossless Compression 
Tools 

AQ-HCDC 

GIF PNG JPEG ZIP WinRAR 

Flowers 543,054 1131.28 0 102.23 0 0 30.67 

Baboon 720,054 901.85 0 352.16 0 0 26.33 

Corn Field 737,334 972.24 0 63.03 0 0 42.01 

Air Plane 786,486 806.28 0 65.61 0 0 34.43 

Monarch 1,179,702 1055.21 0 18.31 0 0 35.78 

Girl 1,244,214 994.02 0 31.56 0 0 32.48 
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Figure (4.6). Experiment #1: Comparing PNSR for various compressed image formats. 

 

Table (4.6) – Experiment #1 – Large-Size Images 

Comparing PNSR for various compressed image formats and compression tools. 

Image 

Un-
compressed 
Image Size 

(BMP)   
(Byte) 

Lossless Compressed 
Formats 

Lossy 
Compressed 

Format 

Lossless Compression 
Tools 

AQ-HCDC 

GIF PNG JPEG ZIP WinRAR 

Flowers 543,054 17.56 ∞ 28.03 ∞ ∞ 33.26 

Baboon 720,054 18.58 ∞ 22.66 ∞ ∞ 33.93 

Corn Field 737,334 18.25 ∞ 30.14 ∞ ∞ 31.90 

Air Plane 786,486 19.07 ∞ 29.96 ∞ ∞ 32.76 

Monarch 1,179,702 17.90 ∞ 35.50 ∞ ∞ 32.60 

Girl 1,244,214 18.16 ∞ 33.13 ∞ ∞ 33.06 
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4.2 Experiment #2: Compressing Small-Size Images 

This experiment evaluates the performance measures (C, MSE, and PNSR) achieved by 

the AQ-HCDC algorithm for compression the six small-size images that are described in 

Table (4.2). Furthermore, it compares these performance measures for the AQ-HCDC 

algorithm against those for the standard lossless and lossy compressed image formats, 

and lossless compression tools that are described above. The results for the sizes of 

images before and after compression, C, MSE, and PNSR are listed in Tables (4.7), (4.8), 

(4.9), and (4.10), respectively, and also plotted in Figures (4.7) to (4.10). 

Comparing the compression ratio between the AQ-HCDC algorithm and the compressed 

image formats and lossless compression tools, it can be seen in Tables (4.7) and (4.8), 

and Figures (4.7) and (4.8) that: 

• The AQ-HCDC algorithm achieves as in the previous experiment a compression 

ratio of ≈1.6. This is because of the same reason described in previous section for 

large-size images, where the compressed colors span over two groups, each of 16 

colors; so that each uncompressed 8-bit color is expressed with only 5-bit (1-bit 

identifying the group number and 4-bit identifying the sequence of the color 

within the group). The colors span over two complete group because the images 

selected have a continuous color distribution, where after discarding the color’s 

LSB and shift each color’s bits one place to the right, all images are turn-out to 

have all possible color values (i.e., 0-127). It also important to recognize that the 

size of the compressed image header is the same as well and it is equal to 96 Byte 

(Eqn. 3.6). However, in this case it shows very insignificant effect as the 

compression ratio is calculated as 1.599≈1.6. 

• The compression ratio achieved by the AQ-HCDC algorithm is higher than (≈1.6) 

that achieved by the lossless PNG (≈1.1) and less than that achieved by the lossy 

JPEG (from 4.4 to 7.0). This is at the cost of some reduction/improvement in the 

image quality, where the AQ-HCDC algorithm provides better image quality than 

that produced by the JPEG format and of course less image quality in comparison 

with PNG as I shall discuss next. 
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• The AQ-HCDC algorithm provides higher compression ratio than ZIP and 

competitive performance to WinRAR.  Although, this doesn’t look a fare 

comparison as these tools are lossless and multi-algorithms tools, while the AQ-

HCDC algorithm is behaving likes lossy but it is a single algorithm. But, it is very 

useful to demonstrate the power of the AQ-HCDC algorithm. 

Comparing the compressed image quality between the AQ-HCDC algorithm and the 

compressed image formats and lossless compression tools, it can be seen in Tables (4.9) 

and (4.10), and Figures (4.9) and (4.10) that: 

• The AQ-HCDC algorithm provides almost the same image quality as for the lossy 

JPEG algorithm, which is around 30 dB. However, for many images the AQ-

HCDC algorithm provides little bit higher image quality than JPEG. Both 

algorithms meet the standards for acceptable compressed image quality, where the 

typical values for the PSNR in lossy image and video compression are between 30 

and 50 dB, where higher is better (Barni, 2006). 
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Figure (4.7). Experiment #2: Comparing the sizes of the uncompressed and compressed 

images for various compressed image formats and compression tools. 
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Table (4.7) – Experiment #2 – Small-Size Images 

Comparing the sizes of the uncompressed and compressed images for various compressed image 
formats and compression tools. 

Image 

Un-
compressed 
Image Size 

(BMP) 
(Byte) 

Lossless Compressed 
Formats 

Lossy 
Compressed 

Format 

Lossless Compression 
Tools 

AQ-HCDC 

GIF PNG JPEG ZIP WinRAR 

AirPlane 172,854 23,211 138,658 24,654 126,024 93,639 108130 

Baboon 180,534 38,235 178,480 40,361 161,800 154,659 112930 

CornField 184,374 30,894 164,897 31,582 147,950 121,050 115330 

Monarch 204,534 35,915 192,306 30,524 172,507 115,270 127930 

Girl 216,054 36,733 202,636 33,626 183.134 121,172 135130 

Flowers 221,814 43,570 207,059 42,204 186,312 141,813 138730 
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Figure (4.8). Experiment #2: Comparing C for various compressed image formats and 

compression tools. 
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Table (4.8) – Experiment #2 – Small-Size Images 

Comparing C for various compressed image formats and compression tools. 

Image 

Un-
compressed 
Image Size 

(BMP)   
(Byte) 

Lossless Compressed 
Formats 

Lossy 
Compressed 

Format 

Lossless Compression 
Tools 

AQ-HCDC 

GIF PNG JPEG ZIP WinRAR 

AirPlane 172,854 7.447 1.247 7.011 1.372 1.846 1.599 

Baboon 180,534 4.722 1.012 4.473 1.116 1.167 1.599 

CornField 184,374 5.968 1.118 5.838 1.246 1.523 1.599 

Monarch 204,534 5.695 1.064 6.701 1.186 1.774 1.599 

Girl 216,054 5.882 1.066 6.425 1.180 1.783 1.599 

Flowers 221,814 5.091 1.071 5.256 1.191 1.564 1.599 
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Figure (4.9). Experiment #2: Comparing MSE for various compressed image formats. 
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Table (4.9) – Experiment #2 – Small-Size Images 

Comparing MSE for various compressed image formats and compression tools. 

Image 

Un-
compressed 
Image Size 

(BMP)   
(Byte) 

Lossless Compressed 
Formats 

Lossy 
Compressed 

Format 

Lossless Compression 
Tools 

AQ-HCDC 

GIF PNG JPEG ZIP WinRAR 

AirPlane 172,854 782.46 0 59.17 0 0 34.12 

Baboon 180,534 900.44 0 188.47 0 0 35.62 

CornField 184,374 963.78 0 79.61 0 0 35.93 

Monarch 204,534 1010.81 0 48.70 0 0 38.23 

Girl 216,054 960.44 0 55.79 0 0 34.20 

Flowers 221,814 1001.16 0 137.83 0 0 32.26 
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Figure (4.10). Experiment #2: Comparing PNSR for various compressed image formats. 
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Table (4.10) – Experiment #2 – Small-Size Images 

Comparing PNSR for various compressed image formats and compression tools. 

Image 

Un-
compressed 
Image Size 

(BMP)   
(Byte) 

Lossless Compressed 
Formats 

Lossy 
Compressed 

Format 

Lossless Compression 
Tools 

AQ-HCDC 

GIF PNG JPEG ZIP WinRAR 

AirPlane 172,854 19.20 ∞ 30.41 ∞ ∞ 32.80 

Baboon 180,534 18.59 ∞ 25.38 ∞ ∞ 32.61 

CornField 184,374 18.29 ∞ 29.12 ∞ ∞ 32.58 

Monarch 204,534 18.13 ∞ 26.74 ∞ ∞ 33.04 

Girl 216,054 18.30 ∞ 30.67 ∞ ∞ 32.79 

Flowers 221,814 18.09 ∞ 31.26 ∞ ∞ 32.30 
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4.3 Further Discussion 

It can be clearly recognized from the results presented in the previous two sections that 

there are some common points on large-size and small-size images compression; these 

are: 

(1) Despite the fact that GIF is classified as lossless algorithm, it always provides the 

highest compression ratio with very low image quality; and this is because GIF 

handle the image as an 8-bit color, while it is originally as 24-bit color. 

(2) The PNG, as 24-bit lossless compression image format, always presents 0 error 

and consequently undefined PNSR (∞).  The same for ZIP and WinRAR. 

(3) The WinRAR always provides better performance in terms of compression ratio 

than the ZIP. 

(4) The AQ-HCDC almost provides the same performance in terms of C, MSE, and 

PNSR for both large-size and small-size images compression, while GIF and 

JPEG provide fluctuated performance. 

(5) The AQ-HCDC algorithm and JPEG always provides a PNSR of more than 30 

dB, while GIF provides almost half of this value (∞17 dB) for both large-size and 

small-size image compression. 

Our early investigations on using ZIP and WinRAR as post compressor for GIF, PNG, 

JPEG, and AQ-HCDC image formats indicate that the AQ-HCDC format can provide the 

highest compression ratio among them all. However, this needs further investigations and 

it is left for future research. 
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Chapter Five 

Conclusions and Recommendations for Future Work 

5.1  Conclusions 

This Thesis develops a modified version of the lossless bit-level Hamming Codes based 

Data Compression (HCDC) algorithm to be used for standstill image compression. The 

modified version of the HCDC algorithm is characterized as an image-based adjustable-

quality lossless/lossy algorithm; therefore, it is referred to as Adjustable-Quality HCDC 

and abbreviated as AQ-HCDC algorithm. It can be used efficiently and effectively for 

Multimedia Messaging Service (MMS) and Internet applications on mobile networks to 

provide high performance, where it can provide high compression ratio while maintaining 

image quality, which means reduces bandwidth requirement and power consumption 

during MMS and Internet applications.  

In order to evaluate the performance of the AQ-HCDC algorithm, two types of 

experiments were carried-out; the first experiment evaluates the performance of the 

algorithm for large-size images compression, while the second for small-size images 

compression. The images used in these experiments are widely-used as a test images by 

many researchers due to their standard features. In particular, six large-size images, 

namely, AirPlane, Baboon, CornField, Flowers, Girl, and Monarch, were selected, and 

then an equivalent set of small-size images were created by reducing the dimensions of 

the these images. 

The performance of the AQ-HCDC algorithm was evaluated in terms of three 

performance measures, namely, Compression ratio (C), Mean Square Error (MSE), and 

Peak Signal to Noise Ratio (PSNR). In all experiments, the performance of the AQ-

HCDC algorithm is compared against the performance of a number of standard lossless 

compressed image formats (e.g., GIF and PNG), lossy image format (e.g., JPEG), and 

lossless compression tools (e.g., ZIP and WinRAR). 

The main conclusions of this thesis are: 
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(1) The AQ-HCDC algorithm achieves a compression ratio of ≈1.6. This is because 

the compressed colors span over two groups, each of 16 colors; so that each 

uncompressed 8-bit color is compressed to only 5-bit (1-bit identifying the 

group number and 4-bit identifying the sequence of the color within the group). 

The colors span over two complete group because the images selected have a 

continuous color distribution, where after discarding the color’s Least 

Significant Bit (LSB) and shift each color’s bits one place to the right, all 

images are turn-out to have all possible color values (i.e., 0-127).  

(2) The compression ratio achieved by the AQ-HCDC algorithm is higher than that 

achieved by the lossless PNG and less than that achieved by the lossless 8-bit 

GIF and the lossy JPEG. This is at the cost of some reduction/improvement in 

the image quality, where the AQ-HCDC algorithm provides better image 

quality than that produced by the JPEG format and of course less image quality 

in comparison with PNG. 

(3) The AQ-HCDC algorithm provides higher compression ratio than ZIP and 

competitive performance to WinRAR for all images except for Baboon, where 

both tools are higher due to the image structure and characters frequencies.  

Although, this doesn’t look a fare comparison, however, it is very useful to 

demonstrate the compression power of the AQ-HCDC algorithm. 

(4) The AQ-HCDC algorithm provides better image quality that the lossy JPEG 

algorithm, which is also meeting the standards for acceptable image quality. It 

provides a PNSR of more than 30 dB. 

(5) The AQ-HCDC algorithm achieves a compression ratio and image quality that 

are high enough to be competent with the compression ratio and image quality 

achieved by many well-known algorithms of statistical and adaptive nature.  
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5.2 Recommendations for Future Work 

The main recommendations for future work are: 

(1) Perform further investigations on the AQ-HCDC algorithm to cover a wider 

range of image sizes and of various colors frequencies. 

(2) Evaluate the compression ratio of the AQ-HCDC algorithm followed by ZIP or 

WinRAR to compress BMP images, and compare it against the compression 

ratio for applying ZIP or WinRAR to other lossless (e.g., GIF and PNG) and 

lossy (e.g., JPEG) compression formats. 

(3) Develop an optimized version of the code to compare its runtime with other 

compression algorithms and state-of-the-art software. In addition, to compare the 

compression and the decompression processing runtimes. 

Modify the core of AQ-HCDC algorithm itself in some way to provide higher 

compression ratio, while maintaining the maximum possible quality for the compressed 

image. 
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