hugill g1 llie gl o
MIDDLE EAST UNIVERSITY

Enhancing Open Space Method in Data Hiding
Technigue — Text under Text

ol = il ¢ A 4385 8 7 Ual) LAY aladiad (A Cpuad
oal VA

By
Yaman Fakhri Issa Abdallah
Supervisor
Dr. Hebah H. O. Nasereddin

Submitted in Partial Fulfillment of the Requirements of the
Master’s Degree in Computer Information System

Computer Information System department
Faculty of Information System and Technology
Middle East University
May, 2013

Authorization Statement

I’m Yaman Fakhri Abdallah, authorize Middle East University to supply
hardcopies and electronic copies of my thesis to libraries, establishments, or bodies and
institutions concerned with research and scientific studies upon request, according to the

university regulations.

Name: Yaman Fakhri Abdallah

Date: 11/06/2013

e

Signature: /

Examination Committee Decision

This is to certify that the thesis entitled “Enhancing Open Space Method in Data

Hiding Technique — Text under Text” was successfully defended and approved on.

Examination Committee Member Signature

N

1- Dr. Heba Nasser Al-deen g

P
/r .
2- Dr. Oleg Viktorov /%Z};v/b. /

3- Dr. Asim Al Sheikh ?{uﬁ
""'af ._ﬁ\g‘,\m ((Q\,\ \'.’\k\/\

Acknowledgements

At the mid of my academic path pursuing my Master’s degree, and when I was
hesitant about selecting the subject of my thesis; Dr. Hebah Nasereddin accompanied me
in this path providing full guidance and supervision starting with the subject selection
ending with this complete academic work. Also, she played a significant role in publishing
my first paper in one of the most accredited journals in the IT studies’ field, and introduced

me as a participant - by presenting my work-in the international IT conference.

After finishing my thesis technically, | was fortunate to have my friend Mohammad

Jihad editing my paper and assisting me to present it in a scientific and proper language.

Sharing this moment of success with my dear mother —-May Allah’s mercy be upon
her- who would have been delighted to witness my proved academic development is my

only wish.

To my wife I’'m grateful; who gracefully dedicated her days and nights ensuring |

got all it takes to achieve this work.
For the constant support, | can only thank my brothers and sisters.

Finally, I am thankful to the educational board in the MEU University; and to the

Information Technology department in particular.

Dedication

To my father’s soul who taught me how to find my way through man’s most

challenging hardships
To my mother’s soul who dedicated her life to watch over me
To my brother, my mentor, and my teacher, Dr. Al-Hareth
To my brothers and sisters with whom | shared with the joy of life
To my precious wife, To Safa’a

To the one who guided me toward success in my academic advancement Dr,
Hebah Nasereddin

To my friends, my lifetime companions; Mohammed Jihad and Hazem
Khalid

\

Table of Contents

10 O I
AUTHORIZED STATEMENT ...citiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiieieieceteteneccncacssenenn II
EXAMINITAION COMMITTEE DECISION ...ccctiiitiiieiieiieeiinrcincsisrcnsssesssesssnssnsen 111
ACKNOWLEDGMENTS ...ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiettttiseietscecssscacacssescenee v
DEDICATION L.ituttitiuititiiiieiiitititiiiettieteteietetatasttesetesasesssasstsssntsssssssasssssnses \%
TABLE OF CONTENTS 1ttttititiiitiiiiiiiiiiiitiiiiiiitteiiteieiatacecenecncacssesencscscscsssncnn VI
LIST OF TABLESuiuitiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiiitiietttitecasttasntttetsesesscasasasans VIII
LIST OF FIGURES ...ccutitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiiietetatecasatncntsesesscasasasnn IX
ABBREVIATIONS ..ottt eceeeteteescacaeeeencasasacssssensnsme XI
OAALALL it et ra et s e s e sasa s s e s a e sa s aesasasaissnsansansnines X1l
FN 3 2. X XIvV
CHAPTER ONE: INTRODUCTION ...ciuiuiuiniiiiiiieiuiuiiiniiiiiieieiececerasacassssesesecesscasans 1
L PIEfaCe ..o 1
1.2 Objectives and Problem definition ... 2
1.3 SIONIFICANCE ..o, 3
O 1554111 10 4 1 4
1.5 Thesis Outline (Thesis Organization)o.eveireetertetirtiie it ertereae e aeaeaann 4
CHAPTER TWO: LITERATURE SURVEY ..uitiiiiiiiiiiiiiiiiiieiiiiiiiiiiiinineecceeeen 5
2.1 Theoretical Backgroundccouiiiiiiiii e e e e 5
2.2 Related WOTKoue 15
CHAPTER THREE: THE PROPOSED MODEL ...ccctutiiiiiiiiiiiiieiiiiniiciiinenecececanans 26
3.1 SUPPOTLEA COMNCEPLS . venveetententet et et et et et e et et et et et et e e et et et neeneenenns 28

3.2 Hide Data TEChNIQUEvieieti e e e e e e e 31

VI

3.2.1 Format Secret TeXt ...oiviiiii it 32

3.2.2 Hide the Secret TeXt ...ouuiniitiiti it e e e e ee e, 40
CHAPTER FOUR: EXPERIMENTAL RESULTS ..uiuitititiiiiinienenierreseseersesasasassnsens 49
4.1 Compare the Proposed Solution with White Space Method ..., 50

4.2 Evaluating the Speed of the Data Hiding ProCessocoviviiriiiiiiiiniiiiiiiiinan, 51

4.3 Evaluating the Size of the ReSUIE TeXtoiiiiriiii e, 59

4.4 Evaluating the Result Text Matching with the Original Cover Textc......... 68

4.5 The results of the proposed implementation in variant casescccovvieiininnn.. 77
CHAPTER FIVE: CONCLUSION AND FUTURE WORK ..cceiiiiiuieniiiiinrarenenenensanns 87
REFERENCES ... itiiiiiiiiiiiiiiiiiiiittiotseiosssscsesstssssstsmssstosssstossssossssssssasssssassssssse 89

e N5 O 94

Vil

List of Tables
Number Title Page
3-1 Character indexes for cover text 28
3-2 Character indexes for secret text 29
3-3 ASCII code characters 30
3-4 Characters index for cover text 33
3-5 Characters index for secret text in the cover text 33
3-6 Characters index for cover text 37
3.7 | Characters index for secret text in the cover text except not exists 38
character
3-8 Array for secret text with the all characters index 38
3-9 The best number of digits with size 1pt to hide within the cover text 43
4-1 Speed results of hiding secret text using Cover text size 10pt 50
4-2 Speed results of hiding secret text using Cover text size 12pt 52
4-3 Speed results of hiding secret text using Cover text size 14pt 54
4-4 Speed results of hiding secret text using Cover text size 16pt 56
4-5 Size of the result text for hiding secret text using cover text size 10pt 59
4-6 Size of the result text for hiding secret text using cover text size 12pt 61
4-7 Size of the result text for hiding secret text using cover text size 14pt 63
4-8 Size of the result text for hiding secret text using cover text size 16pt 65
Result text matching with the original cover text for hiding secret text
4-9 .) 67
using cover text size 10pt
Result text matching with the original cover text for hiding secret text
4-10 .) 69
using cover text size 12pt
Result text matching with the original cover text for hiding secret text
4-11 ; ; 71
using cover text size 14pt
Result text matching with the original cover text for hiding secret text
4-12 . , 73
using cover text size 16pt

List of Figures

Number Title Page
2-1a | The binary of the M character as TIlI technique 6
2-1b | The result of merging the M character within the cover image 6

2-2 describes hiding data within audio signal 9
2-3 Protocol for document data-hiding: embedding 10
2-4 Protocol for document data-hiding: extraction 11
2-5 Proposed data hiding technique — Text under Text 16
2-6 Example of data hidden using white space 20
2-7 Data hidden through justification 20
2-8 Criteria of encrypt the text 24
3-1 Steps of taking the indexes 35
3-2 The code of export the indexes of the secret text characters 36
3-3 The code of export the ASCII code for the secret text characters 39
3-4 The code of convert the decimal numeral system into octal 40
numeral system
3-5 The cover text 44
3-6 Insert digits in the white space of the cover text 45
3-7 The code of marge the array numbers within cover text. 46
3-8 The result with hidden data font size 1pt 46
3-9 The result with hidden data font size 1pt and white color 47
3-10 | The code of change secret text font size and color. 48
4-1 Speed results of hiding secret text using cover text size 10pt 51
4-2 Speed results of hiding secret text using cover text size 12pt 53
4-3 Speed results of hiding secret text using cover text size 14pt 55
4-4 Speed results of hiding secret text using cover text size 16pt 57
Size of the result text for hiding secret text using cover text size
452 10pt - The proposed implementation 59
45 b Size of the result_text for hidipg secret text using cover text size 60
10pt - The other implementation
Size of the result text for hiding secret text using cover text size
4-6 a) - 61
12pt - The proposed implementation
4-6 b Size of the result_text for hidipg secret text using cover text size 62
12pt - The other implementation
Size of the result text for hiding secret text using cover text size
4-7a 14pt - The proposed implementation 63
4-7b Size of the result_text for hidipg secret text using cover text size 64
14pt - The other implementation
4-8 3 Size of the result text for hiding secret text using cover text size 65

16pt - The proposed implementation

Size of the result text for hiding secret text using cover text size

4-8b 16pt - The other implementation 66
Result text matching with the original cover text for hiding secret

4-9 : . 68
text using cover text size 10pt
Result text matching with the original cover text for hiding secret

4-10 : ; 70
text using cover text size 12pt
Result text matching with the original cover text for hiding secret

4-11 . . 72
text using cover text size 14pt
Result text matching with the original cover text for hiding secret

4-12 . . 74
text using cover text size 16pt

4-13 | Result of hiding secret text using cover text size 10pt for one digit 76

4-14 | Result of hiding secret text using cover text size 10pt for two digits 76
Result of hiding secret text using cover text size 10pt for three

4-15 digits 77
Result of hiding secret text using cover text size 10pt for four

4161 digits "

4-17 | Result of hiding secret text using cover text size 10pt for five digits 78

4-18 | Result of hiding secret text using cover text size 12pt for one digit 78

4-19 | Result of hiding secret text using cover text size 12pt for two digits 79
Result of hiding secret text using cover text size 12pt for three

4201 digits 7
Result of hiding secret text using cover text size 12pt for four

421 digits 80

4-22 | Result of hiding secret text using cover text size 12pt for five digits 80

4-23 | Result of hiding secret text using cover text size 14pt for one digit 81

4-24 | Result of hiding secret text using cover text size 14pt for two digits 81
Result of hiding secret text using cover text size 14pt for three

4-25 digits 82
Result of hiding secret text using cover text size 14pt for four

4-26 digits 82

4-27 | Result of hiding secret text using cover text size 14pt for five digits 83

4-28 Result of hiding secret text using cover text size 16pt for one digit 83

4-29 | Result of hiding secret text using cover text size 16pt for two digits 84
Result of hiding secret text using cover text size 16pt for three

4-30 digits 84
Result of hiding secret text using cover text size 16pt for four

431 digits 8

4-32 | Result of hiding secret text using cover text size 16pt for five digits 85

Abbreviations

DH: Data Hiding

CT: Cover Text

ST: Secret Text

DHDD: Data Hiding for Documents based on Dots
ASCII: American Standard Character Interchange

RTF: Rich Text File

Xl

Xl

ool — clibyl) o l83) 4085 3 Ul £ LAY aladia) B cpaeas
ol JMA

Uty

Cual) uals A 3 gisall
uaﬁad‘
i) dglee o)) Caa ddilide (ageal Jaly Ul lia) Lagie Auhy Gl 1 8 S5 il
S ol e byt s bayaing bl lialy Al Glesheall (ol <NVl sl 4 il
calaglaall pal Jia
coad Al) Jga cala JAbly) HHea Jals bkl cLAIS Soaete (Gyla clilnll £BY o
Oy pie 5l aalally i Gsia Jada e 523 (33 Jilugll o2a Jaly culibll clas) o)) Cam

A gty A ey Caa Ayl cHblall 238 (58 il sgany Ll 38) calsiall e

X

Dell DA e 0585 b e liaY) Byl 3L e LIS Calias e Jady clill) cs) ke
g Al pallad mns 8w) Al el sl paill b AW clalud)

coaill Jals il o d) DA (e (Sa Ayl o5 il 0345 4328 cilalually (il

oo ble as bl ola) 8 de sl cilalusadl diphal Guead zylay Gl 8 8 5 s
bl ol e) el aill e o bl B bty (gul) paill s eha)
Sl aal) Al) gyl 2l alas e alEY) o328 dygad o5 es e sheall Jaliil S5
Al e i) Q1Y Cuny AEY) L o Jaatll Aty Al AV Hlasily Sl
) s o ool Sl o 5l5 A OIS 1) La) Al daidi o8y puday aid Cijall Lulodll
iy Gl o Ul Gaill 6 LS g A lal) cilalisal) 8 AlE3Y) 038 grad o (e 4ld Al

celladll aill Als o) Jie Lasd) (ygly aaly) 230 il aas

Sla) b il ¢ LAl A Wil (et b da il Aleall (g giadl) o) 3 b 5 sl
sl ana calaall Ao jus 1 hg Al el DN (e a5 Sy al DA i — il
saill Gilae Gleall 538 o gilll Gaill of e @il) ZilaaYls dlenl) o3 (e gl

XV

Enhancing Open Space Method in Data Hiding

Technigque — Text under Text

By
Yaman Fakhri Issa Abdallah
Supervisor

Dr. Hebah H. O. Nasereddin

Abstract

I’ve been in this research study methodology for hide data within different texts. That's
where the data masking process is one of the areas of information security to hide and

encrypt data and other branches that represent information security.

That to hide the data multiple ways as hide data within an image or within an audio file or
within the text, where the hide data within these means check the interest of protecting the
rights of publication and copyright or non-arrival of unauthorized to this data easily, the

fact that these hidden data is characterized by secrecy and privacy.

XV

The process of hiding data within the text are completely different from the rest of methods
of concealment, it will be through a change in the empty spaces in the text or change the
text itself or change in some of the properties other than text and empty spaces. These

changes are a way by which to hide data within the text.

This thesis proposes an enhancement of white space method for hiding data; which is
processed by changing the secret text through extracting the indexes of the characters from
the cover text or ASCII code , then converting these numbers from the decimal numeral
system into the octal numeral system in order to use the number 8 and 9 as indicators
against the remaining numbers. As placing the number 9 before the extracted number
indicates that it is an index of a character. and placing the number 8 before the extracted
number indicates that it is an ASCII code. Then, merging these outcomes with the white
spaces between the words in the cover text by changing the font size of these numbers to

1pt, and changing the font color to match background color of the cover text.

I’ve been in this research verification of the proposed process in enhancing the technique
of open space methods to hide the data - text under text, and have been verified three basic
things: the speed of the hiding data process, the size of the output text of this process, as
well as to verify that the text resulting from these process is identical to the original text,

which has been used to hide data under it.

Chapter One
Introduction

1.1 Preface

Information security has two branches; data encryption and data hiding (DH). Data
encryption is masking the data to become meaningless, while data hiding is concerned with

concealing the data to become unreadable.

Data hiding is: (Bender, Gruhl, Morimoto, & Lu, 1996) “Data hiding represents a
class of processes used to embed data, such as copyright information, into various forms of
media such as image, audio, or text with a minimum amount of perceivable degradation to

the “host” signal”.

(YILMAZ, 2003) "Famous examples of steganography go back to antiquity.
According to a story from Herodotus, a slave’s head was shaved by his master, Histizus,
and tattooed with a secret message around 440 B.C. After growing the hair back, the
message disappeared and then the slave journeyed to carry the message. When shaved his
head upon arriving, message was revealed”. (Nasereddin & Al Farzaeai, 2010) “In 1860,
the major problems had been solved to make a small image by "Darjun”, who is a French
photographer worked in the war. Frank and France in 1870- 1861 when Paris was
besieged, by writing messages on photographic films which were sent by the carrier
pigeon. The purpose of this was to invoke disobedience against his antagonist Persinas.
Steganography is the ability of hiding data in redundant bits of any cover media. Its target

is to keep the secret information unreadable without damaging the cover media

environment.”. (Ibrahim & Zabian, 2009) “A security issue must be used in each step.
Information hiding can be used in different applications include military, E- commerce,
confidential communication, copyright protection, copy control, authentication, digital
elections. In these fields, hiding information is better than ciphering. Because in the

former, nobody can notice that there is a message hiding behind an image”.

1.2 Objectives and Problem Definition

Data hiding is a process used to embed the data into media such as image, audio or
text. Digital media has become more prevalent and expanding. Also, the security of
information transmission has become more vulnerable to theft and unauthorized access.
One of the processes to preserve the security of the information is data hiding. There are
many researchers are talking about hiding data in image, audio and some of researchers are

talking about data hiding text under text.
Open space is part of data hiding text into text, some of open space problems are:

1. To hide two words like “Top Secret” requires text size cover of more than 80
words; because each character size is 8 bit “l byte” and each bit requires one
space. That means “T+o+p+ +S+etc+r+ett” equal 10 characters, 10 characters
multiply by 8 bits equal 80 bits.

2. To be able to hide a large secret message; the result will be a very large message.

3. In a properly justified format of text, not all spaces are available to be used to

hide the required data.

Based on what had been said, data hiding techniques are obviously suffering some
major issues and in some certain cases may become inefficient. Thus, the aim of this
research is to develop data hiding via text under text while taking into consideration

Open Space method problems.

1.3 Significance

The importance of this research is to enhance open space method in data hiding — text
under text. (Most of researchers talk about hiding data under image, audio, and less

researchers talk about text under text).

This research enhances a technique for data hiding — text under text using open space
method in efficient and effective way, more secure and faster process of data hiding text
under text, the proposed enhancement take advantage from the unused white space in the
text and another techniques to support the proposed enhanced technique in a way to make
the result matches the cover text which will be used to hide the secret text within the cover

text.

1.4 Limitations

The limitations of this research are:

1. The size of the cover text must be compatible with the secret text to be able to
hide the secret text within the cover text.
2. Itis must to use soft copy for the cover text and the secret text.

3. The result text must be transmitted via e-media.

15 Thesis Outline

Chapter two represents the theoretical background and related works of data hiding
concepts, data hiding techniques and types including data hiding in image, audio and

video.

Chapter three represents the proposed model, the proposed solution and the supported
techniques used in the proposed solution and the specification of this supported techniques

and the effectiveness of this supported techniques in the proposed solution.

Chapter four represents the experimental results and evaluates the proposed solution
in many cases, also compare it to another technology of hide text under text by using open

space method.

Finally chapter five will discuss the results, draw the conclusions and the future

works.

Chapter Two
Literature Survey

This chapter represents knowledge and theoretical background about the data hiding
techniques, some of the methods followed by researchers in their researches will be
reviewed, discusses more specifically data hiding - text under text techniques and
represents the related research about the presentation of data hiding techniques — text under

text.

2.1 Theoretical Background

(Nasereddin & Al Farzaeai, 2010) Proposed data hiding technique text image
inside image (T11I). A new technique to hide text inside digital image by the concept of
the visual representation of the text within image. The proposed technique TIII is based on
the existence of the text in the form of an image in black and white, by representing white
as "1" and black as "0". The idea of the proposed is merging text image with cover image
by integrating text image bits with cover image bits. The proposed technique TIII didn’t
address the difference of the size between the cover image and the stego image, because it
can be solved by using cover images with the same size of the stego image and doing some
resizing methods to the cover image to make it as the same size of the text image. The font
size of the message in the text image will be an important factor in the integrity of the
message during the transmission process and the size of the hidden message, so that when
the font size is large the safety of the transmission will be strong, and when the size of the

message is small, the safety becomes more vulnerable.

- 254 | 254 | 134 | 254 | 254 | 134 | 15
J 254 | 254 | TO 55 63 B | 25

254 | 33 | 1M | 250
254 | 100 | 180 | EO

COVERIMAGE M2

254 | B0 | 100 | oo 88 | 25
254 | 33 50 | 230 3 25

154 | 254 | 234 | 254 | 254 | 254 | 254

- 254 | 255 | 234 | 255 | 154 | 255 | 215 255 | 254 | 255 | 254 | 155 | 154 | 255

_ 2534 | 255 | &0] 0 71 55 56 [66 80 B0 | 254 | 255
51_:5*;15‘_&6:) 254 | 255 | 33 33 | 34| 24| 250 [251 | o0 oo 0 50| 254 | 238
™ 254 | 255 | 100 | lo0 =] gl | B0 0 90 100 [BB B8 | 254 | 235

2534 | 255 | BD B0 o0 oL | 99 o0 | 20 o1 68 68 | 254 | 235

254 | 255 | 33 33 61 | 230 | I31 | o9 | 100 (50 50 | 254 | 235

L9 254 | 255 | 254 | 155 | 154 | 155 | IS I35 | 234 | 255 | 15 255 | 254 | 255

TEXT IMAGE Ml _.:\J/

L

(b)

Figure 2-1 (a): The binary of the M character as TII1 technique
(b): The result of merging the M character within the cover image

(Nasereddin & Al Farzaeai, 2010)

(Zou & Shi, 2005) A novel formatted text document data hiding algorithm.
Called Inter-word Space Modulation (ISM) scheme, is proposed in which the spaces
between neighboring words are modulated to hide data. In contrast to prior arts, this
method does not require original documents for hidden data extraction. The hidden data are
robust to printing, copying and scanning. The experiments show that after printing, ten
times of repeated copying, followed by scanning, the hidden data can still be extracted
without a single bit error. It is expected that it can find wide applications for secure
document processing, including digital notarization. Three different methods for formatted
text document data hiding: line shift coding, word shift coding and feature coding. Line
shift coding and word shift coding are robust to printing, copying and scanning to some
extent. The major drawback is that the original intact document is needed for hidden data
extraction which may not be available in many cases. Also the paper mention a baseline
detection method for line shift coding which did not require the original document.
However, as pointed out by the authors themselves, it is not reliable to printing, copying

and scanning. Besides, the embedding capacity is about one bit per two lines.

(Asif, Shaikh, Manza, & Ramteke, 2010) The comparison of original text in the
form of bitmap image and extracted image by using various fonts of text as a bitmap
image. In image the basic objective of data hiding is to store as much as data in the host
image without degrading the quality of the host image and which will be reconstructed
again without compromising the loss of source image data and the actual hided
information. Out of which the most emerging area is hiding the data into different media
files such as image, audio, video, etc. In these media files the image is considered as the

most suitable file format for the data processing. The study has done the preparation of the

text data set of size 20 characters in single font type, variable font sizes and the color of
text as black. The bitmap image can be hided into any color image source which will acts
as a medium of carrier of the text data. This color image is further decoded to get the actual
data of 20 characters without any loss if possible. The experimental steps used for text data
hiding in images is done with above data set and image processing functions of MATLAB.
The data set of a single color source image and the data set of 2 to 3 sentence each of 24
characters with above specification. The result is found to be most satisfactory and
prominent in the font VERDANA in the font size of 26 to 30 resulted into 85% to 90% of

reconstruction rate of actual hided text data.

(Dutta, Bhattacharyya, & Kim, 2009) Data hiding in Audio Signal: a review. This
paper introduced a robust method of imperceptible audio data hiding. This system is to
provide a good and efficient method for hiding the data from hackers and sent to the
destination in a safe manner. This proposed system will not change the size of the file even
after encoding and also suitable for any type of audio file format. The proposed idea is to
hide secret message within audio signal using with a stego key, to retrieve the embedded
message should be using the extractor with the same stego key. This paper conclude that
audio data hiding techniques can be used for a number of purposes other than covert
communication or deniable data storage, information tracing and finger printing, tamper
detection. As the sky is not limit so is not for the development. Man is now pushing away
its own boundaries to make every thought possible. So similarly these operations described
above can be further modified as it is in the world of Information Technology. After
designing any operation every developer has a thought in his mind that he could develop it

by adding more features to it. Figure 2-2 describes hiding data within audio signal.

Stego Key Transmission Stego Key
or Recording ‘
Embedded
Cover_’- Embeddor|——s» Sggo ------- - St';ego_’ Extractort——»
Signal Signal Signal Data
Embedded

Data
Figure 2-2: describes hiding data within audio signal

(Dutta, Bhattacharyya, & Kim, 2009)

(Abdul Qadir & Ahmad, 2006) Digital Text Watermarking: Secure content
delivery and data hiding in digital documents. This developed a novel encoding scheme
which can be used to insert information in plain text without changing the text. A system
has been developed based upon this encoding scheme. This paper suggested a novel idea
based upon an intelligent encoding scheme in the world of text watermarking which has no
effect on the alteration of the syntax of the document as well as the layout. Thus providing
a layout/format independent technique in which information within the text is manipulated
to hide certain information. This paper encodes the information in the existing characters
of the text in an intelligent way that does not change the document. Moreover, the hidden
information is being preserved by the document. The system has two parts: insertion of

watermark; and detection of watermark.

(Deguillaume, Rytsar, Voloshynovskiy, & Pun, 2005) Protocols for data hiding
based text document security and automatic processing. Propose for the following to
use graphical features modulation based text data hiding scheme, which encodes the data

into one or several features of individual characters or groups of characters, without

10

changing the textual content itself. It is presented generic text data-hiding based protocols
for documents, in both electronic and hardcopy format. The presented protocols are
suitable for document authentication and tamper proofing, content self-recovery, and
automatic document processing. Applications can be among others authentication
documents (such as passports and 1D cards), payment documents, contracts, letters, and
technical reports. They provide cheap and convenient solutions for many practical
scenarios, requiring only standard printers and scanners. Moreover these frameworks can
be integrated directly into common text document editing/publication tools. Figures 2-3
represents the protocol of embedding the data within document while figure 2-4 represents

the protocol to extract the data from the document

Encryption/
encoding key(s)
k‘v‘
Y Y
Message
m —>| Encryption [Encoder Sequance Printi Hardcopy
W rinting > v
Marked ©x device :
Text componants <l Text componants
X, 1 modulation l Vi Stego
Cover document | Bedronc
document | Document) Document - > v
x —>| paser [—» Selection recomposer ¥
Non-text components

X

oy ol

Figure 2-3: Protocol for document data-hiding: embedding

(Deguillaume, Rytsar, Voloshynovskiy, & Pun, 2005)

11

Document Modulated text
Printad Dgcumem components components
document o '”"‘39'3 D . v,, & v
_ Acquisition ocumen ez e
v > »(Selection
device segmenter VG ey
: e o
stima message
Character Sequence | seguence.| Decoder Decry > m
Ce pton
segmenter B estimator W Bt =
[
Decryption /
decoding key(s)
K,

Figure 2-4: Protocol for document data-hiding: extraction

(Deguillaume, Rytsar, Voloshynovskiy, & Pun, 2005)

(Yang & Kot, 2005) Data hiding for text document image authentication by
connectivity preserving. Propose a data hiding technique which is based on the
connectivity-preserving in 3 x 3 neighborhood. The “uneven embed ability” of the host
image is considered by embedding the watermark only in those “embeddable” blocks. A
small block size, e.g., 4 x 4 is employed in order to achieve the larger capacity. The
proposed scheme can be wused for document authentication, e.g., e-Certificate
authentication. The odd-even enforcement is employed for the watermark embedding,
which is vulnerable to “parity attack”, i.e., an adversary can carefully flip two pixels while
keeping the odd-even feature of the block unchanged. This paper proposes to adopt a hard
authenticator watermark to tackle this problem in order to generate the hard authenticator
watermark; the key issue is how to locate the flipped pixel given the watermarked image.
For the fixed 3 x 3 block, the flipped location is always the center pixel of the block;
therefore it is easy to locate the flipped pixel. The fixed 3 x 3 block, non-interlaced and
interlaced block are employed and the capacity of using different types of blocks are

compared.

12

(Kim & Mayer, 2007) Data Hiding for Binary Documents Robust to Print-Scan,
Photocopy and Geometric Distortions. This paper presents a data hiding technique
(steganography) for embedding information into documents printed in high-resolution
bicolor printers, e.g., conventional laser and inkjet printers. In the literature, there are
several data hiding techniques designed for binary images. These techniques can be
applied to copy control, annotation, and authentication. However, most of them are
designed only for binary images in digital form and cannot be applied for printed

documents. Data hiding for binary images can be divided into three basic classes:

1- Component-wise: Change the characteristics of some pixel groups (connected

components, character, words, etc.).

2- Pixel-wise: Change the values of individual pixels.

3- Block-wise: Divide the cover image into blocks and modify some characteristic

of each block to hide the data.

Also the paper proposed a technique named DHDD (Data Hiding for Documents
based on Dots). Current laser/inkjet printers can print tiny dots hardly noticeable at normal
reading distance. This implementation is able to embed up to 1370 bits in an A4-sized
document printed at 600 dpi. As the printing technology evolves, it is expected that future
printers will be able to impress even smaller dots, resulting in more visually imperceptible
watermarking with more data hiding capacity. Propose to use the entire binary document
for embedding the watermark with a high robustness to print-scan, photocopy and

geometric attacks.

13

(Dutta, Bhattacharyya, & Kim, 2009) Current Steganography Tools and Methods.
Provide a review and analysis of several freeware tools that employ some of the more
common methods of hiding information in digital files, demonstrating how one can easily
embed secret messages in some of the more commonly exchanged image, audio and text
file formats. Steganography is by no means a modern practice. Literally meaning “covered
writing” it is the practice of hiding messages within other messages in order to conceal the
existence of the original. For the security professional, this means that data you are paid to
protect could be leaving your control without your knowledge. Some specific terminology
in the field of steganography has developed to make clear the differences between files to

be hidden, those that they get hidden in and the resulting combinations of the two.

Data Hiding in Text: Steganography in text files can be accomplished through
various techniques. Methods that can be applied to both the soft and hard copies of a
document include line-shift coding, word-shift coding and feature coding as well as

syntactic semantic methods.

The first three of these systems rely on visually changing the formatting or look of
the file, by modifying spacing between lines, spacing between words, or modifying

features of certain letters respectively.

Syntactic and semantic methods of steganography in text files utilize modification of

“diction and structure of text without significantly altering meaning or tone”.

Data hiding in image and audio files: Typically, using image files as hosts for
stenographic messages takes advantage of the limited capabilities of the human visual

system. Some of the more common method for embedding messages in image files can be

14

categorized into two main groups, image domain methods and transform domain methods.
The image domain methods modify their host files at the bit level, changing the file bit by
bit to encode their message. The transform domain methods manipulate the algorithms and
transformations inherent in the creation of the image itself, like the transformation used in

JPEG compression.

15

2.2 Related Works

(Abdullah & Nasereddin, 2013) Proposed Data Hiding Technique — Text under
Text. The technique is based on two texts; secret text and cover text. By taking advantage
of the unused white spaces in the cover text, this paper proposed to change the format of
the secret text by changing the secret text font size and font color to the font size 1pt and
secret text font color white, then to separate the secret text into many parts “characters”,
then to hide these parts within the cover text’s unused white spaces. The outlined that the
proposed data hiding technique as Image, audio, and text are used for data hiding. Data
hiding in text is to embed text within another text to be unreadable. Open space methods
used for data hiding in text and white space method is one of these methods; the paper
takes advantages of the unused white space from the text “Cover Text” to hide the data
“Secret Data” on the cover text. Changing the format of the secret by setting the text size to
1px, setting the font color to white as the back color of cover text, and then merging the
secret text with the cover using white space method to generate the result text hiding the

secret message within it. Figure 2-5 shows a brief description of the proposed technique.

16

Secret Text > HOW Are YOU

cortet. > 1'mM here from an hour ago

!

Merge I’m How here Are from You an hour ago
Change Color > I'm here from an hour ago

!

chnge sz > |’'m here from an hour ago

Figure 2-5: Proposed data hiding technique — Text under Text

2

(Abdullah & Nasereddin, 2013)

(Brassil, Low, Maxemchuk, & O’Gorman, 1995) Electronic Marking and
Identification Techniques to Discourage Document Copying. It is defined as
“unauthorized dissemination” as distribution of documents without the knowledge of any
payment to the publisher; this contrast legitimate document distribution by the publisher or
the publisher’s electronic document distributor. This paper describes a means of
discouraging unauthorized copying and dissemination. The described techniques here are
complementary to the security practices that can be applied to the legitimate distribution of

documents. For example; a document can be encrypted prior to transmission across a

17

computer network. Then even if the document file is intercepted or stolen from a database,
it remains unreadable to those not possessing the decrypting key. The described techniques
in this paper provide security after a document has been decrypted, and is thus readable to
all. In addition its proposed encoding techniques can also make paper copies of documents
traceable. In particular, the code word embedded in each document survives plain paper
copying. Hence, these techniques can also be applied to “closely held” documents, such as
confidential, limited distribution correspondence. The paper describe this both as a
potential application of the methods and an illustration of their robustness in noise.
Document marking can be achieved by altering the text formatting, or by altering certain
characteristics of textual elements (e.g., characters). The goal in the design of coding
methods is to develop alterations that are reliably decodable (even in the presence of noise)
yet largely indiscernible to the reader. These criteria, reliable decoding and minimum
visible change, are somewhat conflicting; herein lies the challenge in designing document
marking techniques. Common to each technique is that a code word is embedded in the
document by altering particular textual features. This paper describes these features for
each method below and gives a simple comparison of the relative advantages and

disadvantages of each technique. The three coding techniques that proposed:

1- Line-Shift Coding: This is a method of altering a document by vertically

shifting the locations of text lines to encode the document uniquely.

2- Word-Shift Coding: This is a method of altering a document by horizontally

shifting the locations of words within text lines to encode the document

18

uniquely. This encoding can be applied to either the format file or to the bitmap

of a page image. Decoding may be performed from the format file or bitmap.

3- Feature Coding: This is a coding method that is applied either to a format tile or
to a bitmap image of a document. The image is examined for chosen text
features, and those features are altered, or not altered, depending on the code
word. Decoding requires the original image, or more specifically, a

specification of the change in pixels at a feature.

Among the proposed encoding techniques, line-shifting is likely to be the most easily
discernible by readers. Paper also expect line-shifting to be the most robust type of
encoding in the presence of noise. This is because the long lengths of text lines provide a
relatively easily detectable feature. For this reason, line shifting is particularly well suited
to marking documents to be distributed in paper form, where noise can be introduced in
printing and photocopying. This paper expects that word-shifting will be less discernible to
the reader than line-shifting, since the spacing between adjacent words on a line is often
varied to support text justification. Feature encoding can accommodate a particularly large
number of sanctioned document recipients, since there are frequently two or more features
available for encoding in each word. Feature alterations are also largely indiscernible to
readers. A technically sophisticated “attacker” can detect that a document has been
encoded by any of the three techniques paper have introduced. Such an attacker can also
attempt to remove the encoding (e.g., produce a uuencoded document copy). The goal in
the design of encoding techniques is to make successful attacks extremely difficult or

costly.

19

(Bender, Gruhl, Morimoto, & Lu, 1996) Data hiding in text. Soft copy text is in
many ways the most difficult place to hide data. (Hard-copy text can be treated as a highly
structured image and is readily amenable to a variety of techniques such as slight variations
in letter forms, kerning, baseline, etc.) This is due largely to the relative lack of redundant
information in a text file as compared with a picture or a sound bite. While it is often
possible to make imperceptible modifications to a picture, even an extra letter or period in
text may be noticed by a casual reader. Data hiding in text is an exercise in the discovery
of modifications that are not noticed by readers. Paper considered three major methods of
encoding data: open space methods that encode through manipulation of white space
(unused space on the printed page), syntactic methods that utilize punctuation, and

semantic methods that encode using manipulation of the words themselves.

Open space methods. There are two reasons why the manipulation of white space in
particular yields useful results. First, changing the number of trailing spaces has little
chance of changing the meaning of a phrase or sentence. Second, a casual reader is
unlikely to take notice of slight modifications to white space. Paper describes three
methods of using white space to encode data. The methods exploit inter-sentence spacing,

end-of-line spaces, and inter-word spacing in justified text.

The first method encodes a binary message into a text by placing either one or two

spaces after each terminating character.

A second method of exploiting white space to encode data is to insert spaces at the

end of lines. The data are encoded allowing for a predetermined number of spaces at the

20

end of each line (Figure 2-6). Two spaces encode one bit per line, four encode two, and

eight encode three.

T[hlel [qfu l___c_Lx blrlolw[n] [flolx] IT[hlel Iglulile[k] [blx owx[__{vg:')‘(w_
jlulmlpls] [o[velr] [tinle] [1]a]z]y] jlulmiplsl lojvieir] |tihje[|1lalz[y] |
djojg]. dlojg].

NORMAL TEXT WHITE SPACE ENCODED TEXT

Figure 2-6: Example of data hidden using white space

(Bender, Gruhl, Morimoto, & Lu, 1996)

A problem unique to this method is that the hidden data cannot be retrieved from

hard copy.

A third method of using white space to encode data involves justify format of text.
Data are encoded by controlling where the extra spaces are placed. One space between
words is interpreted as a “0.” Two spaces are interpreted as a “1.” This method results in

several bits encoded on each line (Figure 2-7).

This_distressed the monks and terrified L them, They, were

: not used to hearing these awful beings called names, and

Ot they did _ not know what might be the consequence. There

was_a, dead , silence now; , superstitious , bodings, were in

every mind. The magician began to pull his wits together,

- and_when he _presently smiled an_gasy, nonchalant _smile, it

,,0'__‘ spread a mighty relief around; for it indicated that his
mood_wag not destructive.

Figure 2-7: Data hidden through justification (text from A Connecticut Yankee in
King Arthur’s Court by Mark Twain)

(Bender, Gruhl, Morimoto, & Lu, 1996)

21

Open space methods are useful as long as the text remains in an ASCII (American
Standard Character Interchange) format. As mentioned above, some data may be lost when
the text is printed. Printed documents present opportunities for data hiding far beyond the
capability of an ASCII text file. Data hiding in hard copy is accomplished by making slight
variations in word and letter spacing, changes to the baseline position of letters or
punctuation, changes to the letter forms themselves, etc. Also, image data-hiding

techniques such as those used by Patchwork can be modified to work with printed text”.

(Por, Wong, & Chee, 2012) A text-based data hiding method using Unicode space
characters. This paper proposes a text-based data hiding method to insert external
information into Microsoft Word document. The drawback of low embedding efficiency in
the existing text-based data hiding methods is addressed, and a simple attack, DASH, is
proposed to reveal the information inserted by the existing text-based data hiding methods.
Then, a new data hiding method, UniSpaCh, is proposed to counter DASH. The
characteristics of Unicode space characters with respect to embedding efficiency and
DASH are analyzed, and the selected Unicode space characters are inserted into inter-
sentence, inter-word, end-of-line and inter-paragraph spacing’s to encode external
information while improving embedding efficiency and imperceptivity of the embedded
information. UniSpacCh is also reversible where the embedded information can be removed
to completely reconstruct the original Microsoft Word document. Experiments were
carried out to verify the performance of UniSpaCh as well as comparing it to the existing
space manipulating data hiding methods. Results suggest that UniSpaCh offers higher

embedding efficiency while exhibiting higher imperceptivity of white space manipulation

22

when compared to the existing methods considered. In the best case scenario, UniSpaCh

produces output document of size almost 9times smaller than that of the existing method.

(Vill'an, et al., 2006) Text Data-Hiding for Digital and Printed Documents.
Proposed a new theoretical framework for the data-hiding problem of digital and printed
text documents. Explain how this problem can be seen as an instance of the well-known
Gel’fand-Pinsker problem. The main idea for this interpretation is to consider a text
character as a data structure consisting of multiple quantifiable features such as shape,
position, orientation, size, color, etc. And also introduce color quantization, a new semi-
fragile text data-hiding method that is fully automatable, has high information embedding
rate, and can be applied to both digital and printed text documents. The main idea of this
method is to quantize the color or luminance intensity of each character in such a manner
that the human visual system is not able to distinguish between the original and quantized
characters, but it can be easily performed by a specialized reader machine. The paper
describes halftone quantization, a related method that applies mainly to printed text
documents. Since these methods may not be completely robust to printing and scanning, an
outer coding layer is proposed to solve this issue. Finally, describe a practical
implementation of the color quantization method and present experimental results for

comparison with other existing methods.

(Rahma, AbdulWahab, & Al-Noori, 2011) Physical characteristics of computer
system. Proposed a method of data hiding by taking advantage of the physical
characteristics of computer system and how it stores document file and treating it as a

compound file. The unused block in Microsoft Compound Document File Format

23

(MCDFF) is used to hide data. The possibilities provided by Microsoft Word Processor
program have also been utilized, such as Tools, to generate cover for hiding. The proposed
system embeds steganography text in structure (Binary File Format) of digital and printed
text document file which is a file of Microsoft Word Document file (Doc.) using two
Processes: Cover Generation and Embedding Processes. Cover Generation Process: where
the cover is a document of Microsoft Word Document file format 2003 (doc.) and will
appear to be the product of a collaborative writing effort among authors using Track
Changes tool. Embedding Process hides text string in unused block of binary file format of
that document cover. This paper proposed a new technique, which gives good results, such
that the user can hide 63byte in 34KB document cover size with informed about size of
empty document=10/11KB, in addition, using Track Changes tool does not effect on

hidden data and no problem was detect on hidden data at stego-document mailing or

copying.

(Jebran, 2007) Text 2Text Steganography. Proposed a technique to build a simple
application that is able to send and receive encrypted messages embedded in Rich Text
Format: *.DOC, *.RTF, EMAIL /Message Body/, etc. The user has the ability to choose the fake
text he wants and the program must be able to tell whether or not this fake text will suit the real

text.

The user can set a different password for every message he sends. This will enable
the manager to transmit to two groups two different messages with two different passwords
using the same fake text. Thus, you will be able to send encrypted and hidden messages in

any source code that you choose.

24

The proposed technique will not change the text itself, but it will change the unseen

attributes of the text. These attributes are many and it is impossible for web servers to track

them all. There are lots of Steganographic methods and tracking them will waste huge

amounts of processing for uncertain results. Be aware that Steganography is more effective

than encryption when used in the right way. The deletion of all attributes is not an option,

so will choose the size and the color. Figure 2-8 will underscore the point.

Plain Text [REAL MESSAGE] KEY [zenerated By Passwond]

ahcd..

l

100010101

Hide one hit

in one char

abed...

l

— XOR £— 100010101

according to fe=

significant
char’s
attribute

l

Encrypted Text

101001100 Cutput Message
—3 | Reaiy For
Transmission]
abcdef.., =

Fake Text [Supplied By User]

LISteganogmphyic Mode

Figure 2-8: Criteria of encrypt the text

(Jebran, 2007)

In mode of change font size will change the size of the characters in the fake text

according to the selected font size and differential factor. Here will use 2 sizes, X1 and X2.

X1 is the selected font size and X2 is the selected font size plus the differential factor. 0 bit

is represented by the occurrence of the character whose size is X1. 1 bit is represented by

the occurrence of the character whose size is X2.

25

Color changed mode is the more recommended mode for use, as it is very stable and
safe. In this mode, will change the color of the chars in the fake text according to the
selected color and the program's calculated color. Will use 2 colors, X1 and X2. X1 is the
selected color and X2 is the program's calculated color. The proposed technique will
search to find the nearest color for which it is impossible to recognize the difference with
naked eye. 0 bit is represented by the occurrence of the character whose color is X1. 1 bit
is represented by the occurrence of the character whose color is X2. The recipient must
know which color you have chosen for decryption. After hiding the real message in the

fake message, the rest of the fake message characters will be colored as X1”.

26

Chapter Three
The Proposed Model

This chapter represents a model for a proposed enhanced technique for data hiding —
text under text by using open space methods. It explains the used supported concepts;
methodology, enhanced technique procedures and the advantages of this enhanced

technique.

Data hiding is important to conceal critical information from unauthorized persons.
(Bender, Gruhl, Morimoto, & Lu, 1996) “Data hiding represents a class of processes used
to embed data, such as copyright information, into various forms of media such as image,

audio, or text with a minimum amount of perceivable degradation to the “host” signal”.

Open space method is the first used methods to hide data in white space: between

words, lines and paragraph. this method is divided into three methods:

The first, method encodes a binary message into text by placing either one or two

spaces after each terminating character.

The second, method is exploiting white space to encode data to insert spaces at the
end of lines. The data are encoded, allowing for a predetermined number of spaces at the
end of each line (Figure 2-6). Two spaces encode one bit per line, four encode two, and

eight encode three.

The third, method of using white space to encode data involves justified format of

text. Data are encoded by controlling where the extra spaces are placed. One space

27

between words is interpreted as a “0.” Two spaces are interpreted as a “l1.” This

method results in several bits encoded on each line (Figure 2-7).

(Bender, Gruhl, Morimoto, & Lu, 1996) There are two reasons why the manipulation

of white space in particular yields useful results:

First, changing the number of trailing spaces has little chance of changing the

meaning of a phrase or sentence.

Second, a casual reader is unlikely to take notice of slight modifications to white

space.

The paper describes three methods of using white space to encode data. The methods
exploit inter-sentence spacing, end-of-line spaces, and inter-word spacing in justified

text.

28

3.1 Supported Concepts

The supported concepts are Character Indexes, ASCII Code Characters and Octal

Numeral System.
Character Indexes

Character Indexes used in the proposed solution to get the index of secret characters

from the cover text to be able to retrieve the secret text in the stage of the text show.
Please be informed that the character indexes begin count from 0.
Example, represent character indexes in the text. Suppose the cover text is:

Information hiding techniques

The character indexes for above sentence is appear in the table 3-1:

Table 3-1: Character indexes for cover text

Indexes | Characters set | Indexes | Characters set
0 | 15 i
1 n 16 n
2 f 17 g
3 0 18
4 r 19 t
5 m 20 e
6 a 21 c
7 t 22 h
8 i 23 n
9 0 24 i
10 n 25 q
11 26 u
12 h 27 e
13 i 28 S
14 d

29

So, from above example, suppose the secret text is: hi man

Table 3-2 shows the index of the secret text characters:

Table 3-2: Character indexes for secret text

Indexes | Characters set
12 h
0 i
11 (space)
5 m
6 a
1 n

The “h” character is repeated twice in the cover text, in this case, the index of the first

one is enough to know the intended character.

ASCII Code Characters

The characters’ indexes are not enough to indicate the intended character from the
cover text, so, ASCII code characters give a unique code for each character in the secret

text “with sensitive case”.

Table 3-3: ASCII code characters

30

Description Symbol | Code | Description | Symbol | Code
Space 32 Uppercase N N 78
Exclamation mark ! 33 Uppercase O @) 79
Double quotes “ 34 Uppercase P P 80
Number # 35 Uppercase Q Q 81
Dollar $ 36 Uppercase R R 82
Procenttecken % 37 Uppercase S S 83
Ampersand & 38 Uppercase T T 84
Single quote ‘ 39 Uppercase U U 85
Open parenthesis (40 Uppercase V \ 86
Close parenthesis) 41 Uppercase W W 87
Asterisk * 42 Uppercase X X 88
Plus + 43 Uppercase Y Y 89
Comma , 44 Uppercase Z Z 90
Hyphen - 45 Lowercase a a 97
Period, dot or full stop) 46 Lowercase b b 98
Slash or divide / 47 Lowercase ¢ C 99
Zero 0 48 Lowercase d d 100
One 1 49 Lowercase e e 101
Two 2 50 Lowercase f f 102
Three 3 51 Lowercase g g 103
Four 4 52 Lowercase h h 104
Five 5 53 Lowercase i i 105
Six 6 54 Lowercase | J 106
Seven 7 55 Lowercase k k 107
Eight 8 56 Lowercase | I 108
Nine 9 57 Lowercase m m 109
Uppercase A A 65 Lowercase n n 110
Uppercase B B 66 Lowercase 0 0 111
Uppercase C C 67 Lowercase p p 112
Uppercase D D 68 Lowercase q q 113
Uppercase E E 69 Lowercase r r 114
Uppercase F F 70 Lowercase s S 115
Uppercase G G 71 Lowercase t t 116
Uppercase H H 72 Lowercase u u 117
Uppercase | I 73 Lowercase v % 118
Uppercase J J 74 Lowercase w W 119
Uppercase K K 75 Lowercase x X 120
Uppercase L L 76 Lowercase y y 121
Uppercase M M 77 Lowercase z 122

31

Any character exists in the secret text; not exists in the cover text; will take the

character code from the above table “Table 3-3” ASCII code characters.

Octal Numeral System

The octal numeral system used to convert the decimal codes as octal numbers for:

1- Security reasons, in case anyone finds out the hidden data, the data will be
meaningless and unreadable. The secret text will be formatted then merged within
the cover text.

2- Identify character, after getting the character index for the secret text as octal
numbers; these numbers will be separated by inserting the numbers eight and nine

between the octal numbers to dedicate each character number.

3.2 Hide data technique

Section 3.1 discussed the supported concepts Character Indexes, ASCIlI Code
Characters and Octal Numeral System. These concepts will used in the proposed solution

by combine them to hide text under text by using open space methods.

The idea is to take advantage of the unused white space from the cover text, but
before that some changes should be made on the secret text. Then, hide them within the

cover text; the changes on the secret text will be as the following:

32

3.2.1 Format Secret Text

Formatting secret text by extracting the index of the secret text characters from cover
text and convert the index numbers from decimal numeral system into octal numeral

system as the following:

Step One: Index of the secret text characters:

As mentioned above; there are two texts used in the proposed solution, secret text

and cover text, the proposed solution will hide the secret text within the cover text.

This section will show in detail how to extract the index of the secret text character

from the cover text by using the following steps:

First. Taking each character from the secret text.
Second. Looking for character in the cover text.
Third. Taking the index of the character from the cover text.

Fourth. Compilation of the indexes taken from the cover text in the array.

For more clarification; below is an example to get index of the secret text character

from the cover text:

Suppose the cover text is: Information hiding techniques

And the secret text is: hi man

33

The table 3-4 show the index for each character in the cover text while table 3-5

show the index of the secret text characters in the cover text and it’s shown in the

highlighted columns.

Table 3-4: Characters index for cover text

o

r{mfa|t|i |o]|n hii |d|i |n|g t le{c|h|n|i |q]|u]le]|s
5/6(7|8|910[11 1213141516 17 |18 |19 20 |21 |22 |23 |24 [25 |26 [27 |28

Table 3-5: Characters index for secret text in the cover text

r IRt o [N i [d [i [n[g| [t]ec|h[n]i [qlule]s
4 156N 7 8N o MONERARN13 14 |15 /16 [17 [18 [19 20 21 [22 [23 [24 [25 [26 [27 |28

The steps of take these indexes will be like the following:

VI.

VII.

VIIIL.

Create an empty array for secret characters:
“Ni man” is 6 characters so the array length is 6.

Take the first character from the secret text “h”.

Look for “h” character in the cover text; what is needed is the first “h” character
of the cover text.

Add the index of “h” character in the array:

Take the second character from the secret text “i”.

73T
1

Look for “i1” character in the cover text; what is needed is the first character

of the cover text.
Add the index of “i” character in the array:

[T3ELN

Take the third character from the secret text ““ ”’; it’s space.

34

IX. Look for “space” character in the cover text; what is needed is the first “space”
character of the cover text.
X. Add the index of “space” character in the array:
Xl. Do the above steps for all secret characters until fill the index array of secret

text.

After these steps, the cover text contains all the characters in the secret text and the
indexes is taken from the cover text and saved on the array, Figure 3-1 will show the steps

of taking the indexes.

Empty array for secret text

i

“h™ characters index in the cover text

[|n|f|o]r [m|aft]i]ofn i |d|i |n|g t |le |c |h
0[{1(2]13]4]516]7(8]|9]10]11 pum1314[15]16(17]18]19 2021 |22 23

(]
O

>
(=]

Array for secret text with the “h” character index

t2f {11711

“1” characters index in the cover text

[|n|[flofr [m]a]t o|n hli [d]i|n|g t le|c|h
011|2(3]|4|5]6|7 Q1011|1213 141516 (17181192021 2223

Array for secret text with the “i” character index

(12]8] [[]|

“space” characters index in the cover text

[[n|f]|o]|r[mlat]i]o]n hli [d]i [nfg]| [t [elc]|h
[0]1[2]3]4]5][6]7[8]9]10 12113[14 (1516 (1718|1920 21 22 23

—

Array for secret text with the “i” character index

(12]8fuf]|

Array for secret text with the all characters index

[12]8[11]5]6]10]
Figure 3-1: Steps of taking the indexes

36

Figure 3-2 show the part of code which for exporting the indexes of secret text

characters from the cover text.

] private void pxportIndexes()

{

}

iDec = new string[rtxtSecretText.Text.Length];
siholeIndexes = string.Empty;
char strChars;

for
{

}

(int
strc
if (
{

else

{
h

r (int

if |
{
}
else

{
h

i=8; 1 < rtxtSecretText.Text.Length; i++)

hars = Char.Parse(rtxtSecretText.Text.substring(i, 1));
rtxtCoveredText. Text. IndexOf (rtxtSecretText. Text.Substring(i, 1)) »= @)

ibec[i] = Convert.ToString(rtxtCoveredText.Text.Index0f(rtxtSecretText. Text.Substring(i, 1)), 8);

iDec[i] = "8" + Convert.ToString(Convert.ToInt32(strChars), 8);

i =8; 1 < iDec.Length; i++)

i+ 1 < iDec.length && !iDec[i + 1].Substring(®, 1).Equals("8"))

siWholeIndexes = sWholeIndexes + iDec[i] + "9";

siWholeIndexes = sWholeIndexes + iDec[i];

Figure 3-2: The code of export the indexes of the secret text characters

This section shows how to extract the index of the secret text characters; still, there

are problems might be faced: the character in the secret text does not exist in the cover text

or the character in the secret text exists in the cover text but not in the same capitalization”,

solutions are presented in the next section.

Step Two: ASCII Code Characters of the secret text characters:

Get the character code of the secret text characters from the ASCII code characters in

case the character in the secret text does not exist in the cover text characters or it does not

exist in the cover text characters with the same capitalization.

37

In these cases, follow the below proposed solution:

First. Take each character from the secret text.
Second. Look for the character in the cover text.
Third. If the character does not exist in the cover text or exists with

different capitalization; get the character code from the ASCII code
characters as it’s listed in Table 3-3.

Fourth. Compile the indexes taken from the cover text in the array.

For more clarification; the below is example to get index of the secret text character

from the cover text:

Suppose the cover text is: Information hiding techniques

Suppose the secret text is: Hi man

The table 3-6 show the index for each character in the cover text while table 3-7
show the index of the secret text characters in the cover text and it’s shown in the
highlighted columns but “H” character does not exists in the cover text with the same

capitalization.

Table 3-6: Characters index for cover text

I In|{f|o|r|mja|t]|i|o]|n hii |d|i |n]|g t jefc|hin|i |q]|ule|s
516(7|8|910/11 12131415 (16 (17 (18 |19 |20 |21 22 |23 |24 [25 |26 [27 |28

38

Table 3-7: Characters index for secret text in the cover text except not exists

character
| [n|flo|r NIt o h i [d]i [n]|g]| [t]e]c|h|n]i[q]ule]s
0[1[2]3]4 |1SRI6N 7 I8N o MOREM 12 [13 14 1516 [17 [18 [19 [20 [21 [22 [23 |24 |25 |26 [27 |28

In this case; the solution is to take the character code for “H” character from the

ASCII code characters.

The steps to take these indexes will be similar to the steps in step one, but the “H”
character will take its code from ASCII code characters. And the result array of the secret

text characters will be as it appears in the Table 3-8:

Table 3-8: Array for secret text with the all characters index

|72]8]11|5]6]10]

The first column “72” is the ASCII code for uppercase “H” character, taken from
Table 3-3, but the other columns in the index of the remaining secret text characters are

taken from the cover text characters.

Once reaching the phase to retrieve the hidden data from the cover text, indexes
should be distinguished from the ASCII codes to be able determine the source of the
character of the given number “know the source of the number either it’s index or ASCII
code”; so; what if there is number 72 in the cover text for another character? the problem is

solved in step three.

39

Figure 3-3 show the part of code which for exporting the ASCII code of secret text

characters.

Convert.ToString(Convert.ToInt32(strChars), 8);

Figure 3-3: The code of export the ASCII code for the secret text characters

Step Three: Octal numeral system:

After collecting the index of the secret character from the cover text and ASCII code
for the characters of the secret text that do not exist in the cover text characters with the
same capitalization; convert the result array of numbers from decimal numeral system into

octal numeral system.
The conversion shall follow the below procedures:

1- Every character of the secret text exists in the cover text characters will be taken
from the index of these characters. Then, convert this index from decimal
numeral system into octal numeral system.

2- Every character of the secret text that does not exist in the cover text characters
will be taken from the ASCII codes, then follow the below steps:

a. Convert the ASCII code from decimal numeral system into octal numeral
system.
b. Add number “8” begin of the converted octal number; this step to

distinguish the number is from ASCII code characters.

40

3- Compile the indexes and the ASCII codes for secret text characters in the same
order in the text by inserting the number “9” between these numbers to separate

the characters indexes and ASCII codes from each other.

For more information; the octal number doesn’t contain the 8 and 9 numbers. This

feature enables us to use those numbers to:

1- Separate between characters indexes and ASCII codes.
2- Distinguish that the number is coded from ASCII code characters or index from

secret text characters index in the cover text characters.

Figure 3-4 show the part of code which for convert the decimal numeral system into

octal numeral system.

strChars = Char.Parse(rtxtSecretText.Text.Substring(i, 1));
if (rtxtCoveredText.Text.IndexOf (rtxtSecretText.Text.Substring(i, 1)) »= @)

1
ibec[i] = Convert.TeString(rtxtCoveredText.Text.IndexOf(rtxtSecretText.Text.Substring(i, 1)), 8);

ibec[i] = "8" + Convert.ToString(Convert.ToInt32(strChars), 8);

Figure 3-4: The code of convert the decimal numeral system into octal numeral
system.

3.2.2 Hide the secret text:

The used way to hide the secret text is to merge the result array number of secret text
characters index and the ASCII code within the cover text in the unused white spaces

between cover text words.

41

The data will be hidden with font size 1pt and color as cover text back color, by

follow these steps:
Step One: Detect the number of digits:

To merge the result array number of secret text characters index and ASCII code
within the cover text in the unused white spaces between cover words; you must specify

how many digits should be inserted between each word in the unused white spaces.

The number of digits determined depends on the font size; for each font size there is
a space size between words, these spaces will have the secret data and the size of this data

should be the same of the empty space size in the cover text.

The font size scale is the point; (wikipedia, Point (typography), 2013)
“In typography, a pointis the smallest unit of measure, being a subdivision of the
larger pica. It is commonly abbreviated as pt. The point has long been the usual unit for
measuring font size and leading and other minute items on a printed page. The original
printer's point, from the era of foundry metal typesetting and letter press printing, varied
between 0.18 and 0.4 mm depending on various definitions of the foot. By the end of the
19th Century, it had settled to around 0.35 to 0.38 mm, depending on one’s geographical

location.

In the late 1980s to the 1990s, the traditional point was supplanted by the desktop
publishing point (also called the PostScript point), which was defined as 72 points to
the inch (1 point = 1/72 inches = 25.472 mm = 0.3527 mm). In either system, there are 12

points to the pica. In metal type, the point size of the font described the size (height) of the

42

metal body on which the typeface's characters were cast. In digital type, the body is now an

imaginary design space, but is used as the basis from which the type is scaled.

A measurement in picas is usually represented by placing a lower case p after the
number, such as "10p™ meaning "10 picas." Points are represented by placing the number
of points after the p, such as Op5 for "5 points,” 6p2 for "6 picas and 2 points,” or 1p1 for
"13 points" which is converted to a mixed fraction of 1 pica and 1 point. (An alternate

nomenclature is described in the pica article.)”.

The space between words will be different depending on the font size. (wikipedia,
Sentence spacing, 2013) “Sentence spacing is the horizontal space between sentences
intypeset text. It is a matter of typographical convention. Since the introduction
of movable-type printing in Europe, various sentence spacing conventions have been used
in languages with a Latin-derived alphabet. These include a normal word space (as
between the words in a sentence), a single enlarged space, two full spaces, and, most
recently in digital media, no space. Although modern digital fonts can automatically adjust
a single word space to create visually pleasing and consistent spacing following
terminal punctuation, most debate is about whether to strike a keyboard's spacebar once or
twice between sentences. Traditionally, two spaces could distinguish from a mid-sentence

abbreviation or initials, as in, "He was faster than I. P. Jones was next."”

According to results shown in chapter four; the best number of digits with size 1pt to

hide within the cover text is as appearing in table 3-9:

43

Table 3-9: The best number of digits with size 1pt to hide within the cover text

Cover text font size Number of hidden digits
10 1
12 2
14 3
16 4

Step Two: Merge the index and ASCII code numbers in the cover text:

After detecting the number of digits according to the cover text font size; merge these

digits within the cover text in the white spaces, this operation will be done in iterations.

Before that, the indexes array must be done and ready to work on it and hide it, so;

suppose the following: The secret text is:

“Become important in $ a number of application areas”

The cover text is shown in figure 3-5

44

ABSTRACT
Information hiding techniques have recently become important in a number of
application areas, there are many technigues to achieve hiding data, and hiding text
inside image is one field of them. The paper gives short example of these techniques
and proposes a new technique to hide text inside digital image by the concept of the
visual representation of the text within image.
Kevwords: Hiding data, Steganography, visual representation of text, cover image,
stego image. 1.

INTRODUCTION

In the world Data hiding science is entirely separated from the science of data
encryption cryptography. It is called Steganography. "Famous examples of
steganography go back to antiquity. According to a storv from Herodotus, a slave’s
head was shaved bv his master, Histizeus, and tattooed with a secret message around
440 B.C.

Figure 3-5: The cover text

The font size of the cover text is 12pt, so; the best number of digits to hide in each

white space is 2 digits “as explained in step one”.

The result array of the indexes and ASCII codes for the secret text characters in the

cover text in octal numeral system is:

“2936937915917936925922917977915916921920913921925922913925844925920

9259139449179669369169259159149259209779779639229379209219229159139259209

16936920946~

45

This array will be divided into two digits together and then merge it like the

following:

“29, 36, 93, 79, 15, 91, 79, 36, 92, 59, 22, 91, 79, 77, 91, 59, 16, 92, 19, 20, 91, 39,
21, 92, 59, 22, 91, 39, 25, 84, 49, 25, 92, 09, 25, 91, 39, 44, 91, 79, 66, 93, 69, 16, 92, 59,
15, 91, 49, 25, 92, 09, 77, 97, 79, 63, 92, 29, 37, 92, 09, 21, 92, 29, 15, 91, 39, 25, 92, 09,

16, 93, 69, 20, 94, 6

Every two digits will be insert in white spaces of cover text is shown in Figure 3-6:

ABSTRACT
Information 29 hiding 36 techniques 93 have 79 recently 15 become 91 important 79
in 36 a 92 number 39 of 22 application 91 areas, 79 there 77 are 91 many 39
techniques 16 to 92 achieve 19 hiding 20 data, 91 and 39 hiding 21 text 92 inside 59
image 22 is 9 lone 39 field 25 of 84 them. 49 The 25 paper 92 gives 09 short 25
example 91 of 39 these 44 techniques 91 and 79 proposes 66 a 93 new 69 technique
16 to 92 hide 59 text 15 inside 91 digital 49 image 25 by 92 the 09 concept 77 of 97
the 79 visual 63 representation 92 of 29 the 37 text 92 within 09 image.
Kevwords: 21 Hiding 92 data, 29 Steganography, 15 visual 91 representation 39 of
25 text, 92 cover 09 image, 16 stego 93 image. 69 1. 20

INTRODUCTION

In 94 the 6 world Data hiding science is entirely separated from the science of data
encryvption cryptography. It is called Steganography. "Famous examples of
steganography go back to antiquity. According to a storv from Herodotus, a slaves
head was shaved by his master, Histizeus, and tattooed with a secret message around
440 B.C.

Figure 3-6: Insert digits in the white space of the cover text

46

Figure 3-7 show the code which for marge the array numbers within the cover text.

68 = private void margeData()

69 {

78 rtxtResultText.Text = rixtCoveredText.Text;

71 int iIndex = @, leng = iNoOfDigits;

72 for (int 1 = @; 1 < rtxtResultText.Text.Length; i++)

73 if (rtxtResultText.Text.Substring(i, 1).Equals(" "))

74

75 if (sWholeIndexes.Substring(iIndex, sWholeIndexes.Length - iIndex).Length < iNocOfDigits)
76 leng = sWholeIndexes.Substring(iIndex, sWholeIndexes.Length - iIndex).Length;

77

78 rtxtResultText.Text = ritxtResultText.Text.Remove(i, 1);

79 rtxtResultText.Text = ritxtResultText.Text.Insert(i, " " + sWholeIndexes.Substring(iIndex, leng) + " ");
3@ iIndex += iNocOfDigits;

81 i += iNoOfDigits + 1;

82

83 if (iIndex »>= sWholeIndexes.Length)

84 break;

5 }

26 }

Figure 3-7: The code of marge the array numbers within cover text.

Step Three: Change font size and color for the numbers:

All inserted digits will be format as font size 1pt and color as cover text back color

“white color”.

The result of change font size to 1pt is shown in figure 3-8:

ABSTRACT
Information hiding techniques have recently become importantin. a number.of
application areas_ thereare manytechnigues toachieve hiding data .and hiding text
inside image is one field ofthem . The paper gives short example ofthese techniques and.
proposes_a new technigue to hide text inside digital image by the.conceptof the visual
representation_of the text within image.
Kevwords :Hiding data Steganography.,visual representation oftext .coverimage.,
stego image .1 .

INTRODUCTION

In.the world Data hiding science is entirely separated from the science of data
encryption cryptography. It is called Steganography. "Famous examples of
steganography go back to antiquity. According to a story from Herodotus, a slaves
head was shaved by his master, Histizeus, and tattooed with a secret message around
440 B.C.

Figure 3-8: The result with hidden data font size 1pt

47

Then will change the color of the digits as the back color of the cover text “white

color”.

The final result of hidden secret text in the cover text is shown in figure 3-9:

ABSTRACT
Information hiding technigues have recently become important in a number of
application areas .thereare many technigues to achieve hiding data ,and hiding text
inside image is one field ofthem .The paper givesshort example of these techniques and
proposes a new technique to hide text inside digital image by the concept of the visual
representation of the text within image.
Keywords :Hiding data ,Steganography ,visual representation oftext ,coverimage ,
stego image .1 .

INTRODUCTION

In the world Data hiding science is entirely separated from the science of data
encryption cryptography. It is called Steganography. "Famous examples of
steganography go back to antiquity. According to a story from Herodotus, a slaves
head was shaved by his master, Histizzus, and tattooed with a secret message around
440 B.C.

Figure 3-9: The result with hidden data font size 1pt and white color

In case the cover text back color is not white; the proposed solution will change the

secret text color as cover text back color.

Figure 3-10 show the code which for change secret text font size and color.

48

e woid hideData()

regainingDigitsCount = sWholeIndexes.Length;
8; i < rbxtResultText.Text.length 38 resainingDigitsCownt > 8; i)
if (rixtRessltText.Text.Substring{i, 1).Equals(™ "))

if (ressiningDigitsCount < iNo0fDigits)
(
rotResyltText. Select(i, remainingdigitsCount + 1);
rok tText.SelectionTont = mew =

ont{rtxtResultText.Font.FontFamily, 1);
roxtResuliText. Selectionlelor = roxtResultText. Backlolor;
tText.Deselact

{rtxzResultText.Text.length >= £ +

rotResyltText. Select(i, iNoOfDigits +

tText.SelectionTont = sen

3=
“ont{rtxtResultText.Fent.FontFasily, 1);
tText.SelectionCelor = roxtResultText.BackColor;
ultText.Dese
iNc0%Digits + 1;
ressiningdigitsCount -= IMoOfDigits;

+ ilo0fDigits + 1 8 rbdResultText.Text.Substring(i + iNo0fDigits + 1, 1).Squals(”

Figure 3-10: The code of cﬂange secret text font size and color.

49

Chapter Four
Experimental Results

In order to evaluate the proposed enhanced technique, the implementation of the
proposed technique is done as a program to simulate hiding text under text by providing
secret text and cover text to the program and hiding the secret text under the cover text.
This will compare the proposed solution with the white space method that involves
justifying format of a text which is proposed in chapter two “see Figure 2-7”. Also, it will
compare the hiding process in many aspects, and check the results data in several cases.
The evaluation will check another implementation of hiding text under text by changing

text size and color. The other implementation is done by (Jebran, 2007).

Evaluation methods are designed to cover the main factors of data hiding process;
process speed, result text size and matching result text with the original cover text. This
chapter is divided into sections; each section covers one of the evaluation methods. This
chapter starts with process speed evaluation, then evaluating the size of the result text, and

the last section evaluates the matching of the result text with the original cover text.

At the end of this chapter; results of the proposed implementation in variant cases are
provided: the use of one, two, three, four and five digits in cover text size 10pt, 12pt, 14pt

and 16pt.

50

4.1 Comparing the Proposed Solution with White Space Method:

White space is part of data hiding text into text. Some of white space problems are.

To hide two words like “Top Secret” requires text size cover of more than 80 words;
because each character size is 8 bit “1 byte” and each bit requires one space. That means
“T+o+p+ +S+e+ctr+e+t” equal 10 characters, 10 characters multiply by 8 bits equal 80

bits.
To be able to hide a large secret message; the result will be a very large message.

In a properly justified format of text, not all spaces are available to be used to hide

the required data.
By using the proposed solution; above problems are solved, and the result is:

To hide two words like “Top Secret” in text size 12pt and by using 2 digits; requires
text size cover not more than 20 words in case the result of each character index or ASCII
code is 4 digits; that means “T+o+p+ +S+e+c+rte+t” equal 10 characters, each character
index 4 digits multiply by 10 characters equal 40 digits, 40 digits divided into two digits

equal 20 parts, each part disappears in one white space.

To be able to hide a large secret message; the result will be close to the size of the

original text.

In a properly justified format of text, all spaces are available to be used to hide the

required data.

51

4.2 Evaluating the Speed of the Data Hiding Process

The speed process is different from case to another, the cases of evaluating the speed
process are: hiding secret text under cover text using cover text size 10pt, hiding secret text
under cover text using cover text size 12pt, hiding secret text under cover text using cover

text size 14pt and hiding secret text under cover text using cover text size 16pt.

The comparison will be between the proposed implementation and The other

implementation is done by (Jebran, 2007).

Hiding data by using size 10pt

Table 4-1: Speed results of hiding secret text using Cover text size 10pt

Number of .
; . Hidden
hidden digits ;
o | Process Speed Original file Hidden
in Seconds : Process Speed
Text Size
space in Seconds

2 0.5160296 12 59.0033748
3 0.2830162 14 61.5805222
4 0.2090119 16 63.3666244
S 0.2120121 (b) Jebran implementation

(2) The proposed implementation

52

6
5
4 /
3 /
2 /
-
0 1 2 3 4 5
_Hiddeirr‘\ :ﬁ‘;ﬁ;jpem 0.86204930.51602960.28301620.20901190.2120121
dgtemuntespae | 12 3 a4 s
(a) The proposed implementation
70
60
50 ,/
40
30
20 —
10
0 1 2 3 4
original file Text Size 10 12 14 16
_Hiddeir; ZZETSSSF’EM 48.8557944 | 59.0033748 61.5805222 63.3666244

(b) Jebran implementation

Figure 4-1: Speed results of hiding secret text using cover text size 10pt

53

As it’s shown in the above Tables (4-1) and Figures (4-1), the speed results generated
by applying the proposed implementation are different depending on the number of digits
are used to hide them within the white space of the cover text “described on 3.2.2.1 Detect
the number of digits”, the fastest case occurs when using four digits in the text size 10pt it
takes 0.2090119 seconds and the slowest case occurs when using one digit in the text size
10pt it takes 0.8620493 seconds. By applying the other implementation; the speed resulted
are the same on variant number of digits used to hide them within the white space of the
cover text, the speed of hiding one, two, three, four and five digits in text size 10pt is

48.8557944 seconds.

Hiding data by using size 12pt

Table 4-2: Speed results of hiding secret text using cover text size 12pt

number of .
. " Hidden
h@den O.l'g'ts Process Speed ;
in white Hidden
in Seconds Original file
space Text Size Process Speed
in Seconds

= 0.5030910 10 48.8557944
2 e 12| so.o085748 |
> 0230145 14 61.5805222
4 0.2070118 e 63.3666244
5 0.1660095 -

(a) The proposed implementation (b) Jebran implementation

54

6
5
4 /
3 /
2 /
<
0 1 2 3 4 5
_H'-ddeir:] ';Z‘;‘:ﬁfpee‘j 0.90305160.48402760.25301450.20701180.1660095
dgtemahitespace | 1 2 2 4 s
(a) The proposed implementation
70
60
50 .—-/
40
30
20 —
10
0 1 2 3 4
original file Text Size 10 12 14 16
_Hiddeir; FS’::;enS;sSpeed 48.8557944 | 59.0033748 61.5805222 63.3666244

(b) Jebran implementation

Figure 4-2: Speed results of hiding secret text using cover text size 12pt

55

As it’s shown in the above Tables (4-2) and Figures (4-2), the speed results generated
by applying the proposed implementation are different depending on the number of digits
are used to hide them within the white space of the cover text “described on 3.2.2.1 Detect
the number of digits”, the fastest case occurs when using five digits in text size 12pt it
takes 0.1660095 seconds and the slowest case occurs when using one digit in text size 12pt
it takes 0.9030516 seconds. By applying the other implementation; the speed results are the
same on variant number of digits used to hide them within the white space of the cover
text, the speed of hiding one, two, three, four and five digits in text size 12pt is 59.0033748

seconds.

Hiding data by using size 14pt

Table 4-3: Speed results of hiding secret text using cover text size 14pt

number of .
hidden digits | _Hidden
inwhite | T rOCesS Speed o Hidden
in Seconds Original file
space Text Size Process Speed

in Seconds

1 0.8940511 m 16.855704

2 0.4170238 - 895

3 0.3230185 59.0033748

4 0.1990114 i 533666244

5 0.1700097 -

(a) The proposed Implementation (b) Jebran implementation

56

6
5
4 /
3 /
2 /
1 <
0 1 2 3 4 5
_Hiddei'; z;i‘;?dsssme‘j 0.89405110.41702380.32301850.19901140.1700097
dgtemuniespoe | 12 4 s
(a) The proposed implementation
70
60 —
50 ,—/
40
30
20 —
10 —
0
1 2 3 4
original file Text Size 10 12 14 16
_Hiddeir; FS’::;?‘S;SSDEM 48.8557944 59.0033748 61.5805222 | 63.3666244

(b) Jebran implementation

Figure 4-3: Speed results of hiding secret text using cover text size 14pt

57

As it’s shown in above Tables (4-3) and Figures (4-3), the speed results generated by
applying the proposed implementation are different depend on the number of digits are
used to hide them within the white space of the cover text “described on 3.2.2.1 Detect the
number of digits”, the fastest case occurs when using five digits in text size 14pt it takes
0.1700097 seconds and the slowest case occurs when using one digit in text size 14pt it
takes 0.8940511 seconds. By applying the other implementation; the result of speed are the
same on variant number of digits used to hide them within the white space of the cover
text, the speed of hiding one, two, three, four and five digits in text size 14pt is 61.5805222

seconds.

Hiding data by using size 16pt

Table 4-7 and figure 4-7 show the speed results for hiding secret text under cover text

using text size 16pt by applying the proposed implementation.

Table 4-4: Speed results of hide secret text using cover text size 16pt

number of .
leeian el i Pro?;gsdggeed
in white . - . Hidden
space 17 E2E0nE O{g{' glizféle Process Speed

in Seconds

1 0.908052 10

2 0.4210241 P :2332;33:

3 0.2740157 ” '

4 0.2290131 61.5805222

S 0.1590091

(a) The proposed implementation (b) Jebran implementation

58

6
5
4 /
3 /
2 /
<
0 1 2 3 4 5
_Hiddeirr“ ';Z‘;erf;fpem 0.908052 0.42102410.27401570.22901310.1590091
dgtemahtespae | 1 2 | 3 | 4 | s
(a) The proposed implementation
70
60
50 ,/
40
30
20 —
10
0 1 2 3 4
original file Text Size 10 12 14 16
_Hiddeir; F_CEETSSSF’EM 48.8557944 |59.0033748 61.5805222 63.3666244

(b) Jebran implementation

Figure 4-4: Speed results of hiding secret text using cover text size 16pt

59

As it’s shown in above Tables (4-4) and Figures (4-4), the speed results generated by
applying the proposed implementation are different depend on the number of digits are
used to hide then within the white space of the cover text “described on 3.2.2.1 Detect the
number of digits”, the fastest case occurs when using five digits in text size 16pt it takes
0.1590091 seconds and the slowest case occurs when using one digit in text size 16pt it
takes 0.908052 seconds. By applying the other implementation; the result of process speed
are the same on variant number of digits used to hide then within then white space of the
cover text, the speed of hiding one, two, three, four and five digits in text size 16pt is

63.3666244 seconds.

4.3 Evaluating the Size of the Result Text

The size of the result text is different from one case to another, the cases of
evaluating the size of the result text are: hiding secret text under cover text using cover text
size 10pt, hiding secret text under cover text using cover text size 12pt, hiding secret text
under cover text using cover text size 14pt and hiding secret text under cover text using

cover text size 16pt.

The comparison will be between the proposed implementation and The other

implementation is done by (Jebran, 2007).

Hiding data by using size 10pt

Table 4-5: Size of the result text for hiding secret text using cover text size 10pt

number of
hidden original file Result file — —
digits in Sizein K.B | Sizein K.B Original Original Result file
white space fllgi'lz'eext flleélée in | s inKB
2 4 9 12 4 4
3 4 8 14 4 4
4 4 7 16 4 6
> 4 7 (b) Jebran implementation

(a) The proposed implementation

14

12

10

Lo S = B+ +]

.—-""_.—-’_

1 2 3 4 5
number of hidden

1 2 3 4 5

digits in white space

original file Size in K.B 4
Result file Size in K.B 13

(a) The proposed implementation

61

18
16

14 /
12

10 /

8
6
4
2
0
1 2 3 4
original file Text Size 10 12 14 16

original file Size in K.B
Result file Size in K.B

(b) Jebran implementation

Figure 4-5: Size of the result text for hiding secret text using cover text size 10pt

As it’s shown in above Tables (4-5) and Figures (4-5), the size of the result text
generated by applying the proposed implementation is different depending on the number
of digits are used to hiding them within then white space of the cover text “described on
3.2.2.1 Detect the number of digits”, the minimum size case occurs when using four and
five digits in cover text size 10pt, the size is 7kb and the maximum size case occurs when
using one digit in cover text size 10pt, the size is 13kb. By applying the other
implementation; the size of the result text is the same on variant number of digits used to
hiding them within the white space of the cover text, the size of the result text by hiding

one, two, three, four and five digits in cover text size 10pt is 6kb.

62

Hiding data by using size 12pt

Table 4-6: Size of the result text for hiding the secret text using cover text size 12pt

number of
hidden original file Result file — —
digits in SizeinK.B | Sizein K.B Original Original Result file
white space fllgil':xt flleélée in Size in KB
1 4 13 10 4 6
3 4 8 14 4 4
4 4 7 16 4 6
5 4 7 (b) Jebran implementation

(a) The proposed implementation

14

12

10

o N OB O 0

-—-""-_—-——
1 2 3 4 5
number of hidden
digits in white space 1 z 3 4 >
original file Size in K.B 4 4 4 4 4
Result file Size in K.B 13 9 8 7 7

(a) The proposed implementation

63

18
” /
14

o N R O 0

original file Text Size 10 12 14 16

original file Size in K.B
Result file Size in K.B

(b) Jebran implementation

Figure 4-6: Size of the result text for hiding the secret text using cover text size 12pt

As it’s shown in above Tables (4-6) and Figures (4-6), the size of the result text
generated by applying the proposed implementation is different depending on the number
of digits are used to hide it on the cover text white space “described on 3.2.2.1 Detect the
number of digits”, the minimum size case occurs when using four and five digits in cover
text size 12pt, the size is 7kb and the maximum size case occurs when using one digit in
cover text size 12pt, the size is 13kb. By applying the other implementation; the size of the
result text are the same on variant number of digits used to hiding them within the white
space of the cover text, the size of the result text by hiding one, two, three, four and five

digits in cover text size 12pt is 4kb.

Hiding data by using size 14pt

Table 4-7: Size of the result text for hiding secret text using cover text size 14pt

Original

Original

number of
hidden original file Result file
digitsin SizeinK.B | Sizein K.B
white space
1 4 13
2 4 9
3 4 8
4 4 5
S 4 5

Heoror | s gfg‘f:}t |f<"§3
Size K.B :
10 4 6
12 4 4
16 4 6

(a) The proposed implementation

(b) Jebran implementation

14
12
10
8
6
: /’/'4
2 P
0
1 2 4 5
s mnitespace | 1| 2 @ s
original file Size in K.B 4 4 a
Result file Size in K.B 13 5 5

(a) The proposed implementation

65

18
16

14 /
12

10 /

8
6
4
2
0
1 2 3 4
original file Text Size 10 12 14 16

original file Size in K.B
Result file Size in K.B

(b) Jebran implementation

Figure 4-7: Size of the result text for hiding secret text using cover text size 14pt

As it’s shown in above Tables (4-7) and Figures (4-7), the size of the result text
generated by applying the proposed implementation is different depending on the number
of digits are used to hiding them within the white space of the cover text “described on
3.2.2.1 Detect the number of digits”, the minimum size case occurs when using four and
five digits in cover text size 14pt, the size is 5kb and the maximum size case occurs when
using one digit in cover text size 14pt, the size is 13kb. By applying the other
implementation; the size of the result text is the same on variant number of digits used to
hide them within the white space of the cover text, the size of the result text by hiding one,

two, three, four and five digits in cover text size 14pt is 4kb.

Hiding data by using size 16pt

66

Table 4-8: Size of the result text for hiding the secret text using cover text size 16pt

Original

Original

number of
hidden original file Result file
digitsin SizeinK.B | Sizein K.B
white space
1 4 7
2 4 6
3 4 5
4 4 5
5 4 5

(a) The proposed implementation

file Text | file Size in SFff:‘f:]t rf<"§;
Size KB
10 4 .
12 7 ,
14 2 ,

(b) Jebran implementation

8

7

6

5 S

: //

3

2 —

1 /

0

1 2 4 5

dgemunitespace | 1| 2 ¢ | s
original file Size in K.B 4
Result file Size in K.B 5

(a) The proposed implementation

67

18
” /
14

o N R O 0

original file Text Size 10 12 14 16
original file Size in K.B
Result file Size in K.B

(b) Jebran implementation

Figure 4-8: Size of the result text for hiding secret text using cover text size 16pt

As it’s shown in above Tables (4-8) and Figures (4-8), the size of the result text
generated by applying the proposed implementation is different depending on the number
of digits are used to hiding them within the cover text white space “described on 3.2.2.1
Detect the number of digits”, the minimum size case occurs when using four and five
digits in cover text size 16pt, the size is 5kb and the maximum size case occurs when using
one digit in cover text size 16pt, the size is 7kb. By applying the other implementation; the
size of the result text are the same on variant number of digits used to hiding them within
the cover text white space, the size of the result text by hide one, two, three, four and five

digits in cover text size 16pt is 6kb.

68

4.4 Evaluating the Result Text Matching with the Original Cover Text

The result text matching with the original cover text are different from one case to
another, the cases of evaluating the result text matching with the original cover text are:
hiding secret text under cover text using cover text size 10pt, hiding secret text under cover
text using cover text size 12pt, hiding secret text under cover text using cover text size 14pt

and hiding secret text under cover text using cover text size 16pt.

The comparison will be between the proposed implementation and The other

implementation is done by (Jebran, 2007).

Hiding data by using size 10pt

Table 4-9: Result text matching with the original cover text for hiding secret text
using cover text size 10pt

(a) The proposed implementation

number of Result Text
hidden digits is Match Result Text

in white Original Original file is Match
space Text? Text Size Original

?

1 TRUE Text?

; FALSE |10 [FALsE |

3 FALSE 12 FALSE
4 FALSE 14 FALSE
5 FALSE 16 FALSE

(b) Jebran implementation

69

1

0

=

number of hidden
digits in white space

=

== Result Text is Match
Original Text?

=

(a) The proposed implementation

18
16
14
12
10

o N ks Oy o

original file Text Size

10

12

14

16

- Result Text is Match
Original Text?

(b) Jebran implementation

Figure 4-9: Result text matching with the original cover text for hiding secret text

using cover text size 10pt

70

As it’s shown in above Tables (4-9) and Figures (4-9), the result text matching with
the original cover text generated by applying the proposed implementation is different
depending on the number of digits are used to hide them within the white space of the
cover text “described on 3.2.2.1 Detect the number of digits”, when using one digit in
cover text size 10pt the result text matches the original cover text, and when using two,
three, four and five digits in cover text size 10pt the result text does not match the original
cover text. By applying the other implementation; the result text does not match the
original cover text on variant number of digits used to hide them within the white space of

the cover text using cover text size 10pt.

Hiding data by using size 12pt

Table 4-10: the result text matching with the original cover text for hide secret text
using cover text size 12pt

(a) The proposed implementation

number of Result Text
hidden digits is Match Result Text
in white Original Original file is Match
space Text? Text Size Original
?
1 FALSE Text?
2 TRUE
3 FALSE
4 FALSE 14 FALSE
5 FALSE 16 FALSE

(b) Jebran implementation

71

1

0

number of hidden
digits in white space

Result Text is Match
Original Text?

(a) The proposed implementation

18
16
14
12
10

O N k= oo

original file Text Size

10

12

14

16

Result Text is Match
Original Text?

(b) Jebran implementation

Figure 4-10: Result text matching with the original cover text for hiding secret text

using cover text size 12pt

72

As it’s shown in above Tables (4-10) and Figures (4-10), the result text matching
with the original cover text generated by applying the proposed implementation is different
depending on the number of digits are used to hide them within the white space of the
cover text “described on 3.2.2.1 Detect the number of digits”, when using two digits in
cover text size 12pt the result text matches the original cover text, and when using one,
three, four and five digits in cover text size 12pt the result text does not match the original
cover text. By applying the other implementation; the result text does not match the
original cover text on variant number of digits used to hide them within the white space of

the cover text in cover text size 12pt.

Hiding data by using size 14pt

Table 4-11: Result text matching with the original cover text for hiding secret text
using cover text size 14pt

number of Result Text
hidden digits is Match Result Text

in white Original Original file is Match
space Text? Text Size Original

?

1 FALSE Text?
2 FALSE 10 FALSE
3 TRUE 12 FALSE

4 FALSE

5 FALSE 16 FALSE

(a) The proposed implementation

(b) Jebran implementation

73

0 T~

1 2 3 4 5
number of hidden
digits in white space 1 2 3 4 >
- Result Text is Match
Original Text? 0 0 1 0 0

(a) The proposed implementation

18

> /
14

8

6

4

2

0
1 2 3 4
original file Text Size 10 12 14 16
0 0 0

(b) Jebran implementation

Figure 4-11: Result text matching with the original cover text for hiding secret text
using cover text size 14pt

74

As it’s shown in above Tables (4-11) and Figures (4-11), the result text matching
with the original cover text generated by applying the proposed implementation is different
depending on the number of digits are used to hide them within the white space of the
cover text “described on 3.2.2.1 Detect the number of digits”, when using three digits in
cover text size 14pt the result text matches of the original cover text, and when using one,
two, four and five digits in cover text size 14pt the result text does not match the original
cover text. By applying the other implementation; the result text does not match the
original cover text on variant number of digits used to hide them within the cover text

white space in cover text size 14pt.

Hiding data by using size 16pt

Table 4-12: Result text matching with the original cover text for hiding secret text
using cover text size 16pt

(a) The proposed implementation

(b) Jebran implementation

number of Result Text
hidden digits is Match Result Text

in white Original Original file is Match
space Text? Text Size Original

?

1 FALSE Text?
2 FALSE 10 FALSE
3 FALSE 12 FALSE
4 TRUE 14 FALSE

S FALSE

75

N
) o~

1 2 3 4 5
number of hidden
digits in white space 1 2 3 4 >
== Result Text is Match
Original Text? 0 0 0 1 0

(a) The proposed implementation

18
16

14 /
12

10 /

8

6

A

2

° 1 2 3 4
original file Text Size 10 12 14 16
i I I I

(b) Jebran implementation

Figure 4-12: Result text matching with the original cover text for hiding secret text
using cover text size 16pt

76

As it’s shown in above Tables (4-12) and Figures (4-12), the result text matching
with the original cover text generated by applying the proposed implementation is different
depending on the number of digits are used to hide them within the white space of the
cover text “described on 3.2.2.1 Detect the number of digits”, when using four digits in
cover text size 16pt the result text matches the original cover text, and when using one,
two, three and five digits in cover text size 16pt the result text does not match the original
cover text. By applying the other implementation; the result text does not match the
original cover text on variant number of digits used to hide them within the cover text

white space in cover text size 16pt.

77

45 The results of the proposed implementation in variant cases

i iz e we grepose o 2w theceetical Sasarwork fin the dus-badeg froblen of Giptal wnd prstrd tew decumerts. We explam hew es prokdem con be 3emt €3 nsimce of i = e knows Orl 220 Pregbrs protien. The
i en foe s 3 15 b0 covmrdee 2 1o 2h des cvmng of wudtgle quurrsSathe featiaes yach 1 shep, poken, ortmtgaen, 529, coboe ote

Figure 4-13: Result of hiding secret text using cover text size 10pt for one digit

sy v

.’lniﬂmm-*‘

]- fhes peper, wo propase & tew thaerrtcel Bummewodk foe the dute ey probdes of St end previed etet dooumets. We exgriam haw (his probsiem s be seen 13 on mebince of (he wellinras Ol fand 2avbet
b The sam ides foe s mrhmpeetation 15 % consider ¢ teot charsc(er 28 & dets vinscta contemng of waftgle quantifichle foatures such o shupe, peadion omesisten, sur, coh o

Figure 4-14: Result of hiding secret text using cover text size 10pt for two digits

78

‘ _ﬁ'm"ul-.‘d—_- ,7' .

- fhubie frzmms 1uch 31 skape. poatim,

&t Bevical fravman D¢ the data Mding preblens of Sl sed prared vt focommncs. We mplan haw this probies cas be seen 35 w0 mitance of B Soll ki Gof Tand Padon
W) ben T TRet WETIAON W 00 5 eOEhier & 1N ChARICIN 38 & 333 CITGETY Senuiting of milagle Daredidhie feanane Gk 10 Shape. PEene, MwaEAton e coler e

[zme aatwe

Figure 4-15: Result of hiding secret text using cover text size 10pt for three digits

ma prned oo dovunemts We mgden how B probies <o be demt ot e grtance of the Sollhavin Gef fnd-
o wrdiy Sk o thaps, poition, samisien, sie, Colar

g — .

Figure 4-16: Result of hiding secret text using cover text size 10pt for four digits

79

d‘ﬁﬂ-&lmlu—dl el hoe the pootbem mn Be sernm m anstance of @ webdneen Ol fand.
of wudepls B warh © dhupe, pormen, commishon, koo, cebm, ot

k fox ths wmdmdmum We eaphan o peobless canbe sern 11 mmitasce of e wel-known
yp 2 a data stctere cosakiting of madtipls quastifabile featiees soch as chape, Posion, orisstation, s2e, color, #ie

Figure 4-18: Result of hiding secret text using cover text size 12pt for one digit

80

s e o 9 Tabes ot of 457 s ramed st docuneans ¢ cxiam N s i o b seem 3 geioce € e 7 ed koo

! ﬁm.nmnm“l—ﬂhh“ph‘*dmu We caplan bow s problers cas be ween a0 an antance of the wel-
Anoun Gel'fand- Prker problers The tasn idea for s iterpretiton 15 10 Comadey & t=st chy asadem sisteg of subiple quactifialie femaes vach as shipe. pouSon. (xertinos,

Figure 4-20: Result of hiding secret text using cover text size 12pt for three digits

81

Figure 4-21: Result of hiding secret text using cover text size 12pt for four digits

ﬁmnmunwwhﬁhﬁnﬂ-dﬁd d pristed vest & . "o_‘—‘ “—hm--h—nd&m
G The or thee 3 o 18 t0 commder bewt character ¢ n data sirocnEY consivting of meitple quastinble festires mck m Bape, pornca. rertaton, TR,

i ﬁ.ue-mwmhkh&lpﬂﬂ-dd'ﬂdnmw.aﬁhﬁpﬁ-ahu---udh
el knoon Ged find. Pucker probiere. The mas idea for thes iterpestation & 10 consder a 1232 character & & data saachies cosskiting of tadiple quasnfishle Satmes such a5 shape, postion
on, sive, coloe, efc.

Figure 4-22: Result of hiding secret text using cover text size 12pt for five digits

82

new teoretical framework for the data-hidig probiker of dgeal and prinied test dosuments. We expiain bow this problem can be
mﬁuMWWMMMdahhw-hMamM-ldumm

features such as shape, position, odentation. size. coloe. ete.

' mw’:apﬂmummhmah

Figure 4-23: Result of hiding secret text using cover text size 14pt for one digit

| = hmwml iwﬁe umummmm&m:—u
nnmuhmm'ummmwmuuwamm-mm»;mmm

Figure 4-24: Result of hiding secret text using cover text size 14pt for two digits

83

n this paper. : ot pvoun @numum Weaphhmmqnbhnmu
seens &5 an instance of the wel-known Gel fand-Piasker problem. The main idea for this interpretation 1 10 consider a text characser a3 a data structure comsisting
of mukiple quantifiable features such as shape, position, erientation, size, color, etc.

mmamwmmm dmum Weqﬁm&kpoblnmk
instance of the well-known Mmmmmmmuwuwm-mm.ammm
quantifiable features such as shape, position, orientation, size, color, etc.

ﬁpw um.mwwwrmummouwu fext documents. We exphin how this problem can be
sery a5 an instance of the Mwmmmmmuhh is 1o consider a text character as a datn structure consisting

Figure 4-26: Result of hiding secret text using cover text size 14pt for four digits

84

of digital and printed text documents. We explam how (his problem can be

ital and printed text Gocwments, We expiain bow this problem can
is to consider a text charncter as a data stracture

ta mdmnndmdmmuWemhmhoprmﬂm

1 framework for dm-hﬂq;nﬂm ofdigital
; hmumhmooﬁhemll-knownod'wmmm The main iden for this interpretation is to consider a text character as a data
st ire consisting of multiple quantifiable feanires such as shape, position, orientation. size. color, etc.

Figure 4-28: Result of hiding secret text using cover text size 16pt for one digit

85

n this paper, we propose a new theoretical frameswork for the data-hidng problem of digital and printed text documents. We explain how this
problem can be seen as an instance of the well-known Gel' fand-Pinsker problem. The main idea for this interpeetation is to consider a text

er as a data structure consisting of multiple quantifiable features such as shape. position, orientation, size, color. ctc.

lhsplpn' mm-mwmmhmmmdwmummm We explain how this
{problen can be seen as an instance of the well-known Gel’ fand-Pinsker problem. The main idea for this interpretation is to consider a text character
s a data structure consisting of multiple quantifiable features such as shape, position, orientation, size, color, etc.

Figure 4-29: Result of hiding secret text in cover text size 16pt for two digits

n this paper, we propose a new theoretical framework for the data-hiding problem of digital and printed text documeats. We explaiu
oblem can be seen as an mstance of the weli-known Gel fand-Pinsker problem. The maim idea for this mterpretation 15 to consider a text
et 5 & data structure consisting of multiple quantifiable features such as shape, position, orfentation, size, color, efc

fot&eptoblanofdiﬁnlndwimedmdoammWeupHnmm
cnbneenuumof&mmm‘mmmmmmwhmmwum consider a text
racter as a data structure consisting of multiple quantifiable features such as shape. position. orientation, size, color, et

Figure 4-30: Result of hiding secret text using cover text size 16pt for three digits

86

n this paper, we propose a new theoretical framework for the data-hidg problem of digital and printed text documents. We explain how this
problem can be seen as an instance of the well-known Gel' fand-Pinsker problem. The main idea for this interpeetation is to consider a text

er as a data structure consisting of multiple quantifiable features such as shape. position, orientation, size, color. ctc.

lanmbemuunimumeof&e well-known Gel'fand-Pinsker problem. The main 1dea for this interpretation 15 to consider a text
{character a5 a data structure consisting of multiple quantifiable feanures such as shape, position, orientation, size, color, efc.

Figure 4-31: Result of hiding secret text using cover text size 16pt for four digits

n this paper, we propose a new theoretical framework for the data-hiding problem of digital and printed text documents. We explain how this
i lmmhmunmofhwdlm&l'mﬂ-hﬂummmdurogdnsylmuhmmnm

thnplper mmlwwm&fmhmmmﬁmMMMbchmm
fem can be seen as an instance of the well-known Gel” mmmlmmmmﬁmmmumm.m

Figure 4-32: Result of hiding secret text using cover text size 16pt for five digits

87

Chapter Five
Conclusion and Future Work

Information security has two branches; data encryption and data hiding. Image,
audio, and text are used for data hiding. Data hiding in text is to embed text within another

text to be invisible. Digital media has become more prevalent and expanding.

There are three major methods for data hiding text under text; open space methods
that encode through manipulation of white space (unused space on the printed page),
syntactic methods that utilize punctuation, and semantic methods that encode using

manipulation of the words themselves.

There are two reasons why the manipulation of white space in particular yields useful
results in open space method. First, changing the number of trailing spaces has little
chance of changing the meaning of a phrase or sentence. Second, a casual reader is

unlikely to take notice of slight modifications to white space.

There are three methods of using white space to encode data. The methods exploit
inter-sentence spacing by placing either one or two spaces after each terminating character,
end-of-line spaces by insert spaces at the end of lines, the data are encoded allowing for a
predetermined number of spaces at the end of each line, and inter-word spacing in justified
text by controlling where the extra spaces are placed, one space between words is

interpreted as a “0” two spaces are interpreted as a “1”.

Character indexes used in the proposed solution to get the index of secret characters

from the cover text to be able to retrieve the secret text in the stage of the text show. The

88

characters’ indexes are not enough to indicate the intended character from the cover text,
so; ASCII code characters give a unique code for each character in the secret text “with

sensitive case”.

The octal numeral system is the base-8 number system, and uses the digits O to 7.
Octal numerals can be made from binary numerals by grouping consecutive binary digits

into groups of three (starting from the right).

The proposed solution takes advantage of the unused white space from the text
“Cover Text” to hide the data “Secret Data” on the cover text. Changing the format of the
secret text by setting the text size to 1px, setting the font color to white as the back color of
cover text, then extract the index of the secret text characters from cover text, the
remaining secret text characters that do not exist in the cover text will generate a unique
code for each none existing characters from ASCII code characters, then convert the result
of indexes and ASCII codes from decimal numeral system into octal numeral system by
separating the characters with the number “9” and identifying the ASCII code “not index”
with the number “8”, then merging the secret text with the cover text using white space

method to generate the result text which is hiding the secret message within it.

Future works may include converting the extract numbers of indexes and ASCII
codes into equations allowing the regeneration of the extract numbers and these equations

can be concealed and transported via cover text.

89

References

Abdul Qadir, M., & Ahmad, I. (2006). Digital Text Watermarking: Secure Content Delivery and Data
Hiding in Digital Documents. Security Technology, 2005. CCST '05. 39th Annual 2005
International Carnahan Conference, 101 - 104.

Abdullah, Y. F., & Nasereddin, H. H. (2013). Proposed Data Hiding Technique — Text under Text.
American Academic & Scholarly Research Journal (AASRJ), 243-248.

Al-Hamami, A. H., & Al-Hamami, M. A. (2008). Information Hiding — Steganography and
Watermark. Al-Sharjeh: ethraa.

Ali, A. (2007). Qualitative Spatial Image Data Hiding for Secure Data Transmission. International
Journal on Graphics, Vision and Image Processing, 35-43.

AMIN, M. M., IBRAHIM, S., SALLEH, M., & KATMIN, M. R. (2003). INFORMATION HIDING USING
STEGANOGRAPHY. Malaysia: University Teknologi.

Asif, A. A., Shaikh, A., Manza, R. R., & Ramteke, R. J. (2010). Conversion of Bitmap Text Images for
Data Hiding. Computational Intelligence and Computing Research (ICCIC), 2010 IEEE
International Conference, 1 — 4.

Bender, W., Gruhl, D., Morimoto, N., & Lu, A. (1996). Techniques for data hiding. IBM SYSTEMS
JOURNAL, 313-336.

Borges, P. V., Izquierdo, E., & Mayer, J. (2008). Efficient Text Color Modulation for Printed Side
Communications and Data Hiding. Institute of Electrical and Electronics Engineers (IEEE),
79 — 86.

Brassil, J. T., Low, S., Maxemchuk, N. F., & O’Gorman, L. (1995). Electronic Marking and
Identification Techniques to Discourage Document Copying. Selected Areas in
Communications, IEEE Journal, 1495 — 1504.

Bulan, O., Sharma, G., & Monga, V. (2008). Adaptive Decoding For Halftone Orientation-Based
Data Hiding. Institute of Electrical and Electronics Engineers (IEEE), 1280 - 1283.

Chen, Y.-Y,, Pan, H.-K., & Tseng, Y.-C. (2000). A Secure Data Hiding Scheme for Two-Color Images.
Institute of Electrical and Electronics Engineers (IEEE), 750 — 755.

Deguillaume, F., Rytsar, Y., Voloshynovskiy, S., & Pun, T. (2005). Protocols for data-hiding based
text document security and automatic processing. Multimedia and Expo, 2005. ICME
2005. IEEE International Conference.

90

Dutta, P., Bhattacharyya, D., & Kim, T.-h. (2009). Data Hiding in Audio Signal: A Review. Kim
International Journal of Database Theory and Application, 1-8.

Harshavardhan, K., & Sugata, S. (2012). A Survey On Various Data Hiding Techniques And Their
Comparative Analysis. Acta Technica Corviniensis - Bulletin of Engineering, 35 - 40.

Ibrahim, A., & Zabian, A. (2009). Algorithm for Text Hiding in Digital Image for Information
Security. International Journal of Computer Science and Network Security, 262-268.

Jebran, A. (2007, June 19). Text 2Text Steganography - Part 2. Retrieved January 6, 2013, from
Code Project: http://www.codeproject.com/Articles/19260/Text-2Text-Steganography-
Part-2

Judge, J. C. (2001). Steganography: Past, Present, Future. Security Essentials Certification: GSEC, 1-
29.

KAHN, D. (1996). The Codebreakers: The Story of Secret Writing. New York: Scribner.

Kim, H., & Mayer, J. (2007). Data Hiding for Binary Documents Robust to Print-Scan, Photocopy
and Geometric Distortions. Computer Graphics and Image Processing, 2007. SIBGRAPI
2007. XX Brazilian Symposium, 105 - 112.

Kuo, W.-C., Jiang, D.-)., & Huang, Y.-C. (2008). A Reversible Data Hiding Scheme Based on Block
Division. Institute of Electrical and Electronics Engineers (IEEE), 365 — 369.

Kuo, W.-C., Kuo, S.-H., & Wuu, L.-C. (2010). High Embedding Reversible Data Hiding Scheme for
JPEG. Institute of Electrical and Electronics Engineers (IEEE), 74-77.

Kurup, S., Sridhar, G., & Sridhar, V. (2005). Entropy Based Data Hiding for Document Images.
World Academy of Science, Engineering and Technology, 150-153.

Low, S. H., Maxemchuk, N. F., & Lapone, A. M. (1998). Document Identification for Copyright
Protection Using Centroid Detection. Institute of Electrical and Electronics Engineers
(IEEE), 372 — 383.

Low, S. H., Maxemchuk, N. F., Brassil, J. T., & O'Gorman, L. (1995). Document Marking and
Identification using Both Line and Word Shifting. Institute of Electrical and Electronics
Engineers (IEEE), 853 - 860.

Lu, H., Kot, A. C., & Susanto, R. (2002). Binary Image watermarking through Biased Binarization.
Nanyang Technological University, Institute for Infocomm Research.

Michaud, E. (2003). Current Steganography Tools and Methods. Current Steganography Tools and
Methods, 1-11.

91

Mikkilineni, A. K. (2012). INFORMATION HIDING IN PRINTED DOCUMENTS. For the degree of
Doctor of Philosophy Purdue University, 1-10.

MOULIN, P., & KOETTER, R. (2005). Data-Hiding Codes. Institute of Electrical and Electronics
Engineers (IEEE), 2083 — 2126.

Nasereddin, H. H., & Al Farzaeai, M. S. (2010). PROPOSED DATA HIDING TECHNIQUE TEXT IMAGE
INSIDE IMAGE (TIll). International Journal of Research and Reviews in Applied Sciences,
183-193.

Net 2000 Ltd. (2010, January 1). DataMasker. Retrieved January 1, 2012, from DataMasker:
http://www.DataMasker.com

Ni, Z., Shi, Y. Q., Ansari, N., Su, W., Sun, Q., & Lin, X. (2008). Robust Lossless Image Data Hiding
Designed for Semi-Fragile Image Authentication. Institute of Electrical and Electronics
Engineers (IEEE), 1051-8215.

Por, L. Y., Wong, K., & Chee, K. 0. (2012). A text-based data hiding method using Unicode space
characters. The Journal of Systems and Software, 1075 — 1082.

Rahma, A. S., AbdulWahab, H. B., & Al-Noori, A. Y. (2011). Proposed Steganographic Method for
Data Hiding in Microsoft Word Documents Structure. Al-Mansour Journal, 1 - 29.

Samphaiboon, N. (2011). Steganography via running short text messages. Springer Science,
Business Media, LLC 2009 Multimed Tools, 569-596.

Schneier, B. (2004). Secret & Lies: Digital Security in a Networked World; with new information
about post-9/11 security. Indianapolis, Indiana: Wiley Publishing.

Stallings, W. (1999). Cryptography and network security. New Jersey: Prentice Hall.
Stanev, S. (2005). Steganographic Systems. CSC/MAT.

Vill’an, R., Voloshynovskiy, S., Koval, O., Vila, J., Topak, E., Deguillaume, F., et al. (2006). Text Data-
Hiding for Digital and Printed Documents: Theoretical and Practical Considerations.
Stochastic Information Processing (SIP), 15-26.

wikipedia. (2013, April 21). Octal. Retrieved Aprile 26, 2013, from Wikipedia, the free
encyclopedia: http://en.wikipedia.org/wiki/Octal

wikipedia. (2013, March 08). Point (typography). Retrieved May 02, 2013, from Wikipedia, the
free encyclopedia: http://en.wikipedia.org/wiki/Point_(typography)

wikipedia. (2013, April 30). Sentence spacing. Retrieved May 02, 2013, from Wikipedia, the free
encyclopedia: http://en.wikipedia.org/wiki/Sentence_spacing

92

Wong, P. H., Ay, O. C., & Wong, J. W. (2000). Data Hiding and Watermarking in JPEG Compressed
Domain by DC Coefficient Modification. Proc. SPIE Security and Watermarking of
Multimedia Contents, 5-2.

Xuan, G., Shi, Y. Q,, Chai, P., Tong, X., Teng, J., & Li, J. (2008). Reversible Binary Image Data Hiding
By Run-Length Histogram Modification. Institute of Electrical and Electronics Engineers
(IEEE), 1-4.

Yang, H., & Kot, A. C. (2005). DATA HIDING FOR TEXT DOCUMENT IMAGE AUTHENTICATION BY
CONNECTIVITY-PRESERVING. Institute of Electrical and Electronics Engineers (IEEE), 505 —
508.

YILMAZ, A. (2003). ROBUST VIDEO TRANSMISSION USING DATA HIDING. In partial fulfillment of
the requirements for the degree of Master of Science, the graduate school of natural and
applied sciences of the Middle East technical university, 20-30.

Zhang, X.-P., Li, K., & Wang, X. (2008). A Novel Look-Up Table Design Method for Data Hiding With
Reduced Distortion. Institute of Electrical and Electronics Engineers (IEEE), 769 - 776.

Zou, D., & Shi, Y. Q. (2005). Formatted Text Document Data Hiding Robust to Printing, Copying
and Scanning. Institute of Electrical and Electronics Engineers (IEEE), 4971 — 4974,

Appendices

93

using
using
using
using
using
using
using
using
using

System;
System.Collections.Generic;
System.ComponentModel;
System.Data;
System.Drawing;
System.Ling;

System.Text;
System.Windows.Forms;
System.IO;

namespace DataHidingTextUnderText

{
public partial class frmMain : Form
{
private int iNoOfDigits = 1;
private float fontSize = 12;
private string[] iDec = null;
private string sWholeIndexes = string.Empty;
public frmMain()
{
InitializeComponent();
rtxtResultText.Font = new Font(rtxtResultText.Font.FontFamily,
fontSize);
iNoOfDigits = (int)nudNoOfDigits.Value;
}

private bool validation()

{

bool result = true;
if (rtxtSecretText.Text.Trim().Equals(string.Empty) ||

rtxtCoveredText.Text.Trim().Equals(string.Empty))

{
MessageBox.Show("Please enter Covered and Secret text");
result = false;
}
return result;
}
private void exportIndexes()
{
iDec = new string[rtxtSecretText.Text.Length];
sWholeIndexes = string.Empty;
char strChars;
for (int i = @; i < rtxtSecretText.Text.Length; i++)
{
strChars = Char.Parse(rtxtSecretText.Text.Substring(i, 1));
if (rtxtCoveredText.Text.IndexOf(rtxtSecretText.Text.Substring(i,
1)) >= 9)

{

94

iDec[i] =
Convert.ToString(rtxtCoveredText.Text.IndexOf(rtxtSecretText.Text.Substring(i, 1)),
8);

}
else
{
iDec[i] = "8" + Convert.ToString(Convert.ToInt32(strChars), 8);
}
}
for (int i = @; i < iDec.Length; i++)
{
if (i + 1 < iDec.Length && !iDec[i + 1].Substring(@, 1).Equals("8"))
{
sWholeIndexes = sWholeIndexes + iDec[i] + "9";
}
else
{
sWholeIndexes = sWholeIndexes + iDec[i];
}
}

}

private void margeData()
{
rtxtResultText.Text = rtxtCoveredText.Text;
int iIndex = @, leng = iNoOfDigits;
for (int i = @; i < rtxtResultText.Text.Length; i++)
if (rtxtResultText.Text.Substring(i, 1).Equals(" "))

{
if (sWholeIndexes.Substring(iIndex, sWholeIndexes.Length -
iIndex).Length < iNoOfDigits)
leng = sWholeIndexes.Substring(iIndex, sWholeIndexes.Length
- iIndex).Length;

rtxtResultText.Text = rtxtResultText.Text.Remove(i, 1);

rtxtResultText.Text = rtxtResultText.Text.Insert(i, " " +
sWholeIndexes.Substring(iIndex, leng) + " ");

iIndex += iNoOfDigits;

i += iNoOfDigits + 1;

if (iIndex >= sWholeIndexes.Length)
break;

}

private void hideData()
{
int remainingDigitsCount = sWholeIndexes.Length;
for (int i = @; i < rtxtResultText.Text.Length & & remainingDigitsCount >
0; i++)
if (rtxtResultText.Text.Substring(i, 1).Equals(" "))
{
if (remainingDigitsCount < iNoOfDigits)
{

rtxtResultText.Select(i, remainingDigitsCount + 1);

95

rtxtResultText.SelectionFont = new
Font(rtxtResultText.Font.FontFamily, 1);

rtxtResultText.SelectionColor = rtxtResultText.BackColor;

rtxtResultText.DeselectAll();

break;

else if (rtxtResultText.Text.Length >= i + iNoOfDigits + 1 &&
rtxtResultText.Text.Substring(i + iNoOfDigits + 1, 1).Equals(" "))
{
rtxtResultText.Select(i, iNoOfDigits + 2);
rtxtResultText.SelectionFont = new
Font(rtxtResultText.Font.FontFamily, 1);
rtxtResultText.SelectionColor = rtxtResultText.BackColor;
rtxtResultText.DeselectAll();
i += iNoOfDigits + 1;

remainingDigitsCount -= iNoOfDigits;
}
}
}
private void frmMain_Load(object sender, EventArgs e)
{
cmbFontSize.SelectedIndex = 1;
}
private void btnHide_Click(object sender, EventArgs e)
{
DateTime time = new DateTime();
time = DateTime.Now;
rtxtResultText.Text = string.Empty;
if (validation())
{
exportIndexes();
margeData();
hideData();
}
1blTime.Text = (DateTime.Now - time).ToString();
txtTime.Text = 1lblTime.Text;
}

private void btnSave_Click(object sender, EventArgs e)
{
SaveFileDialog sfd = new SaveFileDialog();
sfd.Filter = "Rich File|.rtf";
if (sfd.ShowDialog() != System.Windows.Forms.DialogResult.Cancel)
rtxtResultText.SaveFile(sfd.FileName,
RichTextBoxStreamType.RichText);

}

private void cmbFontSize SelectedIndexChanged(object sender, EventArgs e)
{
fontSize = float.Parse(cmbFontSize.Text.ToString());
rtxtResultText.Font = new Font(rtxtResultText.Font.FontFamily,
fontSize);

96

rtxtCoveredText.Font = new Font(rtxtCoveredText.Font.FontFamily,

fontSize);
hideData();
}
private void nudNoOfDigits_ValueChanged(object sender, EventArgs e)
{
iNoOfDigits = (int)nudNoOfDigits.Value;
}
private void rtxtSecretText_TextChanged(object sender, EventArgs e)
{
if (rtxtSecretText.Text != string.Empty && rtxtSecretText.Text.Length >
5)
nudNoOfDigits.Maximum = 5;
else
nudNoOfDigits.Maximum = rtxtSecretText.Text.Length;
if (nudNoOfDigits.Maximum > 3)
nudNoOfDigits.Value = 3;
else
nudNoOfDigits.Value = nudNoOfDigits.Maximum;
}

private void retrieveIndexes()
{
string secretText = string.Empty;
List<int> indexesToRemove = new List<int>();
sWholeIndexes = string.Empty;
for (int i = @0; i < rtxtResultText.Text.Length; i++)
{
rtxtResultText.Select(i, 1);
if (!rtxtResultText.SelectedText.Equals(" ") &&
rtxtResultText.SelectionFont.Size.Equals(1l) &&
rtxtResultText.SelectionColor.Equals(Color.White))

{
sWholeIndexes = sWholeIndexes + rtxtResultText.SelectedText;
indexesToRemove.Add(i);
rtxtResultText.DeselectAll();
}
}
for (int i = indexesToRemove.Count - 1; i >= @; i--)
{
rtxtResultText.Text = rtxtResultText.Text.Remove(indexesToRemove[i],
1);
}
rtxtResultText.Text = rtxtResultText.Text.Replace(" ", " ");
iDec = new string[sWholeIndexes.Length];
if (sWholeIndexes != string.Empty)
sWholeIndexes = (!sWholeIndexes.Substring(®, 1).Equals("8") &&
IsWholeIndexes.Substring(@®, 1).Equals("9") ? "9" : "") + sWholeIndexes;
int index = -1;
for (int i = @; i < sWholeIndexes.Length; i++)
{

if (i == @ || sWholeIndexes.Substring(i, 1).Equals("8") ||
sWholeIndexes.Substring(i, 1).Equals("9"))

{
index += 1;
iDec[index] = sWholeIndexes.Substring(i, 1);
}
else
{
iDec[index] = iDec[index] + sWholeIndexes.Substring(i, 1);
}
}
for (int i = @; i < iDec.Length; i++)
{

if (iDec[i] == null)
{

break;

else if (!iDec[i].Equals("") && !iDec[i].Equals("8") &&
1iDec[i].Equals("9"))
{

if (iDec[i].Contains("8"))

//remove additional number

iDec[i] = iDec[i].Replace("8", "");

//convert octal to decimal

iDec[i] =
Convert.ToInte4(Convert.ToString(Convert.ToInt64(iDec[i], 8), 10)).ToString();

//get char value from decimal code

secretText = secretText +
Convert.ToChar(long.Parse(iDec[i])).ToString();

else if (iDec[i].Contains("9"))
{
//remove additional number
iDec[i] = iDec[i].Replace("9", "");
//convert octal to decimal
iDec[i] =
Convert.ToInt64(Convert.ToString(Convert.ToInt64(iDec[i], 8), 10)).ToString();
//get char value from decimal code
secretText = secretText +
rtxtResultText.Text.Substring(int.Parse(iDec[i]), 1);

}
}

}

MessageBox.Show(secretText);
}
private void btnRetrieve_Click(object sender, EventArgs e)
{

retrieveIndexes();
}

private void btnBrowseST_Click(object sender, EventArgs e)

{
OpenFileDialog ofd = new OpenFileDialog();

if (ofd.ShowDialog() != System.Windows.Forms.DialogResult.Cancel)
{

97

StreamReader reader = new StreamReader(ofd.FileName);
rtxtSecretText.Text = reader.ReadToEnd();
reader.Close();

}

private void btnBrowseCT_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
if (ofd.ShowDialog() != System.Windows.Forms.DialogResult.Cancel)
{
rtxtCoveredText.LoadFile(ofd.FileName);
rtxtCoveredText.Modified = false;

}

private void btnBrowseRT_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
if (ofd.ShowDialog() != System.Windows.Forms.DialogResult.Cancel)
{
rtxtResultText.LoadFile(ofd.FileName);
rtxtResultText.Modified = false;

98

