

Developing a High-Performance Adjustable-Quality Data

Compression Scheme for Multimedia Messaging

� ����� ���م ��� �����ت ا������ �
��دة ا������ ���
 �$داء "��! ا� �دة وا�

By

Tamer Waleed Alsous

Supervisor

Dr. Hussein Al-Bahadili

This thesis is submitted to the Department of Computer Science, Graduate College of
Computing Studies, Middle East University in partial fulfillment for the requirement for

the degree of Master of Science in Computer Science.

Faculty of Information Technology

January, 2013

II

Middle East University

Examination Committee Decision

III

IV

V

VI

Dedication

This thesis is dedicated to my father, who taught me that the best kind of knowledge to

have is that which is learned for its own sake. It is also dedicated to my mother, who

taught me that even the largest task can be accomplished if it is done one step at a time.

To my brothers and lovely sister, and to all friends who they supported me till finish this

work. I lovingly dedicate this thesis to my wife, who supported me each step of the way.

VII

Acknowledgment

I would like to specially thank my supervisor Dr. Hussein Al-Bahadili, who taught me

everything that I know about research and the way it should be done. I would like to

thank him for his guidance during all stages of this research, for answering endless

questions, for his great support, professional advice, and profound understanding.

Through this work, Dr. Hussein has shown me how to attack a problem from different

angels, how to approach it, and how to find the most suitable solution.

I also would like to thank all members of staff at Middle East University, in particular,

the members of staff at the Graduate College of Computing Studies.

Finally, it would be unthinkable of me not to thank my parents, wife, children, brothers

and friends for their support and encouragement over the years. I am thankful for anyone

who supported me during my master study.

VIII

Table of Contents

Title …….I

Examination Committee Decision .. II

Authorization Statement .. Error! Bookmark not defined.

Authorization Form .. Error! Bookmark not defined.

Declaration ... Error! Bookmark not defined.

Dedication ... VI

Acknowledgment ... VII

Table of Contents ... VIII

List of Tables ... X

List of Figures .. XII

Abbreviations ... XIV

English Abstract ... XVIII

Arabic Abstract .. XIX

Chapter One .. 1

Introduction ... 1

1.1 Overview .. 1

1.2 Data Compression .. 3

1.2.1 Data compression models ... 4

1.2.2 Categorization of data compression algorithms .. 5

1.3 Image Compression .. 9

1.3.1 Image Compression Tools .. 12

1.3.2 Standard Compressed Image Formats .. 13

1.4 Performance Measures ... 16

1.5 The HCDC Data Compression Algorithm ... 19

1.6 Multimedia Messaging ... 19

1.7 Problem Statement ... 21

1.8 Objectives of this Work.. 22

1.9 Organization of the Thesis ... 23

Chapter Two.. 24

2.1 The HCDC Algorithm .. 25

2.1.1 Description of the HCDC algorithm ... 25

2.1.2 Derivation and analysis of HCDC algorithm compression ratio 30

IX

2.2 Previous Work .. 35

Chapter Three.. 43

The Adjustable-Quality HCDC Algorithm ... 43

3.1 The Compression Process of the AQ-HCDC Algorithm 44

3.2 The Compressed File Header ... 55

3.3 The Decompression Process of the AQ-HCDC Algorithm 58

3.4 Analytical Analysis of Performance of the AQ-HCDC Algorithm 59

Chapter Four ... 61

Experimental Results and Discussions ... 61

4.1 Experiment #1: Compressing Large-Size Images .. 65

4.2 Experiment #2: Compressing Small-Size Images .. 71

4.3 Further Discussion.. 77

Chapter Five .. 78

5.1 Conclusions .. 78

5.2 Recommendations for Future Work ... 80

References ... 81

X

List of Tables

Table Title Page

2.1 Variation of Cmin, Cmax, and r1 with number of parity bits (p). 32

2.2 Variations of C with respect to r for various values of p. 34

3.1 Associated colors. 50

3.2
Components of the HCDC field of the AQ-HCDC compressed file

header.
56

3.3 Components of the colors field of the AQ-HCDC compressed file header. 57

4.1 Large-Size test images. 61

4.2 Small-Size test images. 61

4.3

Experiment #1 – Large-Size Images Comparing the sizes of the

uncompressed and compressed images for various compressed image

formats and compression tools.

67

4.4
Experiment #1 – Large-Size Images Comparing C for various compressed

image formats and compression tools.
68

4.5
Experiment #1 – Large-Size Images Comparing MSE for various

compressed image formats and compression tools.
69

4.6
Experiment #1 – Large-Size Images Comparing PNSR for various

compressed image formats and compression tools.
70

4.7
Experiment #2 – Small-Size Images Comparing the sizes of the

uncompressed and compressed images for various compressed image
73

4.8
Experiment #2 – Small-Size Images Comparing C for various compressed

image formats and compression tools.
74

XI

4.9
Experiment #2 – Small-Size Images Comparing MSE for various

compressed image formats and compression tools.
75

4.10
Experiment #2 – Small-Size Images Comparing PNSR for various

compressed image formats and compression tools.
76

XII

List of Figures

Figure Title Page

1.1(a) Structure of a generic BMP image. 10

1.1(b) Structure of Version 3.0 24-bit BMP image. 10

1.2 Performance metrics triangle. 18

2.1(a) Locations of data and parity bits in 7-bit codeword. 28

2.1(b)

an uncompressed binary sequence of 21-bit length

divided into 3 blocks of 7-bit length, where B1 and B3 are

valid blocks, and B2 is a non-valid block.

28

2.1(c) the compressed binary sequence (18-bit length). 28

2.2 The main steps of the HCDC compressor. 29

2.3 The main steps of the HCDC decompressor. 30

2.4 Variation of Cmin and Cmax with p. 33

2.5 Variation of r1 with p. 33

2.6 Variations of C with respect to r for various values of p. 34

3.1 Illustration of the 8-bit to 7-bit encoding process. 46

3.2
Procedure of the Encoding Phase of the AQ-HCDC

algorithm.
47

3.3
Procedure of Mode 1 of the Compression Phase of the

AQ-HCDC algorithm.
49

3.4
Procedure of Mode 2 of the Compression Phase of the

AQ-HCDC algorithm.
51

XIII

3.5
outline the procedure for the Compression Phase when

Nce>16.
54

3.6 The structure of the AQ-HCDC compressed file header. 57

3.7 Procedure for the AQ-HCDC algorithm decompressor. 59

4.1 The uncompressed large-size test images (BMP format). 62

4.2 The uncompressed small-size test images (BMP format). 63

4.3

Experiment #1: Comparing the sizes of the

uncompressed and compressed images for various

compressed image formats and compression tools.

67

4.4
Experiment #1: Comparing C for various compressed

image formats and compression tools.
68

4.5
Experiment #1: Comparing MSE for various compressed

image formats.
69

4.6
Experiment #1: Comparing PNSR for various

compressed image formats.
70

4.7

Experiment #2: Comparing the sizes of the

uncompressed and compressed images for various

compressed image formats and compression tools.

73

4.8
Experiment #2: Comparing C for various compressed

image formats and compression tools.
74

4.9
Experiment #2: Comparing MSE for various compressed

image formats.
75

4.10
Experiment #2: Comparing PNSR for various

compressed image formats.
76

XIV

Abbreviations

ACW Adaptive Character Wordlength.

AQ-HCDC Adjustable-Quality Hamming Codes Data Compression.

ASCII American Standard Code for Information Interchange.

BMP Bitmap.

Bpc bit per character.

BWT Binary Wavelet Transform.

CBWTC Context-based Binary Wavelet Transform Coding.

CMYK Cyan, Magenta, Yellow and Key.

dB decibel.

DCT Discrete Cosine Transform.

DIB Device Independent Bitmap.

DMT Discrete Modal Transform.

DPCM Differential Pulse-Code Modulation.

DVM Directional Vanishing Moments.

EXIF Exchangeable Image File Format.

FRAR Full Range Auto Regressive.

GCR Gray Code Representation.

XV

GIF Graphics Interchange Format.

GIS Geographic Information Systems.

HCDC Hamming Codes Data Compression.

HDTV High Definition Television.

ICT Information and Communication Technology.

ID-CCT Image Dependent Color space Transform.

IEEE Institute of Electrical and Electronics Engineers.

IESG Internet Engineering Steering Group.

JBIG2 Joint Bi-level Image Experts Group

JFIF JPEG File Interchange Format.

JPEG Joint Photographic Experts Group.

LAN Local Area Network.

LSB Least Significant Bit.

LZ Lempel Ziv.

LZW Lempel Ziv Welch.

MIME Multipurpose Internet Mail Extensions.

MMS Multimedia Messaging Service.

MSE Mean Square Error.

MSRCR Multi-Scale Retinex with Color Restoration.

XVI

OBDD Ordered Binary-Decision Diagram.

OS Operating System.

PAN Personal Area Networks.

PCDC Polynomial Codes Data Compression.

PCM Pulse Code Modulation.

PCX Personal Computer Exchange.

PDA Personal Digital Assistant.

PNG Portable Network Graphics.

PSNR Peak Signal to Noise Ratio.

QoSs Quality-of-Services.

RGB Red Green Blue.

RLC Run Length Coding.

RLE Run Length Encoding.

RWT Real Wavelet Transform.

SFQ Space-Frequency Quantization.

SFX SelF-eXtracting archive.

SMS Short Message Service.

SPIHT Set Partitioning In Hierarchical Trees

TIFF Tagged Image File Format.

XVII

TVQ Transformed Vector Quantization.

USB Universal Serial Bus.

WAN Wide Area Network.

WT Wavelet Transform.

XVIII

English Abstract

Data compression algorithms are designed to reduce the size of data so that it requires

less disk space for storage and less bandwidth to be transmitted over data communication

channels. An additional benefit of data compression is in wireless communications

devices, where it reduces the transmission power consumption of the device as the power

consumption is directly proportional to the size of the transmitted data. Data compression

can play a big role in improving the Quality-of-Service (QoS) in Multimedia Messaging

Service (MMS) on mobile phones, where MMS is facing three main challenging: limited

message size, high power consumption, and long delay.

In this thesis, we develop a new data compression algorithm for stand still image

compression, which can be used for MMS and Internet applications on mobile networks.

The new algorithm is a modified version of the lossless bit-level Hamming Codes based

Data Compression (HCDC) algorithm, and it is characterized as an image-based

adjustable-quality algorithm; therefore, it is referred to as Adjustable-Quality HCDC

(AQ-HCDC) algorithm.

The AQ-HCDC algorithm is implemented using VB.NET, and to evaluate the

performance of the algorithm, two types of experiments are carried-out for large-size and

small-size images compression. The images used in these experiments are widely-used as

a test images by many researchers due to their standard features. In particular, six images

are selected, namely, AirPlane, Baboon, CornField, Flowers, Girl, and Monarch.

The performance of the AQ-HCDC algorithm is evaluated in terms of Compression ratio

(C), Mean Square Error (MSE), and Peak Signal to Noise Ratio (PSNR). In all

experiments, the performance of the AQ-HCDC algorithm is compared against the

performance of a number of lossless compressed image formats (e.g., GIF and PNG),

lossy image format (e.g., JPEG), and lossless compression tools (e.g., ZIP and WinRAR).

For both experiments the AQ-HCDC algorithm provides a compression ratio of ≈1.6 and

a PNSR of more than 30 dB, which ranks the algorithm between the most widely-used

formats PNG and JPEG.

XIX

(bandwidth)

the lossless
bit-level Hamming Codes based Data Compression (HCDC)
.Adjustable-Quality HCDC (AQ-HCDC)

VB.net

AirPlane, Baboon,

ZIP and WinRAR

JPEG, PNG,

Mean Square Error (MSE) .Peak Signal to Noise Ratio (PSNR)

Compression ratio (C)

JPEG, PNG

GIF

Arabic Abstract

� ا�'&%

��	� ا������ ���
 ��ارز�	�ت ��
 ا�
	���ت� �ا��(��ب� ��)'ی% ا�
	���ت �����	� �% $#" ا�
	���ت وب�����

وی�=% ا5س�;�دة �% . ا��(��ب �.���8 �7ل 6.�ات ا5��4ل و�����	� أی�1 �% 0,ض ا�.(�ق ا��,ددي

�#��ج ?��6 ا�6 �.���8 �% ���7< ا�
	���ت �7ل ا$8'ة ا5��4ل ا� A	� ،�	=�4لس��آ�� ی�=% . 7ل 6.�ات ا5

� ا5$8'ة ا�.����، �	A ه.�ك F >Gس���دة اHI���ا �G,س��ا ��H� دة�$ %	�#� �F ��8� دورا JI����1< ا�
	���ت ان

>Gس���دة اHI���ا �G,س��ا ��H� L$ا�� �	�	Gی�ت رH#�� ��(�7N : ،�6ث ��I�78ك ا�، ا5س��,س��ا "P� ودی�H#�

� و��ل ا�F ,�Q��س�وا,��.

 >Gس���دة اHI�� �G,س��ا R�0 �8�	
)�� هUV ا5?,و��، س�ف ���م ب�(�ی, ��ارز�	� $HیHة ��1< ا��4ر ی�=% F

����
=�ت ا5$8'ة ا�.W R�0
��ت ا�5�,�	
)� ا�)�ارز�	� ا�HPیHة ه� ��)� �HI�� �% ��ارز�	� . و

�HIی� $�دة R�0 �8�	ب���و���	' ب

	��� "� X�V� ،�4رة�ا��8

�.;	V ا�)�راز�	� ب "�Y��� امH(��8 س�ب,P�
�� �8Gادا "		�آ
	,ة ا�#R�0 : "P ��0	% �% ا��4رو��

"P#�,ة ا	و�� .HیHI�ا �

] ا�)�ارز�	� �0	�8 $,ى اس�)Hا�6 %� �8)� "� ��\	% ��ل �ا�
 �% وهUV ا��4ر ا��

����_ بR�0��8 ا� ا��I�" ب.�ءً �:وR�0 و$L ا�)�4ص �" إ��	�ر س�� ��ر، وه�. �	'ات ا��

�		�L �% �7ل 6	�س ��
� ا��1<� "��� ، أداء ا�)�ارز�	� I	,ب��ا Q)(�س< ا��

� ا����1ء ، �� R�روة إV�رة ا�Wوإ

��ر�� أداء ا�)�ارز�	� �_ H0د �% ��ارز�	�ت ��< ا��4ر ا��I,و$ �F	Hا �\� � "�� آ� ا���Pرب F:

� ��< ا�
	���ت �\� F ��H(����د �% ا5دوات اH0 _� �1وأی : .

� آ7 ا��P,ب�	% اس�(�0
 ا�)�ارز�	� ا���� ا�HI� Rل ��< ی��وي F1.6 R�روة إV�رة ا�Wس إ�	��,ی
�، أ�� ��

�] أآ\, �% ��
� ا����1ء#� "�F30 ,8W5ت ا�)�ارز��% �;�ف ا	ب �)�ارز��ی1_ ا X�وذ ،�	
 دی�	

 .

.CornField, Flowers, Girl, Monarch

1

Chapter One

Introduction

1.1 Overview

The last two decades have witnessed a tremendous revolution and growth in the field of

Information and Communication Technology (ICT), and still more and more to emerge.

The revolution has been notably recorded in a number of related fields of ICT; these may

include:

(1) Computer technology: Development of very high performance computing resources,

especially those of mobile characteristics, such as: laptops, netbooks, notebooks,

smart phones (e.g., IPhones), Personal Digital Assistants (PDAs), IPads, etc.

(Patterson & Hennessy, 2011).

(2) Communications technology: Emergent of various wire/wireless networks designs,

such as: Local Area Networks (LANs), Wide Area Network (WAN), Personal Area

Networks (PAN), wireless networks, cellular networks, satellite communications

(Forouzan, 2007) (Stallings, 2010).

(3) Internet technology: Development of masses of applications and tools (e.g., World

Wide Web (Web)) open the door towards an amazing world of all kinds of

information and knowledge exchange. Internet facilities are easily accessible in

almost every parts of the world (Duffy, 2012) (Bentley & Barrett, 2012).

(4) Multimedia technology: Production of very high resolution and high quality

multimedia devices, such as: digital cameras, display screens, audio systems, etc.

(Ze-Nian Li & Mark, 2004).

(5) Mobile technology: Emergent of high performance, small-size, low-power, and

mobile devices (e.g., laptops, notebooks, smart phones, etc.), which have led to the

emergent of a wide range of tools and applications (Duffy, 2012) (Bentley & Barrett,

2012).

2

In addition to its many advanced characteristics (e.g., small size, high processing speed,

relatively large memories, low power consumption, long life batteries), digital cameras

nowadays can produce very high quality or high resolution images. The term resolution is

often used for a pixel count in digital imaging, which gives an indication on the digital

image quality. The higher the resolution, the better the image is. A low resolution digital

image (640x480 pixels), for instance, may look acceptable for displaying on the Internet

but it can appear fuzzy when printed or enlarged. By comparison, high resolution images,

such as those at 1280x1024 pixels, contain enough pictorial information (sharp contrasts,

rich colors, and picture details) to look good on the internet as well as when printed or

enlarged.

Storing high resolution images require high storage capacities (memories); for example, a

1280x1024 image size using RGB color requires 3.894 MB space. Fortunately, modern

digital cameras are supplied with reasonably huge memories of Giga Bytes (GB) that can

store large number of high resolution images or videos. Digital cameras are also equipped

with wire and wireless interface technologies. Wire interface technologies like the

Universal Serial Bus (USB), and wireless interface technologies like Bluetooth (IEEE

802.15 protocol) and Wireless LAN (WLAN) (IEEE 802.11 protocol) (Forouzan, 2007)

(Stallings, 2010). Thus, digital cameras memories can be cleared by copying images' data

into more permanent or external storage media.

Most modern mobile phones are equipped with high technology digital camera(s),

encouraging users taking more and more pictures or videos while they are on the move;

and despite the high storage capacity of modern mobile phones, the memory may not be

enough to accommodating all users’ generated data, therefore, users may need to clear or

flash-out their mobile's memory to a remote end. The most obvious way to exchange

these pictures or videos is through the available cellular bandwidth.

In this direction, researchers developed a standard service to send messages that include

multimedia content to and from mobile phones, namely, the Multimedia Messaging

Service (MMS). It extends the core Short Message Service (SMS) capability that allowed

exchange of text messages only up to 160 characters in length. Comparing the current

3

cellular bandwidth cannot meet the growing demands for satisfactory performance for

multimedia exchange through cellular systems, and more powerful algorithms or

protocols are required.

MMS can be divided into two main interrelated tasks; these are: data processing and data

communication. Data processing may include the following main activities: data

capturing, encoding, compression, decompression, decoding, storing, and displaying.

Data communication may include the following main activities: data packetization,

routing, error-detection, and data re-assembling.

One of the influential factors on the performance of MMS is the maximum size of the

message that can be exchanged. Although the standard does not specify a maximum size

for a message, 300 KB is the current recommended size used by networks due to some

limitations on the available bandwidth. It at the end depends on the performance of the

local cellular infrastructure. Furthermore, exchanging large amount of data facing two

more challenges, these are high power consumption and long delay. One obvious

approach to address the concerns of MMS is to compress the exchange data using

powerful reversible data compression algorithms, while maintaining image quality.

Which is the main concept discussed in this thesis.

1.2 Data Compression

Data compression aims to reduce the size of data so that it requires less disk space for

storage and less bandwidth to be transmitted over data communication channels (Sayood,

2012) (Salomon, 2007). Data compression also reduces the amount of accumulated errors

during data transmission over error-prone data communication channels by decreasing

the size of information to be exchanged over such channels (Adiego, Navarro, & de la

Fuente, 2007) (Freschi & Bogliolo, 2004). An additional benefit of data compression is in

wireless communication devices where it may introduce a significant power saving.

Power savings is possible by compressing data prior to transmission, where the power

consumed is directly proportional to the size of the transmitted data. In fact, in wireless

devices, transmission of a single bit requires over 103 times more power than a single 32-

bit processing.

4

Data compression is usually obtained by substituting a shorter symbol for an original

symbol in the source data, containing the same information but with a smaller

representation in length. The symbols may be characters, words, phrases, or any other

unit that may be stored in a dictionary of symbols and processed by a computing system

(Witten I. H., 2004). The data compression process requires efficient algorithmic

transformations of a source message to produce representations (also called codewords)

that are more compact. Such algorithms are known as data compression algorithms or

data encoding algorithms. On the other hand, the data compression process must be

reversible process, such that each data compression algorithm needs to be complemented

by its inverse, which is known as a data decompression algorithm (or data decoding

algorithm), to restore an exact or an approximate form of the original data (Al-Bahadili &

Hussain, 2008) (Gryder & Hake, 1991).

1.2.1 Data compression models

Different data compression models have been recommended and used throughout the

years. These data compression models can be classified into four major models; these are

(Sayood, 2012):

1) Substitution data compression model

2) Statistical data compression model

3) Dictionary-based data compression model

4) Bit-level data compression model

A substitution model involves the swapping of repeating characters by a shorter

representation. Algorithms that are based on this model include: Null Suppression, Run-

Length Encoding (RLE), Bit Mapping and Half Byte Packing (Pandya, 2000).

A statistical model involves the generation of the shortest average code length based on

an estimated probability of the characters. Examples of algorithms that are based on this

model include: Shannon-Fano coding (Rueda & Oommen, 2006), static/dynamic

Huffman coding (Huffman, 1952) (Knuth, 1985) (Vitter, 1989), and arithmetic coding

(Howard & Vitter, 1994) (Witten & Neal, 1987).

5

A dictionary-based model involves the substitution of substrings by indices or pointer

code, relative to a dictionary of the substrings; algorithms that can be classified as a

dictionary-based model include the LZ compression technique and its variations (Ziv &

Lempel, 1977) (Ziv & Lempel, 1978) (Nelson, 1989) (Brittain & El-Sakka, 2007).

Finally, since data files could be represented in binary digits, a bit-level processing can be

performed to reduce the size of data. In bit-level data compression algorithms, the binary

sequence is usually divided into groups of bits that are called minterms, blocks,

subsequences, etc. These minterms might be considered as representing a Boolean

function. Then, algebraic simplifications are performed on these Boolean functions to

reduce the size or the number of minterms, and hence, the number of bits representing the

output (compressed) data is reduced as well.

Examples of bit-level data compression algorithms include: The Polynomial Codes Data

Compression (PCDC) (Sirbu & Cleju, 2011), the Hamming Codes based Data

Compression (HCDC) algorithm (Al-Bahadili H. , 2008) (Al-Bahadili & Rababa’a,

2010), the Adaptive Character Wordlength (ACW(n)) algorithm (Al-Bahadili & Hussain,

2008), the Adaptive Character Wordlength (ACW(n,s)) scheme (Al-Bahadili & Hussain,

2010), the logic-function simplification algorithm (Nofal, 2007), the neural network

based algorithm (Mahoney, 2000).

1.2.2 Categorization of data compression algorithms

There are many data compression algorithms that have been developed throughout the

years utilizing the different models discussed in previous section and are designed for

various applications and purposes. Therefore, it is necessary to have some methodologies

to classify these algorithms in a way that helps academicians, researchers, developers and

professionals to understand these algorithms. In this direction, data compression

algorithms are categorized by several characteristics, such as (Sayood, 2012) (Salomon,

2004) (Salomon, 2002):

(1) Data compression fidelity

(2) Length of data compression symbols

6

(3) Data compression symbol table

(4) Data compression cost

In what follows, I shall provide a brief explanation for each of them:

(1) Data compression fidelity

One of the most important characteristics is the fidelity with which the original and the

decompressed data agree with each other. The decompressed (restored) data can either

represent an exact or an approximate form of the original data set (Shapira & Daptardar,

2006). Therefore, two fundamentally different styles of data compression can be

recognized, depending on the fidelity of the restored data, these are: lossless and lossy

data compression.

• Lossless data compression

It involves a transformation of the representation of the original data set such that it is

possible to reproduce exactly the original data (exact copy). Lossless compression is used

in compressing text files, executable codes, word processing files, database files,

tabulation files, and whenever it is important that the original and the decompressed files

must be identical. Lossless compression is used in many applications, e.g., the popular

ZIP file format and in the UNIX tool gzip. It is also used as a component within lossy

data compression technologies. Lossless compression algorithms can usually achieve a 2

to 8 compression ratio (Rueda & Oommen, 2006) (Brittain & El-Sakka, 2007).

• Lossy data compression

It involves a transformation of the representation of the original data set such that it is

impossible to reproduce exactly the original data set, but an approximate representation is

reproduced by performing a decompression transformation. This type of compression is

used frequently on the Internet and especially in streaming media and telephony

applications. Because some information is discarded, it achieves better data compression

ratios that reach 100 to 200, depending on the type of information being compressed. In

7

addition, higher compression ratio can be achieved if more errors are allowed to be

introduced into the original data (Brittain & El-Sakka, 2007) (Witten I. H., 2004).

(2) Length of data compression symbols

Data compression algorithms are characterized by the length of the symbols an algorithm

process, regardless of whether the algorithm uses variable length symbols in the original

data or in the compressed data, or both. For example, RLE uses fixed length symbols in

both the original and the compressed data. Huffman encoding uses variable length

compressed symbols to represent fixed-length original symbols. Other methods compress

variable-length original symbols into fixed-length or variable-length encoded data.

(3) Data compression symbol tables

Another distinguishing feature of the compression algorithms is the source of the symbol

table. According to this feature, compression algorithms can be classified into: static or

fixed, dynamic or adaptive, and semi-adaptive compression algorithms

• Static or fixed data compression algorithms

Some data compression algorithms operate on a static symbol table, or a fixed dictionary

of compression symbols. Because the dictionary is fixed, it needs not be combined with

the compressed data. Such algorithms are dependent on the format and content of the data

to be compressed. However, a fixed dictionary is usually optimized for a particular data

type, whereas if the same dictionary used for other types of information the efficiency of

the algorithm suffers and provides a lower compression ratio.

• Dynamic or adaptive data compression algorithms

Some data compression algorithms are relatively independent, and some make two passes

at the data. The first pass determines the frequency of the symbols that will be processed;

and builds a symbol table based on that frequency. The custom symbol table needs to

combine the compressed data, and the second pass uses the custom symbol table to

encode and decode data. Adaptive compression algorithms build a custom symbol table

8

as they compress the data. Such algorithms encode each character based on the frequency

of preceding characters in the original data file. The decompression algorithm builds an

identical dynamic table as the information is decompressed. Adaptive methods usually

start with a minimal symbol table to bias the compression algorithm toward the type of

data they are expecting.

• Semi-adaptive data compression algorithms

In a semi-adaptive algorithm the data to be compressed are first analyzed in their entirety,

an appropriate model is then built, afterwards the data is encoded. The model is stored as

part of the encoded data, as it is required by the decompressor to reverse the encoding.

Static schemes are similar to this, but a representative selection of data is used to build a

fixed model, which is hard-coded into compressors and decompressors. This has the

advantage that no model must be explicitly stored with the compressed data, but the

disadvantage that poor compression will result if the model is not representative of data

presented for compression. Concerning the type of adaptively being adopted, focus has

remained on static and semi-adaptive techniques, and little attention has been paid to the

class of adaptive algorithms (Klein, 2000) (Xie, Wolf, & Lekatsas, 2003) (Gilbert &

Abrahamson, 2006).

(4) Data compression cost

The cost of data compression is an important feature that can be used to distinguish

between the different data compression algorithms. Most importantly is that compression

algorithms should be performed in as minimum as possible cost. This cost is measured in

terms of time and storage requirement; however, in many applications, and with the

revolutionary advancement in computer technology, the time is the most important factor.

For example, on-the-fly compression algorithms, such as between application programs

and storage devices, the algorithm should operate as quickly as the storage devices

themselves. Likewise, if a compression algorithm is built into a hardware data

communications component, the algorithm should not prevent the full bandwidth of the

communication media from being continuously utilized.

9

The data compression cost for a particular algorithm consists of the time required by the

algorithm to compress the original data and the time it takes to decompress the data back

to its original form. In the context of the data compression for minimal storage

applications, the cost of compression can be viewed as a one-time cost and hence as

relatively less significant than the cost of decompression, which must be incurred every

time the data is to be retrieved from storage. In the context of compression designed for

fast data transmission applications, the relative costs of compression at one end and

decompression at the other may be equally significant.

According to the compression-decompression processing time, data compression

algorithms are classified into two classes, these are: symmetric and asymmetric data

compression algorithms. In symmetric algorithms, the processing times are almost the

same for compression and decompression processes; while in asymmetric algorithms the

compression processing time is more than the decompression processing time.

1.3 Image Compression

Before I proceed with our discussion on image compression, let us discuss first the

standard uncompressed image file format, namely, the bitmap (BMP) image file format,

which is used as the standard bitmap storage format in the Microsoft Windows

environment. Although it is based on Windows internal bitmap data structures, it is

supported by many non-Windows and non-PC applications.

The BMP, also known as Device Independent Bitmap (DIB) file format, is a raster

graphics image file format used to store bitmap digital images, independently of the

display device (such as a graphics adapter), especially on Microsoft Windows and OS/2

operating systems. The BMP file format is capable of storing 2D digital images of

arbitrary width, height, and resolution, both monochrome and color, in various color

depths, and optionally with data compression, alpha channels, and color profiles (BMP

file format, 2012).

The standard BMP files contain four sections, these are: file information, bitmap

information header, color palette, and bitmap data, as shown in Figure (1.1). Of these

10

four sections, only the palette information may be optional, depending on the bit depth of

the bitmap data. The BMP file header is 14 Bytes in length. The file header is followed

by a second header (called the bitmap information header), a variable-sized palette, and

the bitmap data. There are four versions of BMP formats, they all have the same file

information length (14 Bytes) but have various lengths for the remaining sections.

File Header

Bitmap

Data

File

Information

Bitmap

Information

Header

Color

Palette

(a) Structure of a generic BMP image.

File Header

Bitmap

Data

File

Information

Bitmap Information

Header

14-Byte 40-Byte

(3*ImageWidth*ImageHeight)

54-Byte

(b) Structure of Version 3.0 24-bit BMP image.

Figure (1.1). Structure of BMP image.

11

However, in this work I consider BMP Version 3 (Microsoft Windows 3.x), in which for

24-bit (RGB) color depth, the file size in Bytes is calculated as:

 ImageSize = 54 + 3 * ImageWidth * ImageHeight (1.1)

Where ImageSize the size of the image file in Bytes.

 ImageWidth the image width in pixels.

 ImageHeight the image height in pixels.

The 54 is the total file header length, 14 Bytes of which is for file information, and 40

Bytes for bitmap information header.

A number of compressed image formats have been developed in the past for various

applications, some of these algorithms are lossless (such as the Graphics Interchange

Format (GIF) and the Portable Network Graphics (PNG) and other are lossy (such as the

Joint Photographic Experts Group (JPEG)). The reduction in file size allows more images

to be stored in a given amount of disk or memory space. It also reduces the time required

for images to be sent over communication channels or downloaded through the Internet.

Furthermore, it reduces the power consumption during transmission and also reduces

accumulated transmission errors (Talukder & Harada, 2007).

Lossless compression is preferred for archival purposes and often for medical imaging,

technical drawings, clip art, or comics. This is because lossy compression methods,

especially when used at low bit rates, introduce compression artifacts. Lossy methods are

especially suitable for natural images such as photographs in applications where minor

(sometimes imperceptible) loss of fidelity is acceptable to achieve a substantial reduction

in bit rate. The lossy compression that produces imperceptible differences may be called

visually lossless (Bandyopadhyay, Paul, & Raychoudhury, 2011).

12

1.3.1 Image Compression Tools

While most BMP files have a relatively large file size due to lack of any compression (or

generally low-ratio RLE on palletized images), many BMP files can be considerably

compressed with well-known and widely-used lossless data compression tools, such as

ZIP (http://www.winzip.com) and WinRAR (http://www.win-rar.com) (BMP file format,

2012).

ZIP is a compression and file packaging utility for Unix, VMS, MSDOS, OS/2, Windows

9x/NT/XP, Minix, Atari, Macintosh, MVS, z/OS, Amiga, Acorn RISC, and other

Operating Systems (OS). It is analogous to a combination of the Unix commands tar and

compress (or tar and gzip) and is compatible with PKZIP (Phil Katz's ZIP for MSDOS

systems) and other major ZIP utilities (ZIP, 2011). ZIP is not a single algorithm; there are

many possible compression algorithms which may be used in ZIP archives (sometimes

even several different algorithms in the same archive). The PK in PKZIP stands for the

author Phil Katz, but the “ZIP” is just the name of the product and it means “spead” (i.e.,

not an acronym).

The second tool that is considered in this work is the WinRAR, which is a Windows

compression utility developed by Alexandar Roshal to handle RAR (Roshal Archive)

files and other compression formats; therefore, it is abbreviated as WinRAR. It supports

the following features:

• Complete support of RAR and ZIP archives.

• Highly sophisticated, original lossless compression algorithm.

• Special algorithms optimized for text, audio, graphics, 32-bit and 64-bit Intel

executable compression.

• Shell interface including drag-and-drop facility and wizard.

• Command line interface.

13

• Non-RAR archives (7Z, ACE, ARJ, BZ2, CAB, GZ, ISO, JAR, LZH, TAR, UUE, Z)

management.

• Solid archiving, which can raise compression ratio by 10%-50% over common

methods, particularly when packing a large number of small, similar files.

• Multivolume archives.

• Creation of self-extracting archives (also multivolume) using the default or optional

SFX modules.

• Recovering physically damaged archives and it has recovery volumes allowing

reconstructing missing parts of multivolume archives.

• Unicode support in file names.

• Other service functions, such as encryption, archive comments, error logging, etc.

1.3.2 Standard Compressed Image Formats

As it has been discussed above that there are a number of standard compressed image

formats, such as GIF, PNG, and JPEG. The GIF and PNG are lossless, while the JPEG is

lossy. In what follows, I provide a brief description for each of them:

• Graphics Interchange Format (GIF)

It is a bitmap image format that was introduced by CompuServe in 1987 and has since

come into widespread usage on the Web due to its wide support and portability. The

format supports up to 8 bits per pixel thus allowing a single image to reference a palette

of up to 256 distinct colors. The colors are chosen from the 24-bit RGB color space. It

also supports animations and allows a separate palette of 256 colors for each frame. The

color limitation makes the GIF format unsuitable for reproducing color photographs and

other images with continuous color, but it is well-suited for simpler images such as

graphics or logos with solid areas of color.

14

GIF images are compressed using the Lempel-Ziv-Welch (LZW) lossless data

compression technique to reduce the file size without degrading the visual quality. This

compression technique was patented in 1985. Controversy over the licensing agreement

between the patent holder, Unisys, and CompuServe in 1994 spurred the development of

the Portable Network Graphics (PNG) standard; however, all the relevant patents have

now expired (Graphics Interchange Format, 2012).

• Portable Network Graphics (PNG)

It is a bitmapped image format that employs lossless data compression. PNG was created

to improve upon and replace GIF as an image-file format not requiring a patent license.

PNG supports palette-based images (with palettes of 24-bit RGB or 32-

bit RGBA colors), grayscale images (with or without alpha channel), and full-color non-

palette-based RGB images (with or without alpha channel). PNG was designed for

transferring images on the Internet, not for professional-quality print graphics, and

therefore does not support non-RGB color spaces such as Cyan, Magenta, Yellow, and

Key (CMYK). PNG files nearly always use file extension PNG or png and are

assigned Multipurpose Internet Mail Extensions (MIME) media type image/png; it was

approved for this use by the Internet Engineering Steering Group (IESG) on 14 October

1996. PNG was published as an ISO/IEC standard in 2004 (Portable Network Graphics,

2013).

• Joint Photographic Experts Group (JPEG)

It is a commonly used method of lossy compression for digital photography (image). The

degree of compression can be adjusted, allowing a selectable trade-off between storage

size and image quality. JPEG typically achieves 10:1 compression with little perceptible

loss in image quality. JPEG compression is used in a number of image file formats.

JPEG/Exif is the most common image format used by digital cameras and other

photographic image capture devices; along with JPEG/JFIF, it is the most common

format for storing and transmitting photographic images on the Web. These format

variations are often not distinguished, and are simply called JPEG.

15

The compression method is usually lossy, meaning that some original image information

is lost and cannot be restored, possibly affecting image quality. There is an optional

lossless mode defined in the JPEG standard; however, this mode is not widely supported

in products.

There is also an interlaced "Progressive JPEG" format, in which data is compressed in

multiple passes of progressively higher detail. This is ideal for large images that will be

displayed while downloading over a slow connection, allowing a reasonable preview

after receiving only a portion of the data. However, progressive JPEGs are not as widely

supported, and even some software which does support them (such as versions of Internet

Explorer before Windows 7) only displays the image after it has been completely

downloaded. There are also many medical imaging and traffic systems that create and

process 12-bit JPEG images, normally grayscale images. The 12-bit JPEG format has

been part of the JPEG specification for some time, but again, this format is not as widely

supported (JPEG, 2012).

16

1.4 Performance Measures

The performance of image compression algorithms is mainly measured in terms of the

following performance metrics.

(1) Compression ratio (C)

It is the most important and widely-used performance metric. It is defined as the ratio

between the size of the original image file (So) and the size of the compressed image file

(Sc). It is expressed mathematically as (Sayood, 2012):

 o

c

S
C

S
= (1.2)

Where C Compression ratio.

 So size of the original image file.

 Sc size of the compressed image file.

For lossy compression algorithms, two more performance metrics are introduced,

namely, the Mean Square Error (MSE) and the Peak Signal to Noise Ratio (PSNR).

(2) Mean Square Error (MSE)

The MSE is the cumulative squared error between the compressed and the original

images. A lower value for MSE means lesser error, and it is expressed as:

��� � 1 � · 	

��
�, �� � �
�, ����
�

���

�

���
 (1.3)

Where MSE Mean Square Error.

 I(x,y) Value of pixel at position (x,y) of the original image.

 K(x,y) Value of pixel at position (x,y) of the decompressed image.

17

 (3) Peak Signal to Noise Ratio (PSNR)

The PSNR is a measure of the peak error. The PSNR is most commonly used as a

measure of quality of reconstruction of lossy compression images, and it is usually

expressed in terms of the logarithmic decibel (dB) scale as follows (Huynh-Thu &

Ghanbari, 2008):

���� � 20 · !"#�$ % �&�'
√���) (1.4)

Where MAXI the maximum possible pixel value of the image.

 MSE Mean Square Error.

When the pixels are represented using 8-bit per pixel, this is 255. More generally, when

samples are represented using linear Pulse Code Modulation (PCM) with n-bit per pixel,

MAXI is 2n−1. For color images with three RGB values per pixel, the definition of PSNR

is the same except the MSE is the sum over all squared value differences divided by

image size and by three. Alternately, for color images the image is converted to a

different color space and PSNR is reported against each channel of that color space.

As seen from the inverse relation between the MSE and PSNR, this translates to a high

value of PSNR. Logically, a higher value of PSNR is good because it means that the ratio

of signal-to-noise is higher. Here, the signal is the original image, and the noise is the

error in reconstruction. So, if a compression scheme having a lower MSE (and a high

PSNR), it can be recognized as a better one.

A higher PSNR would normally indicate that the reconstruction is of higher quality

image. Typical values for the PSNR in lossy image and video compression are between

30 and 50 dB, where higher is better. Acceptable values for wireless transmission quality

loss are considered to be about 20 dB to 25 dB (Thomos, Boulgouris, & Strintzis, 2006).

In lossless compression, the two images are identical, and thus the MSE is zero. In this

case the PSNR is undefined (Salomon, 2007).

18

In this thesis, the performance metrics for evaluating the performance of an image

compression algorithm are represented in a performance triangle as shown in Figure

(1.2). These metrics include: C, PSNR, and the processing resources (processor speed and

memory). The first two metrics should be at their highest values, while the third should

be minimized to its lowest value.

Figure (1.2). Performance metrics triangle.

Compres
sion
Ratio
(C)

Highest
Possible

Peak
Signal to

Noise
Ratio

 (PSNR)
Highest
Possible

Processing Resources
(Processor Speed and Memory)

Lowest Possible

Performance
Triangle

19

1.5 The HCDC Data Compression Algorithm

A novel bit-level lossless data compression algorithm that is based on the error correcting

Hamming codes, namely the Hamming Codes based Data Compression (HCDC)

algorithm was initially developed and investigated for text compression (Al-Bahadili H. ,

2008) (Al-Bahadili & Rababa’a, 2010) . In this algorithm, the binary sequence to be

compressed is divided into blocks of n-bit length. To utilize the Hamming codes, the

block is considered as a Hamming codeword that consists of p parity bits and d data bits

(n=d+p). Then each block is tested to find if it is a valid or a non-valid Hamming

codeword. For a valid block, only the d data bits preceded by 0 are written to the

compressed file, while for a non-valid block all n bits preceded by 1 are written to the

compressed file. These additional 0 and 1 bits are used to distinguish the valid and the

non-valid blocks during the decompression process.

In this work, I propose a new high performance algorithm for image compression that is

based on the novel lossless bit-level HCDC algorithm (Al-Bahadili H. , 2008). The

HCDC algorithm has demonstrated an excellent performance and got the attention by

many researchers around the world ((Wang, Chang, Chen, & Li, 2010) (Al-Bahadili &

Rababa’a, 2010) (Al-Saab, 2011) (AlZboun, 2011) (Amro, Zitar, & Bahadili, 2010)

(Khancome, 2011) and many others)) due to the tremendous performance of the

algorithm and the potential it has. This encourages us to take a step ahead to investigate

its performance for image compression, and introduce any necessary modification to

achieve the optimum performance, in particular, high compression ratio and high image

quality. A detail description of the HCDC algorithm will be presented in Chapter 2.

1.6 Multimedia Messaging

Camera-equipped mobile phones nowadays can produce very high quality or resolution

images or videos, which encourage mobile users to take more and more pictures or

videos while they are on the move and exchange them as MMS. This of course requires

high storage capacity to store the generated image data and also wide bandwidth to

exchange data across the network. However, with tremendous advancement in processor,

20

memory, and storage media technologies, most mobiles are supplied with large storage

capacities of GB that can store large number of high resolution images or videos. Most

mobiles are also equipped with wire and wireless interface technologies to flash-out

images into more permanent or external storage media.

Despite the high storage capacity of current mobile devices, the device storage media

may not be enough accommodating all generated data, or for other reasons users may

need to clear or flash-out their mobile's storage media to a remote end while they are on

the move or using wireless technologies. There are two possible ways: either utilizing the

relatively expensive cellular network, which is usually available within range of

commercial cell phone towers (nearly 10 Km range) and it has limited bandwidth, or

utilize the high speed wireless LAN, which is free but it has very limited range (less than

200 m range), and also rarely available in urban areas. The most obvious way is to

exchange these pictures or videos through the limited cellular bandwidth.

Furthermore, one important service provided for mobile users is MMS, which involves

exchange of multimedia data. To improve the quality of this service, it is necessary to

overcome problems of mobile memory requirement, mobile power consumption and life

time, cellular network limited communication bandwidth, and meet all others users and

application needs.

In this sense, one important factor to be considered is the mobile limited power and

bandwidth recourses; so it is vital to manage power and bandwidth utilization efficiently,

by identifying ways to use less energy and bandwidth preferably with no impact on the

Quality-of-Services (QoSs).

The standard MMS can be divided into two main interrelated tasks: data processing and

data communication. However, comparing the current cellular bandwidth in many areas

around the world cannot meet the growing demands for satisfactory performance for

multimedia exchange through cellular systems. Thus, more powerful compression

algorithms and tools are required to minimize the size of the generated images while

maintaining their quality.

21

1.7 Problem Statement

In order to enhance the performance of multimedia messaging, in particular stand-still

images, through MMS across a mobile phone system (cellular network), it is necessary to

reduce the size of the exchanged image to the minimum possible size while maintaining

the maximum possible image quality. As a result of that more images can be stored in

less storage space; reduces the communication time required for the image to be sent over

communication networks or downloaded through the Internet (i.e., reduces bandwidth

resources); and reduces power consumption. The same problem faces other applications,

such as: satellite image exchange, Geographical Information System (GIS) applications,

satellite and TV broadcast, and other image applications.

As it has been mentioned above that the HCDC algorithm has been successfully used for

English text compression due to the almost exponential distribution of characters

frequencies, where the sum of the frequencies of the first sixteen most common

characters usually forms more than 85% of the total text. On the other side, the characters

frequencies of color photographs and other images with continuous color are almost flat

or equally distributed, as a result of that the original HCDC algorithm cannot achieve

significant compression ratio and sometimes inflated. However, it may be well-suited for

simpler images such as graphics or logos with solid areas of color.

In order to enhance the compression ratio of the HCDC algorithm for image compression,

the algorithm needs to be modified, in particular, by increasing the frequencies of the

most common characters to ensure satisfactory compression ratios, and also by

decreasing the range of colors without affecting the compressed image color quality.

22

1.8 Objectives of this Work

This thesis develops a modified version of the HCDC algorithm to be used for standstill

image compression. The modified version of the HCDC algorithm is characterized as an

image-based adjustable-quality algorithm with high compression ratio; therefore, it is

referred to as Adjustable-Quality HCDC and abbreviated as AQ-HCDC algorithm. It can

be used efficiently and effectively for MMS or Internet applications on mobile cellular

devices to provide high performance, where it can provide high compression ratio while

maintaining high image quality, which means reduces MMS session bandwidth

requirement and power consumption.

The main objectives of this work can be summarized as follows:

(1) Develop a new version of the HCDC algorithm for image compression, namely, the

Adjustable-Quality HCDC (AQ-HCDC) algorithm.

(2) Evaluate the performance of the AQ-HCDC algorithm in terms of C, MSE, and

PNSR by using the algorithm to compression a number of standard images of large

and small sizes images.

(3) Compare the performance (C, MSE, and PNSR) of the AQ-HCDC algorithm against

the performance of a number compressed image formats (GIF, PNG, JPEG) and a

number of lossless compression tools (ZIP and WinRAR).

(4) Discuss the results obtained, draw some conclusions and point-out some

recommendation for further development and future research.

23

1.9 Organization of the Thesis

The thesis is divided into five chapters. This chapter provides an introduction to the

concept of data compression, data compression algorithms classification methodologies,

data compression model, and data compression performance algorithms measures. It also

introduces the problems statement and the objectives of this research. The rest of this

thesis is organized as follows. Chapter 2 presents a literature review that provides a

description of the core algorithm in this work, namely, the HCDC algorithm. Chapter 2

also summarizes the most recent and related work.

Chapter 3 provides a detail description of the AQ-HCDC algorithm. It also discusses the

compressed image file header, the decompression process of the algorithm, and an

analytical analysis of the performance of the AQ-HCDC algorithm. Chapter 4 presents a

number of experiments that are performed to evaluate the compression ratio of the AQ-

HCDC algorithm over a number of large and small images. Chapter 4 also presents a

comparison between the compression ratios achieved by the AQ-HCDC algorithm

against the compression ratios of a number of well-known compressed image formats and

compression tools. In Chapter 5 and based on the results obtained conclusions are drawn

and a number of recommendations for future work are pointed-out.

24

Chapter Two

Literature Review and Previous Work

There are a large number of data compression algorithms that have been developed and

used throughout the years. Some of which are of general use, i.e., can be used to

compress files of different types (e.g., text files, image files, video files, etc.). Others are

developed to compress efficiently a particular type of files (Sayood, 2012) (Salomon,

2004) (Salomon, 2002). In this work, I concern with image compression, which has been

developed using the two modes of compression, namely, lossless and lossy. Examples of

lossless compression include: the Graphics Interchange Format (GIF), and the Portable

Network Graphics (PNG), while as an example of lossy compression is the Joint

Photographic Experts Group (JPEG). Furthermore, there are a number of general purpose

tools that have been developed for general data compression including images, such as

ZIP and WinRAR, which all have been discussed in Chapter 1.

This thesis is mainly concerned with the development and performance evaluation of a

new algorithm for standstill image compression. The new algorithm is based on the

lossless bit-level Hamming Codes based Data Compression (HCDC) algorithm (Al-

Bahadili H. , 2008). The algorithm is originally developed and used for text compression

(Al-Bahadili & Rababa’a, 2010). It also used by many researchers for compressing Web

applications (Al-Saab, 2011), for speech compression (Amro et al., 2010) (AlZboun,

2011), and for lossless image compression (Wang et al., 2009).

The new algorithm is neither lossless nor lossy, as it is designed to act as adjustable-

quality algorithm based on the range colors within the image. Therefore, it is referred to

as Adjustable-Quality HCDC (AQ-HCDC) algorithm.

This chapter presents a detail description of the HCDC algorithm as it is the core of this

research and also it provides a literature review on most recent research on image

compression.

25

2.1 The HCDC Algorithm

This section presents a detail description of the HCDC algorithm, which is classified as a

lossless, bit level, and asymmetric data compression algorithm (Al-Bahadili H. , 2008).

Then it provides an analytical analysis of the performance of the algorithm. However, let

us first discuss the concept of bit-level data compression.

In bit-level data compression, first, the data file should be represented in binary digits

(bits). A data file can be represented in bits by concatenating the binary sequences of the

characters within the file using a specific mapping or coding format, such as ASCII

codes, Huffman codes, adaptive codes. Afterwards, a bit-level processing can be

performed to reduce the size of the data files. The coding format has a huge influence on

the entropy of the generated binary sequence and consequently the compression ratio (C)

or the coding rate (Cr) that can be achieved.

Usually, in bit-level data compression algorithms, the binary sequence is subdivided into

groups of bits that are called minterms, blocks, sub sequences, etc. In this thesis, I shall

use the term blocks to refer to each group of bits. These blocks might be considered as

representing a Boolean function. Then, algebraic simplifications for bit-reduction are

performed on these Boolean functions to reduce the size or the number of blocks, and

hence, the number of bits representing the data file is reduced as well.

2.1.1 Description of the HCDC algorithm

The error-correcting Hamming code has been widely used in computer networks and

digital data communication systems as a single bit error correcting code or two bits errors

detection code. It can also be tricked to correct burst errors. The key to Hamming code is

the use of extra parity bits (p) to allow the identification of a single bit and a detection of

two bits errors.

26

Thus, for a message having d data bits and to be coded using Hamming code, the coded

message (also called codeword) will then have a length of n-bit, which is given by:

n = d + p (2.1)

Where n length of codeword.

 d length of data bits.

 p length parity bits.

This would be called a (n,d) Hamming code or simply code. The optimum length of the

codeword (n) depends on p, and it can be calculated as:

 n = 2
p - 1 (2.2)

The data and the parity bits are located at particular locations in the codeword. The parity

bits are located at positions 2
0
, 2

1
, 2

2
, …, 2

p-1
 in the coded message, which has at most n

positions. The remaining positions are reserved for the data bits, as shown in Figure (2.1).

Each parity bit is computed on different subsets of the data bits, so that it forces the parity

of some collection of data bits, including itself, to be even or odd.

A lossless binary data compression algorithm based on the error correcting Hamming

codes, namely the HCDC algorithm, was proposed by (Al-Bahadili H. , 2008). In this

algorithm, the data symbols (characters) of a source file are converted to binary sequence

by concatenated the individual binary codes of the data symbols.

27

The binary sequence is, then, subdivided into a number of blocks, each of n-bit length as

shown in Figure (2.1b). The last block is padded with 0s if its length is less than n. For a

binary sequence of So bits length, the number of blocks B (where B is a positive integer

number) is given by:

oS
B

n

 
=  
 

 (2.3)

Where B number of blocks.

 So size of the original image file.

 n length of codeword.

The number of padding bits (g), which may be added to the last block is calculated by:

 g = B · n – So (2.4)

The number of parity bits (p) within each block is given by:

ln (1)

ln (2)

n
p

 +
=  
 

 (2.5)

For a block of n-bit length, there are 2
n
 possible binary combinations (codeword) having

decimal values ranging from 0 to 2
n
-1, only 2

d
 of them are valid codewords and 2

n
-2

d
 are

non-valid codewords.

Each block is then tested to find if it is a valid block (valid codeword) or a non-valid

block (non-valid codeword). During the compression process, for each valid block the

parity bits are omitted, in other words, the data bits are extracted and written into a

temporary compressed file. However, these parity bits can be easily retrieved back during

the decompression process using Hamming codes. The non-valid blocks are stored in the

temporary compressed file without change.

28

In order to be able to distinguish between the valid and the non-valid blocks during the

decompression process, each valid block is preceded by 0, and each non-valid block is

preceded by 1 as shown in Figure (2.1c). Figures (2.2) and (2.3) summarize the flow of

the compressor and the decompressor of the HCDC algorithm.

Figure (2.1). (a) Locations of data and parity bits in 7-bit codeword, (b) an

uncompressed binary sequence of 21-bit length divided into 3 blocks of 7-bit

length, where B1 and B3 are valid blocks, and B2 is a non-valid block, and (c) the

compressed binary sequence (18-bit length).

Initialization

Select p

Calculate n = 2
p

 - 1

Calculate d = n - p

Calculate B = ceiling(So/n)

Calculate g = B * n - So

Initialize i = 0

Reading binary data

While (i<B)

29

{

Read a block of n-bit length

Add 1 to i

Check for block validity

If (block = valid codeword) then

Add 1 to v // v is the number of valid blocks

Extract the data bits (d-bit)

Write 0 followed by the extracted d-bits to the temporary compressed file

Else (block = non-valid codeword)

Add 1 to w // w is the number non-valid blocks

Write 1 followed by all n-bits to the temporary compressed file

End if

}

Figure (2.2). The main steps of the HCDC compressor.

Initialization

Select p

Calculate n = 2p
 - 1

Calculate d = n - p

Initialize i = 0

Reading binary data

While (not end of data)

{

Read one bit (h)

Add 1 to i

Check for block validity

If (h = 0) then

Add 1 to v // v is the number of valid blocks

30

Figure (2.3). The main steps of the HCDC decompressor.

2.1.2 Derivation and analysis of HCDC algorithm compression ratio

This section presents the analytical derivation of a formula that can be used to compute

the compression ratio achievable using the HCDC algorithm. The derived formula can be

used to compute C as a function of two parameters:

(1) The block size (n).

(2) The fraction of valid blocks (r).

In the HCDC algorithm, the original binary sequence is divided into B blocks of n-bit

length. These B blocks are either valid or non-valid blocks; therefore, the total number of

blocks is given by:

B = v + w (2.6)

Where B number of blocks.

 v the number of valid blocks.

 w the number non-valid blocks.

Read the following d data bits

Compute the Hamming codes for these d data bits

Write the coded block the temporary decompressed binary sequence

Else (h = 1) then

Add 1 to w // w is the number of non-valid blocks

Read a block of n bits length

Write n bits block to the temporary decompressed binary sequence

End if

}

31

For a valid block only the d data bits preceded by 0 are appended to the compressed

binary sequence (i.e., d+1 bits for each valid block). So that the length of the compressed

valid blocks (Sv) is given by:

 Sv = v (d + 1) (2.7)

Where Sv length of the compressed valid blocks.

 v the number of valid blocks.

 d Length of data bits.

For a non-valid block all bits are appended to compressed binary sequence (i.e., n+1 bits

for each non-valid block). The number of bits appended to the compressed binary

sequence is given by:

 Sw = w (n + 1) (2.8)

Where Sw length of the compressed non-valid blocks.

 w the number of non-valid blocks.

 n length of the codeword.

Thus, the length of the compressed binary sequence (Sc) can be calculated by:

 Sc = Sv + Sw = v (d + 1) + w (n + 1) (2.9)

Using Eqns. (2.6) and (2.7), Eqn. (2.9) can be simplified to

 Sc = Bn + B – v · p (2.10)

32

Substituting So=nB and Sc as it is given by Eqn. (2.10) into the equation of the

compression ratio (C) yields:

 1
o

c

S n
C

S n r p
= =

+ −
 (2.11)

Where R v/B.

r it represents the fraction of valid blocks. Substitute Eqn. (2.2) into Eqn. (2.11) gives:

2 1

2

p

p
C

r p

−
=

−
 (2.12)

It is clear from Eqn. (2.12) that, for a certain value of p, C is inversely proportional to r,

and C is varied between a maximum value (Cmax) when r=1 and a minimum value (Cmin)

when r=0. It can also be seen from Eqn. (2.12) that for each value of p, there is a value of

r at which C=1. This value of r is referred to as r1, and it can be found that r1=1/p.

Table (2.1) lists the values of Cmax, Cmin, and r1 for various values of p. These results are

also shown in Figures (2.4) and (2.5), where Figure (2.4) shows the variation of Cmax and

Cmin with p, and Figure (2.5) shows the variation of r1 with p.

Table (2.1)

Variation of Cmin, Cmax, and r1 with number of parity bits (p).

P Cmin Cmax r1

2 0.750 1.500 0.500

3 0.875 1.400 0.333

4 0.938 1.250 0.250

5 0.969 1.148 0.200

6 0.984 1.086 0.167

7 0.992 1.050 0.143

8 0.996 1.028 0.125

33

Figure (2.4). Variation of Cmin and Cmax with p.

Figure (2.5). Variation of r1 with p.

Furthermore, in order to demonstrate the effect of r on C for various p, Table (2.2) lists

the values for C when r varies between 0 and 1 in step of 0.1 and p varies between 2 to 8

in step of 1. These values are also plotted in Figure (2.6). It can be deduced from Table

(2.2) and Figure (2.6) that satisfactory values of C can be achieved when p≤4 and r>r1.

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 1 2 3 4 5 6 7 8 9 10

Number of parity bits (p)

C
om

pr
es

si
on

 r
at

io
 (

 C
)

C max

C min

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10

Number of parity bits (p)

C
ri

tic
al

 f
ra

ct
io

n
of

 v
al

id
 b

lo
ck

s.

r 1

34

Table (2.2)
Variations of C with respect to r for various values of p.

R
Number of the parity bits (p)

2 3 4 5 6 7 8

0.0 0.750 0.875 0.938 0.969 0.984 0.992 0.996

0.1 0.789 0.909 0.962 0.984 0.994 0.998 0.999

0.2 0.833 0.946 0.987 1.000 1.003 1.003 1.002

0.3 0.882 0.986 1.014 1.016 1.013 1.009 1.006

0.4 0.938 1.029 1.042 1.033 1.023 1.014 1.009

0.5 1.000 1.077 1.071 1.051 1.033 1.020 1.012

0.6 1.071 1.129 1.103 1.069 1.043 1.026 1.015

0.7 1.154 1.186 1.136 1.088 1.054 1.032 1.018

0.8 1.250 1.250 1.172 1.107 1.064 1.038 1.022

0.9 1.364 1.321 1.210 1.127 1.075 1.044 1.025

1.0 1.500 1.40 1.250 1.148 1.086 1.050 1.028

Figure (2.6). Variations of C with respect to r for various values of p.

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ratio of valid blocks (r)

C
om

pr
es

si
on

 r
at

io
 (

 C
)

 .

 p = 2
 p = 3
 p = 4
 p = 5
 p = 6
 p = 7
 p = 8

35

One important feature of the HCDC algorithm is that it can be repeatedly applied on the

binary sequence, and an equation can be derived to compute, what I refer to as the

accumulated compression ratio (Ck):

1

1 1

k k
i

k i
i i

i

S
C C

S

−

= =

= =∏ ∏ (2.13)

Where k number of repetitions.

 Si and Si-1 sizes of the binary file after and before the ith compression

loop.

 Ci is the compression ratio of the ith compression loop.

For i=1, So represents the size of the original file.

2.2 Previous Work

The section reviews some of the researches that have been developed during the last two

decades. The reviewed work is ordered chronologically from the most recent to the oldest

and for the same year it is ordered alphabetically using the first author family name.

• (Douak, Benzid, & Benoudjit, 2011) designed a lossy image compression algorithm

dedicated to color still images. After a preprocessing step (mean removing and RGB

to YCbCr transformation), the DCT transform is applied and followed by an iterative

phase (using the bisection method) including the thresholding, the quantization,

dequantization, the inverse DCT, YCbCr to RGB transform and the mean recovering.

This is done in order to guarantee that a desired quality (fixed in advance using the

well-known PSNR metric) is checked. To obtain the best possible compression ratio,

the next step is the application of a proposed adaptive scanning providing, for each (n,

n) DCT block a corresponding (n×n) vector containing the maximum possible run of

zeros at its end. The last step is the application of a modified systematic lossless

encoder. The efficiency of the proposed scheme is demonstrated by results,

especially, when faced to the method presented in recent research based on the block

truncation coding using pattern fitting principle.

36

Image enhancement and data compression methods arose from the distinct and

largely separate disciplines of image processing and communications respectively,

yet both are important components of current and future digital imaging systems

technology. (Rahman, Jobson, & Woodell, 2011) examined the relationship of these

two components with special emphasis on image enhancement and lossy JPEG

image compression. When transmission channel capacity is limited, image/data

compression is often performed to increase the data throughput. However, this

compression has a significant impact on the quality of the final data that is received.

In most cases, image enhancement performed after image compression tends to

bring out the artifacts injected into the data due to the compression. However, if

image enhancement is performed before image compression, there are two issues

that arise: (i) image enhancement typically increases the contrast, amount of

observable detail, in an image which leads to poorer compression ratios, and (ii) the

radiometric information in the original data is typically irretrievably lost.

(Rahman et al., 2011) addressed the impact of image enhancement specifically that of

the Multi-Scale Retinex with Color Restoration (MSRCR) on image compression,

and vice versa. We also look at the impact of compression on recovering original data

from enhanced imagery given certain parameters about the enhancement process. In

this context, we also develop an inversion process for the MSRCR.

• (Singh & Kumar, 2011) developed an Image Dependent Color space Transform (ID-

CCT), exploiting the inter-channel redundancy optimally and which is very much

suitable compression for large class of images. The comparative performance

evaluated and a significant improvement was observed, objectively as well as

subjectively over other quantifiable methods.

• (Telagarapu, 2011) analyzed the performance of a hybrid data compression scheme

that uses the Discrete Cosine Transform (DCT) and Wavelet transform. They carried-

out extensive experimentation and concluded that selecting proper threshold method,

better result for Peak Signal to Noise Ratio (PSNR) can be obtained.

37

• Binary Wavelet Transform (BWT) has several distinct advantages over the Real

Wavelet Transform (RWT), such as the conservation of alphabet size of wavelet

coefficients, no quantization introduced during the transform and the simple Boolean

operations involved. Thus, less coding passes are engaged and no sign bits are

required in the compression of transformed coefficients. However, the use of BWT

for the embedded grayscale image compression is not well established.

(Pan, Jin, Yuan, Xia, & Xia, 2010) proposed a novel Context-based Binary Wavelet

Transform Coding approach (CBWTC) that combines the BWT with a high-order

context-based arithmetic coding scheme to embedded compression of grayscale

images. In the CBWTC algorithm, BWT is applied to decorrelate the linear

correlations among image coefficients without expansion of the alphabet size of

symbols. In order to match up with the CBWTC algorithm, they employed the Gray

Code Representation (GCR) to remove the statistical dependencies among bi-level

bit-plane images and developed a combined arithmetic coding scheme.

In the proposed combined arithmetic coding scheme, three high-pass BWT

coefficients at the same location are combined to form an octave symbol and then

encoded with a ternary arithmetic coder. In this way, the compression performance of

the CBWTC algorithm is improved in that it not only alleviate the degradation of

predictability caused by the BWT, but also eliminate the correlation of BWT

coefficients in the same level sub-bands. The conditional context of the CBWTC is

properly modeled by exploiting the characteristics of the BWT as well as taking

advantages of non-causal adaptive context modeling. Experimental results show that

the average coding performance of the CBWTC is superior to that of the state-of-the-

art grayscale image coders, and always outperforms the JBIG2 algorithm and other

BWT-based binary coding technique for a set of test images with different

characteristics and resolutions.

38

• (Ameer & Basir, 2009) described a simple scheme to compress images through plane

fitting. The scheme can achieve better than 60:1 compression ratio, while maintaining

acceptable image quality. The results are superior to those of JPEG at comparable

compression ratios. The scheme does not require any multiplication or division

operations, making it a perfect candidate for online and/or progressive compression.

The scheme is scalable in the context of computations required to magnify the image.

Blocking effects were reduced up to 0.85 dB of PSNR through simple line fitting on

block boundaries. The performance of the scheme is further improved by optimizing

its predicted model parameters based on previously coded neighboring blocks. It is

found that less than 2 bits (on average) are enough to index the position of the

candidate neighbor, making a 100:1 compression ratio possible. The improvement in

the compression ratio came at the expense of moderate to small quality degradations.

• (Dudek, Borys, & Grzywna, 2007) reported on the new method of image

compression. The method is based on LZ77 dictionary algorithm. They introduced

two modifications such as quantization and noise levels. Their experimental results

prove that the new method of image compression gives promising results as

compared with original LZ77 dictionary algorithm and JPEG2000.

• (Krinidis, Nikolaidis, & Pitas, 2007) This paper introduces the Discrete Modal

Transform (DMT), a 1D and 2D discrete, non-separable transform for signal

processing, which, in the mathematical sense, is a generalization of the well-known

Discrete Cosine Transform (DCT). A 3D deformable surface model is used to

represent the image intensity and the introduced discrete transform is a by-product of

the explicit surface deformation governing equations. The properties of the proposed

transform are similar to those of the DCT. To illustrate these properties, the proposed

transform is applied to lossy image compression and the obtained results are

compared to those of a DCT-based compression scheme. Experimental results show

that DMT, which includes an embedded compression ratio selection mechanism, has

excellent energy compaction properties and achieves comparable compression results

to DCT at low compression ratios, while being in general better than DCT at high

compression ratios.

39

• (Krishnamoorthi & Seetharaman, 2007) proposed a family of stochastic models for

image compression, where images are assumed to be Gaussian Markov random field.

This model is based on stationary Full Range Auto Regressive (FRAR) process. The

parameters of the model are estimated with the Monte-Carlo integration technique

based on Bayesian approach. The advantage of the proposed model is that it helps to

estimate the finite number of parameters for the infinite number of orders. They used

arithmetic coding to store seed values and parameters of the model as it gives

furthermore compression. They also studied the use of Metropolis–Hastings

algorithm to update the parameters, through which some image contents such as

untexturedness are captured. Different types–both textured and untextured images–

are used for experiment to illustrate the efficiency of the proposed model and the

results are encouraging.

• (Velisavljevic, Beferull-Lozano, & Vetterli, 2007) combined the directionlets with the

Space-Frequency Quantization (SFQ) image compression method, originally based

on the standard 2-D wavelet transform. They showed that their compression method

outperforms the standard SFQ as well as the state-of-the-art image compression

methods, such as SPIHT and JPEG-2000, in terms of compressed image quality,

especially in a low-rate compression regime. They also showed that the order of

computational complexity remains the same, as compared to the complexity of the

SFQ algorithm.

• A very interesting comparison of different image compression formats can be found

in (Aguilera, 2006), in which she made a comparison of some of the most used image

representation formats on a set of different types of images: true color, greyscale,

scanned documents and high resolution photographs. She performed many

investigations to find-out how well the different formats work for each of the images,

and concluded that some formats that match some images better than others

depending in what users are looking for, and the type of image they are working with.

40

• (Cagnazzo, Cicala, Poggi, & Verdoliva, 2006) considered the class-based

multispectral image coder originally proposed in (Gelli & Poggi, 1999), and modify it

to allow its use in real time with limited hardware resources. Experiments carried out

on several multispectral images showed that the resulting unsupervised coder has a

fully acceptable complexity, and a rate–distortion performance which is superior to

that of the original supervised coder, and comparable to that of the best coders known

in the literature.

• The standard separable two-dimensional (2-D) Wavelet Transform (WT) achieved a

great success in image processing because it provides a sparse representation of

smooth images. (Velisavljevic, Beferull-Lozano, Vetterli, & Dragotti, 2006) proposed

a construction of critically sampled perfect reconstruction anisotropic transform with

Directional Vanishing Moments (DVM) imposed in the corresponding basis

functions, called directionlets. Later on, they showed that the computational

complexity of their transform is comparable to the complexity of the standard 2-D

WT and substantially lower than the complexity of other similar approaches. They

also presented a zero tree-based image compression algorithm using directionlets that

strongly outperforms the corresponding method based on the standard wavelets at low

bit rates.

• One particular approach for image compression is the image cluster compression,

surprisingly little previous work can be found about this approach. However, a

number of special cases are available, though, most notably the approach of

hyperspectral compression, which deals with the coding of a number (heavily

correlated) images of the same dimensions. (Saghri, Tescher, & Reagan, 2005)

developed a multispectral 3D image compression algorithm, which is then refined and

adapted in a number of other papers, for example (Du & Chang, 2004). Lossless

compression of correlated hyperspectral images is discussed in (Wang, Babacan, &

Sayood, 2007). (Keshava, 2004) dealt with distance metrics between spectra. Another

special case for cluster compression is the area of digital video compression, e.g.,

(Wen, et al., 2004) gave an overview over the current state-of-the-art. Lately,

(Kramm, 2007) extended the Karhunen-Loeve compression algorithm to multiple

41

images. The resulting algorithm is compared against single-image Karhunen Loeve as

well as algorithms based on the DCT. Furthermore, various methods for obtaining

compressible clusters from large image databases were evaluated.

• (Edirisinghe, Nayan, & Bez, 2004) proposed a novel, Discrete Wavelet Transform

(DWT) domain implementation of the pioneering block-based disparity compensated

predictive coding algorithm for stereo image compression. They performed predictive

coding in the form of pioneering block search in the sub-band domain. The resulting

transform domain predictive error image is subsequently converted to a so-called

wavelet-block representation, before being quantized and entropy coded by a JPEG-

like CODEC. They showed that their novel implementation is able to effectively

transfer the inherent advantages of DWT-based image coding technology to efficient

stereo image pair compression. At equivalent bit rates, the proposed algorithm

achieves peak signal to noise ratio gains of up to 5.5 dB, for reconstructed predicted

images, as compared to traditional and state of the art DCT and DWT-based

predictive coding algorithms.

• Vector quantization (VQ) is an important technique in digital image compression. To

improve its performance, (Li, Kim, & Al-Shamakhi, 2002) worked on speeding up

the design process and achieve the highest compression ratio possible. To speed up

the process, they used a fast Kohonen self-organizing neural network algorithm to

achieve big saving in codebook construction time. To obtain better reconstructed

images, they proposed an approach called the Transformed Vector Quantization

(TVQ), combining the features of transform coding and VQ. They used several data

sets to demonstrate the feasibility of the TVQ approach. A comparison of

reconstructed image quality is made between the TVQ and VQ. Also, a comparison is

made between a TVQ and a standard JPEG approach.

42

• (Mateu-Villarroya & Prades-Nebot, 2001) developed a lossless compression

algorithm for images based on Ordered Binary-Decision Diagrams (OBDDs). The

algorithm finds an OBDD which represents the image exactly and then codes the

OBDD efficiently. The results obtained show a great improvement with respect to a

previous work.

• (Hu & Chang, 2000) proposed a novel lossless image-compression scheme. A two-

stage structure is embedded in this scheme. A linear predictor is used to decorrelate

the raw image data in the first stage. Then in the second stage, an effective scheme

based on the Huffman coding method is developed to encode the residual image. This

newly proposed scheme could reduce the cost for the Huffman coding table while

achieving high compression ratio. With this algorithm, a compression ratio higher

than that of the lossless JPEG method for 512×512 images can be obtained. In other

words, the newly proposed algorithm provides a good means for lossless image

compression.

43

Chapter Three

The Adjustable-Quality HCDC Algorithm

It has been shown in Chapter 2 that the compression ratio (C) of the lossless Hamming

Codes based Data Compression (HCDC) algorithm, and consequently the algorithm

compression efficiency (Ec), depends on the distribution of the characters frequencies of

the file (data) it is compressing (Al-Bahadili H. , 2008). Practically, C and Ec are

increasing when the sum of the frequencies of a certain range of the most common

characters increase, for example, for 7-bit Hamming codewords length, the frequencies of

the first sixteen most common characters. This requirement is typically achieved in

Standard English text, where the sum of the frequencies of the first sixteen most common

characters usually forms more than 85% of the total text.

The characters frequencies of color photographs and other images with continuous color

are almost flat or equally distributed, as a result of that the original HCDC algorithm

cannot achieve significant compression ratio and sometimes inflated. However, it may be

well-suited for simpler images such as graphics or logos with solid areas of color. In

order to enhance the compression ratio of the HCDC algorithm for image compression,

the algorithm needs to be modified, in particular, by increasing the frequencies of the

most common characters to ensure satisfactory compression ratios, and also by

decreasing the range of colors without affecting the compressed image color quality.

This chapter develops a modified version of the HCDC algorithm to be used for standstill

image compression. The modified version of the HCDC algorithm is characterized as an

image-based adjustable-quality lossless/lossy algorithm with high compression ratio;

therefore, it is referred to as Adjustable-Quality HCDC and abbreviated as AQ-HCDC

algorithm. It can be used efficiently and effectively for Multimedia Messaging Service

(MMS) applications on mobile cellular devices to provide high performance, where it can

provide high compression ratio while maintaining image quality, which means reduces

bandwidth requirement and power consumption during MMS.

44

Section 3.1 presents a detail description of the compression process of the AQ-HCDC

algorithm. The compressed image file header is described in Section 3.2. In Section 3.3,

the decompression process of the algorithm is explained. An analytical analysis of the

performance of the AQ-HCDC algorithm is discussed in Section 3.4.

3.1 The Compression Process of the AQ-HCDC Algorithm

The AQ-HCDC algorithm is an adjustable-quality bit-level data compression algorithm

especially develops for standstill image compression, where the quality of the

compressed image depends on the range of colors values in the original image. The

algorithm performs lossless or lossy compression depending on the image data. It is

similar to the HCDC algorithm, where it relies on Hamming codes representations to

replace longer valid and non-valid binary Hamming codewords into shorter

representations plus a pre-fix bit. This section describes in details how the lossless HCDC

algorithm is modified to performing adjustable-quality image compression.

At the beginning, it is important to remember that the HCDC algorithm can use different

block length (n=2p-1 and n=p+d, where p is the number of parity bits and d is the number

of data bits in Hamming codes) as explained in Chapter 2. However, as it has been

discussed in (Al-Bahadili H. , 2008) and approved in (Al-Bahadili & Rababa’a, 2010)

that the most suitable value for n is 7, where in this case p=3 and d=4, and that what will

be used in this work.

The AQ-HCDC algorithm consists of two main phases, these are:

(1) The Encoding Phase.

(2) The Compression Phase.

These two phases will be described in details below:

45

Encoding Phase

In this thesis, in order to re-encode the image data using 7-bit color depth, the AQ-HCDC

algorithm performs the following pre-processing phase, which I will call the Encoding

Phase. In this phase, the data of the uncompressed image is read one byte or character at a

time; where each byte represents 8-bit color value (Vi) between 0-255 (from now onward

I shall use the term color instead of byte or character to distinguish it from text

compression), and the following steps are performed:

(1) Find the number of colors (Nco), according to their decimal values (8-bit color

depth).

(2) Find the occurrence (counts) of each color (Oi).

(3) Calculate the colors frequencies (Fi) by dividing the counts of the color by the sum

of counts of all colors; i.e., Fi=Oi/N. i is the color index (i=1, 2, …, Nco), and N is the

sum of counts of all colors and it is expressed mathematically as:

� �
*+

,-.

+��
 (3.1)

Where N counts of all colors.

 Oi counts of each color.

 Nco number of color (8-bit color depth).

(4) Sort the colors frequencies from the most common to the least common color.

If Nco exceeds 128 colors (Nco>128), discard the Least-Significant-Bit (LSB) of the color

value and shifts the remaining color bits one place to the right, which in turn, converts the

8-bit color to 7-bit color producing Vi between 0-127 (in other words, this is equivalent to

subtracting 128 from each original Vi). This is illustrated in Figure (3.1).

46

Original 8-bit color value

(0-255)
b7 b6 b5 b4 b3 b2 b1 b0

Discard LSB and right shift

(0-127)
 b7 b6 b5 b4 b3 b2 b1

New 7-bit color value

(0-127)
 b7 b6 b5 b4 b3 b2 b1

Figure (3.1). Illustration of the 8-bit to 7-bit encoding process.

If Nco is equal to or less than 128 (Nco≤128), then I use the adaptive coding described in

(Al-Bahadili & Rababa’a, 2010). In the adaptive coding, the colors values are sorted in

descending order from the most common to the least common and stored in the

compressed file header preceded by Nco. Then each color will be given a 7-bit value

equivalent to its sorted sequence number, which is given the values from 0 to Nco-1. This

means that the most common color value will be given a 0 decimal value or 0000000 in

binary. The second most common color will assign a value of 1 in decimal or 0000001 in

binary, and so on.

By the end of this pre-processing Encoding Phase, I end-up with a new number of colors

(Nce) that is equal to or less than Nco (Nce≤Nco), where Nce is the number of colors after the

Encoding Phase, practically, Nce=Nco when Nco≤128 otherwise Nce<Nco.

When Nco≤128, the compression process is still lossless as I have not changed the colors

values; otherwise, I enter the lossy region as some of the colors have their values

changed. For color photographs and other images with continuous color, I always expect

Nco>128. In this case, if the size of the compressed file header is neglected as compared

to the size of the compressed image, the Encoding Phase provides a compression ratio of

1.125.

47

According to the Encoding Phase, there two main points that can be recognized:

(1) Encoding 8-bit color value to right-shifted 7-bit color value looks very acceptable in

image compression as it achieves 12.5% reduction in image size while either reduces

color value by 1 or keep it unchanged.

(2) It is not recommended using the AQ-HCDC algorithm to compress compressed

images due to the lossy behavior of the algorithm. However, it can be used to

compress 8-bit, 16-bit, 24-bit uncompressed images.

Based on the discussion above, Figure (3.2) outlines the procedure of the Encoding Phase

of the AQ-HCDC algorithm.

Procedure of the Encoding Phase of the AQ-HCDC Algorithm.

Read image data one Byte (8-bit color depth) after another.

Find the number of colors (Nco).

Find the occurrence (Oi) or counts of each color.

Calculate the sum of counts of all colors (N) (Eqn. 3.1)

Calculate the colors frequencies (Fi), where Fi=Oi/N.

Sort the colors frequencies from the most common to the least common color.

If (Nco > 128),

Convert 8-bit color to 7-bit color producing Vi between 0-127.

Calculate the new number of colors (Nce)

Else

Use adaptive coding described above to represent the colors values.

Nce=Nco

End If

Figure (3.2). Procedure of the Encoding Phase of the AQ-HCDC algorithm.

48

Compression Phase

This is the second and the main core of the AQ-HCDC algorithm. This phase consists of

a number of steps, which can be summarized as follows:

(1) If Nce≤16: The image data can be compressed using one of the following modes.

a. Mode 1:

i. Set Ncc=Nce, where Ncc represents the number of colors that will be presented

in the compressed image.

ii. Calculate m as the number of bits required to represent the colors in the

compressed image, and m is calculated as:

/ � 0 12
 ,--� 12
�� 3 (3.2)

Where M number of bits required to represent the colors in the

compressed image.

 Ncc Ncc represents the number of colors that will be presented in the

compressed image.

So that m can be 1 (1<Ncc≤2), 2 (2<Ncc≤4), 3 (4<Ncc≤8), or 4 (8<Ncc≤16) depending on

the number of colors.

iii. Construct a header for the compressed image containing all information

necessary for the decompression process, create a compressed image file,

and store the header into the compressed image file. Description of the

compressed image header will be given in the next section.

iv. Read the image data and replace each color with m-bit binary value

equivalent to its sorted sequence number; starting from 0 to Ncc-1.

v. Convert the compressed binary sequence to bytes (8-bit characters).

49

vi. Append the compressed image data to the image header and save them into

the compressed image file, and, in this case, the size of the compressed

image file is given as:

�4 � 5 6 0 78,

9 3 (3.3)

Where Sc size of the compressed image file.

 H size of the image file header.

 N Number of colors.

Figure (3.3) outlines the procedure of Mode 1 of the Compression Phase of the AQ-

HCDC algorithm.

Procedure of Mode 1 of the Compression Phase of the AQ-HCDC Algorithm.

Set Ncc=Nce // Ncc represents No. of colors that will be presented in the compressed image.

Calculate m // Number of bits required to represent each color, Eqn. (3.2).

Construct the compressed image header containing information that is required for the decompression

process.

Read image data and replace each 8-bit color value with m-bit binary value equivalent to its sorted sequence

number; starting from 0 to Ncc-1.

Convert the compressed binary sequence to bytes (8-bit characters).

Append the compressed image data to the image header.

Create a compressed image file.

Save the header and the compressed image data into the compressed image file.

Figure (3.3). Procedure of Mode 1 of the Compression Phase of the AQ-HCDC

algorithm.

50

b. Mode 2:

i. Start from the most common colors, add counts of colors that have the 1st,

2nd, or 3rd bit differs from that for the most common color, which I shall call

the associated colors. This can be expressed as follows:

Oi = Oi + Oa = Oi + O1st + O2nd + O3rd (3.4)

Where Oi is the initial counts for color i; Oa is the total number of associative colors; and

O1st, O2nd, O3rd are counts of color that have their 1st, 2nd, and 3rd bits differs from that for

the initial color.

For example, assume the equivalent decimal value of the most common color is 35

(0100011), then the counts of associated colors 34 (0100010), 33 (0100001), and 39

(0100111) are added to the counts of the color 35 and the colors 34, 33, and 39 are

replaced by 35. So that if the initial counts of 35 is 10, 34 is 8, 33 is 6, and 39 is 4, then

the new counts for 35 is 28.

ii. Reduce Nce by the number of associated colors (e) found in the sorted colors,

which varies between 0 and 3 as it is explained in Table (3.1).

Table (3.1) - Associated colors.

e Explanation

0 No associated color is found

1 Only one associated color is found (33 or 34 or 39)

2 Two associated colors are found (33 & 34 or 33 & 39 or 34 & 39)

3 Three associated colors are found (33 & 34 & 39)

iii. Discard the associated colors and shift the colors up to fill the gap left-out

by merging the associated colors.

iv. Set the new number of colors to Nce, where Nce=Nce-e.

51

v. Repeat Steps (1.b.i) to (1.b.iv) until all possible associated colors are

merged.

vi. Sort the new colors list in descending order from the most common to the

least common.

vii. Perform Step (1.a).

Figure (3.4) outlines the procedure of Mode 2 of the Compression Phase of the AQ-

HCDC algorithm. As it can be seen that Mode 1 (Step (1.a)) provides lossless

compression to the input colors, while Mode 2 (Step (1.b)) provides either lossless or

lossy depending whether there are associated colors on the colors list or not. However, it

is also very important to realize that performing lossy compression (Step (1.b)) can be

advantageous only if Nce after merging the associated colors can reduce the value of m;

otherwise it is not beneficial to go through this Mode.

For example, for Nce=11, m=4, and due to merging the associated colors, Nce is reduced to

7, which means m=3. As a result of that the compression ratio is increased by 4/3.

However, if Nce is only reduced to 9, then applying Eqn. (3.2), m remains unchanged

(m=4). In this case, I loss quality without achieving any increases in the compression

ratio and it will better to proceed as lossless compression to the input color list Mode 1.

So that I must let the program determine the best compression mode. Furthermore, it can

be well recognized that until this moment the compression algorithm is similar to fix-

length compression benefiting from the concept of Hamming codes in realizing the

associated colors.

52

Procedure of Mode 2 of the Compression Phase of the AQ-HCDC Algorithm.

Do (i=1; i==Nce; i++)

Read Color i

Do (j=i+1; j==Nce; j++)

Set e = 0

Read Color j

Add Counts of Color j to Counts of Color i if it has the 1st, 2nd, or 3rd bit differs.

e=e+1

Keep record of the match colors.

Nce = Nce - e

Sort the new color list.

Perform the procedure in Figure (3.3).

Figure (3.4). Procedure of Mode 2 of the Compression Phase of the AQ-HCDC

algorithm.

(2) If Nce>16, then

a. Perform Steps (1.b.i) to (1.b.vi) in Mode 2.

b. If Nce≤16, then perform Steps (1.a.i) to (1.a.vi) in Mode 1, else continue.

c. Divide the list of colors into two groups as follows:

i. Group 1 contains G1 colors and G1=Nce-16.

ii. Group 2 contains G2 colors and G2=16.

d. Construct a header for the compressed image containing all information

necessary for the decompression process, create a compressed image file, and

store the header into the compressed image file. Description of the compressed

image header will be given in the next section.

53

e. Represent each color with m-bit binary value equivalent to its sorted sequence

number; starting from 0 to G1-1 for Group 1 and from 0 to 15 for Group 2. In

this case, m1 is the number of bits for Group 1 and m2 is the number of bits for

Group 2. m1 and m2 are calculated using Eqn. (3.2) with G1 and G2 replaces Ncc

for m1 and m2, respectively. m2 is usually 4-bit, while m1 could be equal to or

less than 4-bit depending on the number of colors in Group 1 (G1).

f. Replace each 8-bit color in the uncompressed image with its equivalent m-bit

color (either m1 or m2), and then convert the compressed binary sequence to

bytes (8-bit characters). Each color in Group 1 is represented by m1-bit binary

sequence preceded by 0, while colors in Group 2 are represented by m2-bit

binary sequence preceded by 1.

g. Append the compressed image data to the image header and store them into the

compressed image file, and, in this case, the size of the compressed image file is

given as:

�4 � 5 6/� ∑ *; 6 /� ∑ *;<=��>;��
<?;�� (3.4)

Where Sc size of the compressed image file.

 H size of the image file header.

 m1 number of bits required to represent the colors in the group1.

 G1 Number of colors inside group1.

 M2 number of bits required to represent the colors in the group2.

 G2 Number of colors inside group2.

 Oj counts for color j.

54

Procedure for the Compression Phase when Nce>16.

Perform the procedure in Figure (3.4) except the last step.

If (Nce≤16)

Perform the procedure in Figure (3.3)

Else

Divide the list of colors into two groups:

Group 1 contains G1 colors and G1=Nce-16

Group 2 contains G2 colors and G2=16

Calculate m1

Calculate m2

Construct the compressed image header containing information for the decompression process.

Read image data and replace each 8-bit color value with either m1 or m2 -bit binary value equivalent to its

sorted sequence number; starting from 0 to G1-1 for Group 1 or from 0 to 15 for Group 2.

Convert the compressed binary sequence to bytes (8-bit characters).

Append the compressed image data to the image header.

Create a compressed image file.

Save the header and the compressed image data into the compressed image file.

Figure (3.5) outline the procedure for the Compression Phase when Nce>16.

55

3.2 The Compressed File Header

The AQ-HCDC algorithm compressed file header contains all additional information that

is required by the decompression algorithm. It consists of three main fields; these are:

(a) HCDC field

(b) Colors field

(c) Original file header field

These three fields will be followed by the image compressed data. In what follows a brief

description is given for the fields of the compressed file header.

(a) HCDC field

The HCDC field of the AQ-HCDC algorithm is designed to keep the same structure of

original HCDC field for consistency purposes. It is an 8-byte field encloses information

related to the algorithm, such as: algorithm name (HCDC), algorithm version (V), number

of symbols (colors) in the original image, coding format (F), number of compression

loops (k). It can be seen that some of the data is redundant, however, they have

insignificant effect due their very small (negligible size).

The original HCDC algorithm (Al-Bahadili H. , 2008) was designated as Version-0 (i.e.,

V is set to 0), the HCDC(k) scheme (Al-Bahadili & Rababa’a, 2010) is designated as

Version-1 (i.e., V is set to 1), while the AQ-HCDC algorithm is designated as Version 2.

The coding format (F) is set to 0 for ASCII coding, 1 for Huffman coding, 2 for adaptive

coding, etc. Table (3.2) lists the components of this field and their description.

56

(b) Colors field

The colors field is designed to include minimum information, it encloses information

related to: number of colors in Group 1 (G1), number of colors in Group 2 (G2), and

values (Vi) of colors sorted from the most common to the least common. Table (3.3) lists

the components of the colors field, their wordlength, and brief description. The values of

m1 and m2 can be calculated using Eqn. (3.2) for Group 1 and Group 2, and also Ncc can

be calculates as Ncc= G1+G2.

Table (3.2)

Components of the HCDC field of the AQ-HCDC compressed file header.

Components
Length

(Byte)
Description

HCDC 4 Name of the compression algorithm.

V 1 Version of the HCDC algorithm.

Nc 1 Number of symbols (colors) within the original text (image) file.

F 1
Coding format (0 for ASCII coding, 1 for Huffman coding, 2 for

adaptive coding, etc.)

K 1 The number of compression loops.

57

(c) Original File Header Field

 This field contains a copy of the header of the original image, e.g., the 54-Byte header of

the uncompressed image. This field cannot be compressed as the image data, because the

AQ-HCDC algorithm may perform lossy compression, which means it will be difficult to

retrieve the original header of the image.

Figure (3.6) shows the structure of the AQ-HCDC compressed file header. It can be seen

that the total length has a maximum size of 96 Bytes, and generally it is given by:

H = 64 + Ncc (3.6)

Where H size of the image file header.

 Ncc number of colors that will be presented in the compressed

image.

Table (3.3)

Components of the colors field of the AQ-HCDC compressed file header.

Components

Length

(Byte)

Description

G1 1 Number of colors in Group 1 (0≤G1≤ Nce-16).

G2 1 Number of colors in Group 2 (0≤G2≤16).

Vi Ncc
The colors values in the compressed image, where i=1 to Ncc, and

Ncc=G1+G2.

58

The 64 Byte in Eqn. (3.6) is the sum of 8-Byte for the HCDC field, 2-Byte for the fix-part

of the color field, and 54-Byte the original BMP image header.

H C D C V Nc F K G1 G2 Vi, Vi, Vi, …, VNcc
Original Image

Header

Compressed Image

Data

Figure (3.6). The structure of the AQ-HCDC compressed file header.

3.3 The Decompression Process of the AQ-HCDC Algorithm

The decompression process of the AQ-HCDC algorithm is very simple and

straightforward and it is accomplished much faster than the compression process,

therefore, the algorithm is classified as an asymmetric compression algorithm where the

there is a difference in the processing time between the compression and the

decompression processes.

The decompression algorithm of the AQ-HCDC algorithm can be divided into two main

phases. In the first phase, the algorithm reads in the header data and prepares the list of

the colors values. In particular, the decompression algorithm (decompressor) starts by

reading the compressed image header. After approving the algorithm’s name and version,

it reads the values of G1 and G2 and computes m1, m2, and Ncc. Then it reads the sorted

colors values from Vi to VNcc.

In the second phase, which is the core of the decompressor, the algorithm reads in the

image data based on the total number of compressed colors in the image header (Ncc). If

Ncc≤16, then it reads in the image data as m1-bit colors. For each m1-bit, it calculates its

equivalent decimal number (D) between 0 and 2m1-1, then it set the uncompressed color

to color value in file header with index number D+1, i.e., the uncompressed color value is

Vi(D+1). Setting the index to D+1 because the colors are numbered from 1 to Ncc, while

the decimal values starts from 0.

If Ncc>16, the decompressor starts by reading in 1-bit, if it is 0, it reads in m1-bit,

calculates D, and then set the color to the color value VD+1 in Group 1; otherwise (1-bit

value is 1), it reads in m2-bit, calculate D, and then set the color to the color value VD+1 in

59

Group 2. This process continues until readings in all image data. Figure (3.7) outlines the

procedure for the AQ-HCDC algorithm decompressor.

3.4 Analytical Analysis of Performance of the AQ-HCDC Algorithm

This section presents the analytical analysis of the performance of the AQ-HCDC

algorithm. From the description of the algorithm in previous sections, it can be

recognized that the algorithm replaces an 8-bit original color to a shorter representation

depending on the original image colors values. In worst case the algorithm replaces 8-bit

colors by 5-bit colors; 1-bit as a prefix and 4-bit represents the sequence number of the

color within its group. Therefore, the minimum compression ratio that can be achieved by

the algorithm is 1.6, which comes from dividing 8 by 5, and assuming a negligible header

size.

The compression ratio can be increased to 8 for images with 2 colors, where one color

will be replaced by 0 while the other color by 1. Similarly, it is increased to 4, 2.67, and 2

for images with 4, 8, and 16 colors or approximated to have these numbers of colors

inside the image. However, in all cases, due to the nature of approximating the colors, the

AQ-HCDC algorithm can achieve better compressed image quality than other algorithms

as I shall demonstrate in the next chapter.

Procedure for the AQ-HCDC algorithm decompressor.

Read in the image header.

Extract the values of G1 and G2.

Calculate m1, m2 (using Eqn. (3.2)) and Ncc=G1+G2.

Reads in the colors values (Vi for i=1 to Ncc).

If (Ncc≤16) Then

Do

Reads in m1-bit

Calculate its equivalent decimal value (D)

Find the associate color from the colors list with index D+1 from Group 1.

60

Set this value to the uncompressed image data.

Loop until end of image data

Else

Do

Reads in 1-bit (B)

If (B=0) then

Reads in m1-bit

Calculate its equivalent decimal value (D)

Find the associate color from the colors list with index D+1 from Group 1.

Set this value to the uncompressed image data.

Else

Reads in m2-bit

Calculate its equivalent decimal value (D)

Find the associate color from the colors list with index D+1 from Group 2.

Set this value to the uncompressed image data.

End If

Loop until end of image data

End If

Figure (3.7). Procedure for the AQ-HCDC algorithm decompressor.

61

Chapter Four

Experimental Results and Discussions

The Adjustable-Quality Hamming Codes based Data Compression (AQ-HCDC)

algorithm is implemented using VB.Net programming language. The resultant code

allows a wide range of investigations and experiments to be performed on a wide range

of image compression applications. However, in this thesis, I only present a limited

number of image compression results to demonstrate the performance of the algorithm in

providing a high performance adjustable quality image compression, especially useful for

mobile and Internet applications.

In order to demonstrate the performance of the algorithm, I carried out two types of

experiments; one experiment for large-size image compression and the second

experiment for small-size image compression. The images used in these experiments are

widely-used by many researchers as a test images due to their standard features. In

particular, I have selected six large-size images, namely, AirPlane, Baboon, CornField,

Flowers, Girl, and Monarch, which are shown in Figure (4.1). Small-size images are

created by reducing the dimensions of the images. The dimensions and sizes of the large-

size images are given in Tables (4.1) and shown in Figure (4.1), while those for small-

size images are given in Table (4.2) and shown in Figure (4.2). The images are listed

according to their sizes from the smaller to larger size.

Table (4.1)

Large-Size test images.

 Table (4.2)

Small-Size test images.

Image
Dimensions

(Pixel)
Size (Byte) # Image

Dimensions
(Pixel)

Size (Byte)

1 Flowers 500x362 543,054 1 AirPlane 239x240 172,854

2 Baboon 500x480 720,054 2 Baboon 250x240 180,534

3 CornField 512x480 737,334 3 CornField 256x240 184,374

4 AirPlane 512x512 786,486 4 Monarch 320x213 204,534

5 Monarch 768x512 1,179,702 5 Girl 300x240 216,054

6 Girl 720x576 1,244,214 6 Flowers 320x231 221,814

62

Flowers.BMP Baboon.BMP

CornField.BMP AirPlane.bmp

Monarch.BMP Girl.BMP

Figure (4.1). The uncompressed large-size test images (BMP format).

63

AirPlane.bmp Baboon.BMP

CornField.BMP Monarch.BMP

Girl.BMP Flowers.BMP

Figure (4.2). The uncompressed small-size test images (BMP format).

64

The performance of the AQ-HCDC algorithm is evaluated in terms of three performance

measures, namely, Compression ratio (C), Mean Square Error (MSE), and Peak Signal to

Noise Ratio (PSNR), which are defined in Chapter 1. At this stage, it is important to

indicate that little efforts have been taken to optimize the runtime of the

compression/decompression code, therefore will not present timing results. However, in

general, through our investigations, I have found that the AQ-HCDC algorithm

demonstrate an asymmetric timing behavior, where the compression processing time is

higher than the time required for decompression.

In both experiments, the performance of the AQ-HCDC algorithm is compared against

the performance of a number of standard lossless and lossy compressed image formats,

and lossless compression tools. The image formats and tools that are considered in this

thesis are:

• Uncompressed

o Bitmap (BMP)

• Lossless compressed image formats:

o Graphics Interchange Format (GIF)

o Portable Network Graphics (PNG)

• Lossy compressed image formats:

o Joint Photographic Experts Group (JPEG)

• Lossless tools

o Windows Roshal ARchive (WinRAR)

o Phil Katz's ZIP (ZIP)

A brief description of these image formats and tools were given in Chapter 1. It is also

important to mention that the AQ-HCDC compressed file header is taken into

considerations in both experiments.

65

4.1 Experiment #1: Compressing Large-Size Images

This experiment evaluates the performance measures (C, MSE, and PNSR) achieved by

the AQ-HCDC algorithm for compression the six large-size images that are described in

Table (4.1). Furthermore, it compares these performance measures for the AQ-HCDC

algorithm against those for the standard lossless and lossy compressed image formats,

and lossless compression tools that are described above. The results for the sizes of

images before and after compression, C, MSE, and PNSR are listed in Tables (4.3), (4.4),

(4.5), and (4.6), respectively, and also plotted in Figures (4.3) to (4.6).

Comparing the compression ratio between the AQ-HCDC algorithm and the compressed

image formats and lossless compression tools, it can be seen in Tables (4.3) and (4.4),

and Figures (4.3) and (4.4) that:

• The AQ-HCDC algorithm achieves a compression ratio of ≈1.6. This is because

the compressed colors span over two groups, each of 16 colors; so that each

uncompressed 8-bit color is expressed with only 5-bit (1-bit identifying the group

number and 4-bit identifying the sequence of the color within the group). The

colors span over two complete group because the images selected have a

continuous color distribution, where after discarding the color’s Least Significant

Bit (LSB) and shift each color’s bits one place to the right, all images are turn-out

to have all possible color values (i.e., 0-127). It also important to recognize that

the size of the compressed image header is 96 (Eqn. 3.6), and this value is

negligible as compared to the images sizes.

• The compression ratio achieved by the AQ-HCDC algorithm is higher than (≈1.6)

that achieved by the lossless PNG (≈1.2 except for Baboon image where it is 2.6)

and less than that achieved by the lossy JPEG (from 4.2 to 9.1). This is at the cost

of some reduction/improvement in the image quality, where the AQ-HCDC

algorithm provides better image quality than that produced by the JPEG format

and of course less image quality in comparison with PNG, which I will discuss

next.

66

• The AQ-HCDC algorithm provides higher compression ratio than ZIP and

competitive performance to WinRAR for all images except for Baboon, where

both tools are higher due to the image structure and characters frequencies.

Although, this doesn’t look a fare comparison as these tools are lossless and

multi-algorithms tools, while the AQ-HCDC algorithm is behaving likes lossy but

it is a single algorithm. However, it is very useful to demonstrate the compression

power of the AQ-HCDC algorithm.

Comparing the compressed image quality between the AQ-HCDC algorithm and the

compressed image formats and lossless compression tools, it can be seen in Tables (4.5)

and (4.6), and Figures (4.5) and (4.6) that:

• The AQ-HCDC algorithm provides better image quality that the lossy JPEG

algorithm, which is also meeting the standards for acceptable image quality. It

provides a PNSR of more than 30 dB, where the typical values for the PSNR in

lossy image and video compression are between 30 and 50 dB, where higher is

better (Barni, 2006); and the acceptable values for wireless transmission quality

loss are considered to be about 20 dB to 25 dB (Thomos et al., 2006). However,

these values are than that for the JPEG compression format.

Due to the wide range of colors values in the test images, the AQ-HCDC algorithm

provides a compression ratio of 1.6, which represents the minimum it can achieve. At the

same time, it can be easily realized that for such images with wide colors range the

compression ratio has no effect on the compressed image quality, and in fact the

compressed image quality improves (increases) as the compression ratio increase above

1.6. Because, for example, with reference to our discussion in Chapter 3, if the total

number of compressed colors in the last group is less than 16 colors and they require less

than 4-bit to represent them, then the compression ratio increases, and at the same time

this means that I made less color approximation, which in turn reduces MSE and

consequently increases PNSR.

67

Figure (4.3). Experiment #1: Comparing the sizes of the uncompressed and compressed

images for various compressed image formats and compression tools.

Table (4.3) – Experiment #1 – Large-Size Images

Comparing the sizes of the uncompressed and compressed images for various compressed image
formats and compression tools.

Image

Un-
compressed
Image Size

(BMP)
(Byte)

Lossless Compressed
Formats

Lossy
Compressed

Format

Lossless Compression
Tools

AQ-HCDC

GIF PNG JPEG ZIP WinRAR

Flowers 543,054 101,431 498,897 91,286 442,875 338,807 339505

Baboon 720,054 161,823 281,327 167,834 215,198 226,663 450130

Corn Field 737,334 110,699 654,745 103,289 581,545 434,208 460930

Air Plane 786,486 96,638 639,736 89,900 561,678 416,430 491650

Monarch 1,179,702 190,991 946,312 130,164 812,905 529,232 737410

Girl 1,244,214 193,615 1,041,310 144,626 921,290 538,736 777730

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

Flowers Baboon Corn Field Air Plane Monarch Girl

Im
a
g

e
S

iz
e

(B
y

te
) BMP

GIF

PNG

JPEG

ZIP

WinRAR

AQ-HCDC

68

Figure (4.4). Experiment #1: Comparing C for various compressed image formats and

compression tools.

Table (4.4) – Experiment #1 – Large-Size Images

Comparing C for various compressed image formats and compression tools.

Image

Un-
compressed
Image Size

(BMP)
(Byte)

Lossless Compressed
Formats

Lossy
Compressed

Format

Lossless Compression
Tools

AQ-HCDC

GIF PNG JPEG ZIP WinRAR

Flowers 543,054 5.354 1.089 5.949 1.226 1.603 1.600

Baboon 720,054 4.450 2.559 4.290 3.346 3.177 1.600

Corn Field 737,334 6.661 1.126 7.139 1.268 1.698 1.600

Air Plane 786,486 8.138 1.229 8.748 1.400 1.889 1.600

Monarch 1,179,702 6.177 1.247 9.063 1.451 2.229 1.600

Girl 1,244,214 6.426 1.195 8.603 1.351 2.310 1.600

0

1

2

3

4

5

6

7

8

9

10

Flowers Baboon Corn Field Air Plane Monarch Girl

C
o

m
p

re
ss

io
n

 R
a

ti
o

GIF

PNG

JPEG

ZIP

WinRAR

AQ-HCDC

69

Figure (4.5). Experiment #1: Comparing MSE for various compressed image formats.

Table (4.5) – Experiment #1 – Large-Size Images

Comparing MSE for various compressed image formats and compression tools.

Image

Un-
compressed
Image Size

(BMP)
(Byte)

Lossless Compressed
Formats

Lossy
Compressed

Format

Lossless Compression
Tools

AQ-HCDC

GIF PNG JPEG ZIP WinRAR

Flowers 543,054 1131.28 0 102.23 0 0 30.67

Baboon 720,054 901.85 0 352.16 0 0 26.33

Corn Field 737,334 972.24 0 63.03 0 0 42.01

Air Plane 786,486 806.28 0 65.61 0 0 34.43

Monarch 1,179,702 1055.21 0 18.31 0 0 35.78

Girl 1,244,214 994.02 0 31.56 0 0 32.48

0

200

400

600

800

1000

1200

Flowers Baboon Corn Field Air Plane Monarch Girl

M
ea

n
 S

q
u

a
re

 E
rr

o
r

(M
S

E
)

GIF

JPEG

AQ-HCDC

70

Figure (4.6). Experiment #1: Comparing PNSR for various compressed image formats.

Table (4.6) – Experiment #1 – Large-Size Images

Comparing PNSR for various compressed image formats and compression tools.

Image

Un-
compressed
Image Size

(BMP)
(Byte)

Lossless Compressed
Formats

Lossy
Compressed

Format

Lossless Compression
Tools

AQ-HCDC

GIF PNG JPEG ZIP WinRAR

Flowers 543,054 17.56 ∞ 28.03 ∞ ∞ 33.26

Baboon 720,054 18.58 ∞ 22.66 ∞ ∞ 33.93

Corn Field 737,334 18.25 ∞ 30.14 ∞ ∞ 31.90

Air Plane 786,486 19.07 ∞ 29.96 ∞ ∞ 32.76

Monarch 1,179,702 17.90 ∞ 35.50 ∞ ∞ 32.60

Girl 1,244,214 18.16 ∞ 33.13 ∞ ∞ 33.06

0

5

10

15

20

25

30

35

40

Flowers Baboon Corn Field Air Plane Monarch Girl

P
ea

k
 S

ig
n

a
l

to
 N

o
is

e
R

a
ti

o
 (

P
S

N
R

)

GIF

JPEG

AQ-HCDC

71

4.2 Experiment #2: Compressing Small-Size Images

This experiment evaluates the performance measures (C, MSE, and PNSR) achieved by

the AQ-HCDC algorithm for compression the six small-size images that are described in

Table (4.2). Furthermore, it compares these performance measures for the AQ-HCDC

algorithm against those for the standard lossless and lossy compressed image formats,

and lossless compression tools that are described above. The results for the sizes of

images before and after compression, C, MSE, and PNSR are listed in Tables (4.7), (4.8),

(4.9), and (4.10), respectively, and also plotted in Figures (4.7) to (4.10).

Comparing the compression ratio between the AQ-HCDC algorithm and the compressed

image formats and lossless compression tools, it can be seen in Tables (4.7) and (4.8),

and Figures (4.7) and (4.8) that:

• The AQ-HCDC algorithm achieves as in the previous experiment a compression

ratio of ≈1.6. This is because of the same reason described in previous section for

large-size images, where the compressed colors span over two groups, each of 16

colors; so that each uncompressed 8-bit color is expressed with only 5-bit (1-bit

identifying the group number and 4-bit identifying the sequence of the color

within the group). The colors span over two complete group because the images

selected have a continuous color distribution, where after discarding the color’s

LSB and shift each color’s bits one place to the right, all images are turn-out to

have all possible color values (i.e., 0-127). It also important to recognize that the

size of the compressed image header is the same as well and it is equal to 96 Byte

(Eqn. 3.6). However, in this case it shows very insignificant effect as the

compression ratio is calculated as 1.599≈1.6.

• The compression ratio achieved by the AQ-HCDC algorithm is higher than (≈1.6)

that achieved by the lossless PNG (≈1.1) and less than that achieved by the lossy

JPEG (from 4.4 to 7.0). This is at the cost of some reduction/improvement in the

image quality, where the AQ-HCDC algorithm provides better image quality than

that produced by the JPEG format and of course less image quality in comparison

with PNG as I shall discuss next.

72

• The AQ-HCDC algorithm provides higher compression ratio than ZIP and

competitive performance to WinRAR. Although, this doesn’t look a fare

comparison as these tools are lossless and multi-algorithms tools, while the AQ-

HCDC algorithm is behaving likes lossy but it is a single algorithm. But, it is very

useful to demonstrate the power of the AQ-HCDC algorithm.

Comparing the compressed image quality between the AQ-HCDC algorithm and the

compressed image formats and lossless compression tools, it can be seen in Tables (4.9)

and (4.10), and Figures (4.9) and (4.10) that:

• The AQ-HCDC algorithm provides almost the same image quality as for the lossy

JPEG algorithm, which is around 30 dB. However, for many images the AQ-

HCDC algorithm provides little bit higher image quality than JPEG. Both

algorithms meet the standards for acceptable compressed image quality, where the

typical values for the PSNR in lossy image and video compression are between 30

and 50 dB, where higher is better (Barni, 2006).

73

Figure (4.7). Experiment #2: Comparing the sizes of the uncompressed and compressed

images for various compressed image formats and compression tools.

0

50,000

100,000

150,000

200,000

250,000

AirPlane Baboon CornField Monarch Girl Flowers

Im
a

g
e

S
iz

e
(B

y
te

) BMP

GIF

PNG

JPEG

ZIP

WinRAR

AQ-HCDC

Table (4.7) – Experiment #2 – Small-Size Images

Comparing the sizes of the uncompressed and compressed images for various compressed image
formats and compression tools.

Image

Un-
compressed
Image Size

(BMP)
(Byte)

Lossless Compressed
Formats

Lossy
Compressed

Format

Lossless Compression
Tools

AQ-HCDC

GIF PNG JPEG ZIP WinRAR

AirPlane 172,854 23,211 138,658 24,654 126,024 93,639 108130

Baboon 180,534 38,235 178,480 40,361 161,800 154,659 112930

CornField 184,374 30,894 164,897 31,582 147,950 121,050 115330

Monarch 204,534 35,915 192,306 30,524 172,507 115,270 127930

Girl 216,054 36,733 202,636 33,626 183.134 121,172 135130

Flowers 221,814 43,570 207,059 42,204 186,312 141,813 138730

74

Figure (4.8). Experiment #2: Comparing C for various compressed image formats and

compression tools.

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

AirPlane Baboon CornField Monarch Girl Flowers

C
o

m
p

re
ss

io
n

 R
a

ti
o

 (
C

)

GIF

PNG

JPEG

ZIP

WinRAR

AQ-HCDC

Table (4.8) – Experiment #2 – Small-Size Images

Comparing C for various compressed image formats and compression tools.

Image

Un-
compressed
Image Size

(BMP)
(Byte)

Lossless Compressed
Formats

Lossy
Compressed

Format

Lossless Compression
Tools

AQ-HCDC

GIF PNG JPEG ZIP WinRAR

AirPlane 172,854 7.447 1.247 7.011 1.372 1.846 1.599

Baboon 180,534 4.722 1.012 4.473 1.116 1.167 1.599

CornField 184,374 5.968 1.118 5.838 1.246 1.523 1.599

Monarch 204,534 5.695 1.064 6.701 1.186 1.774 1.599

Girl 216,054 5.882 1.066 6.425 1.180 1.783 1.599

Flowers 221,814 5.091 1.071 5.256 1.191 1.564 1.599

75

Figure (4.9). Experiment #2: Comparing MSE for various compressed image formats.

0

200

400

600

800

1000

1200

AirPlane Baboon CornField Monarch Girl Flowers

M
ea

n
 S

q
u

a
re

 E
rr

o
r

(M
S

E
)

GIF

JPEG

AQ-HCDC

Table (4.9) – Experiment #2 – Small-Size Images

Comparing MSE for various compressed image formats and compression tools.

Image

Un-
compressed
Image Size

(BMP)
(Byte)

Lossless Compressed
Formats

Lossy
Compressed

Format

Lossless Compression
Tools

AQ-HCDC

GIF PNG JPEG ZIP WinRAR

AirPlane 172,854 782.46 0 59.17 0 0 34.12

Baboon 180,534 900.44 0 188.47 0 0 35.62

CornField 184,374 963.78 0 79.61 0 0 35.93

Monarch 204,534 1010.81 0 48.70 0 0 38.23

Girl 216,054 960.44 0 55.79 0 0 34.20

Flowers 221,814 1001.16 0 137.83 0 0 32.26

76

Figure (4.10). Experiment #2: Comparing PNSR for various compressed image formats.

0

5

10

15

20

25

30

35

AirPlane Baboon CornField Monarch Girl Flowers

P
ea

k
 S

ig
n

a
l

to
 N

o
is

e
R

a
ti

o
 (

P
S

N
R

)

GIF

JPEG

AQ-HCDC

Table (4.10) – Experiment #2 – Small-Size Images

Comparing PNSR for various compressed image formats and compression tools.

Image

Un-
compressed
Image Size

(BMP)
(Byte)

Lossless Compressed
Formats

Lossy
Compressed

Format

Lossless Compression
Tools

AQ-HCDC

GIF PNG JPEG ZIP WinRAR

AirPlane 172,854 19.20 ∞ 30.41 ∞ ∞ 32.80

Baboon 180,534 18.59 ∞ 25.38 ∞ ∞ 32.61

CornField 184,374 18.29 ∞ 29.12 ∞ ∞ 32.58

Monarch 204,534 18.13 ∞ 26.74 ∞ ∞ 33.04

Girl 216,054 18.30 ∞ 30.67 ∞ ∞ 32.79

Flowers 221,814 18.09 ∞ 31.26 ∞ ∞ 32.30

77

4.3 Further Discussion

It can be clearly recognized from the results presented in the previous two sections that

there are some common points on large-size and small-size images compression; these

are:

(1) Despite the fact that GIF is classified as lossless algorithm, it always provides the

highest compression ratio with very low image quality; and this is because GIF

handle the image as an 8-bit color, while it is originally as 24-bit color.

(2) The PNG, as 24-bit lossless compression image format, always presents 0 error

and consequently undefined PNSR (∞). The same for ZIP and WinRAR.

(3) The WinRAR always provides better performance in terms of compression ratio

than the ZIP.

(4) The AQ-HCDC almost provides the same performance in terms of C, MSE, and

PNSR for both large-size and small-size images compression, while GIF and

JPEG provide fluctuated performance.

(5) The AQ-HCDC algorithm and JPEG always provides a PNSR of more than 30

dB, while GIF provides almost half of this value (∞17 dB) for both large-size and

small-size image compression.

Our early investigations on using ZIP and WinRAR as post compressor for GIF, PNG,

JPEG, and AQ-HCDC image formats indicate that the AQ-HCDC format can provide the

highest compression ratio among them all. However, this needs further investigations and

it is left for future research.

78

Chapter Five

Conclusions and Recommendations for Future Work

5.1 Conclusions

This Thesis develops a modified version of the lossless bit-level Hamming Codes based

Data Compression (HCDC) algorithm to be used for standstill image compression. The

modified version of the HCDC algorithm is characterized as an image-based adjustable-

quality lossless/lossy algorithm; therefore, it is referred to as Adjustable-Quality HCDC

and abbreviated as AQ-HCDC algorithm. It can be used efficiently and effectively for

Multimedia Messaging Service (MMS) and Internet applications on mobile networks to

provide high performance, where it can provide high compression ratio while maintaining

image quality, which means reduces bandwidth requirement and power consumption

during MMS and Internet applications.

In order to evaluate the performance of the AQ-HCDC algorithm, two types of

experiments were carried-out; the first experiment evaluates the performance of the

algorithm for large-size images compression, while the second for small-size images

compression. The images used in these experiments are widely-used as a test images by

many researchers due to their standard features. In particular, six large-size images,

namely, AirPlane, Baboon, CornField, Flowers, Girl, and Monarch, were selected, and

then an equivalent set of small-size images were created by reducing the dimensions of

the these images.

The performance of the AQ-HCDC algorithm was evaluated in terms of three

performance measures, namely, Compression ratio (C), Mean Square Error (MSE), and

Peak Signal to Noise Ratio (PSNR). In all experiments, the performance of the AQ-

HCDC algorithm is compared against the performance of a number of standard lossless

compressed image formats (e.g., GIF and PNG), lossy image format (e.g., JPEG), and

lossless compression tools (e.g., ZIP and WinRAR).

The main conclusions of this thesis are:

79

(1) The AQ-HCDC algorithm achieves a compression ratio of ≈1.6. This is because

the compressed colors span over two groups, each of 16 colors; so that each

uncompressed 8-bit color is compressed to only 5-bit (1-bit identifying the

group number and 4-bit identifying the sequence of the color within the group).

The colors span over two complete group because the images selected have a

continuous color distribution, where after discarding the color’s Least

Significant Bit (LSB) and shift each color’s bits one place to the right, all

images are turn-out to have all possible color values (i.e., 0-127).

(2) The compression ratio achieved by the AQ-HCDC algorithm is higher than that

achieved by the lossless PNG and less than that achieved by the lossless 8-bit

GIF and the lossy JPEG. This is at the cost of some reduction/improvement in

the image quality, where the AQ-HCDC algorithm provides better image

quality than that produced by the JPEG format and of course less image quality

in comparison with PNG.

(3) The AQ-HCDC algorithm provides higher compression ratio than ZIP and

competitive performance to WinRAR for all images except for Baboon, where

both tools are higher due to the image structure and characters frequencies.

Although, this doesn’t look a fare comparison, however, it is very useful to

demonstrate the compression power of the AQ-HCDC algorithm.

(4) The AQ-HCDC algorithm provides better image quality that the lossy JPEG

algorithm, which is also meeting the standards for acceptable image quality. It

provides a PNSR of more than 30 dB.

(5) The AQ-HCDC algorithm achieves a compression ratio and image quality that

are high enough to be competent with the compression ratio and image quality

achieved by many well-known algorithms of statistical and adaptive nature.

80

5.2 Recommendations for Future Work

The main recommendations for future work are:

(1) Perform further investigations on the AQ-HCDC algorithm to cover a wider

range of image sizes and of various colors frequencies.

(2) Evaluate the compression ratio of the AQ-HCDC algorithm followed by ZIP or

WinRAR to compress BMP images, and compare it against the compression

ratio for applying ZIP or WinRAR to other lossless (e.g., GIF and PNG) and

lossy (e.g., JPEG) compression formats.

(3) Develop an optimized version of the code to compare its runtime with other

compression algorithms and state-of-the-art software. In addition, to compare the

compression and the decompression processing runtimes.

Modify the core of AQ-HCDC algorithm itself in some way to provide higher

compression ratio, while maintaining the maximum possible quality for the compressed

image.

81

References

ZIP. (2011, April 14). Retrieved from Info-ZIP: http://www.info-zip.org/mans/zip.html

BMP file format. (2012, September 25). Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/BMP_file_format

Graphics Interchange Format. (2012, September 18). Retrieved from wikipedia:

http://en.wikipedia.org/wiki/Graphics_Interchange_Format

JPEG. (2012, September 19). Retrieved from wikipedia:

http://en.wikipedia.org/wiki/JPEG

Portable Network Graphics. (2013, January 23). Retrieved from DBpedia:

http://live.dbpedia.org/page/Portable_Network_Graphics

Adiego, J., Navarro, G., & de la Fuente, P. (2007). Using structural contexts to compress

semistructured text collections. Information Processing & Management, 43(3),
769–790.

Aguilera, P. (2006). Comparison of different image compression formats. Retrieved

December 10, 2012, from CAE:
http://homepages.cae.wisc.edu/~ece533/project/f06/aguilera_rpt.pdf

Al-Bahadili, H. (2008). A novel lossless data compression scheme based on the error

correcting Hamming codes. Computers & Mathematics with Applications, 56(1),
143–150.

Al-Bahadili, H., & Hussain, S. M. (2008). An adaptive character wordlength algorithm

for data compression. Computers & Mathematics with Applications, 55(6), 1250–
1256.

Al-Bahadili, H., & Hussain, S. M. (2010). Bit-level Text Compression Scheme Based on

the ACW Algorithm. International Journal of Automation and Computing, 7(1),
123-131.

Al-Bahadili, H., & Rababa’a, A. (2010). A Bit-Level Text Compression Scheme Based

on the HCDC Algorithm. International Journal of Computers and Applications,

32(3), 123-131.

Al-Saab, S. (2011). A Novel Search Engine Model Based on Index-Query Bit-Level

Compression. The Research Bulletin of Jordan ACM, 2(4), 119-126.

82

AlZboun, F. (2011). Hamming Correction Code Based Compression for Speech Linear
Prediction Reflection Coefficients. International Journal of Mobile & Adhoc

Network, 1(2), 228-233.

Ameer, S., & Basir, O. (2009). Image compression using plane fitting with inter-block

prediction. Image and Vision Computing, 27(4), 385-390.

Amro, I., Zitar, R. A., & Bahadili, H. (2010). Speech compression exploiting linear

prediction coefficients codebook and hamming correction code algorithm.
International Journal of Speech Technology, 14(2), 65–76.

Bandyopadhyay, S. K., Paul, T. U., & Raychoudhury, A. (2011). Image Compression

using Approximate Matching and Run Length. International Journal of Advanced

Computer Science and Applications, 2(6), 117.

Barni, M. (2006, May). Fractal Image Compression (Vol. 978). CRC/Taylor & Francis.

Retrieved April 5, 2011

Bentley, F., & Barrett, E. (2012). Building Mobile Experiences. The MIT Press.

Brittain, N. J., & El-Sakka, M. R. (2007). Grayscale true two-dimensional dictionary-

based image compression. Journal of Visual Communication and Image

Representation, 18(1), 35–44.

Cagnazzo, M., Cicala, L., Poggi, G., & Verdoliva, L. (2006). Low-complexity

compression of multispectral images based on classified transform coding. Signal

Processing: Image Communication, 21(10), 850-861.

Douak, F., Benzid, R., & Benoudjit, N. (2011). Color image compression algorithm

based on the DCT transform combined to an adaptive block scanning. AEU -

International Journal of Electronics and Communications, 65(1), 16-26.

Du, Q., & Chang, C.-I. (2004). Linear mixture analysis-based compression for

hyperspectral image analysis. IEEE Transactions on Geoscience and Remote

Sensing, 42(4), 875–891.

Dudek, G., Borys, P., & Grzywna, Z. J. (2007). Lossy dictionary-based image

compression method. Image and Vision Computing, 25(6), 883-889.

Duffy, T. J. (2012). Programming with Mobile Applications: Android(TM), iOS, and

Windows Phone 7 (1st ed.). Course Technology.

Edirisinghe, E. A., Nayan, M. Y., & Bez, H. E. (2004). A wavelet implementation of the

pioneering block-based disparity compensated predictive coding algorithm for
stereo image pair compression. Signal Processing: Image Communication, 19(1),
37-46.

83

Forouzan, B. A. (2007). Data Communications Networking (4th ed.). McGraw-Hill.

Freschi, V., & Bogliolo, A. (2004). Longest common subsequence between run-length-

encoded strings: a new algorithm with improved parallelism. Information

Processing Letters, 90(4), 167–173.

Gelli, G., & Poggi, G. (1999). Compression of multispectral images by spectral

classification and transform coding. IEEE Transactions on Image Process, 8(4),
476-89.

Gilbert, J., & Abrahamson, D. M. (2006). Adaptive object code compression. the 2006

International Conference on Compilers, Architecture and Synthesis for Embedded

Systems, (pp. 282–292). New York.

Gryder, R., & Hake, K. (1991). SURVEY OF DATA COMPRESSION TECHNIQUES.

Virginia: OAK RIDGE NATIONAL LABORATORY.

Howard, P. G., & Vitter, J. S. (1994). Arithmetic coding for data compression.

Proceedings of the IEEE, 82(6), 857–865.

Hu, Y. C., & Chang, C. C. (2000). A new lossless compression scheme based on

Huffman coding scheme for image compression. Signal Processing: Image

Communication, 16(4), 367-372.

Huffman, D. A. (1952). A Method for the Construction of Minimum-Redundancy Codes.

Proceedings of the IRE, 40(9), 1098 –1101.

Huynh-Thu, Q., & Ghanbari, M. (2008). Scope of validity of PSNR in image/video

quality assessment. Electronics Letters, 44(13), 800–801.

Karpinski, M., & Nekrich, Y. (2009). A Fast Algorithm for Adaptive Prefix Coding.

Algorithmica, 29–41.

Keshava, N. (2004). Distance metrics and band selection in hyperspectral processing with

applications to material identification and spectral libraries. IEEE Transactions on

Geoscience and Remote Sensing, 42(7), 1552–1565.

Khancome, C. (2011). Text Compression Algorithm Using Bits for Character

Representation. international journal of advanced computer science, 1(6), 215-
219.

Kimura, N., & Latifi, S. (2005). A survey on data compression in wireless sensor

networks. International Conference on Information Technology: Coding and

Computing, (pp. 8–13).

84

Klein, S. T. (2000). Skeleton Trees for the Efficient Decoding of Huffman Encoded.
Information Retrieval, 3(1), 7-23.

Knuth, D. E. (1985). Dynamic huffman coding. Journal of Algorithms, 9(2), 163–180.

Kramm, M. (2007). Compression of Image Clusters using Karhunen Loeve

Transformations. Human Vision and Electronic Imaging, 7, pp. 101-106. San
Jose, CA.

Krinidis, M., Nikolaidis, N., & Pitas, I. (2007). The discrete modal transform and its

application to lossy image compression. Signal Processing: Image

Communication, 22(5), 480-504.

Krishnamoorthi, R., & Seetharaman, K. (2007). Image compression based on a family of

stochastic models. Signal Processing, 87(3), 408-416.

Kui Liu, Y., & Žalik, B. (2005). An efficient chain code with Huffman coding. Pattern

Recognition, 553–557.

Li, R. Y., Kim, J., & Al-Shamakhi, N. (2002). Image compression using transformed

vector quantization. Image and Vision Computing, 20(1), 37-45.

Mahoney, M. (2000). Fast Text Compression with Neural Networks. the 13th

International Florida Artificial Intelligence Research Society Conference, (pp.
230–234). Orlando.

Mateu-Villarroya, P., & Prades-Nebot, J. (2001). Lossless image compression using

ordered binary-decision diagrams. Electronics Letters, 37(3), 162–163.

Nanavati, P. S., & Panigrahi, K. P. (2005). Wavelets: Applications to Image

Compression-II. Indian Academy of Sciences.

Nelson, M. R. (1989). LZW data compression. Dr. Dobb’s J., 14(10), 29–36.

Nofal, S. (2007). Bit-Level Text Compression. the First International Conference on

Digital Communications and Computer Applications, (pp. 486 – 488). Irbid.

Pan, H., Jin, L. Z., Yuan, X. H., Xia, S. Y., & Xia, L. Z. (2010). Context-based embedded

image compression using binary wavelet transform. Image and Vision Computing,

28(6), 991-1002.

Pandya, M. K. (2000). Data Compression: Efficiency of Varied Compression Techniques.

UK: University of Brunel.

Patterson, A. D., & Hennessy, L. J. (2011). Computer Organization and Design: The

Hardware/Software Interface (Revised Fourth Edition ed.). Elsevier.

85

Rahman, Z., Jobson, D. J., & Woodell, G. A. (2011). Investigating the relationship
between image enhancement and Image compression in the context of the multi-
scale retinex. Journal of Visual Communication and Image Representation, 22(3),
237–250.

Rueda, L. G., & Oommen, B. J. (2006). A Fast and Efficient Nearly-Optimal Adaptive

Fano Coding Scheme. Information Science, 176(12), 1656-1683.

Rueda, L. G., & Oommen, B. J. (n.d.). Enhanced static Fano coding., (pp. 2163 –2169).

Saghri, J., Tescher, A., & Reagan, J. (2005). Practical transform coding of multispectral

imagery. IEEE Signal Processing Magazine, 12(1), 32–43.

Salomon, D. (2002). A Guide to Data Compression Methods (1st ed.). Springer.

Salomon, D. (2004). Data Compression: The Complete Reference (3rd ed.). Springer.

Salomon, D. (2007). Data Compression: The Complete Reference (4th ed.). Springer.

Sayood, K. (2012). Introduction to data compression (4th ed.). Morgan Kaufmann.

Shapira, D., & Daptardar, A. (2006). Adapting the Knuth–Morris–Pratt algorithm for

pattern matching in Huffman encoded texts. Information Processing &

Management, 42(2), 429-439.

Singh, S. K., & Kumar, S. (2011). Novel adaptive color space transform and application

to image compression. Signal Processing: Image Communication, 26(10), 662–
672.

Sirbu, A., & Cleju, I. (2011). On Some Characteristics of a Novel Lossless Data

Compression Algorithm based on Polynomial Codes. Memoirs of the Scientific

Sections of the Romanian Academy, 1-12. Retrieved from
http://iit.iit.tuiasi.ro/Reviste/mem_sc_st_2011/14_MSS_Sirbu_Cleju.pdf

Stallings, W. (2010). Data and Computer Communications (9th ed.). Prentice Hall.

Talukder, K. H., & Harada, K. (2007). Haar Wavelet Based Approach for Image

Compression and Quality Assessment of Compressed Image. IAENG

International Journal of Applied Mathematics, 36(1), 1-8.

Tanenbaum, A. (2003). Computer Networks. Prentice Hall.

Telagarapu, P. (2011). Image Compression Using DCT and Wavelet Transformations.

International Journal of Signal Processing, Image Processing and Pattern

Recognition, 4(3), 61-73.

86

Thomos, N., Boulgouris, N. V., & Strintzis, M. G. (2006). Optimized Transmission of
JPEG2000 Streams Over Wireless Channels. IEEE Transactions on Image

Processing.

Thomos, N., Boulgouris, N. V., & Strintzis, M. G. (2006). Optimized Transmission of

JPEG2000 Streams Over Wireless Channels. IEEE Transactions on Image

Processing, 15(1), 54-67.

Timothy, C. B., John, G. C., & Ian, H. W. (1990). Text Compression. Prentice Hall.

Velisavljevic, V., Beferull-Lozano, B., & Vetterli, M. (2007). Efficient Image

Compression Using Directionlets. Proceedings of the International Conference on

Information, Communications & Signal Processing (ICICS ’07), (pp. 1-5).
Singapore.

Velisavljevic, V., Beferull-Lozano, B., Vetterli, M., & Dragotti, P. L. (2006). Low-Rate

Reduced Complexity Image Compression Using Directionlets. the IEEE

International Conference on Image Processing (ICIP ’06), (pp. 1601–1604).
Atlanta, USA.

Vitter, J. S. (1989). Algorithm 673: Dynamic Huffman coding. ACM Transactions on

Mathematical Software (TOMS), 15(2), 158-167. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.7162

Wang, H., Babacan, D. S., & Sayood, K. (2007). Lossless hyperspectral image

compression using context-based conditional average. IEEE TRANSACTIONS ON

GEOSCIENCE AND REMOTE SENSING, 45(12), 4187–4192.

Wang, Z. H., Chang, C. C., Chen, K. N., & Li, M. C. (2010). A Modification of VQ

Index Table for Data Embedding and Lossless Indices Recovery. Journal of

Computers, 20(4), 42–52.

Wen, Z., Liu, Z., Cohen, M., Li, J., Zheng, K., & Huang, T. (2004). Low bit-rate video

streaming for face-toface teleconference. IEEE International Conference on

Multimedia and Expo (ICME ’04), 3, 1631–1634.

Witten, I. H. (2004). Adaptive text mining: inferring structure from sequences. Journal of

Discrete Algorithms, 0, 137–159.

Witten, I. H., & Neal, R. M. (1987). Arithmetic coding for data compression.

Communications of the ACM, 30(6), 520–540.

Wong, K.-W., Lin, Q., & Chen, J. (2011). Error detection in arithmetic coding with

artificial markers. Computers & Mathematics with Applications, 359–366.

87

Xie, Y., Wolf, W., & Lekatsas, H. (2003). Code compression using variable-to-fixed
coding based on arithmetic coding. the Data Compression, (pp. 382 –391). New
Jersey.

Ze-Nian Li, & Mark, S. D. (2004). Fundamentals of multimedia (1st ed.). Pearson

Prentice Hall.

Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression.

IEEE Transactions on Information Theory, 23(3), 337– 343.

Ziv, J., & Lempel, A. (1978). Compression of individual sequences via variable-rate

coding. IEEE Transactions on Information Theory, 24(5), 530–536.

