
 

Enhancing Open Space Method in Data Hiding 

Technique – Text under Text 

 

نص  –تحسين في استخدام الفراغ المتاح في تقنية اخفاء البيانات 

 خلال نص

By  

Yaman Fakhri Issa Abdallah 

Supervisor 

Dr. Hebah H. O. Nasereddin 

Submitted in Partial Fulfillment of the Requirements of the 

Master’s Degree in Computer Information System 

 

Computer Information System department 

Faculty of Information System and Technology 

Middle East University 

May, 2013 



 ii 

Authorization Statement 

I’m Yaman Fakhri Abdallah, authorize Middle East University to supply 

hardcopies and electronic copies of my thesis to libraries, establishments, or bodies and 

institutions concerned with research and scientific studies upon request, according to the 

university regulations. 



III 
 

  



IV 
 

Acknowledgements 

At the mid of my academic path pursuing my Master’s degree, and when I was 

hesitant about selecting the subject of my thesis; Dr. Hebah Nasereddin accompanied me 

in this path providing full guidance and supervision starting with the subject selection 

ending with this complete academic work. Also, she played a significant role in publishing 

my first paper in one of the most accredited journals in the IT studies’ field, and introduced 

me as a participant - by presenting my work-in the international IT conference.  

After finishing my thesis technically, I was fortunate to have my friend Mohammad 

Jihad editing my paper and assisting me to present it in a scientific and proper language. 

Sharing this moment of success with my dear mother –May Allah’s mercy be upon 

her- who would have been delighted to witness my proved academic development is my 

only wish. 

 To my wife I’m grateful; who gracefully dedicated her days and nights ensuring I 

got all it takes to achieve this work.  

For the constant support, I can only thank my brothers and sisters. 

Finally, I am thankful to the educational board in the MEU University; and to the 

Information Technology department in particular. 

  



V 
 

Dedication 

 

To my father’s soul who taught me how to find my way through man’s most 

challenging hardships 

To my mother’s soul who dedicated her life to watch over me 

To my brother, my mentor, and my teacher, Dr. Al-Hareth 

To my brothers and sisters with whom I shared with the joy of life 

To my precious wife, To Safa’a 

To the one who guided me toward success in my academic advancement Dr. 

Hebah Nasereddin 

To my friends, my lifetime companions; Mohammed Jihad and Hazem 

Khalid 

  



VI 
 

Table of Contents 

TITLE PAGE ……………………………………………………………………………………... I 

AUTHORIZED STATEMENT …………………………………………………………………..II 

EXAMINITAION COMMITTEE DECISION ………………………………………………...III 

ACKNOWLEDGMENTS ……………………………………………………………………… IV 

DEDICATION ...…………………………………………………………………………………. V 

TABLE OF CONTENTS ……………………………………………………………………….. VI 

LIST OF TABLES ……………………………………………………………………………. VIII 

LIST OF FIGURES …………………………………………………………………………….. IX 

ABBREVIATIONS ……………………………………………………………………………... XI 

 XII ……………………………………………………………………………………………الملخص 

ABSTRACT …………………………………………………………………………………… XIV 

CHAPTER ONE: INTRODUCTION …………………………………………………………… 1 

1.1 Preface …………………………………………………………………………………….. 1 

1.2 Objectives and Problem definition …...…………………………………………………… 2 

1.3 Significance ……………………………………………………………………………….. 3 

1.4 Limitations ………………………………………………………………………………… 4 

1.5 Thesis Outline (Thesis Organization) ……………………………………………………... 4 

CHAPTER TWO: LITERATURE SURVEY ………………………………………………….. 5 

2.1 Theoretical Background ……………………………………………………………........... 5 

2.2 Related Work …………………………………………………………………………….. 15 

CHAPTER THREE: THE PROPOSED MODEL ……………………………………………. 26 

3.1 Supported Concepts ……………………………………………………………………… 28 

3.2 Hide Data Technique …………………………………………………………………….. 31 



VII 
 

3.2.1 Format Secret Text …………………………………………………………………... 32  

3.2.2 Hide the Secret Text …………………………………………………………………. 40 

CHAPTER FOUR: EXPERIMENTAL RESULTS ..…………………………………………. 49 

4.1 Compare the Proposed Solution with White Space Method …………………………….. 50 

4.2 Evaluating the Speed of the Data Hiding Process ……………………………………….. 51 

4.3 Evaluating the Size of the Result Text …………………………………………………... 59 

4.4 Evaluating the Result Text Matching with the Original Cover Text …………………….. 68 

4.5 The results of the proposed implementation in variant cases ……………………………. 77 

CHAPTER FIVE: CONCLUSION AND FUTURE WORK ………………………………… 87 

REFERENCES ………………………………………………..………………………………… 89 

APPENDICES …………………………………………………………………………………… 94 

  



VIII 
 

List of Tables 

Number Title Page 

3-1 Character indexes for cover text 28 

3-2 Character indexes for secret text 29 

3-3 ASCII code characters 30 

3-4 Characters index for cover text 33 

3-5 Characters index for secret text in the cover text 33 

3-6 Characters index for cover text 37 

3-7 
Characters index for secret text in the cover text except not exists 

character 
38 

3-8 Array for secret text with the all characters index 38 

3-9 The best number of digits with size 1pt to hide within the cover text 43 

4-1 Speed results of hiding secret text using Cover text size 10pt 50 

4-2 Speed results of hiding secret text using Cover text size 12pt 52 

4-3 Speed results of hiding secret text using Cover text size 14pt 54 

4-4 Speed results of hiding secret text using Cover text size 16pt 56 

4-5 Size of the result text for hiding secret text using cover text size 10pt 59 

4-6 Size of the result text for hiding secret text using cover text size 12pt 61 

4-7 Size of the result text for hiding secret text using cover text size 14pt 63 

4-8 Size of the result text for hiding secret text using cover text size 16pt 65 

4-9 
Result text matching with the original cover text for hiding secret text 

using cover text size 10pt 
67 

4-10 
Result text matching with the original cover text for hiding secret text 

using cover text size 12pt 
69 

4-11 
Result text matching with the original cover text for hiding secret text 

using cover text size 14pt 
71 

4-12 
Result text matching with the original cover text for hiding secret text 

using cover text size 16pt 
73 

 

  



IX 
 

List of Figures 

Number Title Page 

2-1 a The binary of the M character as TIII technique 6 

2-1 b The result of merging the M character within the cover image 6 

2-2 describes hiding data within audio signal 9 

2-3 Protocol for document data-hiding: embedding 10 

2-4 Protocol for document data-hiding: extraction 11 

2-5 Proposed data hiding technique – Text under Text 16 

2-6 Example of data hidden using white space 20 

2-7 Data hidden through justification 20 

2-8 Criteria of encrypt the text 24 

3-1 Steps of taking the indexes 35 

3-2 The code of export the indexes of the secret text characters 36 

3-3 The code of export the ASCII code for the secret text characters 39 

3-4 
The code of convert the decimal numeral system into octal 

numeral system 
40 

3-5 The cover text 44 

3-6 Insert digits in the white space of the cover text 45 

3-7 The code of marge the array numbers within cover text. 46 

3-8 The result with hidden data font size 1pt 46 

3-9 The result with hidden data font size 1pt and white color 47 

3-10 The code of change secret text font size and color. 48 

4-1 Speed results of hiding secret text using cover text size 10pt 51 

4-2 Speed results of hiding secret text using cover text size 12pt 53 

4-3 Speed results of hiding secret text using cover text size 14pt 55 

4-4 Speed results of hiding secret text using cover text size 16pt 57 

4-5 a 
Size of the result text for hiding secret text using cover text size 

10pt - The proposed implementation 
59 

4-5 b 
Size of the result text for hiding secret text using cover text size 

10pt - The other implementation 
60 

4-6 a 
Size of the result text for hiding secret text using cover text size 

12pt - The proposed implementation 
61 

4-6 b 
Size of the result text for hiding secret text using cover text size 

12pt - The other implementation 
62 

4-7 a 
Size of the result text for hiding secret text using cover text size 

14pt - The proposed implementation 
63 

4-7 b 
Size of the result text for hiding secret text using cover text size 

14pt - The other implementation 
64 

4-8 a 
Size of the result text for hiding secret text using cover text size 

16pt - The proposed implementation 
65 



X 
 

4-8 b 
Size of the result text for hiding secret text using cover text size 

16pt - The other implementation 
66 

4-9 
Result text matching with the original cover text for hiding secret 

text using cover text size 10pt 
68 

4-10 
Result text matching with the original cover text for hiding secret 

text using cover text size 12pt 
70 

4-11 
Result text matching with the original cover text for hiding secret 

text using cover text size 14pt 
72 

4-12 
Result text matching with the original cover text for hiding secret 

text using cover text size 16pt 
74 

4-13 Result of hiding secret text using cover text size 10pt for one digit 76 

4-14 Result of hiding secret text using cover text size 10pt for two digits 76 

4-15 
Result of hiding secret text using cover text size 10pt for three 

digits 
77 

4-16 
Result of hiding secret text using cover text size 10pt for four 

digits 
77 

4-17 Result of hiding secret text using cover text size 10pt for five digits 78 

4-18 Result of hiding secret text using cover text size 12pt for one digit 78 

4-19 Result of hiding secret text using cover text size 12pt for two digits 79 

4-20 
Result of hiding secret text using cover text size 12pt for three 

digits 
79 

4-21 
Result of hiding secret text using cover text size 12pt for four 

digits 
80 

4-22 Result of hiding secret text using cover text size 12pt for five digits 80 

4-23 Result of hiding secret text using cover text size 14pt for one digit 81 

4-24 Result of hiding secret text using cover text size 14pt for two digits 81 

4-25 
Result of hiding secret text using cover text size 14pt for three 

digits 
82 

4-26 
Result of hiding secret text using cover text size 14pt for four 

digits 
82 

4-27 Result of hiding secret text using cover text size 14pt for five digits 83 

4-28 Result of hiding secret text using cover text size 16pt for one digit 83 

4-29 Result of hiding secret text using cover text size 16pt for two digits 84 

4-30 
Result of hiding secret text using cover text size 16pt for three 

digits 
84 

4-31 
Result of hiding secret text using cover text size 16pt for four 

digits 
85 

4-32 Result of hiding secret text using cover text size 16pt for five digits 85 

 

  



XI 
 

Abbreviations 

 

DH: Data Hiding 

CT: Cover Text 

ST: Secret Text 

DHDD: Data Hiding for Documents based on Dots 

ASCII: American Standard Character Interchange 

RTF: Rich Text File 

  



XII 
 

نص  –تحسين في استخدام الفراغ المتاح في تقنية اخفاء البيانات 

 خلال نص

 الطالب

 يمان فخري عبدالله

 المشرف

 الدكتورة هبة ناصر الدين

 الملخص

لقد تم في هذا البحث دراسة منهجية اخفاء البيانات داخل نصوص مختلفة؛ حيث ان عملية اخفاء 

البيانات هي احدى مجالات امن المعلومات المتمثلة بإخفاء البيانات وتشفيرها وغيرها من الفروع التي 

 تمثل امن المعلومات.

صورة او داخل ملف صوتي او داخل نص،  ان لإخفاء البيانات طرق متعددة كإخفاء البيانات داخل

حيث ان إخفاء البيانات داخل هذه الوسائل تحقق الفائدة من حفظ حقوق نشر والطبع أو عدم وصول 

 غير المخولين الى هذه البيانات بسهولة، كون هذه البيانات المخفية تتصف بالسرية والخصوصية.



XIII 
 

اقي طرق الإخفاء، فهي تكون من خلال التغيير إن عملية إخفاء البيانات داخل نص تختلف كليا عن ب

في المساحات الفارغة في النص او تغيير النص نفسه او تغيير في بعض خصائص اخرى غير 

 النص والمساحات الفارغة؛ وهذه التغييرات تتم بطريقة يمكن من خلالها إخفاء بيانات داخل النص.

 عن عبارة وهي البيانات؛ اخفاء في الفارغة المساحات لطريقة تحسين طرحي البحث هذا في تم لقد

 القياسي الرمز من او الغطاء النص من للأحرف التسلسلي الرقم باستخراج السري بالنص تغيير اجراء

 الثماني العد نظام الى العشري العد نظام من الارقام هذه تحويل ثم ومن المعلومات لتبادل الأمريكي

 الرقم على يؤشر الرقم كان اذا بحيث الارقام باقي بين للفصل وتسعة ثمانية الارقام لاستخدام وذلك

 رقم وضع فيتم القياسي الرمز على يؤشر الرقم كان اذا اما قبله تسعة رقم وضع فيتم للحرف التسلسلي

 بتغيير وذلك الغطاء النص في الكلمات بين الفارغة المساحات في الارقام هذه دمج ثم ومن قبله ثمانية

 .الغطاء النص خلفية لون مثل الخط ولون واحد الى للأرقام النص حجم

ولقد تم في هذا البحث التحقق من العملية المقترحة في تحسين استخدام تقنية الفراغ المتاح في إخفاء 

نص خلال نص، ولقد تم التحقق من ثلاثة امور اساسية وهي: سرعة العملية، حجم النص  –البيانات 

الناتج من هذه العملية وبالإضافة الى التحقق من أن النص الناتج من هذه العملية مطابق للنص 

 الاصلي الذي قد تم استخدامه لإخفاء البيانات خلاله.

  



XIV 
 

Enhancing Open Space Method in Data Hiding 

Technique – Text under Text 

By  

Yaman Fakhri Issa Abdallah 

Supervisor 

Dr. Hebah H. O. Nasereddin 

 

Abstract 

I’ve been in this research study methodology for hide data within different texts. That's 

where the data masking process is one of the areas of information security to hide and 

encrypt data and other branches that represent information security. 

That to hide the data multiple ways as hide data within an image or within an audio file or 

within the text, where the hide data within these means check the interest of protecting the 

rights of publication and copyright or non-arrival of unauthorized to this data easily, the 

fact that these hidden data is characterized by secrecy and privacy. 



XV 
 

The process of hiding data within the text are completely different from the rest of methods 

of concealment, it will be through a change in the empty spaces in the text or change the 

text itself or change in some of the properties other than text and empty spaces. These 

changes are a way by which to hide data within the text. 

This thesis proposes an enhancement of white space method for hiding data; which is 

processed by changing the secret text through extracting the indexes of the characters from 

the cover text or ASCII code , then converting these numbers from the decimal numeral 

system into the octal numeral system in order to use the number 8 and 9 as indicators 

against the remaining numbers. As placing the number 9 before the extracted number 

indicates that it is an index of a character. and placing the number 8 before the extracted 

number indicates that it is an ASCII code. Then, merging these outcomes with the white 

spaces between the words in the cover text by changing the font size of these numbers to 

1pt, and changing the font color to match background color of the cover text. 

I’ve been in this research verification of the proposed process in enhancing the technique 

of open space methods to hide the data - text under text, and have been verified three basic 

things: the speed of the hiding data process, the size of the output text of this process, as 

well as to verify that the text resulting from these process is identical to the original text, 

which has been used to hide data under it.  



1 
 

Chapter One 

Introduction 

1.1 Preface 

Information security has two branches; data encryption and data hiding (DH). Data 

encryption is masking the data to become meaningless, while data hiding is concerned with 

concealing the data to become unreadable. 

Data hiding is: (Bender, Gruhl, Morimoto, & Lu, 1996) “Data hiding represents a 

class of processes used to embed data, such as copyright information, into various forms of 

media such as image, audio, or text with a minimum amount of perceivable degradation to 

the “host” signal”. 

(YILMAZ, 2003) "Famous examples of steganography go back to antiquity. 

According to a story from Herodotus, a slave’s head was shaved by his master, Histiæus, 

and tattooed with a secret message around 440 B.C. After growing the hair back, the 

message disappeared and then the slave journeyed to carry the message. When shaved his 

head upon arriving, message was revealed”. (Nasereddin & Al Farzaeai, 2010) “In 1860, 

the major problems had been solved to make a small image by "Darjun", who is a French 

photographer worked in the war. Frank and France in 1870- 1861 when Paris was 

besieged, by writing messages on photographic films which were sent by the carrier 

pigeon. The purpose of this was to invoke disobedience against his antagonist Persinas. 

Steganography is the ability of hiding data in redundant bits of any cover media. Its target 

is to keep the secret information unreadable without damaging the cover media 



2 
 

environment.”. (Ibrahim & Zabian, 2009) “A security issue must be used in each step. 

Information hiding can be used in different applications include military, E- commerce, 

confidential communication, copyright protection, copy control, authentication, digital 

elections. In these fields, hiding information is better than ciphering. Because in the 

former, nobody can notice that there is a message hiding behind an image”. 

 

1.2 Objectives and Problem Definition 

Data hiding is a process used to embed the data into media such as image, audio or 

text. Digital media has become more prevalent and expanding. Also, the security of 

information transmission has become more vulnerable to theft and unauthorized access. 

One of the processes to preserve the security of the information is data hiding. There are 

many researchers are talking about hiding data in image, audio and some of researchers are 

talking about data hiding text under text. 

Open space is part of data hiding text into text, some of open space problems are: 

1. To hide two words like “Top Secret” requires text size cover of more than 80 

words; because each character size is 8 bit “1 byte” and each bit requires one 

space. That means “T+o+p+ +S+e+c+r+e+t” equal 10 characters, 10 characters 

multiply by 8 bits equal 80 bits. 

2. To be able to hide a large secret message; the result will be a very large message. 

3. In a properly justified format of text, not all spaces are available to be used to 

hide the required data. 



3 
 

Based on what had been said, data hiding techniques are obviously suffering some 

major issues and in some certain cases may become inefficient. Thus, the aim of this 

research is to develop data hiding via text under text while taking into consideration 

Open Space method problems. 

 

1.3 Significance 

The importance of this research is to enhance open space method in data hiding – text 

under text. (Most of researchers talk about hiding data under image, audio, and less 

researchers talk about text under text). 

This research enhances a technique for data hiding – text under text using open space 

method in efficient and effective way, more secure and faster process of data hiding text 

under text, the proposed enhancement take advantage from the unused white space in the 

text and another techniques to support the proposed enhanced technique in a way to make 

the result matches the cover text which will be used to hide the secret text within the cover 

text. 

 

 

 

 



4 
 

1.4 Limitations 

The limitations of this research are: 

1. The size of the cover text must be compatible with the secret text to be able to 

hide the secret text within the cover text. 

2. It is must to use soft copy for the cover text and the secret text. 

3. The result text must be transmitted via e-media. 

 

1.5 Thesis Outline 

Chapter two represents the theoretical background and related works of data hiding 

concepts, data hiding techniques and types including data hiding in image, audio and 

video. 

Chapter three represents the proposed model, the proposed solution and the supported 

techniques used in the proposed solution and the specification of this supported techniques 

and the effectiveness of this supported techniques in the proposed solution. 

Chapter four represents the experimental results and evaluates the proposed solution 

in many cases, also compare it to another technology of hide text under text by using open 

space method. 

Finally chapter five will discuss the results, draw the conclusions and the future 

works. 



5 
 

Chapter Two 

Literature Survey 

This chapter represents knowledge and theoretical background about the data hiding 

techniques, some of the methods followed by researchers in their researches will be 

reviewed, discusses more specifically data hiding - text under text techniques and 

represents the related research about the presentation of data hiding techniques – text under 

text. 

2.1 Theoretical Background 

(Nasereddin & Al Farzaeai, 2010) Proposed data hiding technique text image 

inside image (TIII). A new technique to hide text inside digital image by the concept of 

the visual representation of the text within image. The proposed technique TIII is based on 

the existence of the text in the form of an image in black and white, by representing white 

as "1" and black as "0". The idea of the proposed is merging text image with cover image 

by integrating text image bits with cover image bits. The proposed technique TIII didn’t 

address the difference of the size between the cover image and the stego image, because it 

can be solved by using cover images with the same size of the stego image and doing some 

resizing methods to the cover image to make it as the same size of the text image. The font 

size of the message in the text image will be an important factor in the integrity of the 

message during the transmission process and the size of the hidden message, so that when 

the font size is large the safety of the transmission will be strong, and when the size of the 

message is small, the safety becomes more vulnerable. 



6 
 

 

(a) 

 
(b) 

   

Figure 2-1 (a): The binary of the M character as TIII technique 

(b): The result of merging the M character within the cover image 

(Nasereddin & Al Farzaeai, 2010) 



7 
 

(Zou & Shi, 2005) A novel formatted text document data hiding algorithm. 

Called Inter-word Space Modulation (ISM) scheme, is proposed in which the spaces 

between neighboring words are modulated to hide data. In contrast to prior arts, this 

method does not require original documents for hidden data extraction. The hidden data are 

robust to printing, copying and scanning. The experiments show that after printing, ten 

times of repeated copying, followed by scanning, the hidden data can still be extracted 

without a single bit error. It is expected that it can find wide applications for secure 

document processing, including digital notarization. Three different methods for formatted 

text document data hiding: line shift coding, word shift coding and feature coding. Line 

shift coding and word shift coding are robust to printing, copying and scanning to some 

extent. The major drawback is that the original intact document is needed for hidden data 

extraction which may not be available in many cases. Also the paper mention a baseline 

detection method for line shift coding which did not require the original document. 

However, as pointed out by the authors themselves, it is not reliable to printing, copying 

and scanning. Besides, the embedding capacity is about one bit per two lines. 

(Asif, Shaikh, Manza, & Ramteke, 2010) The comparison of original text in the 

form of bitmap image and extracted image by using various fonts of text as a bitmap 

image. In image the basic objective of data hiding is to store as much as data in the host 

image without degrading the quality of the host image and which will be reconstructed 

again without compromising the loss of source image data and the actual hided 

information. Out of which the most emerging area is hiding the data into different media 

files such as image, audio, video, etc. In these media files the image is considered as the 

most suitable file format for the data processing. The study has done the preparation of the 



8 
 

text data set of size 20 characters in single font type, variable font sizes and the color of 

text as black. The bitmap image can be hided into any color image source which will acts 

as a medium of carrier of the text data. This color image is further decoded to get the actual 

data of 20 characters without any loss if possible. The experimental steps used for text data 

hiding in images is done with above data set and image processing functions of MATLAB. 

The data set of a single color source image and the data set of 2 to 3 sentence each of 24 

characters with above specification. The result is found to be most satisfactory and 

prominent in the font VERDANA in the font size of 26 to 30 resulted into 85% to 90% of 

reconstruction rate of actual hided text data. 

(Dutta, Bhattacharyya, & Kim, 2009) Data hiding in Audio Signal: a review. This 

paper introduced a robust method of imperceptible audio data hiding. This system is to 

provide a good and efficient method for hiding the data from hackers and sent to the 

destination in a safe manner. This proposed system will not change the size of the file even 

after encoding and also suitable for any type of audio file format. The proposed idea is to 

hide secret message within audio signal using with a stego key, to retrieve the embedded 

message should be using the extractor with the same stego key. This paper conclude that 

audio data hiding techniques can be used for a number of purposes other than covert 

communication or deniable data storage, information tracing and finger printing, tamper 

detection. As the sky is not limit so is not for the development. Man is now pushing away 

its own boundaries to make every thought possible. So similarly these operations described 

above can be further modified as it is in the world of Information Technology. After 

designing any operation every developer has a thought in his mind that he could develop it 

by adding more features to it. Figure 2-2 describes hiding data within audio signal. 



9 
 

Figure 2-2: describes hiding data within audio signal 

(Dutta, Bhattacharyya, & Kim, 2009) 

 

(Abdul Qadir & Ahmad, 2006) Digital Text Watermarking: Secure content 

delivery and data hiding in digital documents. This developed a novel encoding scheme 

which can be used to insert information in plain text without changing the text. A system 

has been developed based upon this encoding scheme. This paper suggested a novel idea 

based upon an intelligent encoding scheme in the world of text watermarking which has no 

effect on the alteration of the syntax of the document as well as the layout. Thus providing 

a layout/format independent technique in which information within the text is manipulated 

to hide certain information. This paper encodes the information in the existing characters 

of the text in an intelligent way that does not change the document. Moreover, the hidden 

information is being preserved by the document. The system has two parts: insertion of 

watermark; and detection of watermark. 

(Deguillaume, Rytsar, Voloshynovskiy, & Pun, 2005) Protocols for data hiding 

based text document security and automatic processing. Propose for the following to 

use graphical features modulation based text data hiding scheme, which encodes the data 

into one or several features of individual characters or groups of characters, without 



10 
 

changing the textual content itself. It is presented generic text data-hiding based protocols 

for documents, in both electronic and hardcopy format. The presented protocols are 

suitable for document authentication and tamper proofing, content self-recovery, and 

automatic document processing. Applications can be among others authentication 

documents (such as passports and ID cards), payment documents, contracts, letters, and 

technical reports. They provide cheap and convenient solutions for many practical 

scenarios, requiring only standard printers and scanners. Moreover these frameworks can 

be integrated directly into common text document editing/publication tools. Figures 2-3 

represents the protocol of embedding the data within document while figure 2-4 represents 

the protocol to extract the data from the document 

 

Figure 2-3: Protocol for document data-hiding: embedding 

(Deguillaume, Rytsar, Voloshynovskiy, & Pun, 2005) 

 



11 
 

 

Figure 2-4: Protocol for document data-hiding: extraction 

(Deguillaume, Rytsar, Voloshynovskiy, & Pun, 2005) 

 

(Yang & Kot, 2005) Data hiding for text document image authentication by 

connectivity preserving. Propose a data hiding technique which is based on the 

connectivity-preserving in 3 × 3 neighborhood. The “uneven embed ability” of the host 

image is considered by embedding the watermark only in those “embeddable” blocks. A 

small block size, e.g., 4 × 4 is employed in order to achieve the larger capacity. The 

proposed scheme can be used for document authentication, e.g., e-Certificate 

authentication. The odd-even enforcement is employed for the watermark embedding, 

which is vulnerable to “parity attack”, i.e., an adversary can carefully flip two pixels while 

keeping the odd-even feature of the block unchanged. This paper proposes to adopt a hard 

authenticator watermark to tackle this problem in order to generate the hard authenticator 

watermark; the key issue is how to locate the flipped pixel given the watermarked image. 

For the fixed 3 × 3 block, the flipped location is always the center pixel of the block; 

therefore it is easy to locate the flipped pixel. The fixed 3 × 3 block, non-interlaced and 

interlaced block are employed and the capacity of using different types of blocks are 

compared. 



12 
 

(Kim & Mayer, 2007) Data Hiding for Binary Documents Robust to Print-Scan, 

Photocopy and Geometric Distortions. This paper presents a data hiding technique 

(steganography) for embedding information into documents printed in high-resolution 

bicolor printers, e.g., conventional laser and inkjet printers. In the literature, there are 

several data hiding techniques designed for binary images. These techniques can be 

applied to copy control, annotation, and authentication. However, most of them are 

designed only for binary images in digital form and cannot be applied for printed 

documents. Data hiding for binary images can be divided into three basic classes: 

1- Component-wise: Change the characteristics of some pixel groups (connected 

components, character, words, etc.). 

2- Pixel-wise: Change the values of individual pixels. 

3- Block-wise: Divide the cover image into blocks and modify some characteristic 

of each block to hide the data. 

Also the paper proposed a technique named DHDD (Data Hiding for Documents 

based on Dots). Current laser/inkjet printers can print tiny dots hardly noticeable at normal 

reading distance. This implementation is able to embed up to 1370 bits in an A4-sized 

document printed at 600 dpi. As the printing technology evolves, it is expected that future 

printers will be able to impress even smaller dots, resulting in more visually imperceptible 

watermarking with more data hiding capacity. Propose to use the entire binary document 

for embedding the watermark with a high robustness to print-scan, photocopy and 

geometric attacks. 



13 
 

(Dutta, Bhattacharyya, & Kim, 2009) Current Steganography Tools and Methods. 

Provide a review and analysis of several freeware tools that employ some of the more 

common methods of hiding information in digital files, demonstrating how one can easily 

embed secret messages in some of the more commonly exchanged image, audio and text 

file formats. Steganography is by no means a modern practice. Literally meaning “covered 

writing” it is the practice of hiding messages within other messages in order to conceal the 

existence of the original. For the security professional, this means that data you are paid to 

protect could be leaving your control without your knowledge. Some specific terminology 

in the field of steganography has developed to make clear the differences between files to 

be hidden, those that they get hidden in and the resulting combinations of the two. 

Data Hiding in Text: Steganography in text files can be accomplished through 

various techniques. Methods that can be applied to both the soft and hard copies of a 

document include line-shift coding, word-shift coding and feature coding as well as 

syntactic semantic methods. 

The first three of these systems rely on visually changing the formatting or look of 

the file, by modifying spacing between lines, spacing between words, or modifying 

features of certain letters respectively. 

Syntactic and semantic methods of steganography in text files utilize modification of 

“diction and structure of text without significantly altering meaning or tone”. 

Data hiding in image and audio files: Typically, using image files as hosts for 

stenographic messages takes advantage of the limited capabilities of the human visual 

system. Some of the more common method for embedding messages in image files can be 



14 
 

categorized into two main groups, image domain methods and transform domain methods. 

The image domain methods modify their host files at the bit level, changing the file bit by 

bit to encode their message. The transform domain methods manipulate the algorithms and 

transformations inherent in the creation of the image itself, like the transformation used in 

JPEG compression. 

  



15 
 

2.2 Related Works 

(Abdullah & Nasereddin, 2013) Proposed Data Hiding Technique – Text under 

Text. The technique is based on two texts; secret text and cover text. By taking advantage 

of the unused white spaces in the cover text, this paper proposed to change the format of 

the secret text by changing the secret text font size and font color to the font size 1pt and 

secret text font color white, then to separate the secret text into many parts “characters”, 

then to hide these parts within the cover text’s unused white spaces. The outlined that the 

proposed data hiding technique as Image, audio, and text are used for data hiding. Data 

hiding in text is to embed text within another text to be unreadable. Open space methods 

used for data hiding in text and white space method is one of these methods; the paper 

takes advantages of the unused white space from the text “Cover Text” to hide the data 

“Secret Data” on the cover text. Changing the format of the secret by setting the text size to 

1px, setting the font color to white as the back color of cover text, and then merging the 

secret text with the cover using white space method to generate the result text hiding the 

secret message within it. Figure 2-5 shows a brief description of the proposed technique. 



16 
 

 

Figure 2-5: Proposed data hiding technique – Text under Text 

(Abdullah & Nasereddin, 2013) 

 

 

 

(Brassil, Low, Maxemchuk, & O’Gorman, 1995) Electronic Marking and 

Identification Techniques to Discourage Document Copying. It is defined as 

“unauthorized dissemination” as distribution of documents without the knowledge of any 

payment to the publisher; this contrast legitimate document distribution by the publisher or 

the publisher’s electronic document distributor. This paper describes a means of 

discouraging unauthorized copying and dissemination. The described techniques here are 

complementary to the security practices that can be applied to the legitimate distribution of 

documents. For example; a document can be encrypted prior to transmission across a 



17 
 

computer network. Then even if the document file is intercepted or stolen from a database, 

it remains unreadable to those not possessing the decrypting key. The described techniques 

in this paper provide security after a document has been decrypted, and is thus readable to 

all. In addition its proposed encoding techniques can also make paper copies of documents 

traceable. In particular, the code word embedded in each document survives plain paper 

copying. Hence, these techniques can also be applied to “closely held” documents, such as 

confidential, limited distribution correspondence. The paper describe this both as a 

potential application of the methods and an illustration of their robustness in noise. 

Document marking can be achieved by altering the text formatting, or by altering certain 

characteristics of textual elements (e.g., characters). The goal in the design of coding 

methods is to develop alterations that are reliably decodable (even in the presence of noise) 

yet largely indiscernible to the reader. These criteria, reliable decoding and minimum 

visible change, are somewhat conflicting; herein lies the challenge in designing document 

marking techniques. Common to each technique is that a code word is embedded in the 

document by altering particular textual features. This paper describes these features for 

each method below and gives a simple comparison of the relative advantages and 

disadvantages of each technique. The three coding techniques that proposed: 

1- Line-Shift Coding: This is a method of altering a document by vertically 

shifting the locations of text lines to encode the document uniquely. 

2- Word-Shift Coding: This is a method of altering a document by horizontally 

shifting the locations of words within text lines to encode the document 



18 
 

uniquely. This encoding can be applied to either the format file or to the bitmap 

of a page image. Decoding may be performed from the format file or bitmap. 

3- Feature Coding: This is a coding method that is applied either to a format tile or 

to a bitmap image of a document. The image is examined for chosen text 

features, and those features are altered, or not altered, depending on the code 

word. Decoding requires the original image, or more specifically, a 

specification of the change in pixels at a feature. 

Among the proposed encoding techniques, line-shifting is likely to be the most easily 

discernible by readers. Paper also expect line-shifting to be the most robust type of 

encoding in the presence of noise. This is because the long lengths of text lines provide a 

relatively easily detectable feature. For this reason, line shifting is particularly well suited 

to marking documents to be distributed in paper form, where noise can be introduced in 

printing and photocopying. This paper expects that word-shifting will be less discernible to 

the reader than line-shifting, since the spacing between adjacent words on a line is often 

varied to support text justification. Feature encoding can accommodate a particularly large 

number of sanctioned document recipients, since there are frequently two or more features 

available for encoding in each word. Feature alterations are also largely indiscernible to 

readers. A technically sophisticated “attacker” can detect that a document has been 

encoded by any of the three techniques paper have introduced. Such an attacker can also 

attempt to remove the encoding (e.g., produce a uuencoded document copy). The goal in 

the design of encoding techniques is to make successful attacks extremely difficult or 

costly. 



19 
 

(Bender, Gruhl, Morimoto, & Lu, 1996) Data hiding in text. Soft copy text is in 

many ways the most difficult place to hide data. (Hard-copy text can be treated as a highly 

structured image and is readily amenable to a variety of techniques such as slight variations 

in letter forms, kerning, baseline, etc.) This is due largely to the relative lack of redundant 

information in a text file as compared with a picture or a sound bite. While it is often 

possible to make imperceptible modifications to a picture, even an extra letter or period in 

text may be noticed by a casual reader. Data hiding in text is an exercise in the discovery 

of modifications that are not noticed by readers. Paper considered three major methods of 

encoding data: open space methods that encode through manipulation of white space 

(unused space on the printed page), syntactic methods that utilize punctuation, and 

semantic methods that encode using manipulation of the words themselves. 

Open space methods. There are two reasons why the manipulation of white space in 

particular yields useful results. First, changing the number of trailing spaces has little 

chance of changing the meaning of a phrase or sentence. Second, a casual reader is 

unlikely to take notice of slight modifications to white space. Paper describes three 

methods of using white space to encode data. The methods exploit inter-sentence spacing, 

end-of-line spaces, and inter-word spacing in justified text. 

The first method encodes a binary message into a text by placing either one or two 

spaces after each terminating character. 

A second method of exploiting white space to encode data is to insert spaces at the 

end of lines. The data are encoded allowing for a predetermined number of spaces at the 



20 
 

end of each line (Figure 2-6). Two spaces encode one bit per line, four encode two, and 

eight encode three. 

Figure 2-6: Example of data hidden using white space 

(Bender, Gruhl, Morimoto, & Lu, 1996) 

 

A problem unique to this method is that the hidden data cannot be retrieved from 

hard copy. 

A third method of using white space to encode data involves justify format of text. 

Data are encoded by controlling where the extra spaces are placed. One space between 

words is interpreted as a “0.” Two spaces are interpreted as a “1.” This method results in 

several bits encoded on each line (Figure 2-7). 

Figure 2-7: Data hidden through justification (text from A Connecticut Yankee in 

King Arthur’s Court by Mark Twain) 

(Bender, Gruhl, Morimoto, & Lu, 1996) 

 



21 
 

Open space methods are useful as long as the text remains in an ASCII (American 

Standard Character Interchange) format. As mentioned above, some data may be lost when 

the text is printed. Printed documents present opportunities for data hiding far beyond the 

capability of an ASCII text file. Data hiding in hard copy is accomplished by making slight 

variations in word and letter spacing, changes to the baseline position of letters or 

punctuation, changes to the letter forms themselves, etc. Also, image data-hiding 

techniques such as those used by Patchwork can be modified to work with printed text”. 

(Por, Wong, & Chee, 2012) A text-based data hiding method using Unicode space 

characters. This paper proposes a text-based data hiding method to insert external 

information into Microsoft Word document. The drawback of low embedding efficiency in 

the existing text-based data hiding methods is addressed, and a simple attack, DASH, is 

proposed to reveal the information inserted by the existing text-based data hiding methods. 

Then, a new data hiding method, UniSpaCh, is proposed to counter DASH. The 

characteristics of Unicode space characters with respect to embedding efficiency and 

DASH are analyzed, and the selected Unicode space characters are inserted into inter-

sentence, inter-word, end-of-line and inter-paragraph spacing’s to encode external 

information while improving embedding efficiency and imperceptivity of the embedded 

information. UniSpaCh is also reversible where the embedded information can be removed 

to completely reconstruct the original Microsoft Word document. Experiments were 

carried out to verify the performance of UniSpaCh as well as comparing it to the existing 

space manipulating data hiding methods. Results suggest that UniSpaCh offers higher 

embedding efficiency while exhibiting higher imperceptivity of white space manipulation 



22 
 

when compared to the existing methods considered. In the best case scenario, UniSpaCh 

produces output document of size almost 9times smaller than that of the existing method. 

(Vill´an, et al., 2006) Text Data-Hiding for Digital and Printed Documents. 

Proposed a new theoretical framework for the data-hiding problem of digital and printed 

text documents. Explain how this problem can be seen as an instance of the well-known 

Gel’fand-Pinsker problem. The main idea for this interpretation is to consider a text 

character as a data structure consisting of multiple quantifiable features such as shape, 

position, orientation, size, color, etc. And also introduce color quantization, a new semi-

fragile text data-hiding method that is fully automatable, has high information embedding 

rate, and can be applied to both digital and printed text documents. The main idea of this 

method is to quantize the color or luminance intensity of each character in such a manner 

that the human visual system is not able to distinguish between the original and quantized 

characters, but it can be easily performed by a specialized reader machine. The paper 

describes halftone quantization, a related method that applies mainly to printed text 

documents. Since these methods may not be completely robust to printing and scanning, an 

outer coding layer is proposed to solve this issue. Finally, describe a practical 

implementation of the color quantization method and present experimental results for 

comparison with other existing methods. 

(Rahma, AbdulWahab, & Al-Noori, 2011) Physical characteristics of computer 

system. Proposed a method of data hiding by taking advantage of the physical 

characteristics of computer system and how it stores document file and treating it as a 

compound file. The unused block in Microsoft Compound Document File Format 



23 
 

(MCDFF) is used to hide data. The possibilities provided by Microsoft Word Processor 

program have also been utilized, such as Tools, to generate cover for hiding. The proposed 

system embeds steganography text in structure (Binary File Format) of digital and printed 

text document file which is a file of Microsoft Word Document file (Doc.) using two 

Processes: Cover Generation and Embedding Processes. Cover Generation Process: where 

the cover is a document of Microsoft Word Document file format 2003 (doc.) and will 

appear to be the product of a collaborative writing effort among authors using Track 

Changes tool. Embedding Process hides text string in unused block of binary file format of 

that document cover. This paper proposed a new technique, which gives good results, such 

that the user can hide 63byte in 34KB document cover size with informed about size of 

empty document=10/11KB, in addition, using Track Changes tool does not effect on 

hidden data and no problem was detect on hidden data at stego-document mailing or 

copying. 

(Jebran, 2007) Text 2Text Steganography. Proposed a technique to build a simple 

application that is able to send and receive encrypted messages embedded in Rich Text 

Format: *.DOC, *.RTF, EMAIL /Message Body/, etc. The user has the ability to choose the fake 

text he wants and the program must be able to tell whether or not this fake text will suit the real 

text. 

The user can set a different password for every message he sends. This will enable 

the manager to transmit to two groups two different messages with two different passwords 

using the same fake text. Thus, you will be able to send encrypted and hidden messages in 

any source code that you choose. 



24 
 

The proposed technique will not change the text itself, but it will change the unseen 

attributes of the text. These attributes are many and it is impossible for web servers to track 

them all. There are lots of Steganographic methods and tracking them will waste huge 

amounts of processing for uncertain results. Be aware that Steganography is more effective 

than encryption when used in the right way. The deletion of all attributes is not an option, 

so will choose the size and the color. Figure 2-8 will underscore the point. 

 

Figure 2-8: Criteria of encrypt the text 

(Jebran, 2007) 

 

In mode of change font size will change the size of the characters in the fake text 

according to the selected font size and differential factor. Here will use 2 sizes, X1 and X2. 

X1 is the selected font size and X2 is the selected font size plus the differential factor. 0 bit 

is represented by the occurrence of the character whose size is X1. 1 bit is represented by 

the occurrence of the character whose size is X2. 



25 
 

Color changed mode is the more recommended mode for use, as it is very stable and 

safe. In this mode, will change the color of the chars in the fake text according to the 

selected color and the program's calculated color. Will use 2 colors, X1 and X2. X1 is the 

selected color and X2 is the program's calculated color. The proposed technique will 

search to find the nearest color for which it is impossible to recognize the difference with 

naked eye. 0 bit is represented by the occurrence of the character whose color is X1. 1 bit 

is represented by the occurrence of the character whose color is X2. The recipient must 

know which color you have chosen for decryption. After hiding the real message in the 

fake message, the rest of the fake message characters will be colored as X1”. 

  



26 
 

Chapter Three 

The Proposed Model 

This chapter represents a model for a proposed enhanced technique for data hiding – 

text under text by using open space methods. It explains the used supported concepts; 

methodology, enhanced technique procedures and the advantages of this enhanced 

technique. 

Data hiding is important to conceal critical information from unauthorized persons. 

(Bender, Gruhl, Morimoto, & Lu, 1996) “Data hiding represents a class of processes used 

to embed data, such as copyright information, into various forms of media such as image, 

audio, or text with a minimum amount of perceivable degradation to the “host” signal”. 

Open space method is the first used methods to hide data in white space: between 

words, lines and paragraph. this method is divided into three methods: 

The first, method encodes a binary message into text by placing either one or two 

spaces after each terminating character. 

The second, method is exploiting white space to encode data to insert spaces at the 

end of lines. The data are encoded, allowing for a predetermined number of spaces at the 

end of each line (Figure 2-6). Two spaces encode one bit per line, four encode two, and 

eight encode three. 

The third, method of using white space to encode data involves justified format of 

text. Data are encoded by controlling where the extra spaces are placed. One space  



27 
 

between words is interpreted as a “0.” Two spaces are interpreted as a “1.” This 

method results in several bits encoded on each line (Figure 2-7). 

 

(Bender, Gruhl, Morimoto, & Lu, 1996) There are two reasons why the manipulation 

of white space in particular yields useful results: 

First, changing the number of trailing spaces has little chance of changing the 

meaning of a phrase or sentence. 

Second, a casual reader is unlikely to take notice of slight modifications to white 

space. 

The paper describes three methods of using white space to encode data. The methods 

exploit inter-sentence spacing, end-of-line spaces, and inter-word spacing in justified 

text. 

 

 

 

 

 

 

 



28 
 

3.1 Supported Concepts 

The supported concepts are Character Indexes, ASCII Code Characters and Octal 

Numeral System. 

Character Indexes 

Character Indexes used in the proposed solution to get the index of secret characters 

from the cover text to be able to retrieve the secret text in the stage of the text show. 

Please be informed that the character indexes begin count from 0. 

Example, represent character indexes in the text. Suppose the cover text is: 

Information hiding techniques 

The character indexes for above sentence is appear in the table 3-1: 

Table 3-1: Character indexes for cover text 

Indexes Characters set Indexes Characters set 

0 I 15 i 

1 n 16 n 

2 f 17 g 

3 o 18  

4 r 19 t 

5 m 20 e 

6 a 21 c 

7 t 22 h 

8 i 23 n 

9 o 24 i 

10 n 25 q 

11   26 u 

12 h 27 e 

13 i 28 s 

14 d   



29 
 

So, from above example, suppose the secret text is: hi man 

Table 3-2 shows the index of the secret text characters: 

Table 3-2: Character indexes for secret text 

Indexes Characters set 

12 h 

0 i 

11 (space) 

5 m 

6 a 

1 n 

 

The “h” character is repeated twice in the cover text, in this case, the index of the first 

one is enough to know the intended character. 

 

ASCII Code Characters 

The characters’ indexes are not enough to indicate the intended character from the 

cover text, so, ASCII code characters give a unique code for each character in the secret 

text “with sensitive case”.  

  



30 
 

Table 3-3: ASCII code characters 

Description Symbol Code Description Symbol Code 

Space   32 Uppercase N N 78 

Exclamation mark ! 33 Uppercase O O 79 

Double quotes “ 34 Uppercase P P 80 

Number # 35 Uppercase Q Q 81 

Dollar $ 36 Uppercase R R 82 

Procenttecken % 37 Uppercase S S 83 

Ampersand & 38 Uppercase T T 84 

Single quote ‘ 39 Uppercase U U 85 

Open parenthesis ( 40 Uppercase V V 86 

Close parenthesis ) 41 Uppercase W W 87 

Asterisk * 42 Uppercase X X 88 

Plus + 43 Uppercase Y Y 89 

Comma , 44 Uppercase Z Z 90 

Hyphen - 45 Lowercase a a 97 

Period, dot or full stop . 46 Lowercase b b 98 

Slash or divide / 47 Lowercase c c 99 

Zero 0 48 Lowercase d d 100 

One 1 49 Lowercase e e 101 

Two 2 50 Lowercase f f 102 

Three 3 51 Lowercase g g 103 

Four 4 52 Lowercase h h 104 

Five 5 53 Lowercase i i 105 

Six 6 54 Lowercase j j 106 

Seven 7 55 Lowercase k k 107 

Eight 8 56 Lowercase l l 108 

Nine 9 57 Lowercase m m 109 

Uppercase A A 65 Lowercase n n 110 

Uppercase B B 66 Lowercase o o 111 

Uppercase C C 67 Lowercase p p 112 

Uppercase D D 68 Lowercase q q 113 

Uppercase E E 69 Lowercase r r 114 

Uppercase F F 70 Lowercase s s 115 

Uppercase G G 71 Lowercase t t 116 

Uppercase H H 72 Lowercase u u 117 

Uppercase I I 73 Lowercase v v 118 

Uppercase J J 74 Lowercase w w 119 

Uppercase K K 75 Lowercase x x 120 

Uppercase L L 76 Lowercase y y 121 

Uppercase M M 77 Lowercase  z 122 

 



31 
 

Any character exists in the secret text; not exists in the cover text; will take the 

character code from the above table “Table 3-3” ASCII code characters. 

 

Octal Numeral System 

The octal numeral system used to convert the decimal codes as octal numbers for: 

1- Security reasons, in case anyone finds out the hidden data, the data will be 

meaningless and unreadable. The secret text will be formatted then merged within 

the cover text. 

2- Identify character, after getting the character index for the secret text as octal 

numbers; these numbers will be separated by inserting the numbers eight and nine 

between the octal numbers to dedicate each character number. 

 

3.2 Hide data technique 

Section 3.1 discussed the supported concepts Character Indexes, ASCII Code 

Characters and Octal Numeral System. These concepts will used in the proposed solution 

by combine them to hide text under text by using open space methods.  

The idea is to take advantage of the unused white space from the cover text, but 

before that some changes should be made on the secret text. Then, hide them within the 

cover text; the changes on the secret text will be as the following: 

 



32 
 

3.2.1 Format Secret Text 

Formatting secret text by extracting the index of the secret text characters from cover 

text and convert the index numbers from decimal numeral system into octal numeral 

system as the following: 

 

Step One: Index of the secret text characters: 

As mentioned above; there are two texts used in the proposed solution, secret text 

and cover text, the proposed solution will hide the secret text within the cover text. 

This section will show in detail how to extract the index of the secret text character 

from the cover text by using the following steps: 

First. Taking each character from the secret text. 

Second. Looking for character in the cover text. 

Third. Taking the index of the character from the cover text. 

Fourth. Compilation of the indexes taken from the cover text in the array. 

For more clarification; below is an example to get index of the secret text character 

from the cover text: 

Suppose the cover text is: Information hiding techniques 

And the secret text is: hi man 



33 
 

The table 3-4 show the index for each character in the cover text while table 3-5 

show the index of the secret text characters in the cover text and it’s shown in the 

highlighted columns. 

 

Table 3-4: Characters index for cover text 

 I  n  f  o  r  m  a  t  i  o  n     h  i  d  i  n  g     t  e  c  h  n  i  q  u  e  s 

 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

 

Table 3-5: Characters index for secret text in the cover text 

I  n  f  o  r  m  a  t  i  o  n     h  i  d  i  n  g     t  e  c  h  n  i  q  u  e  s 

 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

 

The steps of take these indexes will be like the following: 

I. Create an empty array for secret characters: 

“hi man” is 6 characters so the array length is 6. 

II. Take the first character from the secret text “h”. 

III. Look for “h” character in the cover text; what is needed is the first “h” character 

of the cover text. 

IV. Add the index of “h” character in the array: 

V. Take the second character from the secret text “i”. 

VI. Look for “i” character in the cover text; what is needed is the first “i” character 

of the cover text. 

VII. Add the index of “i” character in the array: 

VIII. Take the third character from the secret text “ ”; it’s space. 



34 
 

IX. Look for “space” character in the cover text; what is needed is the first “space” 

character of the cover text. 

X. Add the index of “space” character in the array: 

XI. Do the above steps for all secret characters until fill the index array of secret 

text. 

After these steps, the cover text contains all the characters in the secret text and the 

indexes is taken from the cover text and saved on the array, Figure 3-1 will show the steps 

of taking the indexes. 

 

 

 



35 
 

Figure 3-1: Steps of taking the indexes 



36 
 

Figure 3-2 show the part of code which for exporting the indexes of secret text 

characters from the cover text. 

Figure 3-2: The code of export the indexes of the secret text characters 

This section shows how to extract the index of the secret text characters; still, there 

are problems might be faced: the character in the secret text does not exist in the cover text 

or the character in the secret text exists in the cover text but not in the same capitalization”, 

solutions are presented in the next section. 

 

Step Two: ASCII Code Characters of the secret text characters: 

Get the character code of the secret text characters from the ASCII code characters in 

case the character in the secret text does not exist in the cover text characters or it does not 

exist in the cover text characters with the same capitalization. 



37 
 

In these cases, follow the below proposed solution: 

First. Take each character from the secret text. 

Second. Look for the character in the cover text. 

Third. If the character does not exist in the cover text or exists with 

different capitalization; get the character code from the ASCII code 

characters as it’s listed in Table 3-3. 

Fourth. Compile the indexes taken from the cover text in the array. 

 

For more clarification; the below is example to get index of the secret text character 

from the cover text: 

Suppose the cover text is: Information hiding techniques 

Suppose the secret text is: Hi man 

The table 3-6 show the index for each character in the cover text while table 3-7 

show the index of the secret text characters in the cover text and it’s shown in the 

highlighted columns but “H” character does not exists in the cover text with the same 

capitalization. 

Table 3-6: Characters index for cover text 

 I  n  f  o  r  m  a  t  i  o  n     h  i  d  i  n  g     t  e  c  h  n  i  q  u  e  s 

 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

 



38 
 

Table 3-7: Characters index for secret text in the cover text except not exists 

character 

I  n  f  o  r  m  a  t  i  o  n     h  i  d  i  n  g     t  e  c  h  n  i  q  u  e  s 

 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

 

In this case; the solution is to take the character code for “H” character from the 

ASCII code characters. 

The steps to take these indexes will be similar to the steps in step one, but the “H” 

character will take its code from ASCII code characters. And the result array of the secret 

text characters will be as it appears in the Table 3-8: 

Table 3-8: Array for secret text with the all characters index 

 

72 8 11 5 6 10 

 

The first column “72” is the ASCII code for uppercase “H” character, taken from 

Table 3-3, but the other columns in the index of the remaining secret text characters are 

taken from the cover text characters. 

Once reaching the phase to retrieve the hidden data from the cover text, indexes 

should be distinguished from the ASCII codes to be able determine the source of the 

character of the given number “know the source of the number either it’s index or ASCII 

code”; so; what if there is number 72 in the cover text for another character? the problem is 

solved in step three. 

 



39 
 

Figure 3-3 show the part of code which for exporting the ASCII code of secret text 

characters. 

 

Figure 3-3: The code of export the ASCII code for the secret text characters 

 

Step Three: Octal numeral system: 

After collecting the index of the secret character from the cover text and ASCII code 

for the characters of the secret text that do not exist in the cover text characters with the 

same capitalization; convert the result array of numbers from decimal numeral system into 

octal numeral system. 

The conversion shall follow the below procedures: 

1- Every character of the secret text exists in the cover text characters will be taken 

from the index of these characters. Then, convert this index from decimal 

numeral system into octal numeral system. 

2- Every character of the secret text that does not exist in the cover text characters 

will be taken from the ASCII codes, then follow the below steps: 

a. Convert the ASCII code from decimal numeral system into octal numeral 

system. 

b. Add number “8” begin of the converted octal number; this step to 

distinguish the number is from ASCII code characters. 



40 
 

3- Compile the indexes and the ASCII codes for secret text characters in the same 

order in the text by inserting the number “9” between these numbers to separate 

the characters indexes and ASCII codes from each other. 

For more information; the octal number doesn’t contain the 8 and 9 numbers. This 

feature enables us to use those numbers to: 

1- Separate between characters indexes and ASCII codes. 

2- Distinguish that the number is coded from ASCII code characters or index from 

secret text characters index in the cover text characters. 

Figure 3-4 show the part of code which for convert the decimal numeral system into 

octal numeral system. 

Figure 3-4: The code of convert the decimal numeral system into octal numeral 

system. 

 

3.2.2 Hide the secret text: 

The used way to hide the secret text is to merge the result array number of secret text 

characters index and the ASCII code within the cover text in the unused white spaces 

between cover text words. 



41 
 

The data will be hidden with font size 1pt and color as cover text back color, by 

follow these steps: 

Step One: Detect the number of digits: 

To merge the result array number of secret text characters index and ASCII code 

within the cover text in the unused white spaces between cover words; you must specify 

how many digits should be inserted between each word in the unused white spaces. 

The number of digits determined depends on the font size; for each font size there is 

a space size between words, these spaces will have the secret data and the size of this data 

should be the same of the empty space size in the cover text. 

The font size scale is the point; (wikipedia, Point (typography), 2013) 

“In typography, a point is the smallest unit of measure, being a subdivision of the 

larger pica. It is commonly abbreviated as pt. The point has long been the usual unit for 

measuring font size and leading and other minute items on a printed page. The original 

printer's point, from the era of foundry metal typesetting and letter press printing, varied 

between 0.18 and 0.4 mm depending on various definitions of the foot. By the end of the 

19th Century, it had settled to around 0.35 to 0.38 mm, depending on one’s geographical 

location. 

In the late 1980s to the 1990s, the traditional point was supplanted by the desktop 

publishing point (also called the PostScript point), which was defined as 72 points to 

the inch (1 point = 1⁄72 inches = 25.4⁄72 mm = 0.3527 mm). In either system, there are 12 

points to the pica. In metal type, the point size of the font described the size (height) of the 



42 
 

metal body on which the typeface's characters were cast. In digital type, the body is now an 

imaginary design space, but is used as the basis from which the type is scaled. 

A measurement in picas is usually represented by placing a lower case p after the 

number, such as "10p" meaning "10 picas." Points are represented by placing the number 

of points after the p, such as 0p5 for "5 points," 6p2 for "6 picas and 2 points," or 1p1 for 

"13 points" which is converted to a mixed fraction of 1 pica and 1 point. (An alternate 

nomenclature is described in the pica article.)”. 

The space between words will be different depending on the font size. (wikipedia, 

Sentence spacing, 2013) “Sentence spacing is the horizontal space between sentences 

in typeset text. It is a matter of typographical convention. Since the introduction 

of movable-type printing in Europe, various sentence spacing conventions have been used 

in languages with a Latin-derived alphabet. These include a normal word space (as 

between the words in a sentence), a single enlarged space, two full spaces, and, most 

recently in digital media, no space. Although modern digital fonts can automatically adjust 

a single word space to create visually pleasing and consistent spacing following 

terminal punctuation, most debate is about whether to strike a keyboard's spacebar once or 

twice between sentences. Traditionally, two spaces could distinguish from a mid-sentence 

abbreviation or initials, as in, "He was faster than I.  P. Jones was next."” 

According to results shown in chapter four; the best number of digits with size 1pt to 

hide within the cover text is as appearing in table 3-9: 

 



43 
 

Table 3-9: The best number of digits with size 1pt to hide within the cover text 

Cover text font size Number of hidden digits 

10 1 

12 2 

14 3 

16 4 

 

 

Step Two: Merge the index and ASCII code numbers in the cover text: 

After detecting the number of digits according to the cover text font size; merge these 

digits within the cover text in the white spaces, this operation will be done in iterations. 

Before that, the indexes array must be done and ready to work on it and hide it, so; 

suppose the following: The secret text is: 

“Become important in $ a number of application areas” 

 

The cover text is shown in figure 3-5 



44 
 

Figure 3-5: The cover text 

The font size of the cover text is 12pt, so; the best number of digits to hide in each 

white space is 2 digits “as explained in step one”. 

The result array of the indexes and ASCII codes for the secret text characters in the 

cover text in octal numeral system is: 

“2936937915917936925922917977915916921920913921925922913925844925920

9259139449179669369169259159149259209779779639229379209219229159139259209

16936920946” 

 

 

 



45 
 

This array will be divided into two digits together and then merge it like the 

following: 

“29, 36, 93, 79, 15, 91, 79, 36, 92, 59, 22, 91, 79, 77, 91, 59, 16, 92, 19, 20, 91, 39, 

21, 92, 59, 22, 91, 39, 25, 84, 49, 25, 92, 09, 25, 91, 39, 44, 91, 79, 66, 93, 69, 16, 92, 59, 

15, 91, 49, 25, 92, 09, 77, 97, 79, 63, 92, 29, 37, 92, 09, 21, 92, 29, 15, 91, 39, 25, 92, 09, 

16, 93, 69, 20, 94, 6” 

Every two digits will be insert in white spaces of cover text is shown in Figure 3-6: 

Figure 3-6: Insert digits in the white space of the cover text 

 

 

 



46 
 

Figure 3-7 show the code which for marge the array numbers within the cover text. 

Figure 3-7: The code of marge the array numbers within cover text. 

 

Step Three: Change font size and color for the numbers: 

All inserted digits will be format as font size 1pt and color as cover text back color 

“white color”. 

The result of change font size to 1pt is shown in figure 3-8: 

Figure 3-8: The result with hidden data font size 1pt 



47 
 

Then will change the color of the digits as the back color of the cover text “white 

color”. 

The final result of hidden secret text in the cover text is shown in figure 3-9: 

Figure 3-9: The result with hidden data font size 1pt and white color 

 

In case the cover text back color is not white; the proposed solution will change the 

secret text color as cover text back color. 

 

 

 

 



48 
 

Figure 3-10 show the code which for change secret text font size and color. 

Figure 3-10: The code of change secret text font size and color. 

 

 

  



49 
 

Chapter Four 

Experimental Results 

In order to evaluate the proposed enhanced technique, the implementation of the 

proposed technique is done as a program to simulate hiding text under text by providing 

secret text and cover text to the program and hiding the secret text under the cover text. 

This will compare the proposed solution with the white space method that involves 

justifying format of a text which is proposed in chapter two “see Figure 2-7”. Also, it will 

compare the hiding process in many aspects, and check the results data in several cases. 

The evaluation will check another implementation of hiding text under text by changing 

text size and color. The other implementation is done by (Jebran, 2007). 

Evaluation methods are designed to cover the main factors of data hiding process; 

process speed, result text size and matching result text with the original cover text. This 

chapter is divided into sections; each section covers one of the evaluation methods. This 

chapter starts with process speed evaluation, then evaluating the size of the result text, and 

the last section evaluates the matching of the result text with the original cover text. 

At the end of this chapter; results of the proposed implementation in variant cases are 

provided: the use of one, two, three, four and five digits in cover text size 10pt, 12pt, 14pt 

and 16pt. 

  



50 
 

4.1 Comparing the Proposed Solution with White Space Method: 

White space is part of data hiding text into text. Some of white space problems are. 

To hide two words like “Top Secret” requires text size cover of more than 80 words; 

because each character size is 8 bit “1 byte” and each bit requires one space. That means 

“T+o+p+ +S+e+c+r+e+t” equal 10 characters, 10 characters multiply by 8 bits equal 80 

bits. 

To be able to hide a large secret message; the result will be a very large message. 

In a properly justified format of text, not all spaces are available to be used to hide 

the required data. 

By using the proposed solution; above problems are solved, and the result is: 

To hide two words like “Top Secret” in text size 12pt and by using 2 digits; requires 

text size cover not more than 20 words in case the result of each character index or ASCII 

code is 4 digits; that means “T+o+p+ +S+e+c+r+e+t” equal 10 characters, each character 

index 4 digits multiply by 10 characters equal 40 digits, 40 digits divided into two digits 

equal 20 parts, each part disappears in one white space. 

To be able to hide a large secret message; the result will be close to the size of the 

original text. 

In a properly justified format of text, all spaces are available to be used to hide the 

required data. 

 



51 
 

4.2 Evaluating the Speed of the Data Hiding Process 

The speed process is different from case to another, the cases of evaluating the speed 

process are: hiding secret text under cover text using cover text size 10pt, hiding secret text 

under cover text using cover text size 12pt, hiding secret text under cover text using cover 

text size 14pt and hiding secret text under cover text using cover text size 16pt. 

The comparison will be between the proposed implementation and The other 

implementation is done by (Jebran, 2007). 

 

Hiding data by using size 10pt 

Table 4-1: Speed results of hiding secret text using Cover text size 10pt 

 

 

 

 

 

 

 

 

 

 

 

 

(a) The proposed implementation 

Number of 

hidden digits 

in white 

space 

Hidden 

Process Speed 

in Seconds  

1 0.8620493 

2 0.5160296 

3 0.2830162 

4 0.2090119 

5 0.2120121 

 
 

Original file 

Text Size 

Hidden 

Process Speed 

in Seconds  

10 48.8557944 

12 59.0033748 

14 61.5805222 

16 63.3666244 

(b) Jebran implementation 

 

 



52 
 

(a) The proposed implementation 

 

(b) Jebran implementation 

Figure 4-1: Speed results of hiding secret text using cover text size 10pt 

 



53 
 

As it’s shown in the above Tables (4-1) and Figures (4-1), the speed results generated 

by applying the proposed implementation are different depending on the number of digits 

are used to hide them within the white space of the cover text “described on 3.2.2.1 Detect 

the number of digits”, the fastest case occurs when using four digits in the text size 10pt it 

takes 0.2090119 seconds and the slowest case occurs when using one digit in the text size 

10pt it takes 0.8620493 seconds. By applying the other implementation; the speed resulted 

are the same on variant number of digits used to hide them within the white space of the 

cover text, the speed of hiding one, two, three, four and five digits in text size 10pt is 

48.8557944 seconds. 

 

Hiding data by using size 12pt 

Table 4-2: Speed results of hiding secret text using cover text size 12pt 

number of 

hidden digits 

in white 

space 

Hidden 

Process Speed 

in Seconds  

1 0.9030516 

2 0.4840276 

3 0.2530145 

4 0.2070118 

5 0.1660095 

(a) The proposed implementation 

 
 

Original file 

Text Size 

Hidden 

Process Speed 

in Seconds  

10 48.8557944 

12 59.0033748 

14 61.5805222 

16 63.3666244 

(b) Jebran implementation 

 

 



54 
 

(a) The proposed implementation 

 

 
(b) Jebran implementation 

Figure 4-2: Speed results of hiding secret text using cover text size 12pt 



55 
 

As it’s shown in the above Tables (4-2) and Figures (4-2), the speed results generated 

by applying the proposed implementation are different depending on the number of digits 

are used to hide them within the white space of the cover text “described on 3.2.2.1 Detect 

the number of digits”, the fastest case occurs when using five digits in text size 12pt it 

takes 0.1660095 seconds and the slowest case occurs when using one digit in text size 12pt 

it takes 0.9030516 seconds. By applying the other implementation; the speed results are the 

same on variant number of digits used to hide them within the white space of the cover 

text, the speed of hiding one, two, three, four and five digits in text size 12pt is 59.0033748 

seconds. 

 

Hiding data by using size 14pt 

Table 4-3: Speed results of hiding secret text using cover text size 14pt 

number of 

hidden digits 

in white 

space 

Hidden 

Process Speed 

in Seconds  

1 0.8940511 

2 0.4170238 

3 0.3230185 

4 0.1990114 

5 0.1700097 

(a) The proposed Implementation 

 
 

Original file 

Text Size 

Hidden 

Process Speed 

in Seconds  

10 48.8557944 

12 59.0033748 

14 61.5805222 

16 63.3666244 

(b) Jebran implementation 

 

 



56 
 

(a) The proposed implementation 

 

 
(b) Jebran implementation 

Figure 4-3: Speed results of hiding secret text using cover text size 14pt 



57 
 

As it’s shown in above Tables (4-3) and Figures (4-3), the speed results generated by 

applying the proposed implementation are different depend on the number of digits are 

used to hide them within the white space of  the cover text “described on 3.2.2.1 Detect the 

number of digits”, the fastest case occurs when using five digits in text size 14pt it takes 

0.1700097 seconds and the slowest case occurs when using one digit in text size 14pt it 

takes 0.8940511 seconds. By applying the other implementation; the result of speed are the 

same on variant number of digits used to hide them within the white space of the cover 

text, the speed of hiding one, two, three, four and five digits in text size 14pt is 61.5805222 

seconds. 

 

Hiding data by using size 16pt 

Table 4-7 and figure 4-7 show the speed results for hiding secret text under cover text 

using text size 16pt by applying the proposed implementation. 

Table 4-4: Speed results of hide secret text using cover text size 16pt 

number of 

hidden digits 

in white 

space 

Hidden 

Process Speed 

in Seconds  

1 0.908052 

2 0.4210241 

3 0.2740157 

4 0.2290131 

5 0.1590091 

(a) The proposed implementation 

 
 

Original file 

Text Size 

Hidden 

Process Speed 

in Seconds  

10 48.8557944 

12 59.0033748 

14 61.5805222 

16 63.3666244 

(b) Jebran implementation 

 

 



58 
 

(a) The proposed implementation 

 

 
(b) Jebran implementation 

Figure 4-4: Speed results of hiding secret text using cover text size 16pt 



59 
 

As it’s shown in above Tables (4-4) and Figures (4-4), the speed results generated by 

applying the proposed implementation are different depend on the number of digits are 

used to hide then within the white space of the cover text “described on 3.2.2.1 Detect the 

number of digits”, the fastest case occurs when using five digits in text size 16pt it takes 

0.1590091 seconds and the slowest case occurs when using one digit in text size 16pt it 

takes 0.908052 seconds. By applying the other implementation; the result of process speed 

are the same on variant number of digits used to hide then within then white space of the 

cover text, the speed of hiding one, two, three, four and five digits in text size 16pt is 

63.3666244 seconds. 

 

4.3 Evaluating the Size of the Result Text 

The size of the result text is different from one case to another, the cases of 

evaluating the size of the result text are: hiding secret text under cover text using cover text 

size 10pt, hiding secret text under cover text using cover text size 12pt, hiding secret text 

under cover text using cover text size 14pt and hiding secret text under cover text using 

cover text size 16pt. 

The comparison will be between the proposed implementation and The other 

implementation is done by (Jebran, 2007). 

 

 



60 
 

Hiding data by using size 10pt 

Table 4-5: Size of the result text for hiding secret text using cover text size 10pt 

number of 

hidden 

digits in 

white space 

original file 

Size in K.B 

Result file 

Size in K.B 

1 4 13 

2 4 9 

3 4 8 

4 4 7 

5 4 7 

(a) The proposed implementation 

 
 

Original 

file Text 

Size 

Original 

file Size in 

K.B 

Result file 

Size in K.B 

10 4 6 

12 4 4 

14 4 4 

16 4 6 

(b) Jebran implementation 

 

(a) The proposed implementation 

 



61 
 

(b) Jebran implementation 

Figure 4-5: Size of the result text for hiding secret text using cover text size 10pt 

 

As it’s shown in above Tables (4-5) and Figures (4-5), the size of the result text 

generated by applying the proposed implementation is different depending on the number 

of digits are used to hiding them within then white space of the cover text “described on 

3.2.2.1 Detect the number of digits”, the minimum size case occurs when using four and 

five digits in cover text size 10pt, the size is 7kb and the maximum size case occurs when 

using one digit in cover text size 10pt, the size is 13kb. By applying the other 

implementation; the size of the result text is the same on variant number of digits used to 

hiding them within the white space of the cover text, the size of the result text by hiding 

one, two, three, four and five digits in cover text size 10pt is 6kb. 

 



62 
 

Hiding data by using size 12pt 

Table 4-6: Size of the result text for hiding the secret text using cover text size 12pt  

number of 

hidden 

digits in 

white space 

original file 

Size in K.B 

Result file 

Size in K.B 

1 4 13 

2 4 9 

3 4 8 

4 4 7 

5 4 7 

(a) The proposed implementation 

 
 

Original 

file Text 

Size 

Original 

file Size in 

K.B 

Result file 

Size in K.B 

10 4 6 

12 4 4 

14 4 4 

16 4 6 

(b) Jebran implementation 

 

(a) The proposed implementation 



63 
 

 
(b) Jebran implementation 

Figure 4-6: Size of the result text for hiding the secret text using cover text size 12pt 

 

As it’s shown in above Tables (4-6) and Figures (4-6), the size of the result text 

generated by applying the proposed implementation is different depending on the number 

of digits are used to hide it on the cover text white space “described on 3.2.2.1 Detect the 

number of digits”, the minimum size case occurs when using four and five digits in cover 

text size 12pt, the size is 7kb and the maximum size case occurs when using one digit in 

cover text size 12pt, the size is 13kb. By applying the other implementation; the size of the 

result text are the same on variant number of digits used to hiding them within the white 

space of the cover text, the size of the result text by hiding one, two, three, four and five 

digits in cover text size 12pt is 4kb. 

 



64 
 

Hiding data by using size 14pt 

Table 4-7: Size of the result text for hiding secret text using cover text size 14pt 

number of 

hidden 

digits in 

white space 

original file 

Size in K.B 

Result file 

Size in K.B 

1 4 13 

2 4 9 

3 4 8 

4 4 5 

5 4 5 

(a) The proposed implementation 

 
 

Original 

file Text 

Size 

Original 

file Size in 

K.B 

Result file 

Size in K.B 

10 4 6 

12 4 4 

14 4 4 

16 4 6 

(b) Jebran implementation 

 

(a) The proposed implementation 



65 
 

 
(b) Jebran implementation 

Figure 4-7: Size of the result text for hiding secret text using cover text size 14pt 

 

As it’s shown in above Tables (4-7) and Figures (4-7), the size of the result text 

generated by applying the proposed implementation is different depending on the number 

of digits are used to hiding them within the white space of the cover text “described on 

3.2.2.1 Detect the number of digits”, the minimum size case occurs when using four and 

five digits in cover text size 14pt, the size is 5kb and the maximum size case occurs when 

using one digit in cover text size 14pt, the size is 13kb. By applying the other 

implementation; the size of the result text is the same on variant number of digits used to 

hide them within the white space of the cover text, the size of the result text by hiding one, 

two, three, four and five digits in cover text size 14pt is 4kb. 

 



66 
 

Hiding data by using size 16pt 

Table 4-8: Size of the result text for hiding the secret text using cover text size 16pt 

number of 

hidden 

digits in 

white space 

original file 

Size in K.B 

Result file 

Size in K.B 

1 4 7 

2 4 6 

3 4 5 

4 4 5 

5 4 5 

(a) The proposed implementation 

 
 

Original 

file Text 

Size 

Original 

file Size in 

K.B 

Result file 

Size in K.B 

10 4 6 

12 4 4 

14 4 4 

16 4 6 

(b) Jebran implementation 

 

(a) The proposed implementation  



67 
 

 
(b) Jebran implementation 

Figure 4-8: Size of the result text for hiding  secret text using cover text size 16pt 

 

As it’s shown in above Tables (4-8) and Figures (4-8), the size of the result text 

generated by applying the proposed implementation is different depending on the number 

of digits are used to hiding them within the cover text white space “described on 3.2.2.1 

Detect the number of digits”, the minimum size case occurs when using four and five 

digits in cover text size 16pt, the size is 5kb and the maximum size case occurs when using 

one digit in cover text size 16pt, the size is 7kb. By applying the other implementation; the 

size of the result text are the same on variant number of digits used to hiding them within 

the cover text white space, the size of the result text by hide one, two, three, four and five 

digits in cover text size 16pt is 6kb. 

 



68 
 

4.4 Evaluating the Result Text Matching with the Original Cover Text 

The result text matching with the original cover text are different from one case to 

another, the cases of evaluating the result text matching with the original cover text are: 

hiding secret text under cover text using cover text size 10pt, hiding secret text under cover 

text using cover text size 12pt, hiding secret text under cover text using cover text size 14pt 

and hiding secret text under cover text using cover text size 16pt.  

The comparison will be between the proposed implementation and The other 

implementation is done by (Jebran, 2007). 

 

Hiding data by using size 10pt 

Table 4-9: Result text matching with the original cover text for hiding secret text 

using cover text size 10pt 

number of 

hidden digits 

in white 

space 

Result Text 

is Match 

Original 

Text? 

1 TRUE 

2 FALSE 

3 FALSE 

4 FALSE 

5 FALSE 

(a) The proposed implementation 

 

Original file 

Text Size 

Result Text 

is Match 

Original 

Text? 

10 FALSE 

12 FALSE 

14 FALSE 

16 FALSE 

(b) Jebran implementation 

 

 



69 
 

(a) The proposed implementation 

 

(b) Jebran implementation 

Figure 4-9: Result text matching with the original cover text for hiding secret text 

using cover text size 10pt 



70 
 

As it’s shown in above Tables (4-9) and Figures (4-9), the result text matching with 

the original cover text generated by applying the proposed implementation is different 

depending on the number of digits are used to hide them within the white space of the 

cover text “described on 3.2.2.1 Detect the number of digits”, when using one digit in 

cover text size 10pt the result text matches the original cover text, and when using two, 

three, four and five digits in cover text size 10pt the result text does not match the original 

cover text. By applying the other implementation; the result text does not match the 

original cover text on variant number of digits used to hide them within the white space of 

the cover text using cover text size 10pt. 

 

Hiding data by using size 12pt 

Table 4-10: the result text matching with the original cover text for hide secret text 

using cover text size 12pt 

number of 

hidden digits 

in white 

space 

Result Text 

is Match 

Original 

Text? 

1 FALSE 

2 TRUE 

3 FALSE 

4 FALSE 

5 FALSE 

(a) The proposed implementation 

 

Original file 

Text Size 

Result Text 

is Match 

Original 

Text? 

10 FALSE 

12 FALSE 

14 FALSE 

16 FALSE 

(b) Jebran implementation 

 



71 
 

(a) The proposed implementation 

  

 
(b) Jebran implementation 

Figure 4-10: Result text matching with the original cover text for hiding secret text 

using cover text size 12pt 



72 
 

As it’s shown in above Tables (4-10) and Figures (4-10), the result text matching 

with the original cover text generated by applying the proposed implementation is different 

depending on the number of digits are used to hide them within the white space of the 

cover text “described on 3.2.2.1 Detect the number of digits”, when using two digits in 

cover text size 12pt the result text matches the original cover text, and when using one, 

three, four and five digits in cover text size 12pt the result text does not match the original 

cover text. By applying the other implementation; the result text does not match the 

original cover text on variant number of digits used to hide them within the white space of 

the cover text in cover text size 12pt. 

 

Hiding data by using size 14pt 

Table 4-11: Result text matching with the original cover text for hiding secret text 

using cover text size 14pt 

number of 

hidden digits 

in white 

space 

Result Text 

is Match 

Original 

Text? 

1 FALSE 

2 FALSE 

3 TRUE 

4 FALSE 

5 FALSE 

(a) The proposed implementation 

 

Original file 

Text Size 

Result Text 

is Match 

Original 

Text? 

10 FALSE 

12 FALSE 

14 FALSE 

16 FALSE 

(b) Jebran implementation 



73 
 

(a) The proposed implementation 

 

 
(b) Jebran implementation 

Figure 4-11: Result text matching with the original cover text for hiding secret text 

using cover text size 14pt 



74 
 

As it’s shown in above Tables (4-11) and Figures (4-11), the result text matching 

with the original cover text generated by applying the proposed implementation is different 

depending on the number of digits are used to hide them within the white space of the 

cover text “described on 3.2.2.1 Detect the number of digits”, when using three digits in 

cover text size 14pt the result text matches of the original cover text, and when using one, 

two, four and five digits in cover text size 14pt the result text does not match the original 

cover text. By applying the other implementation; the result text does not match the 

original cover text on variant number of digits used to hide them within the cover text 

white space in cover text size 14pt. 

 

Hiding data by using size 16pt 

Table 4-12: Result text matching with the original cover text for hiding secret text 

using cover text size 16pt 

number of 

hidden digits 

in white 

space 

Result Text 

is Match 

Original 

Text? 

1 FALSE 

2 FALSE 

3 FALSE 

4 TRUE 

5 FALSE 

(a) The proposed implementation 

 

Original file 

Text Size 

Result Text 

is Match 

Original 

Text? 

10 FALSE 

12 FALSE 

14 FALSE 

16 FALSE 

(b) Jebran implementation 

 



75 
 

(a) The proposed implementation 

  

 
(b) Jebran implementation 

Figure 4-12: Result text matching with the original cover text for hiding secret text 

using cover text size 16pt 



76 
 

As it’s shown in above Tables (4-12) and Figures (4-12), the result text matching 

with the original cover text generated by applying the proposed implementation is different 

depending on the number of digits are used to hide them within the white space of the 

cover text “described on 3.2.2.1 Detect the number of digits”, when using four digits in 

cover text size 16pt the result text matches the original cover text, and when using one, 

two, three and five digits in cover text size 16pt the result text does not match the original 

cover text. By applying the other implementation; the result text does not match the 

original cover text on variant number of digits used to hide them within the cover text 

white space in cover text size 16pt. 

 

  



77 
 

4.5 The results of the proposed implementation in variant cases 

Figure 4-13: Result of hiding secret text using cover text size 10pt for one digit 

 

Figure 4-14: Result of hiding secret text using cover text size 10pt for two digits 



78 
 

Figure 4-15: Result of hiding secret text using cover text size 10pt for three digits 

 

Figure 4-16: Result of hiding secret text using cover text size 10pt for four digits 



79 
 

Figure 4-17: Result of hiding secret text using cover text size 10pt for five digits 

 

Figure 4-18: Result of hiding secret text using cover text size 12pt for one digit 



80 
 

Figure 4-19: Result of hiding secret text using cover text size 12pt for two digits 

 

Figure 4-20: Result of hiding secret text using cover text size 12pt for three digits 



81 
 

Figure 4-21: Result of hiding secret text using cover text size 12pt for four digits 

 

Figure 4-22: Result of hiding secret text using cover text size 12pt for five digits 



82 
 

Figure 4-23: Result of hiding secret text using cover text size 14pt for one digit 

 

Figure 4-24: Result of hiding secret text using cover text size 14pt for two digits 



83 
 

Figure 4-25: Result of hiding secret text using cover text size 14pt for three digits 

 

Figure 4-26: Result of hiding secret text using cover text size 14pt for four digits 



84 
 

Figure 4-27: Result of hiding secret text using cover text size 14pt for five digits 

 

Figure 4-28: Result of hiding secret text using cover text size 16pt for one digit 



85 
 

Figure 4-29: Result of hiding secret text in cover text size 16pt for two digits 

 

Figure 4-30: Result of hiding secret text using cover text size 16pt for three digits 



86 
 

Figure 4-31: Result of hiding secret text using cover text size 16pt for four digits 

 

Figure 4-32: Result of hiding secret text using cover text size 16pt for five digits 

  



87 
 

Chapter Five 

Conclusion and Future Work 

Information security has two branches; data encryption and data hiding. Image, 

audio, and text are used for data hiding. Data hiding in text is to embed text within another 

text to be invisible. Digital media has become more prevalent and expanding. 

There are three major methods for data hiding text under text; open space methods 

that encode through manipulation of white space (unused space on the printed page), 

syntactic methods that utilize punctuation, and semantic methods that encode using 

manipulation of the words themselves. 

There are two reasons why the manipulation of white space in particular yields useful 

results in open space method. First, changing the number of trailing spaces has little 

chance of changing the meaning of a phrase or sentence. Second, a casual reader is 

unlikely to take notice of slight modifications to white space. 

There are three methods of using white space to encode data. The methods exploit 

inter-sentence spacing by placing either one or two spaces after each terminating character, 

end-of-line spaces by insert spaces at the end of lines, the data are encoded allowing for a 

predetermined number of spaces at the end of each line, and inter-word spacing in justified 

text by controlling where the extra spaces are placed, one space between words is 

interpreted as a “0” two spaces are interpreted as a “1”. 

Character indexes used in the proposed solution to get the index of secret characters 

from the cover text to be able to retrieve the secret text in the stage of the text show. The 



88 
 

characters’ indexes are not enough to indicate the intended character from the cover text, 

so; ASCII code characters give a unique code for each character in the secret text “with 

sensitive case”. 

The octal numeral system is the base-8 number system, and uses the digits 0 to 7. 

Octal numerals can be made from binary numerals by grouping consecutive binary digits 

into groups of three (starting from the right). 

The proposed solution takes advantage of the unused white space from the text 

“Cover Text” to hide the data “Secret Data” on the cover text. Changing the format of the 

secret text by setting the text size to 1px, setting the font color to white as the back color of 

cover text, then extract the index of the secret text characters from cover text, the 

remaining secret text characters that do not exist in the cover text will generate a unique 

code for each none existing characters from ASCII code characters, then convert the result 

of indexes and ASCII codes from decimal numeral system into octal numeral system by 

separating the characters with the number “9” and identifying the ASCII code “not index” 

with the number “8”, then merging the secret text with the cover text using white space 

method to generate the result text which is hiding the secret message within it. 

Future works may include converting the extract numbers of indexes and ASCII 

codes into equations allowing the regeneration of the extract numbers and these equations 

can be concealed and transported via cover text. 

  



89 
 

References 

Abdul Qadir, M., & Ahmad, I. (2006). Digital Text Watermarking: Secure Content Delivery and Data 

Hiding in Digital Documents. Security Technology, 2005. CCST '05. 39th Annual 2005 

International Carnahan Conference, 101 - 104. 

Abdullah, Y. F., & Nasereddin, H. H. (2013). Proposed Data Hiding Technique – Text under Text. 

American Academic & Scholarly Research Journal (AASRJ), 243-248. 

Al-Hamami, A. H., & Al-Hamami, M. A. (2008). Information Hiding – Steganography and 

Watermark. Al-Sharjeh: ethraa. 

Ali, A. (2007). Qualitative Spatial Image Data Hiding for Secure Data Transmission. International 

Journal on Graphics, Vision and Image Processing, 35-43. 

AMIN, M. M., IBRAHIM, S., SALLEH, M., & KATMIN, M. R. (2003). INFORMATION HIDING USING 

STEGANOGRAPHY. Malaysia: University Teknologi. 

Asif, A. A., Shaikh, A., Manza, R. R., & Ramteke, R. J. (2010). Conversion of Bitmap Text Images for 

Data Hiding. Computational Intelligence and Computing Research (ICCIC), 2010 IEEE 

International Conference, 1 – 4. 

Bender, W., Gruhl, D., Morimoto, N., & Lu, A. (1996). Techniques for data hiding. IBM SYSTEMS 

JOURNAL, 313-336. 

Borges, P. V., Izquierdo, E., & Mayer, J. (2008). Efficient Text Color Modulation for Printed Side 

Communications and Data Hiding. Institute of Electrical and Electronics Engineers (IEEE), 

79 – 86. 

Brassil, J. T., Low, S., Maxemchuk, N. F., & O’Gorman, L. (1995). Electronic Marking and 

Identification Techniques to Discourage Document Copying. Selected Areas in 

Communications, IEEE Journal, 1495 – 1504. 

Bulan, O., Sharma, G., & Monga, V. (2008). Adaptive Decoding For Halftone Orientation-Based 

Data Hiding. Institute of Electrical and Electronics Engineers (IEEE), 1280 - 1283. 

Chen, Y.-Y., Pan, H.-K., & Tseng, Y.-C. (2000). A Secure Data Hiding Scheme for Two-Color Images. 

Institute of Electrical and Electronics Engineers (IEEE), 750 – 755. 

Deguillaume, F., Rytsar, Y., Voloshynovskiy, S., & Pun, T. (2005). Protocols for data-hiding based 

text document security and automatic processing. Multimedia and Expo, 2005. ICME 

2005. IEEE International Conference. 



90 
 

Dutta, P., Bhattacharyya, D., & Kim, T.-h. (2009). Data Hiding in Audio Signal: A Review. Kim 

International Journal of Database Theory and Application, 1-8. 

Harshavardhan, K., & Sugata, S. (2012). A Survey On Various Data Hiding Techniques And Their 

Comparative Analysis. Acta Technica Corviniensis - Bulletin of Engineering, 35 - 40. 

Ibrahim, A., & Zabian, A. (2009). Algorithm for Text Hiding in Digital Image for Information 

Security. International Journal of Computer Science and Network Security, 262-268. 

Jebran, A. (2007, June 19). Text 2Text Steganography - Part 2. Retrieved January 6, 2013, from 

Code Project: http://www.codeproject.com/Articles/19260/Text-2Text-Steganography-

Part-2 

Judge, J. C. (2001). Steganography: Past, Present, Future. Security Essentials Certification: GSEC, 1-

29. 

KAHN, D. (1996). The Codebreakers: The Story of Secret Writing. New York: Scribner. 

Kim, H., & Mayer, J. (2007). Data Hiding for Binary Documents Robust to Print-Scan, Photocopy 

and Geometric Distortions. Computer Graphics and Image Processing, 2007. SIBGRAPI 

2007. XX Brazilian Symposium, 105 - 112. 

Kuo, W.-C., Jiang, D.-J., & Huang, Y.-C. (2008). A Reversible Data Hiding Scheme Based on Block 

Division. Institute of Electrical and Electronics Engineers (IEEE), 365 – 369. 

Kuo, W.-C., Kuo, S.-H., & Wuu, L.-C. (2010). High Embedding Reversible Data Hiding Scheme for 

JPEG. Institute of Electrical and Electronics Engineers (IEEE), 74-77. 

Kurup, S., Sridhar, G., & Sridhar, V. (2005). Entropy Based Data Hiding for Document Images. 

World Academy of Science, Engineering and Technology, 150-153. 

Low, S. H., Maxemchuk, N. F., & Lapone, A. M. (1998). Document Identification for Copyright 

Protection Using Centroid Detection. Institute of Electrical and Electronics Engineers 

(IEEE), 372 – 383. 

Low, S. H., Maxemchuk, N. F., Brassil, J. T., & O'Gorman, L. (1995). Document Marking and 

Identification using Both Line and Word Shifting. Institute of Electrical and Electronics 

Engineers (IEEE), 853 - 860. 

Lu, H., Kot, A. C., & Susanto, R. (2002). Binary Image watermarking through Biased Binarization. 

Nanyang Technological University, Institute for Infocomm Research. 

Michaud, E. (2003). Current Steganography Tools and Methods. Current Steganography Tools and 

Methods, 1-11. 



91 
 

Mikkilineni, A. K. (2012). INFORMATION HIDING IN PRINTED DOCUMENTS. For the degree of 

Doctor of Philosophy Purdue University, 1-10. 

MOULIN, P., & KOETTER, R. (2005). Data-Hiding Codes. Institute of Electrical and Electronics 

Engineers (IEEE), 2083 – 2126. 

Nasereddin, H. H., & Al Farzaeai, M. S. (2010). PROPOSED DATA HIDING TECHNIQUE TEXT IMAGE 

INSIDE IMAGE (TIII). International Journal of Research and Reviews in Applied Sciences, 

183- 193. 

Net 2000 Ltd. (2010, January 1). DataMasker. Retrieved January 1, 2012, from DataMasker: 

http://www.DataMasker.com 

Ni, Z., Shi, Y. Q., Ansari, N., Su, W., Sun, Q., & Lin, X. (2008). Robust Lossless Image Data Hiding 

Designed for Semi-Fragile Image Authentication. Institute of Electrical and Electronics 

Engineers (IEEE), 1051-8215. 

Por, L. Y., Wong, K., & Chee, K. O. (2012). A text-based data hiding method using Unicode space 

characters. The Journal of Systems and Software, 1075 – 1082. 

Rahma, A. S., AbdulWahab, H. B., & Al-Noori, A. Y. (2011). Proposed Steganographic Method for 

Data Hiding in Microsoft Word Documents Structure. Al-Mansour Journal, 1 - 29. 

Samphaiboon, N. (2011). Steganography via running short text messages. Springer Science, 

Business Media, LLC 2009 Multimed Tools, 569–596. 

Schneier, B. (2004). Secret & Lies: Digital Security in a Networked World; with new information 

about post-9/11 security. Indianapolis, Indiana: Wiley Publishing. 

Stallings, W. (1999). Cryptography and network security. New Jersey: Prentice Hall. 

Stanev, S. (2005). Steganographic Systems. CSC/MAT. 

Vill´an, R., Voloshynovskiy, S., Koval, O., Vila, J., Topak, E., Deguillaume, F., et al. (2006). Text Data-

Hiding for Digital and Printed Documents: Theoretical and Practical Considerations. 

Stochastic Information Processing (SIP), 15-26. 

wikipedia. (2013, April 21). Octal. Retrieved Aprile 26, 2013, from Wikipedia, the free 

encyclopedia: http://en.wikipedia.org/wiki/Octal 

wikipedia. (2013, March 08). Point (typography). Retrieved May 02, 2013, from Wikipedia, the 

free encyclopedia: http://en.wikipedia.org/wiki/Point_(typography) 

wikipedia. (2013, April 30). Sentence spacing. Retrieved May 02, 2013, from Wikipedia, the free 

encyclopedia: http://en.wikipedia.org/wiki/Sentence_spacing 



92 
 

Wong, P. H., Au, O. C., & Wong, J. W. (2000). Data Hiding and Watermarking in JPEG Compressed 

Domain by DC Coefficient Modification. Proc. SPIE Security and Watermarking of 

Multimedia Contents, 5-2. 

Xuan, G., Shi, Y. Q., Chai, P., Tong, X., Teng, J., & Li, J. (2008). Reversible Binary Image Data Hiding 

By Run-Length Histogram Modification. Institute of Electrical and Electronics Engineers 

(IEEE), 1-4. 

Yang, H., & Kot, A. C. (2005). DATA HIDING FOR TEXT DOCUMENT IMAGE AUTHENTICATION BY 

CONNECTIVITY-PRESERVING. Institute of Electrical and Electronics Engineers (IEEE), 505 – 

508. 

YILMAZ, A. (2003). ROBUST VIDEO TRANSMISSION USING DATA HIDING. In partial fulfillment of 

the requirements for the degree of Master of Science, the graduate school of natural and 

applied sciences of the Middle East technical university, 20-30. 

Zhang, X.-P., Li, K., & Wang, X. (2008). A Novel Look-Up Table Design Method for Data Hiding With 

Reduced Distortion. Institute of Electrical and Electronics Engineers (IEEE), 769 - 776. 

Zou, D., & Shi, Y. Q. (2005). Formatted Text Document Data Hiding Robust to Printing, Copying 

and Scanning. Institute of Electrical and Electronics Engineers (IEEE), 4971 – 4974. 

 



93 
 

Appendices 

using System; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Linq; 
using System.Text; 
using System.Windows.Forms; 
using System.IO; 
 
namespace DataHidingTextUnderText 
{ 
    public partial class frmMain : Form 
    { 
 
        private int iNoOfDigits = 1; 
        private float fontSize = 12; 
        private string[] iDec = null; 
        private string sWholeIndexes = string.Empty; 
 
        public frmMain() 
        { 
            InitializeComponent(); 
            rtxtResultText.Font = new Font(rtxtResultText.Font.FontFamily, 
fontSize); 
            iNoOfDigits = (int)nudNoOfDigits.Value; 
        } 
 
        private bool validation() 
        { 
            bool result = true; 
            if (rtxtSecretText.Text.Trim().Equals(string.Empty) || 
rtxtCoveredText.Text.Trim().Equals(string.Empty)) 
            { 
                MessageBox.Show("Please enter Covered and Secret text"); 
                result = false; 
            } 
            return result; 
        } 
 
        private void exportIndexes() 
        { 
            iDec = new string[rtxtSecretText.Text.Length]; 
            sWholeIndexes = string.Empty; 
            char strChars; 
            for (int i = 0; i < rtxtSecretText.Text.Length; i++) 
            { 
                strChars = Char.Parse(rtxtSecretText.Text.Substring(i, 1)); 
                if (rtxtCoveredText.Text.IndexOf(rtxtSecretText.Text.Substring(i, 
1)) >= 0) 
                { 



94 
 

                    iDec[i] = 
Convert.ToString(rtxtCoveredText.Text.IndexOf(rtxtSecretText.Text.Substring(i, 1)), 
8); 
                } 
                else 
                { 
                    iDec[i] = "8" + Convert.ToString(Convert.ToInt32(strChars), 8); 
                } 
            } 
 
            for (int i = 0; i < iDec.Length; i++) 
            { 
                if (i + 1 < iDec.Length && !iDec[i + 1].Substring(0, 1).Equals("8")) 
                { 
                    sWholeIndexes = sWholeIndexes + iDec[i] + "9"; 
                } 
                else 
                { 
                    sWholeIndexes = sWholeIndexes + iDec[i]; 
                } 
            } 
        } 
 
        private void margeData() 
        { 
            rtxtResultText.Text = rtxtCoveredText.Text; 
            int iIndex = 0, leng = iNoOfDigits; 
            for (int i = 0; i < rtxtResultText.Text.Length; i++) 
                if (rtxtResultText.Text.Substring(i, 1).Equals(" ")) 
                { 
                    if (sWholeIndexes.Substring(iIndex, sWholeIndexes.Length - 
iIndex).Length < iNoOfDigits) 
                        leng = sWholeIndexes.Substring(iIndex, sWholeIndexes.Length 
- iIndex).Length; 
 
                    rtxtResultText.Text = rtxtResultText.Text.Remove(i, 1); 
                    rtxtResultText.Text = rtxtResultText.Text.Insert(i, " " + 
sWholeIndexes.Substring(iIndex, leng) + " "); 
                    iIndex += iNoOfDigits; 
                    i += iNoOfDigits + 1; 
 
                    if (iIndex >= sWholeIndexes.Length) 
                        break; 
                } 
        } 
 
        private void hideData() 
        { 
            int remainingDigitsCount = sWholeIndexes.Length; 
            for (int i = 0; i < rtxtResultText.Text.Length && remainingDigitsCount > 
0; i++) 
                if (rtxtResultText.Text.Substring(i, 1).Equals(" ")) 
                { 
                    if (remainingDigitsCount < iNoOfDigits) 
                    { 
                        rtxtResultText.Select(i, remainingDigitsCount + 1); 



95 
 

                        rtxtResultText.SelectionFont = new 
Font(rtxtResultText.Font.FontFamily, 1); 
                        rtxtResultText.SelectionColor = rtxtResultText.BackColor; 
                        rtxtResultText.DeselectAll(); 
                        break; 
                    } 
                    else if (rtxtResultText.Text.Length >= i + iNoOfDigits + 1 && 
rtxtResultText.Text.Substring(i + iNoOfDigits + 1, 1).Equals(" ")) 
                    { 
                        rtxtResultText.Select(i, iNoOfDigits + 2); 
                        rtxtResultText.SelectionFont = new 
Font(rtxtResultText.Font.FontFamily, 1); 
                        rtxtResultText.SelectionColor = rtxtResultText.BackColor; 
                        rtxtResultText.DeselectAll(); 
                        i += iNoOfDigits + 1; 
                        remainingDigitsCount -= iNoOfDigits; 
                    } 
                } 
        } 
 
        private void frmMain_Load(object sender, EventArgs e) 
        { 
            cmbFontSize.SelectedIndex = 1; 
        } 
 
        private void btnHide_Click(object sender, EventArgs e) 
        { 
            DateTime time = new DateTime(); 
            time = DateTime.Now; 
            rtxtResultText.Text = string.Empty; 
            if (validation()) 
            { 
                exportIndexes(); 
                margeData(); 
                hideData(); 
            } 
            lblTime.Text = (DateTime.Now - time).ToString(); 
            txtTime.Text = lblTime.Text; 
        } 
 
        private void btnSave_Click(object sender, EventArgs e) 
        { 
            SaveFileDialog sfd = new SaveFileDialog(); 
            sfd.Filter = "Rich File|.rtf"; 
            if (sfd.ShowDialog() != System.Windows.Forms.DialogResult.Cancel) 
                rtxtResultText.SaveFile(sfd.FileName, 
RichTextBoxStreamType.RichText); 
        } 
 
 
        private void cmbFontSize_SelectedIndexChanged(object sender, EventArgs e) 
        { 
            fontSize = float.Parse(cmbFontSize.Text.ToString()); 
            rtxtResultText.Font = new Font(rtxtResultText.Font.FontFamily, 
fontSize); 



96 
 

            rtxtCoveredText.Font = new Font(rtxtCoveredText.Font.FontFamily, 
fontSize); 
            hideData(); 
        } 
 
        private void nudNoOfDigits_ValueChanged(object sender, EventArgs e) 
        { 
            iNoOfDigits = (int)nudNoOfDigits.Value; 
        } 
 
        private void rtxtSecretText_TextChanged(object sender, EventArgs e) 
        { 
            if (rtxtSecretText.Text != string.Empty && rtxtSecretText.Text.Length > 
5) 
                nudNoOfDigits.Maximum = 5; 
            else 
                nudNoOfDigits.Maximum = rtxtSecretText.Text.Length; 
 
            if (nudNoOfDigits.Maximum > 3) 
                nudNoOfDigits.Value = 3; 
            else 
                nudNoOfDigits.Value = nudNoOfDigits.Maximum; 
        } 
 
        private void retrieveIndexes() 
        { 
            string secretText = string.Empty; 
            List<int> indexesToRemove = new List<int>(); 
            sWholeIndexes = string.Empty; 
            for (int i = 0; i < rtxtResultText.Text.Length; i++) 
            { 
                rtxtResultText.Select(i, 1); 
                if (!rtxtResultText.SelectedText.Equals(" ") && 
rtxtResultText.SelectionFont.Size.Equals(1) && 
rtxtResultText.SelectionColor.Equals(Color.White)) 
                { 
                    sWholeIndexes = sWholeIndexes + rtxtResultText.SelectedText; 
                    indexesToRemove.Add(i); 
                    rtxtResultText.DeselectAll(); 
                } 
            } 
            for (int i = indexesToRemove.Count - 1; i >= 0; i--) 
            { 
                rtxtResultText.Text = rtxtResultText.Text.Remove(indexesToRemove[i], 
1); 
            } 
            rtxtResultText.Text = rtxtResultText.Text.Replace("  ", " "); 
            iDec = new string[sWholeIndexes.Length]; 
            if (sWholeIndexes != string.Empty) 
                sWholeIndexes = (!sWholeIndexes.Substring(0, 1).Equals("8") && 
!sWholeIndexes.Substring(0, 1).Equals("9") ? "9" : "") + sWholeIndexes; 
            int index = -1; 
            for (int i = 0; i < sWholeIndexes.Length; i++) 
            { 
                if (i == 0 || sWholeIndexes.Substring(i, 1).Equals("8") || 
sWholeIndexes.Substring(i, 1).Equals("9")) 



97 
 

                { 
                    index += 1; 
                    iDec[index] = sWholeIndexes.Substring(i, 1); 
                } 
                else 
                { 
                    iDec[index] = iDec[index] + sWholeIndexes.Substring(i, 1); 
                } 
            } 
            for (int i = 0; i < iDec.Length; i++) 
            { 
                if (iDec[i] == null) 
                { 
                    break; 
                } 
                else if (!iDec[i].Equals("") && !iDec[i].Equals("8") && 
!iDec[i].Equals("9")) 
                { 
                    if (iDec[i].Contains("8")) 
                    { 
                        //remove additional number 
                        iDec[i] = iDec[i].Replace("8", ""); 
                        //convert octal to decimal 
                        iDec[i] = 
Convert.ToInt64(Convert.ToString(Convert.ToInt64(iDec[i], 8), 10)).ToString(); 
                        //get char value from decimal code 
                        secretText = secretText + 
Convert.ToChar(long.Parse(iDec[i])).ToString(); 
                    } 
                    else if (iDec[i].Contains("9")) 
                    { 
                        //remove additional number 
                        iDec[i] = iDec[i].Replace("9", ""); 
                        //convert octal to decimal 
                        iDec[i] = 
Convert.ToInt64(Convert.ToString(Convert.ToInt64(iDec[i], 8), 10)).ToString(); 
                        //get char value from decimal code 
                        secretText = secretText + 
rtxtResultText.Text.Substring(int.Parse(iDec[i]), 1); 
                    } 
                } 
            } 
 
            MessageBox.Show(secretText); 
        } 
 
        private void btnRetrieve_Click(object sender, EventArgs e) 
        { 
            retrieveIndexes(); 
        } 
 
        private void btnBrowseST_Click(object sender, EventArgs e) 
        { 
            OpenFileDialog ofd = new OpenFileDialog(); 
            if (ofd.ShowDialog() != System.Windows.Forms.DialogResult.Cancel) 
            { 



98 
 

                StreamReader reader = new StreamReader(ofd.FileName); 
                rtxtSecretText.Text = reader.ReadToEnd(); 
                reader.Close(); 
            } 
        } 
 
        private void btnBrowseCT_Click(object sender, EventArgs e) 
        { 
            OpenFileDialog ofd = new OpenFileDialog(); 
            if (ofd.ShowDialog() != System.Windows.Forms.DialogResult.Cancel) 
            { 
                rtxtCoveredText.LoadFile(ofd.FileName); 
                rtxtCoveredText.Modified = false; 
            } 
        } 
 
        private void btnBrowseRT_Click(object sender, EventArgs e) 
        { 
            OpenFileDialog ofd = new OpenFileDialog(); 
            if (ofd.ShowDialog() != System.Windows.Forms.DialogResult.Cancel) 
            { 
                rtxtResultText.LoadFile(ofd.FileName); 
                rtxtResultText.Modified = false; 
            } 
        } 
 
    } 
} 
 

 


