

New Technique for Cross-Platform Availability

Control over Electronic Messages

 ا����ام ����� ����ة �� ����� ا����� �� ا�
��� ا�����و��

By

 Ward Ahmed Al-Hussein

Supervisor

Dr. Hebah H. O. Nasereddin

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Master Degree in Computer Information Systems

Faculty of Information Technology

Middle East University

Amman, Jordan

January, 2015

II

 ������ �	����
� ���

 ���� ���	
��
���
��	
��
��� ���������������

 ���
�
���� ��� ��!� ��"#�$��% ����� &!'�(

���%

�)�#����

 *�
+,� ,85

III

��
���
� ���

IV

V

VI

AKNOWLEDGEMENT

I am forever indebted to my family who supported me during this

academic journey and my whole life.

I would like to offer my sincerest gratitude to my supervisor Dr.

Hebah H. O. Nasereddin for her useful comments, illuminating

views and guidance throughout my master thesis.

I am very grateful to the Information Technology Faculty members

at the Middle East University for their insightful conversations and

hard questions, thank you for teaching me how to be a dedicated

researcher.

Finally, million thanks go to my fellow colleagues for their support

and encouragement.

VII

DEDICATION

This thesis is lovingly dedicated to Mema, my grandmother, like a

star she has been the guiding light of my life, thank you for all the

love you’ve given me, thank you for making me the man I am today.

To my father, a man of principles and honor, who taught me how to

find my way through man’s most challenging hardships, thank you

for being my role model.

To my mother, for her support, love and encouragement.

To my beloved late grandfather, an exceptionally wise man whom I

miss dearly.

To my late friend, Mohammed Al-Zeena, may your soul rest in

peace brother.

To FC Bayern Munchen, the best team in the whole world today,

and all of days.

VIII

Table of Contents

Title Page…………………………………………………………………………………….I

Authorization Statement ... Error! Bookmark not defined.

Thesis Committee Decision .. Error! Bookmark not defined.

AKNOWLEDGEMENT ... VI

DEDICATION .. VII

Table of Contents ... VIII

List of Tables ... X

List of Figures ... XI

List of Abbreviations .. XII

Abstract ... XV

��� XVI ... ا��

Chapter 1 Introduction .. 2

1.1 Email Processing Agents .. 3

1.2 Classification of Email Protocols ... 5

1.3 Simple Mail Transfer Protocol ... 6

1.4 Email Message Components ... 7

1.5 Advance Encryption Standard .. 8

1.6 Problem Statement .. 9

1.7 Problem Significance and Motivation .. 10

1.8 Goals ... 11

1.9 Limitations .. 11

1.10 Thesis Overview ... 12

Chapter 2 Literature Surveys .. 14

Chapter 3 Proposed Model ... 29

3.1 The Proposed Sender Side Model ... 31

3.1.1 Message Composition .. 33

3.1.2 Encryption .. 34

3.1.2.1 Key Structure & Format ... 35

IX

3.1.2.2 Using AES .. 37

3.2 The Proposed Receiver Side Model.. 41

Chapter 4 Experimental Results ... 44

4.1 Measures ... 44

4.2 Experimental Setup ... 45

4.3 Experiments .. 47

4.3.1 Small Message Experiment .. 47

4.3.2 Medium Message Experiment .. 52

4.3.3 Large Message Experiment .. 57

4.3.4 Very Large Message Experiment ... 62

4.4 Results Analysis .. 67

4.5 Assumptions.. 70

4.6 Advanced Analysis ... 71

4.6.1 Extended Small Message Experiment ... 72

4.6.2 Extended Medium Message Experiment ... 74

4.6.3 Extended Large Message Experiment ... 76

4.6.4 Extended Very Large Message Experiment .. 79

4.7 Discussion ... 82

Chapter 5 Conclusions .. 84

5.1 Overview ... 84

5.2 Conclusion .. 84

5.3 Future Work .. 85

References ... 86

Appendices.. 90

Appendix A: Email System Modules’ Source Code Written in PHP 90

Appendix B: Random Text Generation Source Code Written in C# 99

Appendix 3: Publication ... 100

X

List of Tables

Table 3.1. UUID structure .. 36

Table 4.1. Parameters of first 1000 character email using the proposed technique 47

Table 4.2. Parameters of second 1000 character email using the proposed technique 48

Table 4.3. Parameters of third 1000 character email using the proposed technique 48

Table 4.4. Parameters of fourth 1000 character email using the proposed technique 49

Table 4.5. Parameters of first 1000 character email using the normal process 49

Table 4.6. Parameters of second 1000 character email using the normal process 50

Table 4.7. Parameters of third 1000 character email using the normal process 50

Table 4.8. Parameters of fourth 1000 characters email using the normal process 51

Table 4.9. Average performance for small message length experiment 51

Table 4.10. Parameters of first 5000 character email using the proposed technique 52

Table 4.11. Parameters of second 5000 character email using the proposed technique 53

Table 4.12. Parameters of third 5000 character email using the proposed technique 53

Table 4.13. Parameters of fourth 5000 character email using the proposed technique 54

Table 4.14. Parameters of first 5000 character email using the normal process 54

Table 4.15. Parameters of second 5000 character email using the normal process 55

Table 4.16. Parameters of third 5000 character email using the normal process 55

Table 4.17. Parameters of fourth 5000 characters email using the normal process 56

Table 4.18. Average performance for medium message experiment 56

Table 4.19. Parameters of first 10000 character email using the proposed technique 57

Table 4.20. Parameters of second 10000 character email using the proposed technique 58

Table 4.21. Parameters of third 10000 character email using the proposed technique 58

Table 4.22. Parameters of fourth 10000 character email using the proposed technique 59

Table 4.23. Parameters of first 10000 character email using the normal process 59

Table 4.24. Parameters of second 10000 character email using the normal process 60

Table 4.25. Parameters of third 10000 character email using the normal process 60

Table 4.26. Parameters of fourth 10000 characters email using the normal process 61

Table 4.27. Average performance for large message experiment .. 61

Table 4.28. Parameters of first 20000 character email using the proposed technique 62

Table 4.29. Parameters of second 20000 character email using the proposed technique 63

Table 4.30. Parameters of third 20000 character email using the proposed technique 63

Table 4.31. Parameters of fourth 20000 character email using the proposed technique 64

Table 4.32. Parameters of first 20000 character email using the normal process 64

Table 4.33. Parameters of second 20000 character email using the normal process 65

Table 4.34. Parameters of third 20000 character email using the normal process 65

Table 4.35. Parameters of fourth 20000 characters email using the normal process 66

Table 4.36. Average performance for very large message experiment 66

Table 4.37. Average performance for extended small message experiment 72

XI

Table 4.38. Mean, STD, P-Value in extended small message experiment 72

Table 4.39. Average performance for extended medium message experiment 74

Table 4.40. Mean, STD, P-Value in extended medium message experiment 75

Table 4.41. Average performance for extended large message experiment 77

Table 4.42. Mean, STD, P-Value in extended large message experiment 77

Table 4.43. Average performance for extended very large message experiment 79

Table 4.44. Mean, STD, P-Value in extended very large message experiment 80

List of Figures

Figure 1.1. MUA interaction with SMTP/POP3 server .. 3

Figure 1.2. MTA interaction with other email agents... 4

Figure 1.3. MDA interaction with other email agents .. 4

Figure 1.4. SMTP model... 7

Figure 2.1. Protocol sketch for certified email ... 15

Figure 2.2. WSEmail messaging architecture ... 17

Figure 2.3. General block diagram of the standardized proposed model 21

Figure 2.4. The sending side processes for securing an email using hybrid cryptosystem on

android-based mobile devices ... 23

Figure 2.5. Email system architecture based on IBE, DNS and proxy service 24

Figure 3.1. The proposed sender side model .. 31

Figure 3.2. Adding custom header .. 34

Figure 3.3. UUID code generation.. 35

Figure 3.4. AES flowchart .. 38

Figure 3.5. Code of encryption and decryption of emails .. 40

Figure 3.6. The proposed receiver side model .. 41

Figure 4.1. Time to Send Chart... 67

Figure 4.2. Prepared Email Size Chart ... 68

Figure 4.3. Time to Read Chart .. 69

Figure 4.4. mean ± STD of TTS in extended small message experiment 73

Figure 4.5. mean ± STD of TTR in extended small message experiment 73

Figure 4.6. mean ± STD of TTS in extended medium message experiment 75

Figure 4.7. mean ± STD of TTR in extended medium message experiment 76

Figure 4.8. mean ± STD of TTS in extended large message experiment 78

Figure 4.9. mean ± STD of TTR in extended large message experiment............................. 78

Figure 4.10. mean ± STD of TTS in extended very large message experiment 80

Figure 4.11. mean ± STD of TTR in extended very large message experiment 81

XII

 List of Abbreviations

AES: Advance Encryption Standard.

API: Application Program Interface.

ARPAN: Advance Research Projects Agency Networks.

ASCII: American Standard Code for Information Interexchange.

COM: Component Object Model.

DNS: Domain Name Server.

Email: Electronic Mail.

ESP: Email Service Provider.

HTTP: Hypertext Transfer Protocol.

IBE: Identity-Based Encryption.

IMAP: Internet Message Access Protocol.

MDA: Mail Delivery Agent.

MHS: Message Handling System.

MIME: Multi-Purpose Internet Mail Extensions.

MPK: Master Public Key.

XIII

MSA: Mail Submission Agent.

MTA: Mail Transfer Agent.

MUA: Mail User Agent.

MX: Mail eXchange.

NIST: National Institute of Standards and Technology.

OES: Original Email Size.

PES: Original Email Size.

PGP: Pretty Good Privacy.

POP: Post Office Protocol.

RFC: Request For Comments.

S/MIME: Secure/Multipurpose Internet Mail Extensions.

SecMTP: Secure Mail Transfer Protocol.

SMTP: Simple Mail Transfer Protocol.

SOAP: Simple Object Access Protocol.

SPSS: Statistical Package for the Social Sciences.

SSL: Secure Socket Layer.

T/TCP: Transactional Transmission Control Protocol.

XIV

TCP/IP: Transmission Control Protocol/Internet Protocol.

TLS: Transport Layer Security.

TSP: Time Stamping Protocol.

TTP: Trust Third Party.

TTR: Time to Read.

TTS: Trusted Time-Stamping Service.

TTS: Time to Send.

USE: Undo Sent Email.

UUID: Universally Unique Identifier.

XV

New Technique for Cross-Platform Availability Control over Electronic

Messages

Prepared By: Ward Ahmed Al-Hussein

Supervised By: Dr. Hebah H. O. Nasereddin

Abstract

 Email is considered to be one of the most commonly used services on the internet,

whether the recipient is three doors down or miles away, the fact that it has great

importance in modern electronic communications is undeniable. In current emailing system

the user cannot control the availability of his sent emails after reaching their destination.

In this research, a new technique is proposed to grant email senders control over sent

messages even after they arrive at the receiver’s mailbox. The method suggests that the

email gets encrypted by AES using a randomly generated key which is stored at the

sender’s server. The sender can control the availability of the key and thus the ability of the

receiver to read the email.

The experimental results compared the functions of the proposed technique against the

normal process of email processing, and concluded that the process of sending an email in

the proposed technique required slightly more time, less than 10% additional time;

however, the process of requesting the key and decrypting the email required above 80%

additional time, than the normal process. The study also assesses the standard deviations

and the p-value of the experiments and discovers the correlation between email size and

duration of email processing for the proposed technique.

XVI

 	� ا����� ��

�و��ا�
��ام ����� ����ة 	� ����� ا����ا

ورد ا!�� ال ! ��: ا��اد

ه�� �)'�ا����. د: ا%�اف

 ا�����

�
 ار�$ل ا�
��� ا ����و�� �,$م �� .��+ *
�� ا ����($أ)� أآ%� ا���"$ت ا����اً" ا�
��� ا ����و�� ���

 . 6�� و�3�5$ إ�+ "/����$3 ��$12 ا������ا� ا����� �� � ���0 ���/���م ا��$��

 12$����� ا>��اح :���9 ����ة ��89 "/���"� ا�
��� ا�����و�� ا���رة ��+ ا����� �� ا�� ،���� ه?< ا��را

�ل :��EF ا���$�� ا�����و��� 56ا�5C �Dارز"�� . ا������)�+ 6�� و�3�5$ إ�+ �9�وق �6�� ا��/���C 0" Gوذ� "

5ا��2 :�5ن "���L ��+ ا��$دم ا��$ص ��6�1 ا���$�� ، و$6����ام "AES"F� ��EF: 8�:$E"��$ر ا����EF ا��5Dر

��$6�$12 ا�����و��� ا��� >$م 6$ر�$�3$؛ . ا�����و��� ���/�O�D ا����1 ا����� �� ���ة :E" ��5$:�8 ا����EF ا��$

� ��$��$653 12$� . �/�O�D ا����� �6�رة ا��/��� ��+ >�اءة ه?< ا��

��
��Qا�� R2$�9ر�(0�6 ا�$< S2$TC ���9ا�� ���
ا�����)� وS2$TC ا�9,$م ا��$دي �� ار�$ل ا�

5>(آ٪ �10$�� إ�+ أ>1 "0 ، 6ا�����9 ا�����)� $6����ام ا�
��� ا�����و�� ار�$ل ����� وأ�3Wت أنّ ا ����و��،

$6����ام ا�9,$م ا��$دي ��$�ا���$�� ���EF: G و �E$:�8ا� ����� ا��C$رأّ"$.إ]$�� "0 ا�5>(ا��زم �ر�$ل ا��

$6����ام ا�9,$م ا��$دي٪ �80[�3$:��$ج إ�+ أآ%� "0 ا�����و��� ��$�>ّ��(ا��را�� آ�$."0 ا�5>(ا��زم �8�E ا��

��، p-value و ا����اف ا����$ري��Qا�� R2$�9�� 9�6(و�<�وا�5>(ا��زم ���E9? ا�
��� ا�����و�� �Q(0�6 ا��

 .ا�����9 ا�����)�

1

Chapter One

Introduction

2

Chapter 1 Introduction

During the last three decades, the communications of our world increased

dramatically due to the evolution of computers. In the past computers were used to do

simple mathematical equations, today they are one of the most important parts of modern

society as they act as communication devices that connect people to each other and to

information. One of the most widespread applications of computers nowadays that are used

for person to person communication is Electronic Mail (Email).

While the first known wireless transmission dates back to 1895 when Nobel Prize winner of

Physics, Guglielmo Marconi's, did the first wireless radio transmission in history, it was

until 1971 (Haigh, T. 2012) when Ray Tomlinson sent the first electronic mail from one

machine to another over the Advance Research Projects Agency Networks (ARPAN) after

several trials and errors. In 2004 electronic messaging was considered to be the number one

activity for most users on the Internet (Culotta, A., etal., 2004) both in terms of popularity

and amount of traffic generated (Hafsaoui, A., etal., 2010). A study done by A Gartner and

Symantec Incorporation stated that up to 75% of a company’s intellectual property is stored

in emails and other messaging applications, and according to a survey done by Radicati

Group in 2014, there were over 4.1 billion email users worldwide, with a total worldwide

average of 196.3 billion emails sent and received per day, over 108 billion of which are for

business purposes (Radicati, S. 2014).

Today’s email system can be divided into two distinct subsystems. The first subsystem is

called the Message Handling System (MHS); it is built on a set of servers called Mail

Transfer Agents (MTAs) which are responsible for transferring messages from the sender

3

side to the receiver side. The second subsystem is called the Mail User Agent (MUA), this

subsystem handles the processes of receiving, creating and managing emails. MUA

interacts with MTAs systems to ensure that messages are being delivered (Partridge, C.

2008).

1.1 Email Processing Agents

Emails are processed through the use of specific programs called Agents; each agent

has specific tasks to do in the email processing paradigm. The MUA is the one that user

interacts with, it is used to send and read emails, the email is submitted from MUA to Mail

Submission Agent (MSA) which temporarily queues outgoing emails (Dye, M., etal.,

2007). The MUA is responsible for sending messages and placing received messages into

the client mailbox, both of which are distinct processes as shown in Figure (1.1) below.

Figure 1.1. MUA interaction with SMTP/POP3 server (Dye, M., etal., 2007)

The email messages are then sent to the MTA whose function is to transfer the message to

the destination. Figure (1.2) on the next page shows how an email message may travel

through several MTAs to reach its final destination, to do so; the MTA locates the target

host by requesting the Mail eXchange (MX) record from the Domain Name Server (DNS),

then it connects to the exchanger server as Simple Mail Transfer Protocol (SMTP) client,

4

the exchanger server receives the email message from MTA and delivers it to Mail

Delivery Agent (MDA) which has the responsibility of delivering the message to the

mailbox of the receiver as shown in figure (1.3).

Figure 1.2. MTA interaction with other email agents (Dye, M., etal., 2007)

Figure 1.3. MDA interaction with other email agents (Dye, M., etal., 2007)

5

The two main protocols that are used for fetching emails from MDA are Post Office

Protocol (POP3) and Internet Message Access Protocol (IMAP), the receiver uses MUA to

fetch the email message to the his mailbox (Crocker, D. 2009).

1.2 Classification of Email Protocols

Most transport email protocols are used to either retrieve emails or to send emails;

POP (Myers, J., & Rose, M. 1996) and IMAP (Crispin, M. 2003) are used to retrieve

emails. While both of those protocols are used for the same task; i.e. retrieving emails, they

differ in the way they access and store emails. POP is the oldest and most recognizable

internet protocol; its currently used version is POP3 which uses port 110. In POP3 emails

are fetched from the server to get stored locally on the user’s computer and the original

emails are usually deleted from the server in order to reduce storage load on the server side,

this feature allows the users to read downloaded emails without being connected to the

server but it also makes the emails remotely inaccessible (Myers, J., & Rose, M. 1996).

IMAP latest version is IMAP4 which uses port 143; IMAP4 keeps the emails stored at the

server until the user decides to delete them, this feature makes emails remotely accessible

from any machine, the downside to that is an added server’s resources consumption, such

as storage, and for that particular reason each user gets a limited mailbox size in order to

reduce the storage load on the server (Crispin, M. 2003). The MUA/MDA typically

retrieves messages from the server by using either IMAP or POP3.

6

The protocol used to send emails from source to destination in the Transmission Control

Protocol/Internet Protocol (TCP/IP) suite, which is a suite of communication protocols that

are used to connect hosts to the internet, is referred to as SMTP.

1.3 Simple Mail Transfer Protocol

SMTP is a set of standards and protocols that are used to facilitate the transferring

of email messages between servers. SMTP has been around a long time (Request For

Comments (RFC) done in 1982) and when SMTP first emerged, security threats and issues

such as hacking and spamming were not common so SMTP was considered to be reliable

as it had satisfied the users’ need of sending and delivering emails and because of that

security was a little concern to most people, but with the increased popularity of SMTP, the

need for incorporating more security protocols and guidelines into mail servers became a

priority, and accordingly, several changes were made to SMTP servers to make those

systems more secure while considering the compatibility issues of merging the old systems

with the new ones. SMTP was designed to transfer email messages reliability through TCP,

whereas the sender (SMTP client) establishes a two-way transmission channel with an

SMTP server on port 25. The SMTP client transfers the email messages to one or more

SMTP servers which could further act as SMTP clients. If the SMTP server is unable to

transfer the message, it sends a failure report to the SMTP client (Klensin, J. 2008). SMTP,

similar to Hypertext Transfer Protocol (HTTP), uses Commands/Response interaction, the

commands are American Standard Code for Information Interexchange (ASCII) text-based

and the responses are Status Codes and Phrases. For instance, when a host initiates a

connection to an SMTP server it sends EHLO command, if the EHLO command was not

7

accepted by the SMTP server it returns failure reply codes such as 501, 502, 503 or 550.

The same process of interaction goes for other SMTP commands such as MAIL FROM,

RCPT TO, DATA, VRFY...etc. SMTP is usually implemented by MTA and MDA running

on mail servers, figure (1.4) below shows a basic model of SMTP.

Figure 1.4. SMTP model (Klensin, J. 2008)

1.4 Email Message Components

An email message contains three major sections: Envelope, headers and body. The

envelope is used by MHS to direct the routing of email messages; it contains the addresses

to whom emails should be delivered to (Crocker, D. 2009). The headers are the most

interesting part of the email as they contain information about the sender, receiver and the

message. Each header has a name and a value separated by a colon (Resnick, P. 2008) for

instance in the header “from: user@emailserver.com”:

1. “from” is the header name

2. “user@emailserver.com“ is the value

3. “:” is the colon that separates the header from the value.

8

Other examples of headers: To, From, Subject, Date…etc. and while the envelope part is

used by SMTP server, the headers part provide useful and meaningful information to the

email reader, thus, an envelope’s addresses will most likely be the same as the header’s

addresses. The body is the main part of an email message containing the actual data such as

text, images and videos, it is encoded using ASCII standard and Multi-Purpose Internet

Mail Extensions (MIME) standard. The header is separated from the body by a blank line.

1.5 Advance Encryption Standard

 Advance Encryption Standard (AES) is a modern standard used for the encryption

of digital data; it was proposed by Vincent Rijmen and Joan Daemen and was chosen in

2001 by National Institute of Standards and Technology (NIST) to be the next block cipher

standard that is used by the US government in their applications and to replace the old Data

Encryption Standard (DES) (Selent, D. 2010). AES is a cipher that encrypts a 128-bit block

from plaintext to ciphertext and vice versa. AES supports three key lengths of 128-bit, 192-

bit, 256-bit and requires the sender and the receiver to share the same key. AES processes

data blocks iterations, which are also called rounds, the number of rounds depends on the

cipher length, for 128-bit key length the number of rounds is 10, for 192-bit key length the

number of rounds is 12 and for the 256-bit key length the number of rounds is 14 (Heron, S.

2009).

On this study, emails will be encrypted using Advance Encryption Standard; encryption

keys used to encrypt those messages will be auto generated using an algorithm presented in

Chapter 3 as well as more detailed description of AES and its use in this research.

9

1.6 Problem Statement

 In current emailing system the user cannot control the availability of emails after

they have been sent to the destination. This may cause an unsecure mailing environment

and in particular causes security penetration and thus confidential information could

mistakenly be sent to third parties or incorrect parties without the ability to control them

afterwards. In addition, a communication exchange uses the same encryption technique

during the whole session; this gives higher probability for security vulnerabilities.

Providing more control to the sender on the availability of his emails after being delivered

to the receiver is very important to prevent wrong recipients from reading the email or

forwarding it to other users. There were few efforts in this area done by some major

Corporations like Microsoft, IBM and Google to replace or delete email messages after

being sent through the use of several methods and techniques, but those solutions had

several limitations that will be discussed in more details in chapter 3.

This study will propose a new model that aims to solve some of the issues mentioned

above, the proposed model provides a technique to prevent unwanted recipients from

reading electronic messages after receiving them without the need of using platform-

dependent services like Microsoft Outlook’s Message Recall or acquiring special email

client applications. The proposed model should be structured in such a way that is

applicable to work on all email servers if it becomes globally adopted in the future. This

study focuses on controlling the availability of the emails after being sent to the recipient

by encrypting the message before sending it and providing the sender the control on

whether or not to allow the recipient to decrypt the message.

10

1.7 Problem Significance and Motivation

This study aims at providing a suitable solution for mailing systems by

implementing an enhanced control over emails via designing a new paradigm in

authentication protocols. The new model will allow the sender to control the availability of

his messages after reaching the inbox of the receiver on the same email server or on a

different email server without third parties being involved.

In order to achieve extra security, email senders must be allowed to gain control over sent

messages to ensure that their messages are being viewed by the indented party and not by

other parties, this study will present a new model that allows users to prevent unwanted

recipients from reading the emails after being delivered to them, such model is expected to

provide higher security especially for sensitive organizations that seek mailing systems as a

secure and confidential mean of communication. Several scenarios can make use of the

proposed method, one of which is the avoidance of sensitive data leakage caused by a

company member sending design details to unintended recipient, if the proposed method is

integrated, the sender of the message can, at any time, modify the message’s availability

status so that it can no longer be read by the receiver. Also, when corporations make

business contracts, too much data and intellectual property is stored in emails, this causes

more vulnerability if these data were used later by a competitor. Another scenario is when

an email account that contains sensitive messages is hacked, in such case; the sender of a

sensitive message can control its availability to the hacked email and prevent the hacker

from reading the message’s contents. Also, almost all ads and promotions that are sent to

members and subscribers by email have a limited validity period but stay available in

mailboxes forever.

11

1.8 Goals

• Provide control over sent emails and prevent unwanted recipients from viewing

emails by encrypting the message before sending it and allowing the sender of the

email to control the availability of the encryption key to the recipients.

• Provide enhanced security by encrypting the email message in AES and using a

different auto generated 128-bit encryption key for every message, this would make

the communication exchange more secure as it uses different message encryption

keys for the entire duration of the session.

• The proposed model should be flexible to operate on cross-platform mail servers

and not solely on a specific platform-dependent mail server and without the need of

relying on online third parties or using special email programs like Microsoft

Outlook or IBM Lotus.

1.9 Limitations

• In order for this proposed technique to become globally operational, major Email

Service Providers (ESPs) should integrate and adapt the technique.

• An email may contain attachments with images, videos, binary files, etc., that uses

MIME protocol over SMTP transmission which is not included in this study.

• The key exchange between the sender side and receiver side cannot be done without

using an Application Program Interface (API).

12

1.10 Thesis Overview

 Chapter one discusses the basic principles regarding email protocols in general and

AES technique, the problem statement and the goals of this thesis.

Chapter two reviews previous studies and existing techniques related to the topic of the

thesis and other related topics.

Chapter three explains the proposed methodology in details.

Chapter four presents the experimental settings and results, and also makes detailed

comparisons between the standard technique of sending and retrieving emails and the

proposed one.

Chapter five summarizes the major findings of the thesis and proposes future work.

13

Chapter Two

Literature Surveys

14

Chapter 2 Literature Surveys

This section describes some of the previous work related to controlling and securing

emails, it also includes some of the techniques and protocols have been proposed to

improve the way emails are processed.

(Abadi, M., etal., 2002) proposed a protocol used for certified email, the protocol

guaranteed the delivery of the message by relying on an online Trust Third Party (TTP).

TTP has a public key and a private key for encrypting and decrypting the messages, it also

has another public key and another private key for signing messages and verifying those

signatures. In this protocol the sender choses one of the four authentication options

(BothAuth, TTPAuth, SAuth, and NoAuth) then the message is encrypted using a freshly

generated key which is also encrypted using TTP public key, then the encrypted message

along with encrypted key are sent to the receiver which sends the encrypted key to TTP.

After TTP authenticates the receiver, it sends the key for decrypting the message to the

receiver and a receipt to the sender, the receiver then receives the key and decrypts the

message. Figure (2.1) on the next page shows the basic sketch of the study’s protocol.

Figure 2.1. Protocol sketch for certified email

In 2005 (Abadi, M., & Blanchet, B. 2005

verifying the main security properties of the protocol stated above.

(Tanta-ngai, H., etal., 2003

and proposed a new protocol, namely

extension to SMTP to provide secure email services between users while putting into

consideration achieving five major security goals: confidentiality, integrity, authentication,

non-repudiation and certification. The authors claimed that the propose

compatible with SMTP and its

Protocol sketch for certified email (Abadi, M., & Blanchet, B. 2002)

(Abadi, M., & Blanchet, B. 2005) used an automatic tool for analyzing and

verifying the main security properties of the protocol stated above.

2003) stated SMTP was designed without consideration for security

and proposed a new protocol, namely Secure Mail Transfer Protocol (SecMTP),

extension to SMTP to provide secure email services between users while putting into

consideration achieving five major security goals: confidentiality, integrity, authentication,

repudiation and certification. The authors claimed that the propose

compatible with SMTP and its service extensions and provides guaranteed security on user

15

(Abadi, M., & Blanchet, B. 2002)

) used an automatic tool for analyzing and

tated SMTP was designed without consideration for security

Secure Mail Transfer Protocol (SecMTP), as an

extension to SMTP to provide secure email services between users while putting into

consideration achieving five major security goals: confidentiality, integrity, authentication,

repudiation and certification. The authors claimed that the proposed protocol is

service extensions and provides guaranteed security on user-

16

to-user level as well as user-to-server and server-to-server security while stating some

shortcomings like non-repudiation was provided at the server level not at the client level,

both the encryption/decryption processes were done at the server, SecMTP’s servers

bottleneck issues, excessive contention for internal server resources and other shortcomings

related to email headers.

(Lux, K. D., etal., 2005) stated that current email protocols have some limitations in

security and performance, and discussed the techniques used to mitigate security issues in

internet messaging by designing it as a family of web services, called WSEmail, on which

the messages are Simple Object Access Protocol (SOAP) messages that use web service

security features for message transmissions. In a basic scenario the proposed architecture

for sending messages in WSEmail is closely similar to SMTP in which the Sender’s MUA

makes a call (all of the calls are SOAP calls) on its MTA to send a Message (the Message is

contained in the body of SOAP message and it’s structured as a collection of XML

elements), then the Sender’s MTA makes a call to the Receiver’s MTA to deliver the email

from the Sender Domain to the Receiver Domain. The Receiver’s MUA makes a call to its

MTA to obtain message headers and then requests the Message if it wishes. There are many

variations to this scenario as the authors detailed a design for instant messaging, in such

case if the Sender’s MUA is outside the Sender’s Domain then it calls its MTA to obtain a

security token to be recognized by the Receiver’s MTA, Once this is obtained, The MUA

of the Sender sends the Message authenticated with this credential to the Receiver’s MTA

and indicates that it should be treated as an instant message by the Receiver’s MTA and the

17

Receiver’s MUA. Assume the following, as figure (2.2) below shows the messaging

architecture of WSEmail:

� Sender’s MUA = SC1 Sender’s Server (Sender’s MTA) = SS

� Sender’s MUA outside the Sender’s Domain = SC2

� Message from SC1 = M Message from SC2 = M2

� Sender’s Domain = SD Receiver’s MUA = RC

� Token = T Receiver’s Domain = RD

� Receiver’s Server (Receiver’s MTA) = RS

Figure 2.2. WSEmail messaging architecture (Lux, K. D., J May, M., Bhattad, N. L., &

Gunter, C. A. 2005)

The authors claimed that relying on web services for internet messaging provides the same

functions of ordinary email protocols but with additional security functions and more

flexibility. The author then concluded that WSEmail faces major problems with

18

standardization and interoperability with SMTP, and suggested to mitigate that by writing

more plugins to the SMTP.

(Shao, J., etal., 2007) presented a novel approach based on the authorized Diffie-Hellman

key agreement protocol to propose a certified email protocol with an offline TTP. Unlike

other certified email protocols with an offline TTP, the proposed protocol encrypts the

message with a key shared between the sender and the TTP without involving the TTP

during the exchange and that’s where Diffie-Hellman key agreement came to play, as it was

used to achieve the goal of sharing the message encryption between the sender and the

TTP, this is in contrast to typical certified email protocols which use TTP’s public key to

encrypt the message. The authors claimed that their protocol enjoys being fair, optimistic,

TTP’s stateless and support high performance, the paper compared the proposed protocol

with other existing optimistic certified email protocols and concluded that their proposed

protocol is the most efficient one in terms of the number of exponentiations and

communication data and suggested it would be suitable for applications in a disturbed

environment.

(Al Bazar, H., etal., 2008) argued that POP3 protocol has some latency in retrieving email

messages from email servers and proposed a new architecture to enhance the current POP3

standard, this was suggested by cancelling the email server greeting message and using the

Transactional Transmission Control Protocol (T/TCP), which is a variant of the TCP, and

APOP command, which is an alternative for using USER and PASS commands, during the

process of creating the TCP connection. Also, a modified pipelining approach in the POP3

19

procedure is proposed to enhance the email server performance and reduce latency in

delivery time.

(Harn, L., & Ren, J. 2008) proposed a new model that aims at providing deniable

authentication to protects personal privacy of the message’s sender, the authors assumed

that each client has two pairs of keys; one pair is used for message encryption while the

other is used for message authentication. The message format and delimiters are left open

for future integration as they claimed that their design could be easily integrated with

current implementations of Pretty Good Privacy (PGP) and Secure/Multipurpose Internet

Mail Extensions (S/MIME). The purpose of their design was to enable a specific message

receiver to authenticate the message and to allow the message sender to deny generation of

the message in order to protect his personal privacy as stated above.

(Banday, M. T. (A) 2011) stated Transport Layer Security (TLS), and its predecessor

Secure Socket Layer (SSL) and Secure SMTP are encryption based methods that

respectively create encrypted secure channel between the sending and receiving MTA’s at

sockets and transport layers. They are simple methods to obtain email privacy without

user’s efforts but Secure SMTP over TLS guards only the path between client and server

and not the endpoints that are authenticated by certifying authorities and not the DNS. The

author stated that SMTP lacks security features in terms of privacy and authentication of

sending party and that emails are being processed through several intermediaries until it

reaches the destination which makes them more vulnerable to attackers who can read those

emails; the author stated that some Email Service Providers store copies of email messages

20

even after being deleted by the users from their mailboxes, the author claimed that the

current SMTP does not verify email headers which results in giving the opportunity for the

senders to lie about their true identity, date and time of messages’ creation and other

information. The paper also discussed how MTAs could make changes to the messages that

could unreliably be attributed back to the sender. The study shed lights on how email

messages’ headers are being processed by SMTP and argued that the trace information

which is inserted at the beginning of the messages is not taken into consideration or being

processed correctly by ESPs when reporting spoofed emails.

(Banday, M. T. (B) 2011) claimed that cybercriminals sometimes manipulate date and time

of email messages when committing cybercrimes to cover them up and the date header field

of an email message can be violated without being detected by email system protocols, a

date spoofed email contains a date which is either ahead or before the actual sending date of

the email. The author claimed that Timestamping could ascertain the validity of date and

time of the email message creation, email message submission and email message

transmission of sending sides and receiving side, thus, the author proposed a model that

used a third party for Trusted Time-Stamping Service (TTS) for authentication of date in

email messages. The proposed model checks date spoofing at sending, forwarding, and

receiving servers by using Time Stamping Protocol (TSP) and control date spoofing at

every handling node to ensure credibility of dates.

(Sobh, T. S., & Amer, M. I. 2011) aimed to standardize a protocol to encrypt and digitally

sign email correspondence, the authors discussed end-to end security, reviewed some

21

certified email protocols and proposed some improvements to enhance security, the paper

demonstrated a prototype of the proposed protocol and the prototype was implemented

using Component Object Model (COM) and web services. Figure (2.3) below shows a

general block diagram of the proposed model.

Figure 2.3. General block diagram of the standardized proposed model (Sobh, T. S., &

Amer, M. I. 2011)

(Mantoro, T., & Zakariya, A. 2012) proposed a method for securing email communication

exchange on mobile devices running on Android platform by using a combination of

symmetric encryption (AES 128 bit), asymmetric encryption (RSA 1024 bit) and hash

function (SHA-1). The study aimed at meeting the aspects of information security

consisting of confidentiality, data integrity, authentication and nonrepudiation between two

clients. The proposed model works as follows: both the sender and the receiver have public

and private keys and publish their public key on a public-key infrastructure server. The

email is encrypted using AES 128 bit by a secret key which is generated randomly in a

system using random number generator. The email is hashed using SHA-1 bit to get the

message digest of the email before the encryption process. The secret key used for

22

encrypting the email along with the message digest of the email are encrypted using RSA

1024 and the receiver’s public key, then the encrypted secret key along with the encrypted

message digest of the email along with the encrypted email are sent to the receiver’s server

using SMTP. The receiver downloads the email using POP3 and decrypts the encrypted

secret key with his private’s key and the encrypted message digest of the email with the

sender’s public key using RSA 1024. The encrypted email is decrypted with the secret key

using AES 128, if the receiver produces the same message digest, then the email is verified

and there were no alterations or modifications during the transmitting process. The authors

also made some experimental tests and stated that their proposed model was successful in

meeting those aspects; the authors also suggested making the system interoperable with

other platforms on mobile devices and on desktop computers in the future. Figure (2.4) on

the next page shows the sending side’s processes of securing an email.

23

Figure 2.4. The sending side processes for securing an email using hybrid cryptosystem on

android-based mobile devices (Mantoro, T., & Zakariya, A. 2012)

 The researcher argues that even though the proposed model in this study is impractical to

implement nowadays because SHA 160 is no longer approved for most cryptographic uses

after 2010, due to its cryptographic weaknesses that were discovered later, the model itself

is still very interesting and worthy of studying especially if we consider integrating one of

the newer more approved versions of the secure hash algorithms, SHA-2 or SHA-3, into

their proposed model instead of the SHA-1.

(Suresh, K. B., & Jagathy, R. V. P. 2012) proposed a secure Email system relied on

Identity-Based Encryption (IBE), DNS and Proxy Service. When the sender wishes to send

an Email, the proxy server checks if the recipient has the Master Public Key (MPK) in its

24

DNS, if it does, the proxy server encrypts the email and sends it to the recipient by an

SMTP server, then the recipient decrypts the email to read. If the recipient does not has the

MPK it cannot handle the decryption process, in such case the sender domain sends a

secure web link to the recipient, when the recipients clicks on this link, the sender’s proxy

server checks its database to verify if the recipient is authorized to view the email, if yes, it

decrypts the email message for the recipient. If the recipient is not authorized to view the

email, the proxy server sends all of the recipient’s details to the sender for approval, if the

sender approved, the recipient is be added to the authorization list in the database, the

encryption/decryption process is performed by the proxy server, figure (2.5) below shows

the process in a simplified way.

Figure 2.5. Email system architecture based on IBE, DNS and proxy service (Suresh, K. B.,

& Jagathy, R. V. P. 2012)

25

(Praveen, B. 2013) proposed a protocol called Undo Sent Email (USE) which aims at

retrieving an email after it has been sent to the receiver if the sender manages to pull the

email first from the POP3/IMAP server. The proposed protocol has two major

shortcomings: if the receiver has read the email first then the email cannot be retrieved

successfully, the proposed protocol suffers when the domain names of the sender and the

receiver are not the same, meaning, the protocol cannot function between cross-platform

email service providers.

There were also some efforts in controlling the availably of sent emails done by leading

email corporations on their email services. The researcher lists below some of those

techniques along with their limitations:

1. Google Mail allowed its users to use a service called “delay-send”; as the names

suggests, this technique delays and schedules the sending of emails for a specific

time, during that time the email sender has the opportunity to cancel the sending of

the email to prevent the message from being sent. This service had the following

limitations:

• This is not “preventing the receiver from reading the message after it has been

sent”- it is simply cancelling the message from getting sent.

• If the time of the delay ends and the emails were sent to the receiver, the user

cannot prevent the receiver from reading them.

26

2. Microsoft provided their email users with a function called “Message Recall” which

is used to bring back a message that was sent earlier, or un-send it. Message Recall

has been used to delete unread messages from the recipients’ inboxes so they never

see it. This function had the following limitations (Microsoft Customer Support.

2012):

• The function would not work if the recipient is not using Outlook.

• The function would not work if the recipient is not logged on to the mail service

provider.

• The function would not work if the recipient is using Cached Exchange Mode

and is working offline.

• The function would not work if the original message is moved from the

recipient Inbox.

• The function would not work if the original message is opened first and marked

as read. This can occur when the message is displayed in the Preview Pane or

Reading Pane.

3. IBM provided a Message Recall function in their IBM Lotus Notes similar to the

one Microsoft has provided in their Outlook but it had the following limitations

(Bulloch, S. 2007):

• The Message Recall would only work if the recipient is using Lotus

Notes/Domino v8 or later, it doesn’t work with IBM Lotus Domino Web Access

or other email clients like Outlook or web-based email clients.

27

• The sender has to keep a copy of the message in his mail file to recall it

successfully, this is due to the fact that Message Recall cannot be used until

signatures are checked for security purposes, so without the original copy of the

email in the sender’s mail file, Message Recall cannot function.

One of the problems with Message Recall function is that it can only work on a

combination of a specific email client and a specific email server, for example Microsoft

Outlook cannot provide this function without relying on Microsoft Exchange Email Server,

the same goes for IBM Lotus Notes which needs the Domino Server to work with, for that

reason the recipient of the email has to be using for example Microsoft Outlook for this

function to work, if the recipient is not using Microsoft Outlook then the sender cannot

prevent the recipient from reading the email. This solution might work for users who use

Microsoft’s Outlook/Exchange Server or IBM’s Lotus Notes/Dominos Server but for others

who use different or incompatible email clients or web browsers such solutions would not

work.

28

Chapter Three

Proposed Model

29

Chapter 3 Proposed Model

The proposed model aims at granting control to the sender of an email message over

its availability to the receiver, the sender should be able to deter the receiver from reading

the message as wished, this can be achieved by encrypting the content of the message using

AES algorithm by a secret key before sending it, the secret key is automatically generated

by the server using Universally Unique Identifier (UUID) generation algorithm and is

stored at the sender’s server, this key can be requested by the receiver at the time of

opening the message through an API located at the sender’s server. The sender’s server will

provide the secret key located in the server’s database needed to decrypt the message for

the receiver in order to become readable, however, the availability of the secret key that is

needed to decrypt the message can be modified by the sender which in turn controls its

availability to the receiver’s server and thus to the receiver, the sender can make the key

unavailable whenever he wishes to, which is going to deter the receiver from decrypting

and reading the message.

The author proposes a customized header called X-Ekey to indicate the location of the API

that should be accessed in order to retrieve the secret key needed to decrypt the message;

the MUA is going to be responsible for encrypting and submitting the key to the server.

The following steps constitute an overview of the process:

Sender:

1- The user composes a message and requests to send it.

2- The MUA generates a key and encrypts the message using that key.

30

3- The MUA adds a header, to the email message, indicating the API that will

be used to request the key later.

4- The key is then stored at the sender’s server’s database.

Receiver:

1- After the receiver requests the message, the MUA will look for the API location.

2- The receiver’s MUA will post a request to the API along with a message

identifier to receive the decryption key.

3- The sender’s server will return the requested key needed for decryption if its

status is set to available, however if the sender changed the status of the key, the

server will send an error code indicating that the key is unavailable.

4- If the key was received successfully, the receiver’s MUA will decrypt the

message; however, if the MUA received an error code, the message cannot be

read because it is encrypted.

31

3.1 The Proposed Sender Side Model

 Figure (3.1) below shows the proposed model from the sender’s side perspective.

Figure 3.1. The proposed sender side model

32

The steps of the flowchart are explained in more details below

1. The user writes the message.

2. The user enters the recipient’s email address.

3. The server generates a random key for message encryption.

4. The server encrypts the message using the key that was generated in step 3.

5. The server adds a new header “X-Ekey” along with sender’s server’s address. This

header indicates that the message is encrypted and the receiver’s server needs to ask

the sender’s server for the key in order to decrypt it, by doing so, the receiver will

only be able to read the message as long as the sender keeps the key available,

however, once the key becomes unavailable, the receiver won’t be able to read the

message, this technique should provide cross platform control over sent messages.

6. When the encryption is done the key is stored at the sender’s server.

7. Finally, the message is sent to the receiver.

At the sender’s side the composition, addition of headers and encryption of the message is

achieved, this is done by the MUA which can be defined as a computer program used to

access and manage user’s emails; this vital component of the mailing system is responsible

of handling:

1- Retrieval of messages from a mailbox.

2- Message composition.

3- Submitting messages to a server.

33

4- Encryption.

a. Encryption of mail sessions.

b. Encryption of the message body.

The work proposed in this study will take place in the message composition and encryption

tasks which is explained in more details over the next pages.

3.1.1 Message Composition

Email clients contain user-friendly interfaces that help users compose and view

messages. The email clients will format the message headers and body according to RFC

5322 standards; email clients could use MIME standards for non-textual contents and

attachments which are not included in this study. Message headers can include the

destination fields, To, Cc, and Bcc, and the address from which the message was sent. A

new custom header called X-Ekey is being used to provide the location of the secret key

and a unique identifier of the message on which the key is associated with, the header line

will be combined with the sender’s email to remove the possibility of duplicate identifiers,

this header is going to be used by the receiver’s MUA to access the key and decrypt the

email. The custom header can be added to the message SMTP headers by the following

code in figure (3.2) on the next page.

The identifier of the email is generated

using hexadecimal digits.

3.1.2 Encryption

 Along with the standard message encryption standards, the message in the proposed

method will also be encrypted using the

encryption key whose length is 128 bits

2
122

 (approximately 5.3×10

numbers, the algorithm of generation is the same as the UUID Version 4, the algorith

the version number (4 bits) along with 2 reserved bits, however, the rest of the bits (122

bits) are generated using pseudorandom data so

following scheme: “

hexadecimal digit and y is

removed before using it

following PHP code in figure

Figure 3.2. Adding custom header

of the email is generated sequentially for each sender and is represented

using hexadecimal digits.

Along with the standard message encryption standards, the message in the proposed

be encrypted using the AES by using auto generated

whose length is 128 bits, so that the total number of unique

(approximately 5.3×10
36

), the key is generated using a scheme relying only on random

numbers, the algorithm of generation is the same as the UUID Version 4, the algorith

the version number (4 bits) along with 2 reserved bits, however, the rest of the bits (122

bits) are generated using pseudorandom data source, V4 UUIDs are formatted as

“xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx”

hexadecimal digit and y is either 8, 9, A, or B, however, the dashes in the identifier

using it as an encryption key, the UUID can be generated using the

following PHP code in figure (3.3) on the next page .

34

sequentially for each sender and is represented

Along with the standard message encryption standards, the message in the proposed

generated UUID as an

the total number of unique UUIDs is

is generated using a scheme relying only on random

numbers, the algorithm of generation is the same as the UUID Version 4, the algorithm sets

the version number (4 bits) along with 2 reserved bits, however, the rest of the bits (122

urce, V4 UUIDs are formatted as the

 where x is any

8, 9, A, or B, however, the dashes in the identifier will be

key, the UUID can be generated using the

3.1.2.1 Key Structure & Format

 The reason behind using UUID to construct encryption keys is that there is no

centralized authority required to control them

be fully automated. The UUID generation algorithm described in this section supports a

very high allocation rate (up to 10 million per second per machine) so they can also be used

as IDs and identifiers, UUID version 4 is of a fix

relatively short when compared to other alternatives and since it is unique across both space

and time with respect to the space of all other UUIDs

as encryption keys.

In this section, the structure of the UUID key is discussed in more details

UUID string representation can be defined as the following:

UUID = time-low "-

clock-seq-low "-" node

Figure 3.3. UUID code generation

3.1.2.1 Key Structure & Format

The reason behind using UUID to construct encryption keys is that there is no

centralized authority required to control them, and as a result, a generation o

he UUID generation algorithm described in this section supports a

very high allocation rate (up to 10 million per second per machine) so they can also be used

as IDs and identifiers, UUID version 4 is of a fixed length (128 bits) which makes it look

relatively short when compared to other alternatives and since it is unique across both space

and time with respect to the space of all other UUIDs, this makes it a candidate to be used

ection, the structure of the UUID key is discussed in more details

UUID string representation can be defined as the following:

-" time-mid "-" time-high-and-version "-" clock

35

The reason behind using UUID to construct encryption keys is that there is no

generation on demand can

he UUID generation algorithm described in this section supports a

very high allocation rate (up to 10 million per second per machine) so they can also be used

ed length (128 bits) which makes it look

relatively short when compared to other alternatives and since it is unique across both space

it a candidate to be used

ection, the structure of the UUID key is discussed in more details. The formal

" clock-seq-and-reserved

36

An example of UUID is: 859c112c-0d15-4ce6-808a-2d9b7a8b6d65

Table 3.1 below explains the structure of the UUID in more details.

Table 3.1. UUID structure

Field Length Data type Octet Note

Time-low 4 octets

Unsigned 32

bit integer

0-3 The lower field of the timestamp

Time-mid 2 octets

Unsigned 16

bit integer

4-5 The middle field of the timestamp

Time-high-

and-version

2 octets

Unsigned 16

bit integer

6-7

The higher field of the timestamp

multiplexed with the UUID version

number

clock-seq-and-

reserved

1 octet

Unsigned 8

bit integer

8

The higher field of the clock

sequence multiplexed with the

UUID variant

clock-seq-low 1 octet

Unsigned 8

bit integer

9

The lower field of the clock

sequence

Node 6 octets

Unsigned 48

bit integer

10-15

The spatially unique node identifier

(For UUID version 4, the node

field is a randomly or pseudo-

randomly generated 48-bit value)

37

In this research, the version 4 UUID is being selected for the relative strength found in the

Node block, the pseudo-random numbers in the Node block in UUID version 4 can be

generated by performing following the steps on next page:

1- Set the two most significant bits of the clock_seq_and_reserved to zero and one,

respectively.

2- Set the four most significant bits of the time_high_and_version to the 4-bit version

number.

3- Set all the other bits to randomly (or pseudo-randomly) chosen values.

3.1.2.2 Using AES

 In this research, AES, which became effective as a federal government standard on

May 26, 2002, is selected as the main encryption algorithm to encrypt outgoing messages.

The algorithm is based on substitution-permutation network and is a variant of Rijndael

algorithm which has a fixed block size of 128 bits.

 AES requires low RAM and performs well on different hardware with an accepted level of

security; this encryption algorithm is selected to encrypt emails before sending them to

their destination.

AES operations are performed in a special finite field and it operates on a 4x4 column-

major order matrix of bytes called the state, the length of the key determines the number of

rounds (cycles) as shown on the next page.

38

• 10 cycles of repetition for 128-bit keys.

• 12 cycles of repetition for 192-bit keys.

• 14 cycles of repetition for 256-bit keys.

Since UUID v4, which is used as an encryption key in this research, is 128 bits in length,

the AES will repeat the encryption cycle 10 times which should give an acceptable level of

security within a reasonable execution time, figure (3.4) below shows the AES flowchart.

Figure 3.4. AES flowchart

39

The steps of the flowchart can be described as the following:

1- Expansion of key: round keys are derived from the original key using Rijndael's key

schedule to generate different round key of size 128-bit for each round plus one

more.

2- Initial Round (Add Round Key): each byte of the state is xored with a block of the

round key.

3- Rounds

a. Sub Bytes: a non-linear substitution step where every byte is replaced with

another byte from a lookup table.

b. Shift Rows: shift the last three rows of the state cyclically a certain number

of steps.

c. Mix Columns: combine the four bytes in each column.

d. Add Round Key

4- Final Round (no Mix Columns)

a. Sub Bytes

b. Shift Rows

c. Add Round Key.

Figure (3.5) on the next page shows the code for encrypting and decrypting the email

messages.

Figure

After composing, generating the key and encrypting the message, the encrypted message is

submitted to the server for transfer and the key is stored in server’s database along with flag

indicating its availability status,

Figure 3.5. Code of encryption and decryption of emails

After composing, generating the key and encrypting the message, the encrypted message is

submitted to the server for transfer and the key is stored in server’s database along with flag

indicating its availability status, this key can be accessed through the API provided in the

40

encryption and decryption of emails

After composing, generating the key and encrypting the message, the encrypted message is

submitted to the server for transfer and the key is stored in server’s database along with flag

this key can be accessed through the API provided in the

41

email header, the server shall send the requested key if the flag is set to available or -1

otherwise.

3.2 The Proposed Receiver Side Model

 Figure (3.6) below shows the proposed model from the receiver’s side perspective.

Figure 3.6. The proposed receiver side model

42

The steps of the proposed receiver side model are explained in more details below:

1. The user requests the message from the email server.

2. The receiver’s server reads the X-EKey header of the email and realizes the

message is encrypted; the receiver’s server locates the API of the sender’s server

and requests the key for decrypting the message.

3. If the sender didn’t suspend the key, the sender’s server sends the key to the

receiver’s server and then the message is decrypted and the server previews the

message to user.

4. If the sender has suspended the key then the receiver won’t be able to read the

message because it is encrypted.

43

Chapter Four

Experimental Results

44

Chapter 4 Experimental Results

Several experiments were conducted to evaluate the performance of the proposed

technique and its effect on the quality of the email exchange process. Different measures

and criteria are being reviewed in this chapter to evaluate the performance of the proposed

technique.

4.1 Measures

A series of experiments were conducted to show the effectiveness of the proposed

technique. The efficiency of the technique is measured by four parameters which are:

1- Time to Send (TTS) the email:

TTS is the measure of the time required to generate an identifier and encryption

key, encrypt the email and send it, TTS is measured in milliseconds by using the

following formula:

TTS = T2 – T1

Where:

T1: The time when send command is received by the server.

T2: The time when the message took off from the server.

45

2- Time to Read (TTR) the email:

TTR is the measure of time required to read the email headers, request the

decryption key located on a specific server and decrypt the email, TTR is measured

in milliseconds by using the formula on the next page:

TTR = T4 – T3

Where:

T3: The time when email headers are read.

T4: The time when the decryption of message is completed.

Note that the process of requesting and receiving the key falls within T1 and T2.

3- Original Email Size (OES):

OES is a measure of the email body size before the encryption process, it is

measured in bytes.

4- Prepared Email Size (PES):

PES is the measure of the email body size after the encryption process, it is

measured in bytes.

4.2 Experimental Setup

• Platform: The experiments were conducted on a shared host with 2.0 GB of

dedicated RAM.

• Input Email Format: Experiments were conducted on text based emails only.

46

• Message lengths: There are four different message lengths used in experiments, the

messages are generated randomly by typecasting the result of the Random()

function in C#, the function takes time as a seed and generates a normally

distributed values within the specified range, the results collected from calling the

method for x times are then typecasted to chars and appended to a string to simulate

the body of a randomly generated message.

a. The Small Message Experiment is conducted using four different random

texts of size 1000 characters.

b. The Medium Message Experiment is conducted using four different random

texts of size 5000 characters.

c. The Large Message Experiment is conducted using four different random

texts of size 10000 characters.

d. The Very Large Message Experiment is conducted using four different

random texts of size 20000 characters.

• Methods:

a. The proposed technique.

b. The normal process.

47

4.3 Experiments

 In this section, the results of the four experiments are being studied and discussed in

details to evaluate the differences in performance.

4.3.1 Small Message Experiment

The first experiment was conducted using four different randomly generated

messages of size 1000 characters, the output parameters were calculated automatically for

the normal process of sending an email and the proposed technique of sending an email.

Proposed Technique

 In this section, the results of the proposed method when sending four different

messages of size 1000 characters are being examined.

Table 4.1 shows the examined parameters when sending the first randomly generated

message of 1000 characters as an email using the proposed technique.

Table 4.1. Parameters of first 1000 character email using the proposed technique

Original Email Size 10456 bytes

Time to Send 15 msec

Prepared Email Size 14016 bytes

Time to Read 50 msec

48

Table 4.2 shows the examined parameters when sending the second randomly generated

message of 1000 characters as an email using the proposed technique.

Table 4.2. Parameters of second 1000 character email using the proposed technique

Original Email Size 10416 bytes

Time to Send 52 msec

Prepared Email Size 14016 bytes

Time to Read 76 msec

Table 4.3 shows the examined parameters when sending the third randomly generated

message of 1000 characters as an email using the proposed technique.

Table 4.3. Parameters of third 1000 character email using the proposed technique

Original Email Size 10616 bytes

Time to Send 11 msec

Prepared Email Size 14336 bytes

Time to Read 45 msec

49

Table 4.4 shows the examined parameters when sending the fourth randomly generated

message of 1000 characters as an email using the proposed technique.

Table 4.4. Parameters of fourth 1000 character email using the proposed technique

Original Email Size 10336 bytes

Time to Send 41 msec

Prepared Email Size 14336 bytes

Time to Read 61 msec

Normal Process

 In this section, the results of the normal process when sending four different

messages of size 1000 characters are being examined.

Table 4.5 shows the examined parameters when sending the first randomly generated

message of 1000 characters as an email using the normal process.

Table 4.5. Parameters of first 1000 character email using the normal process

Original Email Size 10456 bytes

Time to Send 32 msec

Prepared Email Size 10456 bytes

Time to Read 20 msec

50

Table 4.6 shows the examined parameters when sending the second randomly generated

message of 1000 characters as an email using the normal process.

Table 4.6. Parameters of second 1000 character email using the normal process

Original Email Size 10416 bytes

Time to Send 27 msec

Prepared Email Size 10416 bytes

Time to Read 32 msec

Table 4.7 shows the examined parameters when sending the third randomly generated

message of 1000 characters as an email using the normal process.

Table 4.7. Parameters of third 1000 character email using the normal process

Original Email Size 10616 bytes

Time to Send 13 msec

Prepared Email Size 10616 bytes

Time to Read 19 msec

51

Table 4.8 shows the examined parameters when sending the fourth randomly generated

message of 1000 characters as an email using the normal process.

Table 4.8. Parameters of fourth 1000 characters email using the normal process

Original Email Size 10336 bytes

Time to Send 14 msec

Prepared Email Size 10336 bytes

Time to Read 20 msec

Summary

The examined results when sending 1000 characters as an email are being averaged

out in this section to help show differences in parameters among the tested techniques.

Table 4.9 shows the average of values measured for both techniques.

Table 4.9. Average performance for small message length experiment

 Proposed Technique Normal Process

Original Email Size 10456 bytes 10456 bytes

Time to Send 29.75 msec 21.55 msec

Prepared Email Size 14176 bytes 10456 bytes

Time to Read 58 msec 22.75 msec

52

4.3.2 Medium Message Experiment

The second experiment was conducted using four different randomly generated

messages of size 5000 characters, the output parameters were calculated automatically for

the normal process of sending an email and the proposed technique of sending an email.

Proposed Technique

 In this section, the results of the proposed method when sending four different

messages of size 5000 characters are being examined.

Table 4.10 shows the examined parameters when sending the first randomly generated

message of 5000 characters as an email using the proposed technique.

Table 4.10. Parameters of first 5000 character email using the proposed technique

Original Email Size 49616 bytes

Time to Send 64 msec

Prepared Email Size 66240 bytes

Time to Read 68 msec

53

Table 4.11 shows the examined parameters when sending the second randomly generated

message of 5000 characters as an email using the proposed technique.

Table 4.11. Parameters of second 5000 character email using the proposed technique

Original Email Size 49296 bytes

Time to Send 24 msec

Prepared Email Size 65888 bytes

Time to Read 68 msec

Table 4.12 shows the examined parameters when sending the third randomly generated

message of 5000 characters as an email using the proposed technique.

Table 4.12. Parameters of third 5000 character email using the proposed technique

Original Email Size 49016 bytes

Time to Send 20 msec

Prepared Email Size 65536 bytes

Time to Read 52 msec

54

Table 4.13 shows the examined parameters when sending the fourth randomly generated

message of 5000 characters as an email using the proposed technique.

Table 4.13. Parameters of fourth 5000 character email using the proposed technique

Original Email Size 49088 bytes

Time to Send 34 msec

Prepared Email Size 65608 bytes

Time to Read 44 msec

Normal Process

 In this section, the results of the normal process when sending four different

messages of size 5000 characters are being examined.

Table 4.14 shows the examined parameters when sending the first randomly generated

message of 5000 characters as an email using the normal process.

Table 4.14. Parameters of first 5000 character email using the normal process

Original Email Size 49616 bytes

Time to Send 44 msec

Prepared Email Size 49616 bytes

Time to Read 38 msec

55

Table 4.15 shows the examined parameters when sending the second randomly generated

message of 5000 characters as an email using the normal process.

Table 4.15. Parameters of second 5000 character email using the normal process

Original Email Size 49296 bytes

Time to Send 24 msec

Prepared Email Size 49296 bytes

Time to Read 32 msec

Table 4.16 shows the examined parameters when sending the third randomly generated

message of 5000 characters as an email using the normal process.

Table 4.16. Parameters of third 5000 character email using the normal process

Original Email Size 49016 bytes

Time to Send 26 msec

Prepared Email Size 49016 bytes

Time to Read 28 msec

56

Table 4.17 shows the examined parameters when sending the fourth randomly generated

message of 5000 characters as an email using the normal process.

Table 4.17. Parameters of fourth 5000 characters email using the normal process

Original Email Size 49088 bytes

Time to Send 35 msec

Prepared Email Size 49088 bytes

Time to Read 38 msec

Summary

The examined results when sending 5000 characters as an email are being averaged

out in this section to help show differences in parameters among the tested techniques.

Table 4.18 shows the average of values measured for both techniques.

Table 4.18. Average performance for medium message experiment

 Proposed Technique Normal Process

Original Email Size 49254 bytes 49254 bytes

Time to Send 35.5 msec 32.25 msec

Prepared Email Size 65818 bytes 49254 bytes

Time to Read 58 msec 34 msec

57

4.3.3 Large Message Experiment

The third experiment was conducted using four different randomly generated

messages of size 10000 characters, the output parameters were calculated automatically for

the normal process of sending an email and the proposed technique of sending an email.

Proposed Technique

 In this section, the results of the proposed method when sending four different

messages of size 10000 characters are being examined.

Table 4.19 shows the examined parameters when sending the first randomly generated

message of 10000 characters as an email using the proposed technique.

Table 4.19. Parameters of first 10000 character email using the proposed technique

Original Email Size 98216 bytes

Time to Send 23 msec

Prepared Email Size 131072 bytes

Time to Read 48 msec

58

Table 4.20 shows the examined parameters when sending the second randomly generated

message of 10000 characters as an email using the proposed technique.

Table 4.20. Parameters of second 10000 character email using the proposed technique

Original Email Size 98656 bytes

Time to Send 43 msec

Prepared Email Size 131776 bytes

Time to Read 47 msec

Table 4.21 shows the examined parameters when sending the third randomly generated

message of 10000 characters as an email using the proposed technique.

Table 4.21. Parameters of third 10000 character email using the proposed technique

Original Email Size 97656 bytes

Time to Send 24 msec

Prepared Email Size 130400 bytes

Time to Read 99 msec

59

Table 4.22 shows the examined parameters when sending the fourth randomly generated

message of 10000 characters as an email using the proposed technique.

Table 4.22. Parameters of fourth 10000 character email using the proposed technique

Original Email Size 97688 bytes

Time to Send 13 msec

Prepared Email Size 107872 bytes

Time to Read 43 msec

Normal Process

 In this section, the results of the normal process when sending four different

messages of size 10000 characters are being examined.

Table 4.23 shows the examined parameters when sending the first randomly generated

message of 10000 characters as an email using the normal process.

Table 4.23. Parameters of first 10000 character email using the normal process

Original Email Size 98216 bytes

Time to Send 26 msec

Prepared Email Size 98216 bytes

Time to Read 38 msec

60

Table 4.24 shows the examined parameters when sending the second randomly generated

message of 10000 characters as an email using the normal process.

Table 4.24. Parameters of second 10000 character email using the normal process

Original Email Size 98656 bytes

Time to Send 38 msec

Prepared Email Size 98656 bytes

Time to Read 22 msec

Table 4.25 shows the examined parameters when sending the third randomly generated

message of 10000 characters as an email using the normal process.

Table 4.25. Parameters of third 10000 character email using the normal process

Original Email Size 97656 bytes

Time to Send 17 msec

Prepared Email Size 97656 bytes

Time to Read 60 msec

61

Table 4.26 shows the examined parameters when sending the fourth randomly generated

message of 10000 characters as an email using the normal process.

Table 4.26. Parameters of fourth 10000 characters email using the normal process

Original Email Size 97688 bytes

Time to Send 24 msec

Prepared Email Size 97688 bytes

Time to Read 41 msec

Summary

The examined results when sending 10000 characters as an email are being

averaged out in this section to help show differences in parameters among the tested

techniques. Table 4.27 shows the average of values measured for both techniques.

Table 4.27. Average performance for large message experiment

 Proposed Technique Normal Process

Original Email Size 98054 bytes 98054 bytes

Time to Send 25.75 msec 26.25 msec

Prepared Email Size 125280 bytes 98054 bytes

Time to Read 59.25 msec 40 msec

62

4.3.4 Very Large Message Experiment

The fourth experiment was conducted using four different randomly generated

messages of size 20000 characters, the output parameters were calculated automatically for

the normal process of sending an email and the proposed technique of sending an email.

Proposed Technique

 In this section, the results of the proposed method when sending four different

messages of size 20000 characters are being examined.

Table 4.28 shows the examined parameters when sending the first randomly generated

message of 20000 characters as an email using the proposed technique.

Table 4.28. Parameters of first 20000 character email using the proposed technique

Original Email Size 195976 bytes

Time to Send 16 msec

Prepared Email Size 261472 bytes

Time to Read 42 msec

63

Table 4.29 shows the examined parameters when sending the second randomly generated

message of 20000 characters as an email using the proposed technique.

Table 4.29. Parameters of second 20000 character email using the proposed technique

Original Email Size 195008 bytes

Time to Send 27 msec

Prepared Email Size 260096 bytes

Time to Read 82 msec

Table 4.30 shows the examined parameters when sending the third randomly generated

message of 20000 characters as an email using the proposed technique.

Table 4.30. Parameters of third 20000 character email using the proposed technique

Original Email Size 196136 bytes

Time to Send 17 msec

Prepared Email Size 261824 bytes

Time to Read 51 msec

64

Table 4.31 shows the examined parameters when sending the fourth randomly generated

message of 20000 characters as an email using the proposed technique.

Table 4.31. Parameters of fourth 20000 character email using the proposed technique

Original Email Size 196040 bytes

Time to Send 31 msec

Prepared Email Size 214720 bytes

Time to Read 39 msec

Normal Process

 In this section, the results of the normal process when sending four different

messages of size 20000 characters are being examined.

Table 4.32 shows the examined parameters when sending the first randomly generated

message of 20000 characters as an email using the normal process.

Table 4.32. Parameters of first 20000 character email using the normal process

Original Email Size 195976 bytes

Time to Send 22 msec

Prepared Email Size 195976 bytes

Time to Read 26 msec

65

Table 4.33 shows the examined parameters when sending the second randomly generated

message of 20000 characters as an email using the normal process.

Table 4.33. Parameters of second 20000 character email using the normal process

Original Email Size 194816 bytes

Time to Send 21 msec

Prepared Email Size 194816 bytes

Time to Read 33 msec

Table 4.34 shows the examined parameters when sending the third randomly generated

message of 20000 characters as an email using the normal process.

Table 4.34. Parameters of third 20000 character email using the normal process

Original Email Size 196136 bytes

Time to Send 35 msec

Prepared Email Size 196136 bytes

Time to Read 24 msec

66

Table 4.35 shows the examined parameters when sending the fourth randomly generated

message of 20000 characters as an email using the normal process.

Table 4.35. Parameters of fourth 20000 characters email using the normal process

Original Email Size 196040 bytes

Time to Send 20 msec

Prepared Email Size 196040 bytes

Time to Read 19 msec

Summary

The examined results when sending 20000 characters as an email are being

averaged out in this section to help show differences in parameters among the tested

techniques. Table 4.36 shows the average of values measured for both techniques.

Table 4.36. Average performance for very large message experiment

 Proposed Technique Normal Process

Original Email Size 195790 bytes 195790 bytes

Time to Send 22.75 msec 24.5 msec

Prepared Email Size 249528 bytes 195790 bytes

Time to Read 53.5 msec 25.5 msec

67

4.4 Results Analysis

 The following charts are used to better represent the results of the experiments,

figure (4.1) below shows the time to send emails for each experimental method.

Figure 4.1. Time to Send Chart

The time required to send the email using the normal method was less than the time

required for the proposed method, however on very few occasions, there were some

irregular spikes in time caused by the traffic variations at different times and low CPU

performance due to processes overload on the shared host, which lead to increasing the

time required to send an email using the normal method. On average the proposed method

required 8.8% more time to send an email than the normal method.

0

5

10

15

20

25

30

35

40

Short Medium Long Very Long

Proposed Method

Normal Method

68

Figure (4.2) below is a chart that shows the size of the prepared email, which is encrypted,

when using the proposed method and the normal method in each experimental method.

Figure 4.2. Prepared Email Size Chart

The size of the prepared email when using the proposed method was larger than the normal

method, the reason behind the increase in size was the extra bits that are injected by AES

during the encryption.

0

50000

100000

150000

200000

250000

300000

Short Medium Long Very Long

Proposed Method

Normal Method

69

Figure (4.3) below shows the chart of the time required to read the email in each

experimental method.

Figure 4.3. Time to Read Chart

The time to read the email using the proposed method was significantly higher than the

normal method, the reason behind this increase was the time required for the HTTP request

to complete and the key to be received from the sender’s server, there were some irregular

spikes during the experiments caused by the traffic variations at different times and low

CPU performance due to processes overload on the shared host. On average the proposed

method required 87.1% more time to complete the task.

0

10

20

30

40

50

60

70

Short Medium Long Very Long

Proposed Method

Normal Method

70

4.5 Assumptions

Figures (4.1) and (4.3) have shown the added duration that the proposed method requires

for sending and reading emails as opposed to the normal process, but there were other

findings that raised some questions and will require further analysis:

1. In figure (4.1), the TTS that was required by the proposed method for messages,

whose length was above 10000 characters, was lesser than TTS in the normal

process.

2. In figure (4.3), the proposed method required lesser TTR for messages whose length

was above 10000 characters as opposed to those whose length was below 10000

characters.

Assume the following:

M1 is a message whose length above 10000 characters

M2 is a message whose length is less than 10000 characters.

Then according to figure (4.1): TTS proposed method for M1 < TTS normal process for M1

And according to figure (4.3): TTR proposed method for M1 < TTR proposed method for M2

Are the above assumptions valid?

3. Another question may arise, does the size of the email message affects TTS and

TTR in the proposed methodology or not?

71

4.6 Advanced Analysis

 The author needed to conduct more experiments using larger sample size to verify

the validity of the statements in the previous page. Did those statements come from results

that would happen regularly? Or were they merely coincidental results caused by

unfortunate traffic variations and decreased CPU performance that occurred at the time of

conducting the previous experiments?

There are four different message lengths that will be used in this extended experimentation:

a. The Extended Small Message Experiment will be conducted using 20 different

random texts of size 1000 characters.

b. The Extended Medium Message Experiment will be conducted using 20 different

random texts of size 5000 characters.

c. The Extended Large Message Experiment will be conducted using 20 different

random texts of size 10000 characters.

d. The Extended Very Large Message Experiment will be conducted using 20 different

random texts of size 20000 characters.

The author used IBM Statistical Package for the Social Sciences (SPSS) version 22.0 for

measuring T-test, in order to compute the mean and the standard deviation for TTS and

TTR in the extended experiments, and compare results of the proposed method against

those in the normal process.

72

4.6.1 Extended Small Message Experiment

This experiment was conducted using 20 different randomly generated messages of

size 1000 characters, the output parameters were calculated automatically for the normal

process of sending an email and the proposed technique of sending an email. Table 4.37

shows the average of values measured for both techniques.

Table 4.37. Average performance for extended small message experiment

 Proposed Technique Normal Process

Original Email Size 10490 bytes 10490 bytes

Time to Send 29.30 msec 20 msec

Prepared Email Size 14076 bytes 10490 bytes

Time to Read 57.60 msec 23.60 msec

Table 4.38 below shows the mean, standard deviation and p-value of the proposed method

and the normal method in the extended small message experiment.

Table 4.38. Mean, STD, P-Value in extended small message experiment

 Proposed Method

Mean ± STD

Normal Process

Mean ± STD

p-value

TTS 29.30 ± 7.29 20.00 ± 7.90 0.89

TTR 57.60 ± 11.41 23.60 ± 4.08 0.002

Figure (4.4) and figure (4.5)

in extended small message experiment for the proposed method as compared with the

normal process, respectively

Figure 4.4. mean ± STD of TTS in extended small message experiment

Figure 4.5. mean ± STD of TTR in extended small message experiment

M
il
li
s
e
c
o
n
d
s

M
il
li
s
e
c
o
n
d
s

and figure (4.5) below show the mean ± standard deviation of TTS

message experiment for the proposed method as compared with the

, respectively.

mean ± STD of TTS in extended small message experiment

mean ± STD of TTR in extended small message experiment

1000 char

Proposed 29.3

Normal 20

0

20

40

60

80

100

120

Proposed

Normal

1000 char

Proposed 57.6

Normal 23.6

0

20

40

60

80

100

120

M
il
li
s
e
c
o
n
d
s

Proposed

Normal

73

standard deviation of TTS and TTR,

message experiment for the proposed method as compared with the

mean ± STD of TTS in extended small message experiment

mean ± STD of TTR in extended small message experiment

Proposed

Normal

Proposed

Normal

74

From table 4.38 and figure (4.5), there is no significant difference between the proposed

method and the normal method in TTS (p = 0. 89).

From table 4.38 and figure (4.6), there is a statistical significant difference between the

proposed method and the normal method in TTR (p = 0.002).

4.6.2 Extended Medium Message Experiment

This experiment was conducted using 20 different randomly generated messages of

size 5000 characters, the output parameters were calculated automatically for the normal

process of sending an email and the proposed technique of sending an email. Table 4.39

shows the average of values measured for both techniques.

Table 4.39. Average performance for extended medium message experiment

 Proposed Technique Normal Process

Original Email Size 48930 bytes 48930 bytes

Time to Send 36 msec 29.45 msec

Prepared Email Size 65700 bytes 48930 bytes

Time to Read 62.45 msec 31.78 msec

Table 4.40 on the next page

proposed method and the normal method in the extended

Table 4.40. Mean, STD, P

 Proposed Method

Mean ± STD

TTS 36.00 ± 13.34

TTR 62.45 ± 7.64

Figure (4.6) below and figure (

and TTR, in extended medium

with the normal process, respectively.

Figure 4.6. mean ± STD of TTS in extended me

M
il
li
s
e
c
o
n
d
s

on the next page shows the mean, standard deviation and p

proposed method and the normal method in the extended medium message experiment.

Mean, STD, P-Value in extended medium message experiment

Proposed Method

Mean ± STD

Normal Process

Mean ± STD

36.00 ± 13.34 29.45 ± 7.46

62.45 ± 7.64 31.78 ± 5.95

and figure (4.7) on the page show the mean ± standard deviation of TTS

medium message experiment for the proposed method as compared

with the normal process, respectively.

mean ± STD of TTS in extended medium message experiment

5000 char

Proposed 36

Normal 29.45

0

20

40

60

80

100

120

Proposed

Normal

75

shows the mean, standard deviation and p-value of the

message experiment.

Value in extended medium message experiment

p-value

0.36

0.00

standard deviation of TTS

message experiment for the proposed method as compared

dium message experiment

Proposed

Normal

Figure 4.7. mean ± STD of TTR in extended medium message experiment

From table 4.40 and figure (4.

method and the normal method in TTS (p =

From table 4.40 and figure (

proposed method and the normal method in TTR

4.6.3 Extended Large Message Experiment

This experiment was conducted using

size 10000 characters, the output parameters were calculated automatically for the normal

process of sending an email and the proposed

the next page shows the average of values measured for both techniques.

M
il
li
s
e
c
o
n
d
s

mean ± STD of TTR in extended medium message experiment

and figure (4.6), there is no significant difference between the proposed

method and the normal method in TTS (p = 0.36).

and figure (4.7), there is a statistical significant difference between the

hod and the normal method in TTR (p = 0).

Message Experiment

This experiment was conducted using 20 different randomly generated messages of

, the output parameters were calculated automatically for the normal

process of sending an email and the proposed technique of sending an email.

the next page shows the average of values measured for both techniques.

5000 char

Proposed 62.45

Normal 31.78

0

20

40

60

80

100

120

M
il
li
s
e
c
o
n
d
s

Proposed

Normal

76

mean ± STD of TTR in extended medium message experiment

), there is no significant difference between the proposed

difference between the

0 different randomly generated messages of

, the output parameters were calculated automatically for the normal

technique of sending an email. Table 4.41 on

the next page shows the average of values measured for both techniques.

Proposed

Normal

77

Table 4.41. Average performance for extended large message experiment

 Proposed Technique Normal Process

Original Email Size 99004 bytes 99004 bytes

Time to Send 39.50 msec 33.60 msec

Prepared Email Size 125400 bytes 99004 bytes

Time to Read 65 msec 34.60 msec

Table 4.42 below shows the mean, standard deviation and p-value of the proposed method

and the normal method in the extended large message experiment.

Table 4.42. Mean, STD, P-Value in extended large message experiment

 Proposed Method

Mean ± STD

Normal Process

Mean ± STD

p-value

TTS 39.50 ± 9.61 33.60 ± 11.71 0.410

TTR 65.00 ± 12.46 34.60 ± 5.68 0.003

Figure (4.8) and figure (4.9) on the next page show the mean ± standard deviation of TTS

and TTR, in extended large message experiment for the proposed method as compared with

the normal process, respectively.

Figure 4.8. mean ± STD of TTS in extended large message e

Figure 4.9. mean ± STD of TTR in extended large message experiment

M
il
li
s
e
c
o
n
d
s

M
il
li
s
e
c
o
n
d
s

mean ± STD of TTS in extended large message e

mean ± STD of TTR in extended large message experiment

10000 char

Proposed 39.5

Normal 33.6

0

20

40

60

80

100

120

Proposed

Normal

10000 char

Proposed 65

Normal 31.78

0

20

40

60

80

100

120

M
il
li
s
e
c
o
n
d
s

Proposed

Normal

78

mean ± STD of TTS in extended large message experiment

mean ± STD of TTR in extended large message experiment

Proposed

Normal

Proposed

Normal

79

From table 4.42 and figure (4.8), there is no significant difference between the proposed

method and the normal method in TTS (p = 0.41).

From table 4.42 and figure (4.9), there is a statistical significant difference between the

proposed method and the normal method in TTR (p = 0.003).

4.6.4 Extended Very Large Message Experiment

This experiment was conducted using 20 different randomly generated messages of

size 20000 characters, the output parameters were calculated automatically for the normal

process of sending an email and the proposed technique of sending an email. Table 4.43

shows the average of values measured for both techniques.

Table 4.43. Average performance for extended very large message experiment

 Proposed Technique Normal Process

Original Email Size 195820 bytes 195820 bytes

Time to Send 43.94 msec 35.44 msec

Prepared Email Size 249601 bytes 195820 bytes

Time to Read 69.04 msec 34.76 msec

Table 4.44 below shows the mean, standard deviation and p

and the normal method in the extended very large message experiment.

Table 4.44. Mean, STD, P

 Proposed Method

Mean ± STD

TTS 43.94

TTR 69.04

Figure (4.10) below and figure (4.

of TTS and TTR, in extended

compared with the normal process, respectively.

Figure 4.10. mean ± STD of TTS in extended very large message experiment

M
il
li
s
e
c
o
n
d
s

Table 4.44 below shows the mean, standard deviation and p-value of the

and the normal method in the extended very large message experiment.

Mean, STD, P-Value in extended very large message experiment

Proposed Method

Mean ± STD

Normal Process

Mean ± STD

43.94 ± 5.52 35.44 ± 4.15

69.04 ± 7.07 34.76 ± 5.62

and figure (4.11) on the next page show the mean

of TTS and TTR, in extended very large message experiment for the proposed method as

compared with the normal process, respectively.

mean ± STD of TTS in extended very large message experiment

20000 char

Proposed 43.94

Normal 35.44

0

20

40

60

80

100

120

Proposed

Normal

80

value of the proposed method

and the normal method in the extended very large message experiment.

Value in extended very large message experiment

p-value

0.027

0.00

show the mean ± standard deviation

large message experiment for the proposed method as

mean ± STD of TTS in extended very large message experiment

Proposed

Normal

Figure 4.11. mean ± STD of TTR in extended very large message experiment

From table 4.44 and figure (4.

proposed method and the normal method in TTS (p =

From table 4.44 and figure (4.

proposed method and the normal method in TTR (p =

M
il
li
s
e
c
o
n
d
s

mean ± STD of TTR in extended very large message experiment

and figure (4.10), there is a statistical significant difference between the

proposed method and the normal method in TTS (p = 0.027).

and figure (4.11), there is a statistical significant difference between the

proposed method and the normal method in TTR (p = 0).

20000 char

Proposed 69.04

Normal 34.76

0

20

40

60

80

100

120

M
il
li
s
e
c
o
n
d
s

Proposed

Normal

81

mean ± STD of TTR in extended very large message experiment

significant difference between the

difference between the

Proposed

Normal

82

4.7 Discussion

Based on p-value and mean±STD in tables 4.38, 4.40, 4.42 and 4.40, it is safe to say that

the first two assumptions in section 4.5 are not valid:

“ TTS proposed method for M1 < TTS normal process for M1 ” is not correct

“ TTR proposed method for M1 < TTR proposed method for M2 “ is not correct

To answer the question of the third assumption, the author conducted Pearson correlations

using SPSS between TTS and OES, and between TTR and PES, in the proposed technique.

Results have indicated a relationship (Pearson’s r = 0.735) between OES and TTS; but

there were no statistically significant correlations, which means email size does not affect

TTS process at the sender’s server.

Results have also indicated a very strong relationship (Pearson’s r = 0.967) and a

statistically significant correlation between TTR and PES. It means email size has an effect

on TTR process at the receiver’s server. The larger the email size, the more time the

receiver’s server requires reading it.

83

Chapter Five

Conclusions

84

Chapter 5 Conclusions

5.1 Overview

In this thesis a new technique is presented to provide control over sent emails, the study

controlled the availability of email messages by encrypting the body of the message using a

randomly generated key, that is created using V4 UUID generation algorithm, before

sending it to the receiver. The proposed technique allows the receiver to request the

encryption key using data included in a customized email header field that refers to the

location of an API on the sender’s server, the key is sent to the receiver when requested

only if it’s set to available.

5.2 Conclusion

In conclusion, the proposed technique was successful in achieving the goals it aimed to

deliver. The proposed technique was compared against the standard methodology of email

processing, and as expected, there have been delays in TTS and TTR when the proposed

technique was applied. On average the receiver’s server required 87.1% more time, to read

emails, in the proposed method, this is due to the added processes of requesting the

encryption key and the decryption of the message. It also took the sender’s server 8.8%

more time to send emails. There were also noticeable changes in the size of an email after

the encryption process, the changes in size varied from one experiment to another. The first

16 experimentations assumed that in the proposed technique, TTS for messages above

10000 characters length required less time than TTS in the normal process, and TTR for

messages above 10000 characters length required less time than TTR for messages below

85

10000 characters length. Those assumptions were based on experiments conducted to

compare the proposed technique against the standard technique of email processing using

four variant email sizes. 80 more experiments were conducted later in order to verify the

validity of the assumptions of the first readings. The mean, standard deviation and the p-

value of TTS and TTR for the proposed and the normal method, in those 80 experiments,

were calculated and compared. Extended experimentations have shown that the

assumptions of the first 16 experiments were incorrect, as some of the readings were

affected by traffic variations and decreased CPU performance that occurred at the time of

conducting the experiments, which had led to inaccurate readings due to the small sample

size. The extended experiments prove, using Pearson coefficients, that there is a

relationship between the size of emails and their sending/reading time. Results have also

shown that there are statistically significant correlations between TTR and PES.

5.3 Future Work

In this thesis a method is proposed to provide more control over sent emails, this method

can be the base for future studies to emerge from, the following list presents some ideas for

further studies:

1- Try different encryption techniques in hope to reduce the time overhead.

2- Implement RSA key exchange mechanism to provide robustness against key hijack

during the key exchange process.

3- Implement the proposed method on MIME data types and measure its performance.

4- Measure the performance of the proposed method on a dedicated server

environment using larger sample size.

86

References

• Abadi, M., & Blanchet, B. (2005). Computer-Assisted Verification of a Protocol for

Certified Email. Science of Computer Programming, V58(1), (PP 3-27).

• Abadi, M., Glew, N., Horne, B., & Pinkas, B. (2002). Certified email with a light

on-line trusted third party: design and implementation. In 11
th

 international World

Wide Web Conference (WWW’02), (PP387-395).

• Al Bazar, H., Sureswaran, R., Abouabdalla, O. (2008). A new approach to enhance

e-mail performance through pop3 protocol. International Conference on Network

Applications, Protocols and Services 2008 (Net Apps 2008), (PP 929-932).

• Banday, M. T. (A) (2011). Effectiveness And Limitations of email Security

Protocols. International Journal of Distributed and Parallel Systems (IJDPS),

V2(3), (PP 38-49).

• Banday, M. T. (B) (2011). On the Authentication of Date in E-mail using Trusted

Time Stamping Service. IJCA Special Issue on “Network Security and

Cryptography” NSC, (PP 36-42).

• Bulloch, S. (2007). IBM Customer Support, Retrieved from IBM Customer Support

Website, URL: https://www.ibm.com/developerworks/lotus/library/notes8-recall/.

Last Review Date August, 07, 2007. Accessed Date May 10, 2014.

• Crispin, M. (2003). Internet Message Access Protocol- version4 rev1, RFC 3501.

• Crocker, D. (2009). Internet Mail Architecture. RFC 5589.

87

• Culotta, A., Bekkerman, R., & McCallum, A. (2004). Extracting Social Networks

and Contact Information from Email and the Web. First Conference on Email and

Anti-Spam (CEAS).

• Dye, M., McDonald, R., & Rufi, A. (2007). Network Fundamentals, CCNA

Exploration Companion Guide. Cisco press, Chapter 3, (PP 84 - 85).

• Hafsaoui, A., Urvoy-Keller, G., Collange, D., & Siekkinen, M. (2010). A Study of

Email Usage and Performance over Cellular Technology. Communications and

Networking (ComNet), 2010 Second International Conference on, (PP 1-8).

• Haigh, T. (2012). Seven Lessons From Bad History. Communications of the ACM,

V55(9), (PP 26- 29).

• Harn, L., & Ren, J. (2008). Design of Fully Deniable Authentication Service for E-

mail Applications. IEEE Communications letters, V12(3), (PP 219-221).

• Heron, S. (2009). Advanced Encryption Standard (AES). Network Security, V

2009(12), (PP 8-12).

• Klensin, J. (2008). Simple Mail Transfer Protocol. RFC 5321.

• Lux, K. D., J May, M., Bhattad, N. L., & Gunter, C. A. (2005). WSEmail: Secure

Internet Messaging Based on Web Services. Proceedings of the IEEE International

Conference on Web Services (PP 75-82).

• Mantoro, T., & Zakariya, A. (2012). Securing E-Mail Communication Using Hybrid

Cryptosystem on Android-based Mobile Devices. Telkomnika, V10(4), (PP 827-

834).

88

• Microsoft Customer Support (2012). Retrieved from the Microsoft Customer

Support Website, URL: http://support.microsoft.com/kb/197094. Article ID

197094. Last Review Date October, 4, 2012. Accessed Date May 10, 2014.

• Myers, J., & Rose, M. (1996). Post Office Protocol-version 3. STD 53, RFC 1939.

• Partridge, C. (2008). The Technical Development of Internet Email. IEEE Annals of

the History of Computing, V1(2), (PP 3-29).

• Praveen, B. (2013). The Undo Sent E-mail (USE) Protocol. International Journal of

Information and Computation Technology, International Research Publications

House, ISSN 0974-2239, V3(11), (PP 1187-1196).

• Radicati, S. (2014). Email Statistics Report 2014-2018. The Radicati Group Inc,

URL: http://www.radicati.com/wp/wp-content/uploads/2014/01/Email-Statistics-

Report-2014-2018-Executive-Summary.pdf.

• Resnick, P. (2008). Internet Message Format. RFC 5322.

• Selent, D. (2010). Advanced Encryption Standard. Rivier Academic Journal, V6(2),

(PP 1-14).

• Shao, J., Feng, M., Zhu, B., & Cao, Z. (2007). An efficient certified email protocol.

Information Security, Springer Berlin Heidelberg, (pp. 145-157).

• Sobh, T. S., & Amer, M. I. (2011). PGP Modification for Securing Digital Envelope

Mail Using COM+ and Web Services. IJ Network Security, V13(2), 79-91.

• Suresh, K. B., & Jagathy, R. V. P. (2012). A Secure Email System Based on IBE,

DNS and Proxy Service. Journal of Emerging Trends in Computing and

Information Sciences, V3(9), (PP 1271-1276).

89

• Tanta-ngai, H., Abou-Assaleh, T., Jiampojamarn, S., & Cercone, N. (2003). Secure

Mail Transfer Protocol (SecMTP). In Proceedings of the International Conference

on Advances in the Internet, Processing, Systems, and Interdisciplinary Research,

IPSI-2003, Sveti Stefan, Montenegro, Former Yugoslavia.

90

Appendices

Appendix A: Email System Modules’ Source Code Written in PHP

UUID_generator.php

<?php
function generate_UUID() {
 return sprintf('%04x%04x-%04x-%04x-%04x-%04x%04x%04x',

 // 32 bits for "time_low"
 mt_rand(0, 0xffff), mt_rand(0, 0xffff),

 // 16 bits for "time_mid"
 mt_rand(0, 0xffff),

 // 16 bits for "time_hi_and_version",
 // four most significant bits holds version number 4
 mt_rand(0, 0x0fff) | 0x4000,

 // 16 bits, 8 bits for "clk_seq_hi_res",
 // 8 bits for "clk_seq_low",
 // two most significant bits holds zero and one for variant DCE1.1
 mt_rand(0, 0x3fff) | 0x8000,

 // 48 bits for "node"
 mt_rand(0, 0xffff), mt_rand(0, 0xffff), mt_rand(0, 0xffff)
);
}

function generate_identifier() {
 return uniqid();
}
?>

91

db_connect.php

<?php
/**
 * A class file to connect to database
 */
class DB_CONNECT {

 // constructor
 function __construct() {
 // connecting to database
 $this->connect();
 }

 // destructor
 function __destruct() {
 // closing db connection
 $this->close();
 }

 /**
 * Function to connect with database
 */
 function connect() {
 // import database connection variables
 require_once __DIR__ . '/db_config.php';

 // Connecting to mysql database
 $con = mysql_connect(DB_SERVER, DB_USER, DB_PASSWORD) or
die(mysql_error());

 mysql_set_charset('utf8',$con);

 // Selecing database
 $db = mysql_select_db(DB_DATABASE) or die(mysql_error()) or
die(mysql_error());

 // returing connection cursor
 return $con;
 }

 /**
 * Function to close db connection
 */
 function close() {

92

 // closing db connection
 //mysql_close();
 }

}
?>

db_config.php

<?php
/*
 * All database connection variables
 */
define('DB_SERVER', "50.31.147.17"); // db server
define('DB_DATABASE', "semiapps_webm410"); // database name
define('DB_USER', "semiapps_webm410"); // db user
define('DB_PASSWORD', "N!r0k80!PS"); // db password (mention your db password
here)
?>

api.php

<?php
require_once __DIR__.'/db_connect.php';

$db = new DB_CONNECT();

$identifier = $_GET['identifier'];
$from = $_GET['from'];
$to = $_GET['to'];

$query = "SELECT uuid_ FROM secret_keys where identifier_ = '$identifier' AND
from_ = '$from' AND to_ = '$to'";

$result = mysql_query($query);

if($result) {
 $row = mysql_fetch_array($result);

93

 echo $row['uuid_'];
}
?>

control.php

<?php
require_once __DIR__.'/db_connect.php';

$db = new DB_CONNECT();

$from_ = $_GET['from'];

$result = mysql_query("SELECT * FROM secret_keys WHERE from_ = '$from_'");

echo "<!DOCTYPE html>
<html>
<body>";

if($result) {
 echo '<table>';
 while($row = mysql_fetch_array($result)) {
 echo '<tr>';

 echo '<td>';
 echo $row['to_'];
 echo '</td>';

 echo '<td>';
 echo "
Delete";
 echo '</td>';

 echo '</tr>';

 }
 echo '</table>';
 echo "</body></html>";
}
?>

94

cryptors.php

<?php
function encrypt($sValue, $sSecretKey)
{
return $sValue;
/*return rtrim(
 base64_encode(
 mcrypt_encrypt(
 MCRYPT_RIJNDAEL_256,
 $sSecretKey, $sValue,
 MCRYPT_MODE_ECB,
 mcrypt_create_iv(
 mcrypt_get_iv_size(
 MCRYPT_RIJNDAEL_256,
 MCRYPT_MODE_ECB
),
 MCRYPT_RAND)
)
), "\0"
);*/
}

function decrypt($sValue, $sSecretKey)
{
return $sValue;
/*return rtrim(
 mcrypt_decrypt(
 MCRYPT_RIJNDAEL_256,
 $sSecretKey,
 base64_decode($sValue),
 MCRYPT_MODE_ECB,
 mcrypt_create_iv(
 mcrypt_get_iv_size(
 MCRYPT_RIJNDAEL_256,
 MCRYPT_MODE_ECB
),
 MCRYPT_RAND
)
), "\0"
);*/
}

?>

95

receiver.php
<?php

require_once __DIR__.'/cryptors.php';
require_once __DIR__.'/db_connect.php';

function decrypt_email($message, $api, $identifier, $from, $to) {

 $_key = fetch_content($api."?identifier=".$identifier."&from=".$from."&to=".$to);

 return decrypt($message, $_key);
}

function fetch_content($url) {

 $ch = curl_init();
 curl_setopt($ch, CURLOPT_AUTOREFERER, TRUE);
 curl_setopt($ch, CURLOPT_HEADER, 0);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 curl_setopt($ch, CURLOPT_URL, $url);

 $data = curl_exec($ch);
 curl_close($ch);

 return $data;
}

function reading_time($start_time, $finish_time, $identifier) {
 $db = new DB_CONNECT();

 $query = "UPDATE results set r_start_time = '$start_time', r_end_time =
'$finish_time' WHERE r_start_time is NULL";

 mysql_query($query);
}
function writing_time($start_time, $finish_time, $identifier, $subject, $size,
$originalSize) {
 $db = new DB_CONNECT();
 $date_time = date("F j, Y, g:i a");
 $query = "INSERT INTO results(identifier, w_start_time, w_end_time, email_date,
subject, text_size, original_text_size, consistency) VALUES('$identifier','$start_time',
'$finish_time', '$date_time', '$subject', '$size', '$originalSize', '%100')";

96

 mysql_query($query);
}
?>

sender.php

<?php
require_once __DIR__.'/UUID_generator.php';
require_once __DIR__.'/cryptors.php';
require_once __DIR__.'/db_connect.php';
require_once __DIR__.'/receiver.php';

function sendMail($sTo, $sSubject, $sText, $sFrom) {
 $start_time = msec();

 $identifier = generate_identifier();
 $uuid = generate_UUID();

 $db = new DB_CONNECT();
 $result = mysql_query("INSERT INTO secret_keys(from_, to_, identifier_, uuid_)
VALUES('$sFrom', '$sTo', '$identifier', '$uuid')");

 $originalSize = strlen($sText);

 $sText = encrypt($sText, $uuid);

 if($result) {

 $headers = 'MIME-Version: 1.0' . "\r\n";
 $headers .= 'Content-type: text/html; charset=iso-8859-1' . "\r\n";

 // Additional headers
 $headers .= 'To: '.$sTo . "\r\n";
 $headers .= 'From: '.$sFrom. "\r\n";

 $headers .= 'X-API: http://www.wardmail.info/plugin/api.php' . "\r\n";
 $headers .= 'X-Identifier: '.$identifier. "\r\n";

 $stop_time = msec();

97

 writing_time($start_time, $stop_time, $identifier, $sSubject, strlen($sText)*8,
$originalSize*8);

 // Mail it
 mail($sTo, $sSubject, $sText, $headers);

 }
}

function msec()
{
 list($usec, $sec) = explode(' ',microtime());
 return intval(($usec+$sec)*1000.0);
}

?>

results.php
<?php
require_once __DIR__.'/db_connect.php';

$db = new DB_CONNECT();
$result = mysql_query("SELECT * FROM results");

if($result) {

 echo '<table>';

 echo '<th>ID</th> <th>Subject</th> <th>Date</th> <th>Net (W)</th> <th>Net
(R)</th> <th>Original text size (Bytes)</th> <th>Text AFTER (Bytes)</th>
<th>Consistency</th>';
 while($row = mysql_fetch_array($result)) {
 echo '<tr>';

 echo '<td style=\'border:solid 1px;\'>';
 echo $row['_id'];
 echo '</td>';

 echo '<td style=\'border:solid 1px;\'>';
 echo $row['subject'];
 echo '</td>';

98

 echo '<td style=\'border:solid 1px;\'>';
 echo $row['email_date'];
 echo '</td>';

 echo '<td style=\'border:solid 1px;\'>';
 echo $row['w_end_time'] - $row['w_start_time'];
 echo '</td>';

 echo '<td style=\'border:solid 1px;\'>';
 echo $row['r_end_time'] - $row['r_start_time'];
 echo '</td>';

 echo '<td style=\'border:solid 1px;\'>';
 echo $row['original_text_size'];
 echo '</td>';

 echo '<td style=\'border:solid 1px;\'>';
 echo $row['text_size'];
 echo '</td>';

 echo '<td style=\'border:solid 1px;\'>';
 echo $row['consistency'];
 echo '</td>';

 echo '</tr>';

 }
 echo '</table>';
}
?>

99

Appendix B: Random Text Generation Source Code Written in C#

private void random_text_Click(object sender, EventArgs e)
 {
 Random random = new Random();

 int num;
 char let;
 int requested = int.Parse(text_size_to_generate.Text);

 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < requested; i++)
 {
 num = random.Next(0, 26); // Zero to 25
 if (num % 6 == 0)
 {
 sb.Append(' ');
 }
 else
 {
 sb.Append((char)('a' + num));
 }
 }

 secret_text_box.Text = sb.ToString();
 }

Appendix 3: Publication

International Journal of Computer Technology and Applications

2229-6093, Volume 6 Issue 1

Appendix 3: Publication

International Journal of Computer Technology and Applications (IJCTA), Jan 2015,

Volume 6 Issue 1, Pages: 18 - 22

100

(IJCTA), Jan 2015, ISSN:

