
I

Practical Measurements Framework for Software

Integrity

 تطبیق عملي لقیاس سلامة البرمجیات

Prepared By

Omar Natheer Basheer

Supervisor
Dr. Hebah H. O. Nasereddin

And Co. Supervisor

Dr. Sharefa F. Murad

Master Thesis

Submitted in Partial Fulfilment of the requirements of the Master Degree
In Computer Science

Department of Computer Science

Faculty of Information Technology

Middle East University

Amman – Jordan

January, 2015

 II

Authorization Statement

 I’m Omar Natheer Basheer, authorize Middle East University, to

distribute and provide hard and electronic copies from this thesis for any

concerned educational institution, to be used for scientific studies and

researches on demand.

Name : Omar Natheer Basheer

 إ
	ار �����

�� ا	��ق ا�و�� ���و�� ��� �� ر��	�
 ور��� وا	���و��� ���ا�� $#� �"�� ���� أ �ض

 �%&'(�)$ ��#'� 	'#��&�ت ، أو ا	#(1#�ت ، أو ا	%�/�ت وا	#.���ت ا	#�(�� ��-�,�ث وا	�را��ت ا	

 $#� �"�� ���� : ا-�2

III

IV

Acknowledgement

First of all, I would thank my God, Allah the Almighty, Who gave me

the strength and made me reach to this level, Glory of Him.

Then, , I would express my great gratitude to my Co. Supervisor Dr.

Sharefa Murad for her support and for her knowledge and for her time,

because she was so generous with me. Also, would like to thank my

supervisor Dr Hebah H. O. Nasereddin for her support and advise.

Moreover, I would like to thank all of MEU members for teaching me

and for providing the time and efforts. Besides, I would love to thank my

friends who helped me to get this work done.

Finally, I would like to thank my father and mother for their support

through my studying.

V

Dedication

I dedicate this work to the persons who were with me wherever I go

My lovely parents

Also, I dedicate this work to my lovely

brothers and sisters

May God protect them all.

VI

Table of Contents

Title Page ………………………………………………………………….. I

 II ………………………………………………………………… أقرار تفویض

Examination Committee Decision……………………………………… III

Acknowledgement ……………………………………………………….. IV

Dedication ………………………………………………………………… V

Table of Contents ………………………………………………………… VI

Table of Contents ………….…………………………………………….. XI

List of Figures ……………………………………………………………. X

Table of Abbreviations ………………………………………………….. XI

 XII ……………………………………………………………………الملخص

Abstract ……………………………………………………………………. XIII

Chapter One Introduction …….………………………………………..... 1

 1.1 Introduction ……………………………………………………….. 2

 1.2 Problem Statement ………………………………………………… 5

 1.3 Contributions ……………………………………………………………… 5

 1.4 Objectives of the Research ……………………………………...… 6

 1.5 Hypotheses of the Research ………………………………………… 6

 1.6 Questions of the Research ……………………………………….. 7

Chapter Two Literature Survey and Related Works …………………... 8

VII

 2.1 Related Work ……………………………………………….………. 9

Chapter Three Background Information …………………….…………... 15

 3.1 Introduction …..……………………………………….…………… 16

 3.1 Metrics Tools ………………………………………………………. 17

 3.2.1 Tools Chidamber and Kemerer Java Metrics (CKJM) . . .… 18

 3.3 Static Analysis Tools …………………………….……………… 22

 3.3.1 FindBugs (V3.0) Tool ………………………..…………….. 23

 3.3.2 Visual Code Grepper Tool ………………………….………. 24

3.3.3 Parasoft Jtest (V9.5) Tools ……………………..………….. 25

 3.4 Integrity ………………………………………………….………… 27

 3.5 Software Quality Factors ………………………….……………... 28

 3.6 Factor Definit ions and Rating Formulas ………………………. 29

Chapter Four Proposed Model ………………………………….……….. 31

Proposed work ………………………………………………….…………. 32

4.1 The Proposed Model (1) ……………………………………….……. 32

4.2 The Proposed Model (2) ……………………………………….……. 35

Chapter Five ………………………………………………………….…… 41

Chapter Five EXPERIMENTS and RESULTS ………………………… 42

VIII

 5.1 Subject Evaluation ………………………………………….…….. 42

 5.2 Interpretation of Regression Results …………………….……..
43

 5.3 ArgoUML Project ……………………………..…………….……. 43

 5.4 Shopizer-Ecommerce Project ……………………………..……. 48

 5.5 Payment4j Project …………………………………………….…... 51

 5.6 Limitations ………………………………………………….……... 53

Chapter Six Conclusion ………………………………………….………. 55

 6.1 Conclusion………………………………………………….………. 56

 6.2 Future Works ……………………………………………….……… 57

Reference ……………………………………………………………..…… 58

Appendix……………………………………………………………..…….. 64

IX

Table of Contents
Table 1.1 Hypotheses………………………………..……………………………... 6

Table 3.1 CK metrics ……………………………………………….…....… 19

Table 3.2: patterns …………………………………………………………. 23

Table 5.1 Open source testing project …………………………..…..…… 43

Table 5.2 Variables Entered/Removed to ArgoUML ……………….…. 43

Table 5.3 Summary of the Model To ArgoUml project …………….….. 44

Table 5.4 Results of ANOVA Test To ArgoUml project ……………… 45

Table 5.5 Individual Regression Coefficients To ArgoUml project 47

Table 5.6 Variables Entered/Removed to Shopizer-Ecommerce ….…. 48

Table 5.7 Summary of the Model To Shopizer-Ecommerce ………..….. 49

Table 5.8 Results of ANOVA Test To Shopizer-Ecommerce project … 49

Table 5.9 Individual Regression Coefficients To Shopizer ……………. 50

Table 5.10 Variables Entered/Removed to Payment4j project ……..... . 51

Table 5.11 Summary of the Model To Payment4j project ……………... 51

Table 5.12 Results of ANOVA Test To Payment4j project …….….….. 52

Table 5.13 Individual Regression Coefficients To Payment4j project.. 52

X

List of Figures

Figure 1.1 The CIA Triad…………………………………………………… 4

Figure 2.1 The Relat ion Diagram ……………………….…………………... 13

Figure 3.1 CKJM Results ………………………………….……….……… 19

Figure 3.2 FindBugs Tool result . .………………………………………… 24

Figure 3.3 VCG tool Result ………………………….………………….… 24

Figure 3.4 Example SQL Injection Bug…………………………………... 25

Figure 3.5 Jtest Tool Result ……………………….…………………... 26

Figure 3.6 Example SECURITY.WSC.SL-4 Bugs……………………... 26

Figure 4.1 proposed model 1.…….………………………………….….... . 33

Figure 4.2 proposed model 2 ……………………………………………... 34

Figure 4.3 Jtest Results …………………..……………………………….. 35

Figure 4.4 VCG Results ………………………………………………..….. 36

Figure 4.5 Output results tool FindBugs …………………,,…………….. 36

Figure 1.6 Output results tool CKJM ……………………….…... 37

Figure 4.7 Output Jtest after unified Output ………………….….….…. 38

Figure 4.8 Output VCG after unified Output ……………………... . 38

Figure 4.9 Output FindBugs after unified Output………………………. 38

Figure 4.10 Output CKJM with Error number ……………………...…. 39

Figure 4.11 Output CKJM with Integrity ………………………………… 39

XI

Table of Abbreviations

Abbreviations Meaning

CBO Coupling Between Object

CK Chidamber & Kemerer

CKJM
Chidamber and Kemerer Java Metrics

CIA Confidentiality, Integrity, Availability

ISO International Organization for Standardization

LOC Line OF Code

RFC Response For Class

NOC Number of Children

http://www.aivosto.com/project/help/pm-oo-ck.html

XII

الملخص
 تطبیق عملي لقیاس سلامة البرمجیات

 اعداد : عمر نذیر بشیر

 المشرف : د.ھبة ناصرالدین

 المشرف المشارك : د. شریفة مراد

الغرض من تكنلوجیا مقیاس الجودة هو تقدیم اسلوب هندسي منظم من اجل تحدید وتوقع

. (Chidamber and Kemerer) في هذه الدراسة نستخدم مقاییس وتقییم جودة البرنامج ،

الطریقة التي استخدمها الباحث هي جمع كل المعاییر التي تؤثر على السلامة في مرحلة

 التنفیذ ، بالاضافة الى حساب قیمة السلامة ، وكذلك حساب قیمة المقاییس المستخدمة وهي

(Response For Class, Coupling Between Object, and Number Of Children) لمعرفة تاثیر هذه

 المقاییس على السلامة .

في هذا العمل استخدم الباحث ادوات التحلیل الثابت من اجل كتشاف كل الاخطاء(المشاكل

) لحساب 1البرمجیة) القابلة للاكتشاف التي توثر على السلامة بالاضافة الى استخدام معادلة الـ (

) من Chidamber and Kemerer Java Metricsالسلامة وكذلك قام الباحث باستخدام اداة (

 Response For Class, Coupling Between Object, andاجل حساب قیمة المقاییس الثلاثة (

Number Of Children.(

ولا بد من الذكر ان الباحث قام باستخدام ثلاث مشاریع مفتوحة المصدر مكتوبة بلغة جافا من

اجل معرفة تاثیر المقاییس على السلامة في مرحلة التنفیذ واظهرت النتائج الى ان المقاییس كان لها

تاثیر على السلامة .

فوائد هذا النهج من التطبیق الصارم للمقاییس من الاصدارات المتتابعة من منتجات

البرمجیات خلال دورة الحیاة البرنامج ، توفر الكشف المبكر للمشاكل التي لها علاقة بالجودة ، التقییم

 المتكرر لمستویات الجودة توفر رؤیة افضل وتمكن من اتخاذ القرارات في الوقت المناسب .

XIII

Abstract

Practical Measurements Framework for Software Integrity

 Prepared By

Omar Natheer Basheer

Supervisor Dr. Hebah H. O. Nasereddin

 Co. Supervisor Dr. Sharefa F. Murad

The purpose of the quality metrics technology is to provide a more

disciplined engineering approach to specifying, predicting, and evaluating

software quality, this study used Chidamber and Kemerer (CK) metrics.

The suggested method that the researcher uses to combine and select the criteria that

affect on integrity in the implantation level. Then, it calculates integrity, and calculates the

used metrics which are (Response For Class, Coupling Between Object, and Number Of

Children) in order to know the effect of such metrics on integrity.

In this work, the researcher used static analysis tools in order to find all Bugs which

it affects on integrity. Additionally, the researcher uses both; the equation (1) to calculate

integrity and he also uses Chidamber and Kemerer Java Metrics (CKJM) tool in

order to calculate the value of three mentioned metrics (Response For Class, Coupling

Between Object, and Number Of Children).

Moreover, the researcher uses three open source Java projects to find the effect of

the metrics on integrity at the implantation level, the results of the study indicates that the

metrics had an effect on integrity.

The benefits of this approach to the rigorous application of metrics at

incremental releases of software products throughout the life cycle provide

for early detection of quality-related problems. Periodic assessment of

quality levels provides better management visibility and enables timely

decision making.

1

Chapter One

Introduction

2

1.1 Introduction

We live today in a period of the computer networks and techniques

lasting change in our lives. Data security is the foundation of any

successful business. Organizations can achieve the goal of data security by

possessing the suitable tools to protect data against threats. In distributed

information access environment, it is a big problem that how to ensure that

access to secure information is safe, (Chandra, S. et al , 2009).

In System Engineering and requirement Engineer, non-functional

requirement address the criteria that can be used to evaluate the operation

of the system, that’s mean describe aspects of the system not related to its

execution but rather to its evolution over time to make it more tangible. The

main goal of this proposal is to report one of the main important parts of

non-functional requirement, which is Security, (De Castro, V. et al , 2014).

The main goal of the security is protecting the worthy and cri tical

information about the organizations and makes it easily obtainable.

Assailants use different methods, tools, and techniques to damage the

systems and deactivate business operations and profi teering weaknesses of

the security controls and policy, and the computer systems 1.

1- http://technet.microsoft.com/en-us/library/cc723507.aspx#mainSection :viewed at: 10 Feb. 2014.

http://technet.microsoft.com/en-us/library/cc723507.aspx%23mainSection

3

Achieving secure software has become a challenge for the industry

professionals; that’s because it required a deep understanding of different

or various aspects including security measurements, security policies and

security categories.

In software engineering, Security Testing aims at validating software

system requirements related to security properties. Although security

testing techniques are available for many years, there have been lit tle

approaches that allow for specification of test cases at a higher level of

abstraction, for enabling guidance of test identification and specification as

well as for automated test generation (Schieferdecker, I., et al. 2012).

Software metrics are often used to assess the ability of software to achieve a

predefined goal (Jaquith, A. 2007). Software metric is a measure of some property of a

piece of software. In addition can use this metric to measure during various software

development phases (such as design or coding) and are used to evaluate the quality of

software (Chowdhury, 2011).

In the literature, there exist many models addressing security. This

work will rely on the main well known model which the Triple Security

Model is also named the CIA model. In particular CIA rely on three main

security concepts :(Confidentiality, Integrity and Availabil ity), based on

this model these three aspects together form guaranteed software. Figure1

demonstrates the CIA three triangle sides: Confidentiality is the term used

4

to prevent the disclosure of information to unauthorized individuals or

systems. (Sattarova, F. et al.2007).

Figure1: The CIA Triad (Solomon, M. G., e t a l . 2005)

Integrity means that data cannot be modified without authorization

(Sattarova, F., et al.2007). It means maintaining and assuring the accuracy and

consistency of data over its entire life-cycle. This means that data cannot be

altered by unauthorized people. The availabil ity of the information must be

available when it is needed. (Sattarova, F., et al.2007).

This thesis focused on one of the three main concepts of CIA Model,

which is Integrity.

5

1.2 Problem Statement

The numerous improvements in the computing environment and the

wide presence of computers in homes, educational institutes and

organizations; there are different new attacks regularly performed against

the confidentiali ty of data, the Integri ty of systems or the copyrights of

media providers.(Chandra, S.et al. 2013).

Therefore, Security experts have recognized that in most of the cases,

attacks are due to poorly designed and developed software in many cases

software is designed and developed without keeping security aspects in

mind also users and organizations have a big need today to protect data

against different threats, whether it is known or unknown threats, the

following problems have been identified:

 There are no available criteria that measure integrity to a given

source code.

 There is no software test dependent on a model to measure integrity

1.3 Contributions

The main contributions of this study are illustrated as follows:

 Provide empirical evidence whether there is a correlation CK metrics with Integrity.

 Can we use CK metrics to predict the integrity of software?

6

1.4 Objectives of the Research

This section describes the desired work in terms of properties; the result

of this thesis shall remain the following:

 Define criteria which determine integrity’s bugs in the implemented

software.

 Calculate the integrity.

 To check if CK metrics are correlated with integrity.

1.5 Hypotheses of the Research

In this section, the researcher investigates how the likelihood of the CK metrics

affects on the integrity at code level, to investigate whether CK metrics are affecting on the

integrity at the code level or not. The researcher suggests two hypotheses:

Table 1.1: Hypotheses

H0 : (Null Hypothesis) CK metrics are not correlated to Integrity.

H1:(Alternate Hypothesis) CK metrics are correlated to Integrity.

To validate the hypotheses, the researcher will calculate CK metrics by using CKJM

tools (Singer, .et al. 2008), In order to analyze the relationship between the integrity and

the metrics.

In this study, it applies some open source programs, and then it calculates the

integrity. Furthermore, it calculates the metrics for these programs and analyzes how these

metrics are connected with the integrity.

7

1.6 Questions of the Research

Based on the problems stated in the above section we formulated the

following Research Questions:

 In a given source code, how to classify the integrity problems?

 How to calculate the software integrity?

 Does the given Object Oriented Metrics(RFC,CBO,NOC) affect on

the integrity of the implemented software as if it is done during the

design level?

8

Chapter Two

Literature Survey

and Related Works

9

Chapter Two

Nowadays, several software quality models are proposed to evaluate

software quality products, and they were developed based on well-known

models. Although there are a number of research papers addressing model-

based security (David Basin, et al. 2006), (Jan J¨urjens 2005) and model

based testing (Paul Baker, et al . 2007). So far, there is little work on

Model-based Security Testing (MBST).

 This section describes the previous work related to measuring

software integrity as well as previous attempt to design a model based test

established for security.

Livshits and M. Lam (2005) proposed a static analysis technique to

detect many recently discovered application vulnerabilities such as SQL

injections, cross-site scripting, and HTTP splitt ing attacks. They designed a

user-provided specifications system of vulnerabil ities which are

automatically translated into static analyzers and they found in their static

analysis that two of 29 security vulnerabilities are residing in widely-used

Java libraries. Then, they showed in their approach that all vulnerabil ities

match the specification within the statically analyzed code. They

formulated many vulnerabilities types including SQL injections, cross-si te

scripting, HTTP splitting attacks as tainted object propagation problems.

The results of the study indicated that their analysis is an effective

practical tool for finding security vulnerabili ties. The analysis stated false

10

positives for only one application and they determined that the false

warnings reported could be eliminated with improved object naming.

The authors used a static analysis technique through compiling 29

security vulnerabil it ies in 9 large programs, which have been written in C

and C++ languages. In this work, the researcher collects 195 Bugs, which

affect on the integri ty, via using 3 tools static analysis to find these bugs,

in addit ion to using 3 projects that’s writ ten in Java language.

 According to the study of (Yue Jiang, et al 2008) the objective of

their study is to compare the performance of predictive model which use the

design-level metrics with code-level metrics. The study analyzes 13

datasets of the “NASA Metrics Data Program” which provide code metrics

and design. Through applying a domain of statistical important tests and

modeling techniques, it assured that the models which have been built using

code metrics usually perform better than the models which based on design

metrics. The study explains the result from foretelling the errors from;

design metrics, “stat ic code metrics”, and integration of both of them. And

it concludes that the models which consist of an integration of the code and

design level metrics performs better than models that used only design level

or code level.

 The authors present in their paper a comparison between the

performance of predictive models which use design-level metrics with the

11

models which use code-level metrics and the models that use both of them.

In addit ion, the authors used the design metrics that include node_count,

dge_count, and Mc-Cabe Cyclomatic complexity measure, the static code

metrics, such as num_operators, num_operands, and Halstead metrics are

calculated from program statements.

 According to the authors (Al-Badareen, A. et al . 2011), a complet

comparison has been done between popular models of software quality like

“ISO IEC 9126 Model (Dromey, R. G. 1995)”, “McCall Model (James,

M.1977)”, “FURPS Model”, “Boehm Model (Boehm, B. et al . 1978)”, and

“Dromey Model (Dromey, R. G. 1995)”. The result displays the weaknesses

and strength of those standards in measuring security and other quality

sides.

 Chowdhury (2011) provided empirical evidence that complex, coupled,

and non-cohesive software enti ties are generally less secure. He explored

that Complexity, Coupling, and lack of Cohesion (CCC) metrics positively

correlated to the number of vulnerabilities at a statistically significant level

over five major releases of Mozilla Firefox. The correlation is on average

0.5 with a p-value less than 0.001. The code-level CCC metrics are

generally more strong correlated to vulnerabilities than the design-level

CCC metrics. However, design-level metrics such as NOC can be good

12

indicators of vulnerabili ties. The authors explain that the metrics of CCC

are systematically related to weaknesses via five versions of “Mozila

Firefox”. The steady relation patterns mean that, once standardization for a

certain project, it can use these metrics to show the weaknesses of the new

versions reliably. The research compares the prediction effectiveness of the

“Random Forests”, “Naive-Bayers”, and “C4.5 Decision Tree” techniques in

the process of predicting the weaknesses of the entities that based on “CCC

metrics”. The research concluded with these results; the “CCC metrics” are

practical and beneficial addition to the automatic weaknesses prediction

framework, which give the software practitioners the ability of taking

precautionary actions against primary weaknesses through the software

lifecycle early.

 The authors (Khan, S. et al. 2012) give an Idea about “Integrity

Quantification Model” (IQM) for Object Oriented Design. They estimate

integri ty, security attributes in term of complexity factors: Coupling

Function (CP), which is points to corresponding Coupling between Object

(CBO) metrics-, Total Supporting Services (TSS), which points to Response

for Class (RFC) metrics- and Higher Level of Abstraction (HLA), which

points to Number of Children (NOC) metrics. Figure2 discuss the relation

of integrity, security attributes with complexity factors and corresponding

metrics for design complexity.

13

Figure (2 .1) Rela t ion Diagram, (Khan, S. e t a l . 2012)

A multiple linear regression technique has been used to evaluate the

coefficients. This technique establishes a relationship between a dependent

variable and multiple independent variables.

The authors offered a definition of measuring Integri ty. Then

proposed algorithms were calculated manually. In addit ion the authors

addressed the design phase of software by measuring the quality metrics of

a UML diagram. In this work we will generate an mechanized software

testing, measuring software quality derived from a source code.

 The authors (Schieferdecker, I. ,et al. 2012), discuss an idea about

security testing called “Model-based security testing”. It is a new field

devoted to the effectiveness and the systematic specification of the

objectives of the security test, cases of security test, and to their semi-

automated or automated generation. The MBST technique includes “model-

based fuzzing”, “security functional tests”, and impendence oriented testing

and using of the patterns of the security test.

14

This work provided a survey on MBST techniques and the related models as

well as samples of new methods and tools that are under development in the

European ITEA2-Project DIAMONDS.

 The authors (Chandra, S.et al. 2013), illustrated a methodology to

scrutinize class hierarchy against security. Two security metrics and

integri ty state transition model have been developed for quantitative

assessment of Integrity Risk. The methodology checks the integrity of the

class hierarchy which implemented on online music store case study with

experimental validation. The work measures and ranks security of software

at the design stage of software development and concentrate on only

integri ty, security attribute which is one of the essential security

requirements. The main aim of the methodology is quantification of

integri ty risk in the design stage. It explored set of sensitive classes and

risky classes may use for further analysis or for improvements during the

design stage.

15

Chapter Three

Background Information

16

Chapter Three

This chapter, focus a light on the tools that have been used to detect

bugs which affect on the integri ty, such as; FindBugs, Jtest, and VCG.

Besides, the chapter also describes the tools that calculate the applying

metrics in the study which is called CKJM. In addition, there is an overview

about the integrity, metrics tools, static analysis, integrity, software quali ty

factors, factor definitions.

3.1 Introduction

In the last decade, researchers have often tried to improve the

usability, portabil ity, integrity and other aspects of software in order for it

to be more user-friendly and gain user trust . Several methods, techniques

and tools have been proposed to reduce the negative effects of software size

and complexity as well as detect vulnerabilities. Moreover, several software

quality models were proposed to evaluate general and specific type of

software products. In order to customize the closed model to the intended

scope, some of the studies and researchers went to comparisons between the

well-known models (ISO IEC9126, McCall and Boehm). These comparisons

are leak of criteria that is conducted based on different perspectives and

understanding. (Al-Badareen, A. B.,et al, 2011). On the other hand some,

researchers also headed toward giving an idea about Integrity

17

Quantification Model (IQM) for Object Oriented Design, which has been

developed using OOD construction at design time. For that it estimates

integri ty security at tribute in terms of complexity factors such as CBO,

RFC metrics and NOC metrics, these factors used for design complexity.

(Khan, S. A., et al, 2012).

3.2 Metrics Tools

The metrics for the object-oriented software system focused on the

structure of the source code, like encapsulation, inheritance, polymorphism,

and object abstraction (Shaik, A., et,al. 2010).

 Object Oriented (OO) metrics are widely used in the life cycle of a

software product for assessing various attributes such as quality of the

design, complexity of the code, find faults by detecting vulnerabilities,

bugs and estimate the effort involved for maintenance which impact on the

integri ty as well as the bugs description exist in the Appendix A . As for the

popularity of OO metrics have been increased, the large number of metrics

proposed for detecting the various aspects of OO programming. Metrics can

be collected manually or by an automated tool.

Nowadays, there are existing tool suffers mainly from various problems

such as, (Shaik, A., et al. 2010):

18

1. Most of them are commercial tools where extensibility becomes a bad

issue.

2. The researcher will not have access to the source code for adding his

own metrics to the list of existing metrics.

3. Free tools are available, but they are specific to a language “like

JAVA” or not easy to adapt to other metrics.

4. All tools are the interpretation of the metrics; most metrics

definit ions are more ambiguous and hence more than one alternative

of the same metric which have been proposed by different

researchers.

3.2.1 Chidamber and Kemerer Java Metrics (CKJM)

The automated tool that had proposed in this study used the Java

programs, the purpose of using CKJM tool is to calculate for each class the

following eight metrics proposed by Chidamber and Kemerer:

- WMC: Weighted Methods per Class

- DIT: Depth of Inheri tance Tree

- NOC: Number of Children

- CBO: Coupling Between Object classes

- RFC: Response for a Class

- LCOM: Lack of Cohesion in Methods

19

Moreover, it also calculates for each class Ca: Afferent couplings and

NPM: Number of public methods 2, in addition to use 4 metrics from CK

metrics in this thesis. For example, the results of CKJM tools are

represented as shown in figure3.1

Figure 3.4: CKJM Results

 In this table 3.1 description (NOC, CBO, and CBO) metrics that have been

used in the thesis.

Table 3 .1 CK metr ics

Metrics Name Define

Number of

Children

(NOC)

Represents the number of immediate subclasses (Children)

subordinated to the class (parent) in the class hierarchy.

NOC measures how many methods or field inherited directly

by classes from a super class. .Classes with a large number

of children have to provide more generic service to all the

children in various contexts and should be more flexible, a

2 http://www.spinellis.gr/sw/ckjm/. viewed at: 10 dec. 2014.

http://www.spinellis.gr/sw/ckjm/

20

constraint that can introduce more complexity into the

parent class. 3

Coupling

between

Objects (CBO)

CBO Is the number of other classes that a class is coupled

to. It is only applicable to object-oriented systems. For

example methods of one use methods or instance variables

of another. Since objects of the same class have the same

properties, two classes are coupled when methods declared

in one class use methods or instance variables defined by

the other class. Excessive coupling indicates weakness of

class encapsulation and may inhibit reuse. So parts that

have a high (outgoing) efferent coupling may be inversely

related to security, since they can be affected by security

problems in other parts of the system. 4

Response for a

Class (RFC)

Can be defined as set of methods that can be potential ly

executed in response to a message received by an object of

that class. So RFC is only applicable to object-oriented

systems. If a large number of methods can be invoked in

response to a message, then the testing and debugging of the

3 http://www.arisa.se/compendium/node102.html#metrics:NOC viewed at: 10 dec. 2014

4 http://www.arisa.se/compendium/node105.html#metric:CBO viewed at: 10 dec. 2014

http://www.arisa.se/compendium/node102.html%23metrics:NOC
http://www.arisa.se/compendium/node105.html%23metric:CBO

21

class becomes more complicated since it requires a greater

level of understanding required on the part of the tester. 5

Lines of code

(LOC)

Lines of code simply counts the lines of source code (line

break characters) of a certain software entity, it is simple

yet powerful to assess the complexity of software methods

and enti ties, it is cri tical to use it in generated codes since

it may lack of line breaks because it is depending on code

conventions and format.

 Addit ionally i t can only be measured in the source

code itself from the front-end and is therefore a front-end

side metric, currently only the Eclipse Java Front-end

supports this as well as the UML Front-end can of course

not calculate this metric, since there is no source code in

UML.

 LOC to security requires to be able to locate the parts

of a system responsible for security. The size of these parts

might refer to higher security. Security might be increased

with increasing LOC. 6

5 http://www.arisa.se/compendium/node98.html#metric : RFC viewed at: 10 dec. 2014

6 http://www.arisa.se/compendium/node91.html#metric:LOC viewed at: 10 dec. 2014

http://www.arisa.se/compendium/node98.html%23metric%20:%20RFC
http://www.arisa.se/compendium/node91.html%23metric:LOC

22

3.3 Static Analysis Tools

The process of detecting the errors in the source code without any process of

execution for it, is known as the “static analysis”, (Al Mamun, M. et al. 2010). Today, the

analysis tools that used to detect the errors in the software have become a common topic

according to the researchers. However, the available information about the value and

accuracy of the experimental estimation for these tools are little. The present analysis

conducted via many open source and commercial tools. The price of the commercial tools

is extremely expensive compared to the research and open source tools, and it requires a

license, which prevents the researcher of any evaluative and experimental data (Ayewah,

N., et al. 2007). In order, to achieve the goal of detecting different bugs which impact on

the integrity, the researcher in this study explored three techniques of the static analysis;

VCG, FindGugs, and Jtest.

There exist different cases of error detection using static analysis. One of them is

within the execution code review for a new module. In these cases, the developers will be

concerned with reviewing the warnings in the code, and will want to correct the misleading

and confusing code. Another case is through looking for errors in a big code. In this case, in

the changing the code process the threshold is high responding to any warning, (Ayewah,

N., et al.2007).

23

3.3.1 Find Bugs (V3.0) Tool

FindBugs is an open source static analysis tool that analyzes finds potential

problems in Java class files to detect occurrences of bug patterns, (Ayewah, N., et al. 2007).

The analysis tool reports nearly 300 different bug patterns (Ayewah, N., et al.

2007). These patterns are defined in plug-in architecture in which users can select the

patterns they want to analyze the source; the patterns are categorized as follows:

Table 3.2: patterns

Malicious code vulnerability Code that can be maliciously altered by other code.

Dodgy Code that can lead to errors.

Bad practice Code that violates the recommended coding practices.

Correctness Code that might give different results than the developer

intended.

Internationalization Code that can inhibit the use of international characters.

Performance Code that could be written differently to improve

performance.

Security Code that can cause possible security problems.

Multithreaded correctness Code that could cause problems in multi-threaded

environment.

Experimental Code that could miss cleanup of steams, database objects,

or other objects that require cleanup operation.

Figure3.2 shows the result of using Findbugs tool; the description can be found in

Appendix A. As shown in figure 3.2 the bug type is “E1_EXPOSE_REP” so via “Appendix

A” it’s clear that the bug catagory is “MALUIOUS_CODE”.

24

Figure 3.5: FindBugs Tool result

Figure 3.3:VCG Tool result

3.3.2 Visual Code Grepper Tool

VCG is a tool that used for reviewing the automated code security for PHP, PL/SQL,

C++, VB, C#, and Java, which are proposed to significantly speed up the process of

reviewing the code via determination insecure and bad code. Figure 3.3 displays the result

of using VCG, the description of them can be found in Appendix A. It's clear from the

figure that the bug type is “SQL Injection”.

25

Shown in Figure (3.4) example, explain bugs, The following Java servlet code, used to

perform a login function, illustrates the vulnerability by accepting user input without

performing adequate input validation or escaping meta-characters:

conn = pool.getConnection();

String sql = "select * from user where username='" + username +"' and password='" +
password + "'";

stmt = conn.createStatement();

rs = stmt.executeQuery(sql);

if (rs.next()) {

loggedIn = true;

 out.println("Successfully logged in");

} else {

 out.println("Username and/or password not recognized");

}

Figure 3.4:Example SQL Injection Bugs 7

3.3.3 Parasoft Jtest (V9.5) Tools

Parasoft Jtest is a comprehensive Java testing product for development teams

building Java EE, SOA, Web, and other Java applications. For Java development teams

building SOA, Web services, or Web applications, Jtest works with Parasoft SOA test and

Parasoft Web King to provide a comprehensive, integrated testing solution. The purpose of

jtest is to help in increasing the using Java software's reliability while dramatically reducing

7 https://www.owasp.org/index.php/Preventing_SQL_Injection_in_Java#Example_of_SQL_injection :
viewed at: 25 feb. 2015

https://www.owasp.org/index.php/Preventing_SQL_Injection_in_Java%23Example_of_SQL_injection
https://www.owasp.org/index.php/Preventing_SQL_Injection_in_Java%23Example_of_SQL_injection
https://www.owasp.org/index.php/Preventing_SQL_Injection_in_Java%23Example_of_SQL_injection

26

Figure 3.5:Jtest Tool Result

the amount of time that spend in testing. (Momotaz, S. 2010), Jtest automatically performs

the following:

• White-box testing, Black-box testing, and Regression testing, and Static analysis

(coding standard enforcement) of Java code.

Figure3.4 shows the result of using Jtest tool with the description as the description can

be found in Appendix A, as shown in figure 3.4 the bug type is “Avoid string literals except

in constant declarations and calls to System.out or System.err's 'print' or 'println' methods

[SECURITY.WSC.SL-4]” so by using the “Appendix A in page (138)” this bug find in line

“446”.

shown in Figure (3.6) example explain bugs:

Figure 3.6: :Example SECURITY.WSC.SL-4 Bugs

public class SL {

 public static void main(String args[]) {

 String msg= "Welcome to Hello World!"; //VIOLATION

 System.out.println(msg);

 }}

27

3.3.4 Integrity

There are three main properties that concern the systems of information

security; availability, integri ty, and confidentiality. These characteristics

represent the main concerns in the military and commercial industry.

Historically, the privacy has obtained more attention because of its

importance for the army. The main goal of the army environment is to

hinder exposure of information. On the other hand, the main objective of

the systems of commercial security is guaranteed that the “integrity” of its

data is conserved from incorrect changes and unsuitable actions which can

be done by forbidden users. The importance of the “confidentiality” is

equally in the environment of commercial. But, David D. Clark and David

R. Wilson explored that the confidentiality of information is less important

than the integrity in most of the commercial systems, (Blake, S. Q. 2000).

 According to Kreitzberg (1982), he identifies integrity is the ability’s

measure of a program to perform correctly on different sets of input. Other

hand, the integrity is a measure of how a well program has been tested.

 Integrity is the extent to which the system will perform without

fai lure due to unauthorized access to the system or system information.

Thus, high system integrity implies high software integrity. Furthermore,

and in most applications, system integrity based on the software and

continued software functioning. Whereas these applications the software

survivabili ty would also affect the system integrity.

28

 The authors explored that the integrity gives an abili ty of concluding

how impervious the software, which is based on find out the weakness,

where a simple error in the program can make the application susceptible to

forbidden data access, data deletion, or data update, and the crashes for the

application makes it forbidden for “denial service attacks”, (Basili, V. R.

1993).

3.4 Software Quality Factors

 There are certain factors of the quali ty which are grouped under three

procuration concerns: adaptation, performance, and design. Thus,

procuration manager specifies the requirements of the software. As for

“Department of Defense Software Development Standard” (DOD-STD-SDS)

the format areas in includes the software performance feature, the design of

software and production, enhances the adaption of software reusability, as

well as the software quality assurance including metrics.

Addit ionally, VanSuetendael, N.el at. (1991) state that the similarity of

concerns of both areas and acquisition enables the acquisition manager in

order to identify and select easily the quality factor categories and specific

factors of interest.

29

3.6 Factor Definitions and Rating Formulas

 Quality factor definitions and factor rat ing formula for integrity is

previewed as below:

Integrity = 1 − Errors
𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 of Code

. .1

This formula quantifies user concerns for the final product. Besides,

there are three types of measurements that the formula is used:

1- Number of errors per lines of code.

2- Effort to perform an action.

3- Utilization of resources.

 The values of the rating must fall with values from 0 to 1. The

integri ty characterist ic concerns with the failures of the software security

which are because the forbidden access. The formula of the integrity is

produced from the number of the errors of the integri ty-related software

that happen within an assumed time (e.g., 51+ during operational test ing

and evaluation) and the summation of the source code’ lines,

(VanSuetendael, N. el at , 1991).

 This formula is comparable to the formula for reliability; the

variation between them is that reliabil ity is concerned with al l errors of the

software, and integrity is concerned only with the subset of errors that

impact on the integrity. For example, if three integrity-related errors per

30

10,000 lines of code happen during operational testing and evaluation, the

rat ing formula shows an integrity level of 0.9997 [1 –(3/10,000 0.9997)],

(VanSuetendael, N. el at , 1991).

 Integrity associates with metrics that measures attributes of software

that bear on the ability in order to prevent unauthorized access, whether

accidental or deliberate to the programs or data.

This thesis will take consideration of the NOC, CBO and RFC to take a look

how these metrics impact on the software Integri ty, Depending on related

work.(Khan, S. A., et al, 2012).

31

Chapter Four

Proposed Model

32

Chapter Four

Proposed Model

In this research, the researcher uses two methods; the first method is based on

defining and combining all the criteria which determine integrity bugs in software

implementation. While the second one includes, determine the integrity bugs by using static

analysis tools, calculate metrics by using CKJM tool. The final phase is to calculate the

value of integrity by using equation number 1. After that, we analyze the final results in

order to know whether the metrics have a relative relationship with integrity.

4.1 The Proposed Model (1)

This Proposd is based on combining the criteria that determine integrity bugs in

software implementation. Thus, this contains 5 phases:

A) Collect all sources of Bugs & warnings in a source code.

B) After collecting Bugs & warnings, we define and classify them into different

categories.

C) Select Bugs & warnings that have relationship with the integrity, we almost

collected 205 Bugs. The descriptions of these Bugs are indicated in appendix (A).

D) The researcher searched for the available tools that explore these Bugs. There are

three tools being used in this study, two of them are free (VCG, FindBugs), while

the third one is commercial (Jtest).

33

E) Apply these Static Analysis tools (VCG, FindBugs, Jtest) on selected software

projects.

Figure 4.1 : proposed model

Collect all source of Bugs &
warnings in a source code

Define & categorize

Select Related to Integrity
Issues

Find available software to
measure Integrity Bugs

Static Bug Analysis

34

Java Based Source Code

CKJM

Static Bugs Analysis

JTest

VCG

FindBugs

JTest_Bugs.
xml

VCG_Bugs.x
ml

FB_Busgs.x
ml

Merge Output for bugs using error
by line number

All_Bugs.xml

Calculate the supposed metrics
RFC,CBO,NOC,LOC

output.xml

Calculate integrity

Analysis

`Figure 4.2 : proposed model 2

Conclusions

35

4.2 The Proposed Model (2)

After download the projects, these programs are inserted into static analysis tools.

These tools are used to discover the Bugs that affect on the integrity at code level, a brief

explanation of these software projects will be cited in chapter Five

First step

We parsed the software project’s source files through Jtest tool (which is a

commercial tool from parasoft that is used to find errors in source code files, we used it in

order to find the bugs that affects the integrity). After analyzing the project’s source code

through Jtest tool we got the following output shown in Figure 4.3.

<weakness id="1" tool_specific_id="1">

 <name>SECURITY.WSC.INIVF</name>

 <location line="59" path="c:\\argouml\application\ArgoVersion.java"/>

 <grade probability="1.0" severity="5" tool_specific_rank="5"/>

 <output>

 <textoutput>Flag not present</textoutput>

 </output>

Figure 4.3: Jtest Results

And in the same step we parsed the software project’s source files through VCG

tools which it is a static analysis tool, in order to defect fault sin source code files. After the

analyzing process, we got the following output, shown in Figure 4.4

36

<CodeIssue>
 <Priority>2</Priority>
 <Severity>High</Severity>
 <Title>java.lang.Runtime.exec Gets Path from Variable</Title>
 <Description>The pathname used in the call appears to be loaded from a variable.

Check the code manually to ensure that malicious filenames cannot be submitted by an
attacker.</Description>

 <FileName>C:\ArgoUML-0.30.2-src\argouml\src\argouml-
app\src\org\argouml\util\osdep\StartBrowser.java</FileName>

 <Line>63</Line>
 <CodeLine>Runtime.getRuntime().exec(</CodeLine>
 <Checked>False</Checked>
 <CheckColour>LawnGreen</CheckColour>

Figure 4.4 : VCG Results

Synchronously, we parsed the software project’s source files via FindBugs, which it

is a static analysis tool. After analyzing the project’s source code via the FindBugs tool , we

got the following output, shown in Figure 4.5

<BugInstance type="EI_EXPOSE_REP2"
priority="2"
 rank="18"
abbrev="EI2"
 category="MALICIOUS_CODE">
 <Class classname="antlr.ANTLRHashString">
 <SourceLine classname="antlr.ANTLRHashString" start="23" end="106"
sourcefile="ANTLRHashString.java" sourcepath="antlr/ANTLRHashString.java"/>
 </Class>
 <Method classname="antlr.ANTLRHashString" name="setBuffer" signature="([CI)V" isStatic="false">
 <SourceLine classname="antlr.ANTLRHashString" start="98" end="101" startBytecode="0"
endBytecode="51" sourcefile="ANTLRHashString.java" sourcepath="antlr/ANTLRHashString.java"/>
 </Method>
 <Field classname="antlr.ANTLRHashString" name="buf" signature="[C" isStatic="false">
 <SourceLine classname="antlr.ANTLRHashString" sourcefile="ANTLRHashString.java"
sourcepath="antlr/ANTLRHashString.java"/>
 </Field>
 <LocalVariable name="?" register="1" pc="2" role="LOCAL_VARIABLE_UNKNOWN"/>
 <SourceLine classname="antlr.ANTLRHashString" start="98" end="98" startBytecode="2"
endBytecode="2" sourcefile="ANTLRHashString.java" sourcepath="antlr/ANTLRHashString.java"/>
 </BugInstance>

Figure 4.5: Output results tool FindBugs

37

Synchronously, we parsed the software project’s source files through CKJM tool,

this tool is used to calculate the supposed metrics in our methodology (NOC, RFC, CBO,

and LOC). The output will be as follows: figure 4.6

<class>

 <name>org.argouml.ui.PredicateMType</name>

 <noc>0</noc>

 <cbo>2</cbo>

 <rfc>11</rfc>

 <loc>92</loc>

</class>

figure 4.6: Output results tool CKJM

Second Step

Take the resulted outputs from the mentioned tools (which are in xml format from

Figure 4.3, Figure 4.4, and Figure 4.5), then we merge these outputs into a single output

file, throughout this merging process any duplicated report of an error/warning for the same

bug on the same source code file (same class/same line) will be deleted, leaving one

instance within the merged output file, the resulted output file is shown in the next figure:

figure 4.7 ,4.8 and 4.9 display the XML output after parsing.

 <severity>5</severity>

 <type>SECURITY.WSC.INIVF</type>

 <description>Flag not present</description>

 <classname>C:\Users\omar\Desktop\TestProject\ArgoUML-0.30.2-

src\argouml\src\argouml-app\src\org\argouml\application\ArgoVersion</classname>

 <sourcepath>C:\Users\omar\Desktop\TestProject\ArgoUML-0.30.2-

src\argouml\src\argouml-app\src\org\argouml\application\ArgoVersion.java</sourcepath>

38

 <line>59</line>

 <tool>JTest</tool>

 figure 2.7: Output Jtest after unified Output

<bug>

 <severity>High</severity>

 <type>java.lang.Runtime.exec Gets Path from Variable</type>

 <description>The pathname used in the call appears to be loaded from a variable. Check the

code manually to ensure that malicious filenames cannot be submitted by an attacker.</description>

 <classname>C:\Users\omar\Desktop\TestProject\ArgoUML-0.30.2-

src\argouml\src\argouml-app\src\org\argouml\util\osdep\StartBrowser</classname>

 <sourcepath>C:\Users\omar\Desktop\TestProject\ArgoUML-0.30.2-

src\argouml\src\argouml-app\src\org\argouml\util\osdep\StartBrowser.java</sourcepath>

 <line>63</line>

 <tool>VCG</tool>

 figure 4.8: Output VCG after unified Output

<severity>1</severity>

 <type>MS_SHOULD_BE_FINAL</type>

 <description>MALICIOUS_CODE</description>

 <line>78</line>

 <classname>tudresden.ocl.lib.Ocl</classname>

 <sourcefile>tudresden/ocl/lib/Ocl.java</sourcefile>

 <tool>FindBugs</tool>

 figure 4.9: Output FindBugs after unified Output

Third step

Figure 4.10 shows the output of merging of the resulted outputs from Jtest, FindBugs and

VCG and CKJM The outputs will be as follows:

39

<class>

<name>org.argouml.uml.ui.behavior.common_behavior.PropPanelLink</name>

 <noc>0</noc>

 <cbo>12</cbo>

 <rfc>20</rfc>

 <loc>93</loc>

</class>

<bug>

<severity>4</severity>

<type>SECURITY.WSC.SL</type>

<description>The String literal "button.new-pseudostate" is used</description>

<classname>C:\Users\omar\Desktop\TestProject\ArgoUML-0.30.2-src\argouml\src\argouml-

app\src\org\argouml\uml\ui\behavior\state_machines\UMLCompositeStateSubvertexList</classname>

<sourcepath>C:\Users\omar\Desktop\TestProject\ArgoUML-0.30.2-src\argouml\src\argouml-

app\src\org\argouml\uml\ui\behavior\state_machines\UMLCompositeStateSubvertexList.java</sourcepath>

<line>65</line>

<tool>JTest</tool>

</bug>

Figure4.10: Output CKJM with Error number

After that, we take (classname , Errornum, NOC, RFC, CBO, LOC) then the outputs will be

as shown in figure 4.11.

<class>

 <name>com.salesmanager.web.files.FilesController</name>

 <noc>0</noc>

 <cbo>7</cbo>

 <rfc>16</rfc>

 <loc>113</loc>

 <errorNum>10</errorNum>

</class>

Figure 4.11: Output CKJM with Integrity

40

Fourth step

We will use Figure 4.11 to calculate the effect of (NOC, RFC, CBO) metrics on

integrity throughout employ A Multiple Linear Regression (MLR) technique which is used

to get the coefficients. This technique establishes a relationship between a dependent

variable and multiple independent variables. The Multiple Regression equation is in the

following

The Multiple Linear Regression (MLR) technique was selected and used for the

software development and software testing processes., (Fedotova, O., el at. 2013)

Multiple Linear regression tries to form a relationship between two or more

interpretations variables and the response variable via appropriate linear equation to look at

the data. Each one of the values of the independent variable x is connected with a value of

the dependent variable y. The model is defined as in Eq.(2):

Y = α0 + β1X1 + β2X2 + β3X3 + ⋯⋯⋯ βnXn …….……… 2

Where:

Y: is the value of the Dependent variable (Y), what is being predicted or explained

α0: (Alpha) is the Constant or intercept.

β1: Is the Slope (Beta coefficient) for X.

X: First independent variable that is explaining the variance in Y.8

8 http://www.stat.yale.edu/Courses/1997-98/101/linmult.htm. viewed at: 10 DEC. 2014.

http://www.stat.yale.edu/Courses/1997-98/101/linmult.htm

41

Chapter Five

Evaluation and Results

42

Chapter Five

Evaluation and Results

In this chapter, we will present subject evaluation and the results that are analysis

by using the Multiple Linear Regression (MLR). Section 5.1 subject evaluation 5.2

contains of Interpretation of regression results to projects. Section 5.3 contains of

ArgoUML results. Section 5.4 contains of the Shopizer-Ecommerce project results. Section

5.5 contains of Payment4j Project results, section 5.6 limitation.

5.1 Subject Evaluation

The researcher uses three projects in the evaluation process for the results, which

are ArgUML, Payment, and Ecommerical, where the Payment and Ecommerical are project

interested in the security, and the ArgUML not interested in the the security and these

projects are open source Java programs which were downloaded via (Githut, Sourceforge)

while these two sites are considered as internet pages included sharing the open source

projects with all people, and with the capability of downloaded the needed projects. Thus,

three projects were downloaded which are explained in Table (5.1) below:

43

Table (5.1) Open source testing project

Name Version Location # of Class

ArgoUML 0.30.2
http://argouml-

downloads.tigris.org/source/browse/argo
uml-downloads/

1914

payments4j 0.0 https://github.com/CarlosZ/payments4j 194

 shopizer-ecommerce 2.0.0
https://github.com/shopizer-

ecommerce/shopizer 861

These projects were applied following the proposed model 2 which previously had

been explained in Chapter 4.

5.2 Interpretation of Regression Results

In this section we will present Interpretation of results project that used in this

thesis, (ArgoUML , Shopizer-Ecommerce , Payment4j)

5.3 ArgoUML Project

Table 5.2 : Variables Entered/Removed to ArgoUML

Variables Entered/Removedb

Model Variables Entered Variables Removed Method

1 RFC, CBO, NOC Enter

a. All requested variables entered.

b. Dependent Variable: integrity.

http://argouml-downloads.tigris.org/source/browse/argouml-downloads/
http://argouml-downloads.tigris.org/source/browse/argouml-downloads/
http://argouml-downloads.tigris.org/source/browse/argouml-downloads/
https://github.com/CarlosZ/payments4j
https://github.com/shopizer-ecommerce/shopizer
https://github.com/shopizer-ecommerce/shopizer

44

 Variables Entered :- SPSS allows you to enter variables in a regression in blocks, Hence,

you need to know which variables were entered into the current regression.

Variables Removed:- This column listed the variables that were removed from the current

regression. Usually, this column will be empty unless you did a stepwise regression.

Method:- This column tells you the method that SPSS used to run the regression. "Enter"

means that each independent variable was entered in the usual fashion. If you did a

stepwise regression, the entry in this column would tell you that.

Table 5.3 : Summary of the Model To ArgoUml project

R:- ((Pearson Correlation Coefficient)) is the correlation between the observed and

predicted values of the dependent variable.

 R-Square :- is the square root of R-Squared, this is the proportion of variance in the

dependent variable (science) which can be explained by the independent variables. This is

an overall measure of the strength of association and does not reflect the extent to which

any particular independent variable is associated with the dependent variable.

Adjusted R-square :- This is an adjustment of the R-squared.

Model Summary

Model R R Square Adjusted R Square Std. Error of the Estimate

1 .134a .018 .016 .09415

a. Predictors: (Constant), RFC, CBO, NOC

45

Std. Error of the Estimate :- This is also referred to as the root mean squared error. It is

the standard deviation of the error term and the square root of the Mean Square for the

Residuals in the ANOVA table.

Table 5.3 shows that Pearson Correlation is 0.13, which means that there is a

relationship between RFC, NOC, CBO on integrity, however, R2 is 0.018 which indicates

that 1.8% of the variation in dependent variable (integrity) can be explained by the

independent variables (RFC, NOC and CBO).

Table 5.4 : Results of ANOVA Test To ArgoUml project

ANOVAb

Model
Sum of

Squares
Df Mean Square F Sig.

1

Regression .311 3 .104 11.677 .000a

Residual 16.939 1911 .009

Total 17.249 1914

a. Predictors: (Constant), RFC, CBO, NOC

b. Dependent Variable: integrity.

Model :- SPSS allows you to specify multiple models in a single regression command.

This tells you the number of the model being reported.

 - Regression, Residual, Total - Looking at the breakdown of variance in the outcome

variable, these are the categories we will examine: Regression, Residual, and Total. The

Total variance is partitioned into the variance which can be explained by the independent

46

variables (Model) and the variance which is not explained by the independent variables

(Error).

Sum of Squares :- These are the Sum of Squares associated with the three sources of

variance, Total, Model and Residual. The Total variance is partitioned into the variance

which can be explained by the independent variables (Regression) and the variance which

is not explained by the independent variables (Residual).

df :- These are the degrees of freedom associated with the sources of variance.

 Mean Square :- These are the Mean Squares, the Sum of Squares divided by their

respective DF.

F and Sig.:- This is the F-statistic the p-value associated with it. The F-statistic is the

Mean Square (Regression) divided by the Mean Square (Residual). The p-value is

compared to some alpha level in testing the null hypothesis that all of the model

coefficients are 0.

Table 5.4 shows that Sig= 0.000 less than 5%, where the statistical relationship used is 5%,

and it means that there is a statistically significant difference between RFC, NOC, CBO

and integrity, further statistical analysis will indicate which of these independent variables

has a significant impact.

47

Table 5.5 : Individual Regression Coefficients To ArgoUml project

Coefficientsa

Model
Unstandardized Coefficients

Standardized

Coefficients T Sig.

B Std. Error Beta

1

(Constant) .943 .003 338.469 .000

NOC 8.596E-5 .000 .004 .185 .853

CBO -3.848E-6 .000 -.001 -.029 .977

RFC .002 .000 .134 5.328 .000

a. Dependent Variable: integrity

B - These are the values for the regression equation for predicting the dependent variable

from the independent variable. The regression equation is presented in many different

ways, for example:

Ypredicted = b0 + b1*x1 + b2*x2 + b3*x3 … (2)

Std. Error - These are the standaلrd errors associated with the coefficients.

Beta - These are the standardized coefficients. These are the coefficients that you would

obtain if you standardized all of the variables in the regression, including the dependent and

all of the independent variables, and ran the regression. By standardizing the variables

before running the regression, you have put all of the variables on the same scale, and you

can compare the magnitude of the coefficients to see which one has more of an effect. You

48

will also notice that the larger betas are associated with the larger t-values and lower p-

values.

t and Sig. - These are the t-statistics and their associated 2-tailed p-values used in testing

whether a given coefficient is significantly different from zero. Using an alpha of 0.05:

 The coefficient for math (0.389) is significantly different from 0 because its p-value is

0.000, which is smaller than 0.05.

According to the above mentioned table , we can suggest the following equation :

Integrity = 0.943 + 8.596E-5 NOC -3.848E-6 CBO+ 0.002 RFC

According to the above mentioned equation which is inferred from Table 5.4 , The analysis

found that RFC (from the t-values in Table 5.5 for the individual regression coefficients) is

the only metric that has a significant effect on Integrity. The remaining variables contribute

insignificantly.

5.4 Shopizer-Ecommerce Project

Table 5.6 : Variables Entered/Removed to Shopizer-Ecommerce

Variables Entered/Removedb

Model Variables Entered Variables Removed Method

1 RFC,CBO,NOC . Enter

a. All requested variables entered.

b. Dependent Variable: integrity

49

Table 5.7 : Summary of the Model To Shopizer-Ecommerce project

Model Summary

Model R R Square Adjusted R Square
Std. Error of the

Estimate

1 .021a .005 -.003 1.24428

a. Predictors: (Constant), RFC,CBO,NOC.

Table 5.7 shows that Pearson Correlation is 0.021 , which means that there is a

weak relationship between RFC, NOC, CBO on integrity, however , R2 is 0.005 which

indicates that 0.5% of the variation in dependent variable (integrity) can be explained by

the independent variables (RFC, NOC and CBO).

Table 5.8 : Results of ANOVA Test To Shopizer-Ecommerce project

ANOVAb

Model
Sum of

Squares
df Mean Square F Sig.

1

Regression .606 3 .202 .130 .942a

Residual 1328.389 858 1.548

Total 1328.995 861

a. Predictors: (Constant), RFC,CBO,NOC.

b. Dependent Variable: integrity

50

Table 5.8 shows that Sig= 0.942 more than 5% , which means that there is a no statistically

significant differences between RFC, NOC, CBO and integrity.

The above mentioned table shows that Sig= 0.942 more than 5% , which means

that there is a no statistically significant differences between RFC, NOC, CBO and

integrity and that means a no statistically significant relationship between RFC, NOC,

CBO and integrity

Table 5.9 : Individual Regression Coefficients To Shopizer-Ecommerce project

Coefficientsa

Model
Unstandardized Coefficients

Standardized

Coefficients T Sig.

B Std. Error Beta

1 (Constant) .671 .055 12.246 .000

NOC .006 .015 .015 .423 .672

CBO .001 .003 -.004 -.112 .911

RFC .001 .002 .018 .464 .643

a. Dependent Variable: integrity

According to the above mentioned table , we can suggest the following equation :

Integrity = 0.671 + 0.006 NOC + 0.001 CBO+ 0.001 RFC

According to the above mentioned equation which is inferred from Table 5.9 , The

analysis found (from the t-values in Table 5.8 for the individual regression coefficients)

that there isn’t any metric that has a significant effect on Integrity. All variables contribute

insignificantly.

51

5.5 Payment4j Project

Table 5.10 : Variables Entered/Removed to Payment4j project

Variables Entered/Removedb

Model Variables Entered Variables Removed Method

1 RFC,CBO,NOC.a . Enter

a. All requested variables entered.

b. Dependent Variable: integrity

Table 5.11 : Summary of the Model To Payment4j project

Model Summary

Model R R Square Adjusted R Square
Std. Error of the

Estimate

1 .122a .015 .000 .22804

a. Predictors: (Constant), RFC, CBO, NOC

Table 5.11 shows that Pearson Correlation is 0.0122, which means that there is a

relationship between RFC, NOC, CBO on integrity, however, R2 is 0.015 which indicates

that 1.5 % of the variation in dependent variable (integrity) can be explained by the

independent variables (RFC, NOC and CBO).

52

Table 5.12 : Results of ANOVA Test To Payment4j project

ANOVAb

Model
Sum of

Squares
df Mean Square F Sig.

1

Regression .151 3 .050 .968 .04 a

Residual 9.933 191 .052

Total 10.084 194

a. Predictors: (Constant), RFC,CBO,NOC.

b. Dependent Variable: integrity

Table 5.12 shows that Sig= 0.04 less than 5% , which means that there is a statistically

significant differences between RFC, NOC, CBO and integrity, further statistical analysis

will indicate which of these independent variables has a significant impact.

Table 5.13 : Individual Regression Coefficients To Payment4j project

Coefficientsa

Model
Unstandardized Coefficients

Standardized

Coefficients t Sig.

B Std. Error Beta

1

(Constant) .826 .021 40.153 .000

NOC .028 .028 .072 .998 .320

CBO -.001 .002 -.061 -.536 .592

RFC .001 .001 .142 1.253 .212

a. Dependent Variable: integrity

53

According to the above mentioned table , we can suggest the following equation :

Integrity = 0.826 + 0.028 NOC -0.001 CBO+ 0.001 RFC

According to the above mentioned equation which is inferred from Table 5.13 , The

analysis found that RFC (from the t-values in Table 5.13 for the individual regression

coefficients) is the only metric that has a significant effect on Integrity. The remaining

variables contribute insignificantly.

5.6 Limitations

We recognize that there are certain limitations to the results and conclusions we

have presented in this thesis, and we discuss several of them in the following paragraphs.

First, our research relies on Bugs which have already been discovered and reported. The

bugs that have not been discovered or publicly announced yet are not used in our study

even though such information might contribute to a more precise analysis.

Second, we are aware of the fact that there are many other factors that can affect on

software Integrity . Therefore, by no means, we imply that NOC,CBO, and RFC metrics

should be the sole consideration when trying to measure Integrity early in the software

lifecycle.

Third, The researcher measured the integrity of software projects written in java

language only, in addition to this we should mention that there is a lack of tools which

discover Bugs that are affecting software integrity

54

Finally, we acknowledge that one case study is not sufficient to draw a completely

general and concrete conclusions. Some conclusions drawn from studying 3 project may

not apply to other software in different domains. Nevertheless, we have substantiated our

findings, provided supportive evidence about how NOC, CBO, and RFC metrics are

related to Integrity.

55

Chapter Six

Conclusion

56

6.1 Conclusion

The definition of the software quality may be easy if it's divided into three aspects;

process quality, functional quality, and structural quality. The process quality dramatically

impacts on the value which is received to the users, sponsors, and development teams, so

that these three groups have an advantage of improving such aspect. Where, the functional

quality defined as the software that correctly does its tasks and the structural quality is

harder than the previous ones, where it includes the code maintainability, Code testability,

Code understandability, Code understandability, Code efficiency .

It is important to evaluate the quality of software through the level of after

implementation. Thus, this methodology defines criteria to determine integrity’s bugs in the

implemented software, and Calculate the integrity, then the researcher uses CK metrics to

help to evaluate the software’s quality. In this research, the researcher uses two methods;

the first method is based on defining and combining all the criteria which determine

integrity bugs in software implementation. While the second one includes determine the

integrity bugs by using static analysis tools, calculate metrics by using CKJM tool,

calculate the value of integrity by using equation number 1. After that, we analyze the final

results in order to know whether the metrics have a relative relationship with integrity.

The regression analysis showed that the independent variable RFC has a significant

effect on Integrity and NOC has insignificant effect (low effect) while CBO is the only

factor that doesn't have a significant effect on Integrity.

RFC has the most effect, then NOC to a much less degree and CBO has the lowest

effect on integrity, hence the null hypothesis is rejected and the alternative hypothesis is

accepted.

57

6.2 Future Works

Our future work will focus on the following:

The choose of (NOC, CBO, RFC) metrics based on related research . It would be

interesting to explore the relationship among other metrics, Complete the research toward

the full CIA Triangle tested, and Re-Evaluate the measured integrity on the other projects,

Commercial and with different programming languages.

58

References

- Al-Badareen, A. B., Selamat, M. H., Jabar, M. A., Din, J ., & Turaev,

S. (2011). Software Quality Models: A Comparative Study.

In Software Engineering and Computer Systems. 1(179),46-55.

- Al Mamun, M., Khanam, A., Grahn, H., & Feldt , R. (2010).

“Comparing four static analysis tools for java concurrency bugs” .

In Third Swedish Workshop on Multi-Core Computing (MCC-10) 18-

19 nevamber. university of Gothenburg. Gothenburg . swedish.

- Ayewah, N., Pugh, W., Morgenthaler, J. D., Penix, J., & Zhou, Y. (2007).

“Evaluating static analysis defect warnings on production software”. In

Proceedings of the 7th ACM SIGPLAN-SIGSOFT . workshop on Program

analysis for software tools and engineering .13-14 june. San diego. USA.

- Bansiya, J., & Davis, C. G. (2002). A hierarchical model for object-oriented design

quality assessment. Software Engineering IEEE Transactions .28(1), 4-17.

- Basili, V. R. (1993). Applying the Goal/Question/Metric paradigm in the experience

factory. Software Quality Assurance and Measurement: A Worldwide

Perspective, Journal of the National Cancer Institute. 21-44.

- Bishop, M. A. (2002). The art and science of computer security . Addison-

Wesley Longman Publishing Co. Boston: USA.

- Blake, S. Q. (2000). “The Clark-Wilson Security Model”. (Online), Available:

http://www. lib. iup. edu/comscisec/SANSpapers/blake. htm.

59

- Boehm, B. W., Brown, J. R., & Kaspar, H. (1978). Characteristics of

software quality, Amsterdam : North-Holland.

- Chandra, S., & Khan, R. A. (2009). A Methodology to Check Integrity of a Class

Hierarchy. International Journal of Recent Trends in

Engineering , 2(4), 83-85.

- Chandra, S., & Khan, R. A. (2013). An Empirical Validation of Integrity Risk

Factor Metric: An Object-Oriented Design Perspective. International Journal of

Advanced Research in Computer Science and Software Engineering, 3(8), 528-

537.

- Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object oriented

design. Software Engineering, IEEE Transactions. 20(6), 476-493.

- Chowdhury, I. (2011). Using complexity, coupling, and cohesion metrics as early

indicators of vulnerabilities. Journal of Systems Architecture , 57(3), 294-

313.

- Coupling Between Objects . (2014). (Online), Available:

http://www.arisa.se/compendium/node105.html#metric:CBO .

- David Basin, J¨urgenDoser&TorstenLodderstedt (2006): Model driven

security: From UML models to access control infrastructures . ACM

Trans. Software. Engineering Method. 15, (39–91) . (online), Available:

http: //doi.acm.org/10.1145/1125808.1125810 .

- De Castro, V., Musicante, M. A., da Costa, U. S., de Souza Neto, P. A., & Vargas-

Solar, G. (2014). Supporting Non-functional Requirements in Services Software

Development Process: An MDD Approach. In SOFSEM 2014: Theory and Practice

60

of Computer Science (199-210). Springer International Publishing.
London : UK.

- Dromey, R. G. (1995). A model for software product quality. Software

Engineering, IEEE Transactions , 21(2), 146-162.

- Fedotova, O., Teixeira, L., & Alvelos, H. (2013). Software Effort Estimation with

Multiple Linear Regression: Review and Practical Application. Journal of

Information Science and Engineering , 29(5), 925-945.

- FindBugs - find bugs in java programs.(2014). (Online), Available:

http://FindBugs.sourceforge.net/ .

- Idre, SPSS Annotated Output Regression Analysis . (2014). (Online),

Available: http://www.ats.ucla.edu/stat/spss/output/reg_spss.htm.

- James, M. (1977). Factor in software quality, NY: USA.

- Jiang, Y., Cuki, B., Menzies, T., & Bartlow, N. (2008). Comparing design and

code metrics for software quality prediction. In Proceedings of the 4th

international workshop on Predictor models in software

engineering (11-18 may).ACM. San diego. USA.

- Jureczko, M., & Spinellis, D. (2010). Using object-oriented design metrics to

predict software defects. Models and Methods of System Dependability, (69-81)

. (Online), Available: http://www.dmst.aueb.gr/dds/pubs/conf/2010-DepCoS-

RELCOMEX-ckjm-defects/html/JS10.pdf.

- Kayarvizhy, N., & Kanmani, S. (2011). An Automated Tool for Computing Object

Oriented Metrics Using XML. In Advances in Computing and

Communications (69-79). Springer Berlin Heidelberg. London: UK.

http://findbugs.sourceforge.net/
http://www.ats.ucla.edu/stat/spss/output/reg_spss.htm

61

- Khan, S. A., & Khan, R. A. (2012). Integrity quantification model for object

oriented design. ACM SIGSOFT Software Engineering Notes , 37(2), 1-3.

- Livshits, V. B., & Lam, M. S. (2005, August). Finding Security Vulnerabilities in

Java Applications with Static Analysis. (18-18). (Online), Available:

https://www.usenix.org/legacy/event/sec05/tech/full_papers/livshits/livshits_html/.

- Lines of Code . (2014). (Online), Available:

http://www.arisa.se/compendium/node91.html#metric:LOC.

- Martin, R. (1994). OO design quality metrics. An analysis of dependencies. (1-8).

(Online), Available: http://www.cin.ufpe.br/~alt/mestrado/oodmetrc.pdf.

- Microsoft "Security Threats" .(2014). (Online), Available:

http://technet.microsoft.com/en-us/library/cc723507. aspx#mainSection .

- Momotaz, S. (2010). Tool Support for Testing Java Generics,(Unpublished

doctoral dissertation), Texas Tech University. Texas: USA.

- Multiple Linear Regression . (2014) . (Online), Available:

http://www.stat.yale.edu/Courses/1997-98/101/linmult.htm .

- Number Of Children . (2014). (Online), Available:

http://www.arisa.se/compendium/node102.html#metrics:NOC .

- ParaSoft Jtest, Parasoft Corporation, (2014). (Online), Available:

http://www.testingfaqs.org/t-static.htm#Jtest .

http://www.arisa.se/compendium/node102.html%23metrics:NOC
http://www.testingfaqs.org/t-static.htm%23Jtest

62

- Paul B, Zhen R D, Jens G, Ystein H,(2007). Ina Schieferdecker& Clay

Williams Model-Driven Testing: Using the UML Testing Profile. (Online),

Available: http://dx.doi.org/10.1007/978-3-540-72563-3 .

- Preventing SQL Injection in java . (2015) . (Online), Available:

https:/ /www.owasp.org/index.php/Preventing_SQL_Injection_in_Java

#Example_of_SQL_injection.

- Response For a Class . (2014). (Online), Available:

http://www.arisa.se/compendium/node98.html#metric:RFC.

- Sattarova, F. Y., & Kim, T. H. (2007). IT security review: Privacy, protection,

access control, assurance and system security. International Journal of

Multimedia and Ubiquitous Engineering , 2(2), 17-32.

- Schieferdecker, I., Grossmann, J., & Schneider, M. (2012). Model-based security

testing. Electronic Proceedings in Theoretical Computer Science,((MBT 2012).

1-12 Cornell University. NY, USA.

- Senthil, R., Kushwaha, D. S. , & Misra, A. K. (2008). An Extended

Component Model and its evaluation for Reliability &

Quality. Journal of Object Technology ,7(7), 109-129.

- Shaik, A., Reddy, C. R. K., Manda, B., Prakashini, C., & Deepthi, K.

(2010). Metrics for object oriented design softw\re systems: a

survey. Journal of Emerging Trends in Engineering and Applied

Sciences , 1(2), 190-198.

- Singer, J., Marion, S., Brown, G., Jones, R., Luján, M., Ryder, C., & Watson, I.

(2008). an information theoretic evaluation of software metrics for object lifetime

http://dx.doi.org/10.1007/978-3-540-72563-3

63

prediction. in 2nd workshop on statistical and machine learning approaches

to ARchitectures and compilaTion (SMART'08). (Online), Available:

https:/ /kar.kent.ac.uk/23960/1/InfoRider.pdf

- Software Quality Characteristics . (2014). (Online), Available:

 http://www.sqa.net/ iso9126.html.

- Spathoulas,(2014) . Assessing Tools for Finding Bugs in Concurrent

Java . (Online), Available:

 http://homepages.inf.ed.ac.uk/dts/students/spathoulas/spathoulas.pdf.

- Spinellis, D.: CKJM—Chidamber and Kemerer Java metrics. (2005) (Online),

Available: http://www.spinellis.gr/sw/CKJM /.

- VanSuetendael, N., & Elwell, D. (1991). Software Quality Metrics .

Computer Recourse Management INC Pleasantville, NJ: USA.

- VisualCodeGrepper,sourceforge . (2014).(Online), Available :

http://sourceforge.net/projects/visualcodegrepp/files/ .

- Visibleimpact, (2014):) .(Online), Available :

 .http://www.visibleimpact.com/docs/Parasoft-CiscoCaseStudy .

http://www.sqa.net/iso9126.html
http://sourceforge.net/projects/visualcodegrepp/files/

64

Appendix

65

Appendix(A)

Criteria of defining Integrity Bugs:

In this chapter we will define the criteria in which in depend to find and integrity

error . as main in the related work of khan the selection of the criteria of his algorithm was

manual . In the following table we description the calculated in relevant bugs define the

description in an implemented source code and how this bugs are relevant to Integrity

issues as define in the chapter 3 section in addition to the available tools . more details on

how to find the bugs allowing with related reference were moved to appendix () for please

refers for their model.

N
um

be
r Integrity

Relevant
Bugs

Description Relevance Reference

1.

Prevent
security

vulnerability
(custom rule)

This is a template rule that, if
customized, will look for places in code
where possibly tainted data (as defined
by the rule parameters) is used without
first being checked for benignity and
validated before being used.

category: Input-Based Attacks
In general, in order to prevent application security
flaws, any data passed into dangerous methods
should be checked for benignity and validated
before being used. If this requirement is not met,
then a malicious user can potentially use such
flaws for various malicious actions (for example,
actions that allow him to gain control of a
database or of resources from the system the
application is running on).

N/A

2.
Prevent

exposure of
sensitive data

This rule detects cases when sensitive
internal data is made available to the
end-user. This makes the application less
secure because the attacker may obtain
program information that allows him to
construct a request that breaks the
normal program flow and/or provides
him with higher access privileges than he
should have.
Sources of sensitive data:
* toString(): Often toString() is
implemented to display information
internal to the object.
This should not be made available to the
end-user.

* Reflection: Information about the
internal structure of the program should
be hidden from the user since it may

category: Exposing Sensitive Data

1. Enforces 'A6 - Information Leakage and
Improper Error Handling', #6 from the OWASP
Top 10 2007 list.

Sensitive information leakage may be a critical
problem for applications that need to be secure.
Many security attacks occur as a result of an
attacker gaining insight into the structure of an
application, then using this insight to devise input
data that makes the application behave in an
abnormal way and ends up granting the attacker
higher access privileges than he should have.
Thus, for security critical applications, it's
important to keep information about the
program's internal structure hidden-- so that
potential attackers cannot access it. In particular,
exceptions, stack traces, method and class names

OWASP Top 10 2007 (A6 -
Information Leakage and

Improper Error Handling):
http://www.owasp.org/inde

x.php/Top_10_2007

Web Application Security
Consortium:

http://www.webappsec.org/
projects/threat/classes/infor

mation_leakage.shtml

PCI DSS Standard:
https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

Common Weakness
Enumeration:

http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.webappsec.org/projects/threat/classes/information_leakage.shtml
http://www.webappsec.org/projects/threat/classes/information_leakage.shtml
http://www.webappsec.org/projects/threat/classes/information_leakage.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml

66

be used to guide attacks. Objects of the
following classes are considered
sensitive:

* java.lang.Class
* java.reflect.AccessibleObject
* java.lang.reflect.Field
* java.lang.reflect.Method
* java.lang.reflect.Constructor

* Exceptions: Thrown exceptions should
be hidden from the user.
Any instance of java.lang.Throwable is
sensitive.

* Environment: Environment variables
may contain information which should
be hidden
from the normal user of the system.

* System Properties

The rule checks that sensitive data do not
leak throw the following means of
output/UI:

* AWT
* Swing
* SWT
* JFace
* Servlets
* Apache ECS

should never be made available to the end user.

2. This rule helps to enforce the PCI DSS
(Payment Card Industry Data Security Standard)
Requirement #3: "Protect stored cardholder data"
and Requirement #6: "Develop and
maintain secure systems and applications".

http://cwe.mitre.org/data/de
finitions/209.html

http://cwe.mitre.org/data/de
finitions/497.html

3.

Protect
against

Command
injection

This rule detects cases when data coming
directly from the end-user can influence
the code which is executed (for example,
to form the name of the file to be
executed). This rule triggers when
tainted data are passed to the following
methods:
java.lang.Runtime
* exec(String)
* exec(String, String[])
* exec(String, String[], File)
* exec(String[])
* exec(String[], String[])
* exec(String[], String[], File)

Data from the following data sources are
considered tainted:
* Parameters of remote methods and
entry point methods
* Native methods
* Non-validating Struts forms
* Network

Additional sources of tainted data can be
defined by parameterizing the rule. For
details, see the PARAMETERS section.

category: Input-Based Attacks
1. Enforces 'A1-Injection', #1 from the OWASP
Top 10 2013 list.

If some tainted data will appear in an executed
file name without verification,
it may allow the execution of custom malicious
code which could damage the system.

2. This rule helps to enforce the PCI DSS
(Payment Card Industry Data Security
Standard) Requirement #6: "Develop and
maintain secure systems and applications".
Specifically, this rule tests for Issue 6.5.6:
"Injection flaws".

OWASP Top 10 2013 (A1-
Injection):

https://www.owasp.org/ind
ex.php/Top_10_2013-

Top_10

Web Application Security
Consortium:

http://www.webappsec.org/
projects/threat/classes/os_c

ommanding.shtml

PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

Cigital Java Security
Rulepack # 58:

http://www.cigital.com/sec
uritypack/view/index.html

CWE-78: Improper

Neutralization of Special
Elements used in an OS

Command ('OS Command
Injection')

http://cwe.mitre.org/data/de
finitions/78.html

4.
Protect
against
Jakarta

This rule detects cases when data coming
directly from the end-user is used in a
Jakarta Digester query or evaluation.

category: Input-Based Attacks
Enforces 'A1-Injection', #1 from the OWASP Top
10 2013 list.

OWASP Top 10 2013 (A1-
Injection):

https://www.owasp.org/ind

http://cwe.mitre.org/data/definitions/209.html
http://cwe.mitre.org/data/definitions/209.html
http://cwe.mitre.org/data/definitions/497.html
http://cwe.mitre.org/data/definitions/497.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.webappsec.org/projects/threat/classes/os_commanding.shtml
http://www.webappsec.org/projects/threat/classes/os_commanding.shtml
http://www.webappsec.org/projects/threat/classes/os_commanding.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/78.html
https://www.owasp.org/index.php/Top_10_2013-Top_10

67

Digester
injection

This may result in exposure of
confidential data and execution of
dangerous methods. This rule triggers
when tainted data is passed to the
following methods:
org.apache.commons.digester.Rules
* add(String, Rule)
* match(String, String)
* setNamespaceURI(String)

org.apache.commons.digester.Rule
* setNamespaceURI(String)

org.apache.commons.digester.RegexMat
cher
* match(String, String)

org.apache.commons.digester.Substitutor
* substitute(String)

org.apache.commons.digester.SimpleRe
gexMatcher
* match(String, String)

org.apache.commons.digester.Digester
* addBeanPropertySetter(String)
* findNamespaceURI(String)
* getFeature(String)
* getProperty(String)
* parse(String)
* peek(String)
* pop(String)
* push(String)
* pushParams(String)
* register(String, String)
* resolveEntity(String, String)
* setProperty(String, Object)
* setPublicId(String)
* setRuleNamespaceURI(String)
* setSchema(String)
* setSchemaLanguage(String)

Rules constructors
*
org.apache.commons.digester.BeanPrope
rtySetterRule
*
org.apache.commons.digester.CallMetho
dRule
*
org.apache.commons.digester.CallParam
Rule
*
org.apache.commons.digester.FactoryCr
eateRule
*
org.apache.commons.digester.ObjectCre
ateRule
*
org.apache.commons.digester.ObjectPar
amRule
*
org.apache.commons.digester.PathCallP
aramRule
*
org.apache.commons.digester.SetNested
PropertiesRule
*

The Digester component provides a common
implementation for reading XML configuration
files to provide initialization of various Java
objects within the system. Basically, the Digester
package lets you configure an XML -> Java
object mapping module, which triggers certain
actions (called rules) whenever a particular
pattern of nested XML elements is recognized. A
rich set of predefined rules is available for your
use, or you can also create your own rules.

Rule constructors, matchers and properties-setting
methods here are very sensitive to tainted data
because they can lead to real object creation or
system properties modification. Only checked
data should reach the Digester component.

2. This rule helps to enforce the PCI DSS
(Payment Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications". Specifically, this rule
tests for Issue 6.5.6: "Injection flaws".

ex.php/Top_10_2013-
Top_10

PCI Data Security

Standard:
https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml

68

org.apache.commons.digester.SetNextRu
le
*
org.apache.commons.digester.SetPropert
iesRule
*
org.apache.commons.digester.SetPropert
yRule
*
org.apache.commons.digester.SetRootRu
le
*
org.apache.commons.digester.SetTopRul
e

Data from the following data sources are
considered tainted:
* Parameters of remote methods and
entry point methods
* Native methods
* Non-validating Struts forms
* Network
Additional sources of tainted data can be
defined by parameterizing the rule. For
details, see the PARAMETERS section.

5.

Protect
against

Environment
injection

This rule detects cases when data coming
directly from the end-user is used
unchecked to define system properties.
This rule triggers when tainted data is
passed to the following methods:
java.lang.System
* String setProperty(String, String)
* void setProperties(Properties)

Data from the following data sources are
considered tainted:
* Parameters of remote methods and
entry point methods
* Native methods
* Non-validating Struts forms
* Network

Additional sources of tainted data can be
defined by parameterizing the rule. For
details, see the PARAMETERS section.

category: Input-Based Attacks
If unverified data reaches system properties, it
could allow attackers to damage the system. This
rule helps to enforce the PCI DSS (Payment Card
Industry Data Security Standard) Requirement #6:
"Develop and maintain secure systems and
applications". Specifically, this rule tests for
Issue 6.5.6: "Injection flaws".

PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

Common Weakness
Enumeration:

http://cwe.mitre.org/data/de
finitions/78.html

6.

Protect
against File

contents
injection

This rule detects cases when data coming
directly from the end-user is put into a
file without being checked. This rule
triggers when tainted data is passed to
the following methods:

* FileOutputStream.write(...)
* FileWriter.write(...)
* File.write(...)

Data from the following data sources are
considered tainted:
* Parameters of remote methods and
entry point methods
* Native methods
* Non-validating Struts forms
* Network

Additional sources of tainted data can be
defined by parameterizing the rule. For

category: Input-Based Attacks

Data that is written to a file can be used to form
other requests (such as SQL or XML or XPath
etc.). Consequently, an attacker can provide
malicious data as file contents which can lead to
executing dangerous requests and/or revealing
information that was intended to be
private/secure.

This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security
Standard) Requirement #6: "Develop and
maintain secure systems and applications".
Specifically, this rule tests for Issue 6.5.6:
"Injection flaws".

PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/78.html
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml

69

details, see the PARAMETERS section.

7.

Protect
against File

names
injection

This rule detects cases when data coming
directly from the end-user is used to
form the name of a file, which is then
accessed. This rule triggers when tainted
data is passed to the following methods:

* File.File(...)
* FileInputStream.FileInputStream(...)
*
FileOutputStream.FileOutputStream(...)
* FileReader.FileReader(...)
* FileWriter.FileWriter(...)
* Paths.get(...)
* FileSystem.getPath(...)
* Formatter.Formatter(...)
* ZipFile.ZipFile(...)
* JarFile.JarFile(...)
*
javax.activation.FileDataSource.FileData
Source(...)
*
javax.xml.parsers.DocumentBuilder.pars
e(...)
*
javax.servlet.ServletContext.getRequest
Dispatcher(...)
*
javax.servlet.ServletContext.getResource
*(...)
* org.jaxen.Navigator.getDocument(...)

Data from the following data sources are
considered tainted:
* Parameters of remote methods and
entry point methods
* Native methods
* Non-validating Struts forms
* Network

Additional sources of tainted data can be
defined by parameterizing the rule. For
details, see the PARAMETERS section.

category: Input-Based Attacks

If unverified data appears in file names, then an
attacker could potentially gain access to any file
on the system by providing specially-prepared
malicious data. Enforcing this rule will help to
protect against:

- the OWASP 2007 Top 10 application
vulnerability "A3 - Malicious File Execution"

- the path traversal vulnerability, which is part of
CWE 2010 Top 25 list
(CWE-22: Improper Limitation of a Pathname to
a Restricted Directory ('Path Traversal'))

This rule also helps to enforce the PCI DSS
(Payment Card Industry Data Security
Standard) Requirement #6: "Develop and
maintain secure systems and applications."
Specifically, this rule tests for Issue 6.5.6:
"Injection flaws."

OWASP Top 10 2007 (A3 -
Malicious File Execution):
http://www.owasp.org/inde

x.php/Top_10_2007-A3

CWE-22: Improper
Limitation of a Pathname to

a Restricted Directory
('Path Traversal')

http://cwe.mitre.org/data/de
finitions/22.html

CWE-73: External Control

of File Name or Path
http://cwe.mitre.org/data/de

finitions/73.html

PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

8.

Protect
against
JXPath

injection

This rule detects cases when data coming
directly from the end-user is used in an
XML query formed by JXpath (Jakarta
XPath realization), which may result in
exposure of confidential data. This rule
triggers when tainted data is passed to
the following methods:

org.apache.commons.jxpath.CompiledEx
pression
* setValue(JXPathContext, Object)

org.apache.commons.jxpath.Container
* setValue(Object)

org.apache.commons.jxpath.DynamicPro
pertyHandler
* getProperty(Object, String)

org.apache.commons.jxpath.Function
* invoke(ExpressionContext, Object)

category: Input-Based Attacks

Enforces 'A1-Injection', #1 from the OWASP Top
10 2013 list. The org.apache.commons.jxpath
package defines a simple interpreter of an
expression language called XPath. JXPath applies
XPath expressions to graphs of objects of all
kinds: JavaBeans, Maps, Servlet contexts, DOM
etc. (including mixtures thereof).

Consider this example:

Address address =
(Address)JXPathContext.newContext(vendor).
getValue("locations[address/zipCode='90210']/ad
dress");
This XPath expression is equivalent to the
following Java code:

Address address = null;
Collection locations = vendor.getLocations();

OWASP Top 10 2013 (A1-
Injection):

https://www.owasp.org/ind
ex.php/Top_10_2013-

Top_10

PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

CWE-643: Improper
Neutralization of Data

within XPath Expressions
('XPath Injection')

https://cwe.mitre.org/data/d
efinitions/643.html

http://www.owasp.org/index.php/Top_10_2007-A3
http://www.owasp.org/index.php/Top_10_2007-A3
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/73.html
http://cwe.mitre.org/data/definitions/73.html
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://cwe.mitre.org/data/definitions/643.html
https://cwe.mitre.org/data/definitions/643.html

70

org.apache.commons.jxpath.Functions
* getFunction(String, String, Object[])

org.apache.commons.jxpath.IdentityMan
ager
* getPointerByID(JXPathContext,
String)

org.apache.commons.jxpath.JXPathBean
Info
* getPropertyDescriptor(String)

org.apache.commons.jxpath.KeyManage
r
* getPointerByKey(JXPathContext,
String, String)

org.apache.commons.jxpath.Variables
* declareVariable(String, Object)
* undeclareVariable(String)
* getVariable(String)

org.apache.commons.jxpath.JXPathCont
ext
* compile(String)
* createPath(String)
* createPathAndSetValue(String,
Object)
* getNamespaceURI(String)
* getPointer(String)
* getPointerByID(String)
* getPointerByKey(String)
* getValue(String)
* iterate(String)
* iteratePointers(String)
* newContext(String)
* registerNamespace(String, String)
* removeAll(String)
* removePath(String)
* selectNodes(String)
* selectSingleNode(String)
* setValue(String, Object)

org.apache.commons.jxpath.MapDynami
cPropertyHandler
* getProperty(Object, String)
* getPropertyNames(Object)
* setProperty(Object, String, Object)

org.apache.commons.jxpath.PackageFun
ctions
* getFunction(String, String, Object[])

org.apache.commons.jxpath.ri.Namespac
eResolver
* getNamespaceURI(String)
* getPrefix(String)
* registerNamespace(String, String)

org.apache.commons.jxpath.ri.Parser
* parseExpression(String, Compiler)

org.apache.commons.jxpath.ri.Compuler
* all methods

Data from the following data sources are
considered tainted:
* Parameters of remote methods and

Iterator it = locations.iterator();
while (it.hasNext()){
Location location = (Location)it.next();
String zipCode =
location.getAddress().getZipCode();
if (zipCode.equals("90210")){
address = location.getAddress();
break;
}
}
If an application uses run-time JXPath query
construction, embedding unsafe user input into
the query, it may be possible for the attacker to
inject data into the query so that the newly-
formed query will be parsed in a way that the
programmer did not intend. Consequently, it is
important to prevent potentially tainted data from
reaching JXPath methods that can be used for
creating/modifying objects or modifying any
properties.

This rule also helps to enforce the PCI DSS
(Payment Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications". Specifically, this rule
tests for Issue 6.5.6: "Injection flaws".

71

entry point methods
* Native methods
* Non-validating Struts forms
* Network

Additional sources of tainted data can be
defined by parameterizing the rule.
For details, see the PARAMETERS
section.

9.
Protect

against LDAP
injection

This rule detects cases of probable
LDAP injection when possibly tainted
data reaches methods that execute LDAP
queries. When an application uses data
provided by the user or by some
unverified data source to construct
LDAP search queries and does not
verify/validate such data before its use, it
is possible for an attacker to alter the
construction of the LDAP statements in a
way that the developer did not intend.
This can cause serious security problems
where the permissions grant the rights to
query, modify, or remove anything
inside the LDAP tree. This rule triggers
when tainted data is passed to the
following 'dangerous' methods:

javax.naming.directory.DirContext
* search(String name, String filter,
SearchControls cons)
* search(Name name, String filter,
SearchControls cons)

Dangerous parameter is 'filter'.

Data from the following data sources are
considered tainted:
* Parameters of remote methods and
entry point methods
* Native methods
* Non-validating Struts forms
* Network

Additional sources of tainted data can be
defined by parameterizing the rule. For
details, see the PARAMETERS section.

category: Input-Based Attacks

Enforces 'A1-Injection', #1 from the OWASP Top
10 2013 list.
If data can appear in an LDAP query without
having been previously validated, it may allow
a malicious user to take control of the database.
This rule also helps to enforce the PCI DSS
(Payment Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications". Specifically, this rule
tests for Issue 6.5.6: "Injection flaws".

OWASP Top 10 2013 (A1-
Injection):

https://www.owasp.org/ind
ex.php/Top_10_2013-

Top_10

Understanding LDAP:
http://www.redbooks.ibm.c
om/redbooks/SG244986.ht

ml

Introduction to LDAP
Security:

http://www.severus.org/sac
ha/docperso/intro_to_ldap_t

isc.htm

Web Application Security
Consortium:

http://www.webappsec.org/
projects/threat/classes/ldap_

injection.shtml

RFC 1960 - A String
Representation of LDAP

Search Filters:
http://www.ietf.org/rfc/rfc1

960.txt

PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

CWE-90: Improper
Neutralization of Special

Elements used in an LDAP
Query ('LDAP Injection')

http://cwe.mitre.org/data/de
finitions/90.html

10.
Protect
against
Library

injection

This rule detects cases when data coming
directly from the end-user is used to
form the name of the library which is
loaded. This rule triggers when tainted
data is passed to the following methods:

java.lang.System
* void load(String)
* void loadLibrary(String)

java.lang.Runtime
* void load(String)
* void loadLibrary(String)

Data from the following data sources are

category: Input-Based Attacks

If tainted data appears in the loading library name
without verification,
it may permit execution of custom malicious code
which could damage the system.

Enforcing this rule will help to protect against the
OWASP 2007 Top 10 application vulnerability
"A3 - Malicious File Execution". This rule also
helps to enforce the PCI DSS (Payment Card
Industry Data Security Standard) Requirement #6:
"Develop and maintain secure systems and
applications". Specifically, this rule tests for Issue
6.5.6: "Injection flaws".

OWASP Top 10 2007 (A3 -
Malicious File Execution):
http://www.owasp.org/inde

x.php/Top_10_2007-A3

PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

CWE-114: Process Control
http://cwe.mitre.org/data/de

finitions/114.html

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.redbooks.ibm.com/redbooks/SG244986.html
http://www.redbooks.ibm.com/redbooks/SG244986.html
http://www.redbooks.ibm.com/redbooks/SG244986.html
http://www.severus.org/sacha/docperso/intro_to_ldap_tisc.htm
http://www.severus.org/sacha/docperso/intro_to_ldap_tisc.htm
http://www.severus.org/sacha/docperso/intro_to_ldap_tisc.htm
http://www.webappsec.org/projects/threat/classes/ldap_injection.shtml
http://www.webappsec.org/projects/threat/classes/ldap_injection.shtml
http://www.webappsec.org/projects/threat/classes/ldap_injection.shtml
http://www.ietf.org/rfc/rfc1960.txt
http://www.ietf.org/rfc/rfc1960.txt
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/90.html
http://cwe.mitre.org/data/definitions/90.html
http://www.owasp.org/index.php/Top_10_2007-A3
http://www.owasp.org/index.php/Top_10_2007-A3
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/114.html
http://cwe.mitre.org/data/definitions/114.html

72

considered tainted:
* Parameters of remote methods and
entry point methods
* Native methods
* Non-validating Struts forms
* Network

Additional sources of tainted data can be
defined by parameterizing the rule.
For details, see the PARAMETERS
section.

11.
Protect

against log
forging

This rule detects cases of log forging
when possibly tainted data is written to
the log. Depending on the nature of the
application, the log may be reviewed
manually or with a tool that
automatically culls the logs for important
events or trending information. Tainted
data written to the log without proper
validation may change the log format,
break the automated log parser, or cover
an attacker's tracks.

This rule supports the following logging
APIs:
* log4j (http://logging.apache.org/log4j/)
* logback (http://logback.qos.ch/)
* SLF4J (http://www.slf4j.org/)
* java.util.logging
(http://download.oracle.com/javase/7/do
cs/api/)
* Commons Logging
(http://commons.apache.org/logging/)

Data from the following data sources are
considered tainted:
* Parameters of remote methods and
entry point methods
* Native methods
* Non-validating Struts forms
* Network

Additional sources of tainted data can be
defined by parameterizing the rule.
For details, see the PARAMETERS
section.

category: Input-Based Attacks

Writing tainted user data to a log can allow an
attacker to forge log entries or inject malicious
content into the logs. Enforcing this rule will help
protect against the OWASP 2013 Top 10
application vulnerability "A1-Injection".

This rule also helps enforce the PCI DSS
(Payment Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications". Specifically, this rule
tests for Issue 6.5.1: "Injection flaws".

OWASP Top 10 2013-A1-
Injection:

https://www.owasp.org/ind
ex.php/Top_10_2013-

Top_10

PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

CWE-117: Improper
Output Neutralization for

Logs
http://cwe.mitre.org/data/de

finitions/117.html

12.

Protect
against
network
resource
injection

This rule detects cases of probable
network resource injection. It reports a
violation when possibly tainted data that
represents a network resource property
(such as host name, IP-address, port
number, path or query string) is passed
as a parameter to a method that can
allocate a resource directly or can create
a resource descriptor (like URL or URI)
that is to be used for the allocation.

When an application permits user input
(or input from an unverified data source)
to define a resource used by the
application, and does not validate such
data before its use, this data can be
manipulated to execute or access
different resources. This rule triggers
when tainted data is passed to the

category: Input-Based Attacks

If an unvalidated resource property can be used
by an application, the attacker can gain direct
access to the resources of the system that the
application is running on (see EXAMPLE
section), or force the application to execute other
remote resources-- thus changing the behavior of
the application in a way that the developer did not
intend. Enforcing this rule will help to protect
against the OWASP 2007 Top 10 application
vulnerability "A3 - Malicious File Execution".

This rule also helps to enforce the PCI DSS
(Payment Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications". Specifically, this rule
tests for Issue 6.5.6: "Injection flaws".

http://www.owasp.org/inde
x.php/Resource_Injection

OWASP Top 10 2007 (A3 -
Malicious File Execution):
http://www.owasp.org/inde

x.php/Top_10_2007-A3

PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

Common Weakness
Enumeration:

http://cwe.mitre.org/data/de
finitions/601.html

http://logging.apache.org/log4j/)
http://logback.qos.ch/)
http://www.slf4j.org/)
http://download.oracle.com/javase/7/docs/api/)
http://download.oracle.com/javase/7/docs/api/)
http://download.oracle.com/javase/7/docs/api/)
http://commons.apache.org/logging/)
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/117.html
http://cwe.mitre.org/data/definitions/117.html
http://www.owasp.org/index.php/Resource_Injection
http://www.owasp.org/index.php/Resource_Injection
http://www.owasp.org/index.php/Top_10_2007-A3
http://www.owasp.org/index.php/Top_10_2007-A3
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/601.html
http://cwe.mitre.org/data/definitions/601.html

73

following 'dangerous' methods:

java.net.DatagramPacket
* setPort(int port)
* constructor(s) that accept port number

java.net.DatagramSocket
* connect(InetAddress address, int port)
* constructor(s) that accept port number

java.net.DatagramSocketImpl
* connect(InetAddress address, int port)
* bind(int port, InetAddress addr)

java.net.InetSocketAddress
* createUnresolved(String host, int port)
* constructor(s) that accept port number

java.net.MulticastSocket
* constructor(s) that accept port number

java.net.ServerSocket
* constructor(s) that accept port number

java.net.Socket
* constructor(s) that accept port number

java.net.SocketImpl
* connect(String host, int port)
* connect(InetAddress address, int port)
* bind(InetAddress host, int port)

java.net.URI
* resolve(String str)
* create(String str)
* constructor(s) that accept port number

java.net.URL
* constructor(s) that accept port number

java.net.URLStreamHandler
* setURL(URL u, String protocol, String
host, int port, String authority,
String userInfo, String path, String
query, String ref)
* parseURL(URL u, String spec, int
start, int limit)

java.net.InetAddress
* getAllByName(String host)
* getByAddress(String host, byte[] addr)
* getByAddress(byte[] addr)
* getByName(String host)

java.net.NetworkInterface
* getByName(String name)

java.rmi.activation.Activatable
* all exportObject(...) methods that
accept port number
* constructor(s) that accept port number

java.rmi.registry.LocateRegistry
* all getRegistry(...) methods that accept
port number
* all createRegistry(...) methods that
accept port number

74

java.rmi.server.RMIClientSocketFactory
* createSocket(String host, int port)

java.rmi.server.RMIServerSocketFactory
* createServerSocket(int port)

java.util.logging.SocketHandler
* constructor(s) that accept port number

javax.net.ServerSocketFactory
* all createServerSocket(...) methods that
accept port number

javax.net.SocketFactory
* all createSocket(...) methods that
accept port number

javax.net.ssl.SSLSocket
* constructor(s) that accept port number

javax.net.ssl.SSLServerSocket
* constructor(s) that accept port number

Data from the following data sources are
considered tainted:
* Parameters of remote methods and
entry point methods
* Native methods
* Non-validating Struts forms
* Network

Additional sources of tainted data can be
defined by parameterizing the rule. For
details, see the PARAMETERS section.

13.
Protect

against HTTP
response
splitting

This rule detects cases of probable HTTP
response splitting vulnerabilities. This
rule triggers when tainted data is passed
to the following methods:

javax.servlet.http.HttpServletResponse
* void sendRedirect(...) methods
* void addCookie(...) methods
* void addIntHeader(...) methods
* void addDateHeader(...) methods
* void setHeader(...) methods
* void setIntHeader(...) methods
* void setDateHeader(...) methods
* void setStatus(...) methods

javax.faces.context.ExternalContext
* void redirect(...)

Data from the following data sources are
considered tainted:
* Parameters of remote methods and
entry point methods
* Native methods
* Non-validating Struts forms
* Network

In order to protect from HTTP response
splitting it must be ensured that tainted
data cannot be passed to dangerous
methods and any user input is properly
encoded or cleaned. Such encoding can
be performed by one of the following

category: Input-Based Attacks

Helps to enforce 'A3-Cross-Site Scripting (XSS)'
and 'A8-Cross-Site Request Forgery (CSRF)', #3
and #8 from the OWASP Top 10 2013 list. HTTP
response splitting is a type of vulnerability which
occurs when tainted data entering a web
application through an untrusted source (for
example from a HTTP request) is included in an
HTTP response without being validated.

A successful attack may be performed by
including CR (%0d or \r) and LF (%0a or \n)
characters into the data which gets into an HTTP
header. These characters, followed by the
specially crafted string, may be used by an
attacker to include arbitrary headers in the HTTP
response as well as to create additional HTTP
responses with arbitrary content. HTTP response
splitting vulnerabilities may be used to perform
XSS attacks, cross-user defacement, Web cache
poisoning, and page hijacking.

OWASP HTTP Response
Splitting:

http://www.owasp.org/inde
x.php/HTTP_Response_Spl

itting

Wikipedia HTTP Response
Splitting:

http://en.wikipedia.org/wiki
/HTTP_response_splitting

Introduction to HTTP
Response Splitting:

http://www.securiteam.com
/securityreviews/5WP0E2K

FGK.html

HTTP Response Splitting,
Web Cache Poisoning
Attacks, and Related

Topics:
http://www.cgisecurity.com
/lib/whitepaper_httprespons

e.pdf

Common Weakness
Enumeration:

http://cwe.mitre.org/data/de
finitions/79.html

http://cwe.mitre.org/data/de
finitions/80.html

http://cwe.mitre.org/data/de

http://www.owasp.org/index.php/HTTP_Response_Splitting
http://www.owasp.org/index.php/HTTP_Response_Splitting
http://www.owasp.org/index.php/HTTP_Response_Splitting
http://en.wikipedia.org/wiki/HTTP_response_splitting
http://en.wikipedia.org/wiki/HTTP_response_splitting
http://www.securiteam.com/securityreviews/5WP0E2KFGK.html
http://www.securiteam.com/securityreviews/5WP0E2KFGK.html
http://www.securiteam.com/securityreviews/5WP0E2KFGK.html
http://www.cgisecurity.com/lib/whitepaper_httpresponse.pdf
http://www.cgisecurity.com/lib/whitepaper_httpresponse.pdf
http://www.cgisecurity.com/lib/whitepaper_httpresponse.pdf
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/80.html
http://cwe.mitre.org/data/definitions/80.html
http://cwe.mitre.org/data/definitions/113.html

75

methods whose return values are safe
even if the data passed to the methods in
parameters are tainted:

java.net.URLEncoder
* String encode(...) methods

javax.servlet.http.HttpServletResponse
* String encodeURL(...) method
* String encodeUrl(...) method
* String encodeRedirectURL(...) method
* String encodeRedirectUrl(...) method

Additional sources of tainted data and
validating methods (in addition to the
standard encoding
methods) can be defined by
parameterizing the rule. For details, see
the PARAMETERS section.

finitions/113.html
http://cwe.mitre.org/data/de

finitions/180.html
http://cwe.mitre.org/data/de

finitions/352.html
http://cwe.mitre.org/data/de

finitions/601.html

14.
Protect
against

Reflection
injection

This rule detects cases when data coming
directly from the end-user can influence
the code that is executed-- for instance, it
is used to form the name of the class
which is loaded or the method that is
invoked. This rule triggers when tainted
data is passed to the following methods:

java.lang.ClassLoader
* loadClass(String)

java.lang.Class
* forName(String)
* getDeclaredField(String)
* getDeclaredMethod(String, Class[])
* getField(String)
* getMethod(String, Class[])
* getResource(String)
* getResourceAsStream(String)

java.lang.reflect.InvocationHandler
* invoke(Object, Method, Object[])

java.lang.reflect.AccessibleObject
* setAccessible(AccessibleObject[],
boolean)
* void setAccessible(boolean flag)

java.lang.reflect.Field
* all get* methods

java.lang.reflect.Method
* invoke(Object, Object[])

java.lang.reflect.ReflectPermission
* ReflectPermission(String)

Data from the following data sources are
considered tainted:
* Parameters of remote methods and
entry point methods
* Native methods
* Non-validating Struts forms
* Network

Additional sources of tainted data can be
defined by parameterizing the rule. For

category: Input-Based Attacks
If some tainted data appears in a loaded class
name without verification, it may permit
execution of custom malicious code which could
damage the system.

PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

CWE-470: Use of
Externally-Controlled Input
to Select Classes or Code

('Unsafe Reflection')
http://cwe.mitre.org/data/de

finitions/470.html

http://cwe.mitre.org/data/definitions/180.html
http://cwe.mitre.org/data/definitions/180.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/601.html
http://cwe.mitre.org/data/definitions/601.html
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/470.html
http://cwe.mitre.org/data/definitions/470.html

76

details, see the PARAMETERS section.

15.
Protect

against SQL
injection

This rule detects cases of probable SQL
injection when possibly tainted data
reaches methods that execute or prepare
SQL queries, retrieve connections, etc.
When an application uses data provided
by the user (or by some unverified data
source) to construct SQL queries and
does not verify/validate such data before
its use, it is possible for an attacker to
alter the SQL statements in a way that
the developer did not intend. As a result,
the attacker can take total control of the
database or even execute commands on
the system.
This rule triggers when tainted data is
passed to the following 'dangerous'
methods:

java.sql.DriverManager
* getConnection(String url)

java.sql.Connection
* prepareCall(...)
* prepareStatement(...)
* setSavepoint(String)
* nativeSQL(String)

java.sql.Statement
* addBatch(String)
* execute(...)
* executeQuery(String)
* executeUpdate(...)
* setCursorName(String)

org.springframework.jdbc.datasource.Ab
stractDriverBasedDataSource
* setUrl(String)

org.springframework.jdbc.datasource.Dri
verManagerDataSource
* DriverManagerDataSource(...)

org.springframework.jdbc.datasource.Si
mpleDriverDataSource
* SimpleDriverDataSource(...)

org.springframework.jdbc.datasource.Sin
gleConnectionDataSource
* SingleConnectionDataSource(...)

org.springframework.jdbc.core.JdbcOper
ations
* execute(...)
* query.*(...)
* update(...)
* batchUpdate(...)

org.springframework.jdbc.core.CallableS
tatementCreatorFactory
* CallableStatementCreatorFactory(...)

org.springframework.jdbc.core.Prepared
StatementCreatorFactory
* PreparedStatementCreatorFactory(...)

category: Input-Based Attacks

Enforces 'A1-Injection', #1 from the OWASP Top
10 2013 list. If data can appear in an SQL query
without being validated, there is a chance for a
malicious user to take control of the database.

This rule also helps to enforce the PCI DSS
(Payment Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications". Specifically, this rule
tests for Issue 6.5.6: "Injection flaws (for
example, structured query language (SQL)
injection)".

OWASP Top 10 2013 (A1-
Injection):

https://www.owasp.org/ind
ex.php/Top_10_2013-

Top_10

Web Application Security
Consortium:

http://www.webappsec.org/
projects/threat/classes/sql_i

njection.shtml

PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

CWE-89: Improper
Neutralization of Special
Elements used in an SQL

Command ('SQL Injection')
http://cwe.mitre.org/data/de

finitions/89.html

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.webappsec.org/projects/threat/classes/sql_injection.shtml
http://www.webappsec.org/projects/threat/classes/sql_injection.shtml
http://www.webappsec.org/projects/threat/classes/sql_injection.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/89.html

77

* newPreparedStatementCreator(...)

org.springframework.jdbc.core.namedpa
ram.NamedParameterJdbcOperations
* execute(...)
* query.*(...)
* update(...)

org.springframework.jdbc.core.namedpa
ram.NamedParameterJdbcTemplate
* getParsedSql(...)
* getPreparedStatementCreator(...)

org.springframework.jdbc.core.support.J
dbcBeanDefinitionReader
* loadBeanDefinitions(...)

org.springframework.jdbc.object.BatchS
qlUpdate
* BatchSqlUpdate(...)

org.springframework.jdbc.object.Mappin
gSqlQuery
* MappingSqlQuery(...)

org.springframework.jdbc.object.Mappin
gSqlQueryWithParameters
* MappingSqlQueryWithParameters(...)

org.springframework.jdbc.object.SqlCall
* SqlCall(...)

org.springframework.jdbc.object.SqlFun
ction
* SqlFunction(...)

org.springframework.jdbc.object.SqlOpe
ration
* newPreparedStatementCreator(...)

org.springframework.jdbc.object.SqlQue
ry
* SqlQuery(...)

org.springframework.jdbc.object.SqlUpd
ate
* SqlUpdate(...)

org.springframework.jdbc.object.Updata
bleSqlQuery
* UpdatableSqlQuery(...)

Data from the following data sources are
considered tainted:
* Parameters of remote methods and
entry point methods
* Native methods
* Non-validating Struts forms
* Network

Additional sources of tainted data can be
defined by parameterizing the rule. For
details, see the PARAMETERS section.

16.
Protect

against XML
data injection

This rule detects cases when data coming
directly from the end-user is used to
compromise an XML document. This
rule triggers when tainted data is passed

category: Input-Based Attacks

Data stored to XML can be used for different
purposes. XML can be used even as an alternate

PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml

78

to the following methods:

org.w3c.dom.Node
* setNodeValue(String)

org.w3c.dom.Attr
* setValue(String)

org.w3c.dom.Element
* setAttribute(String, String)

org.w3c.dom.CharacterData
* appendData(String)
* insertData(int, String)
* replaceData(int, int, String)
* setData(String)

org.w3c.dom.Document
* createAttribute(String)
* createCDATASection(String)
* createElement(String)
* createentityReference(String)
* createProcessingInstruction(String,
String)

Data from the following data sources are
considered tainted:
* Parameters of remote methods and
entry point methods
* Native methods
* Non-validating Struts forms
* Network

Additional sources of tainted data can be
defined by parameterizing the rule.
For details, see the PARAMETERS
section.

database / storage system. Consequently, data
from XML can be used to form some other
requests (like SQL, XML, XPath, etc.) As a
result, an attacker can provide malicious data and
that can lead to executing dangerous requests,
revealing some private or secure information.

This rule also helps to enforce the PCI DSS
(Payment Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications". Specifically, this rule
tests for Issue 6.5.6: "Injection flaws".

s/pci_dss.shtml

CWE-80: Improper
Neutralization of Script-
Related HTML Tags in a
Web Page (Basic XSS)

http://cwe.mitre.org/data/de
finitions/80.html

17.
Protect

against XPath
injection

This rule detects cases when data coming
directly from the end-user is used in an
XML query which may result in
exposing confidential data. This rule
triggers when tainted data is passed to
the following methods:

W3C definition

org.w3c.dom.xpath.XPathEvaluator
* createExpression(String,
XPathNSResolver)
* evaluate(String, Node,
XPathNSResolver, short, Object)

org.w3c.dom.xpath.XPathExpression
* evaluate(Node, short, Object)

org.w3c.dom.xpath.XPathNSResolver
* lookupNamespaceURI(String)

JavaX definition

javax.xml.xpath.XPath
* compile(String)
* evaluate(String)

javax.xml.xpath.XPathExpression
* evaluate(String)

category: Input-Based Attacks

Enforces 'A1-Injection', #1 from the OWASP Top
10 2013 list.

XPath is a language that is used to refer to parts
of an XML document. The XPath language
provides a simple, concise syntax for selecting
nodes from an XML document. Consequently, an
application can use it to browse an XML
document using a provided query, or as part of
some larger operation (like applying an XQuery
to an XML document).

The syntax of XPath bears some resemblance to
an SQL query, and indeed, it is possible to form
SQL-like queries on an XML document using
XPath. It is definitely possible to create an
application that will use run-time XPath query
construction, with some user-provided data in the
query; this allows the attacker to inject the query
with data that will lead the application to execute
in a way that the programmer did not intend.

This rule also helps to enforce the PCI DSS
(Payment Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications".
Specifically, this rule tests for Issue 6.5.6:

OWASP Top 10 2013 (A1-
Injection):

https://www.owasp.org/ind
ex.php/Top_10_2013-

Top_10

Web Application Security
Consortium:

http://www.webappsec.org/
projects/threat/classes/xpath

_injection.shtml

PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

CWE-643: Improper
Neutralization of Data

within XPath Expressions
('XPath Injection')

https://cwe.mitre.org/data/d
efinitions/643.html

http://cwe.mitre.org/data/definitions/80.html
http://cwe.mitre.org/data/definitions/80.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.webappsec.org/projects/threat/classes/xpath_injection.shtml
http://www.webappsec.org/projects/threat/classes/xpath_injection.shtml
http://www.webappsec.org/projects/threat/classes/xpath_injection.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://cwe.mitre.org/data/definitions/643.html
https://cwe.mitre.org/data/definitions/643.html

79

javax.xml.xpath.XPathFunction
* evaluate(String)

javax.xml.xpath.XPathFactory
* newInstance(String)
* setFeature(String)

org.apache.xpath definition

javax.xml.xpath.ExtensionsProvider
* extFunction(String, String, Vector,
Object)

javax.xml.xpath.XPathFactory
* create(String, SourceLocator,
PrefixResolver, int)

javax.xml.xpath.Arg
* Arg(QName, String, boolean)
* setExpression(String)

javax.xml.xpath.CachedXPathAPI
* eval(Node, String)
* selectSingleNode(Node, String)

javax.xml.xpath.SourceTreeManager
* resolveURI(Node, String)
* getSourceTree(String, String,
SourceLocator, XPathContext)

javax.xml.xpath.SourceTree
* SourceTree(int, String)

org.jaxen definition

org.jaxen.Navigator
* parseXPath(String)

org.jaxen.dom4j.Dom4jXPath
* Dom4jXPath(String)

org.jaxen.dom.DOMXPath
* DOMXPath(String)

org.jaxen.javabean.JavaBeanXPath
* JavaBeanXPath(String)

org.jaxen.jdom.JDOMXPath
* JDOMXPath(String)

org.jaxen.xom.XOMXPath
* XOMXPath(String)

org.jaxen.saxpath.XPathReader
* parse(String)

Data from the following data sources are
considered tainted:
* Parameters of remote methods and
entry point methods
* Native methods
* Non-validating Struts forms
* Network

Additional sources of tainted data can be
defined by parameterizing the rule. For

"Injection flaws".

80

details, see the PARAMETERS section.

18.
Protect

against XSS
vulnerabilities

This rule detects cases of probable XSS
vulnerabilities. This rule triggers when
tainted data is passed to the following
methods:

javax.servlet.ServletOutputStream
* void print(...) methods
* void println(...) methods
* void write(...) methods

java.io.PrintWriter
* void print(...) methods
* void println(...) methods
* void write(...) methods

Data from the following data sources are
considered tainted:
* Parameters of remote methods and
entry point methods
* Native methods
* Non-validating Struts forms
* Network

Additional sources of tainted data can be
defined by parameterizing the rule.
For details, see the PARAMETERS
section.

category: Input-Based Attacks

Helps to enforce 'A3-Cross-Site Scripting (XSS)'
and 'A8-Cross-Site Request Forgery (CSRF)', #3
and #8 from the OWASP Top 10 2013 list. Cross-
site scripting (XSS) is a type of attack that makes
a web site show attacker-provided executable
code, which loads in a user's browser. Such code
can be written in HTML/JavaScript or VBScript,
ActiveX, Java, Flash and so on.

When such code is executed in the user's browser,
it is run within the security context (or zone) of
the hosting web site. Consequently, this code will
get privileges far beyond what it should have.
With such privileges, this code will have the
ability to read, modify, and transmit any sensitive
data accessible by the browser. As a result, users
attacked by XSS could have their browsers
redirected to another location that will look
exactly like the original one, but will be used to
hijack (steal cookies from) their account or steal
login / password information.

There are two types of cross-site scripting attacks:
non-persistent and persistent. Non-persistent
attacks require a user to visit a specially-crafted
link that is laced with malicious code. Upon
visiting the link, the code embedded in the URL
will be echoed and executed within the user's web
browser. Persistent attacks occur when the
malicious code is submitted to a web site where
it's stored for a period of time. Examples of an
attacker's favorite targets often include message
board posts, web mail messages, and web chat
software. The unsuspecting user is not required to
click on any link, just simply view the web page
containing the code.

OWASP Top 10 2013:

https://www.owasp.org/ind
ex.php/Top_10_2013-

Top_10

Web Application Security
Consortium:

http://www.webappsec.org/
projects/threat/classes/cross

-site_scripting.shtml

PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

CWE-79: Improper
Neutralization of Input

During Web Page
Generation ('Cross-site

Scripting')
http://cwe.mitre.org/data/de

finitions/79.html

19.

Do not set

custom
security

managers
outside of the
'main' method

This rule identifies any invocation of
'System. Set Security Manager' outside
'main' if it loads a custom Security
Manager. An error is reported for each
occurrence.

category: Backdoor Vulnerabilities
category: Code Quality
Enforce code access control. Enforcing this rule
will help to protect against the OWASP Top 10
2013 application vulnerability "A2-Broken
Authentication and Session Management".

OWASP Top 10 2013 (A2-
Broken Authentication and

Session Management):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

20.

Ensure all
sensitive
method

invocations
are logged

This rule identifies code that does not
log sensitive method invocations. An
error is reported if some sensitive
method invocations-- for instance,
'login' and 'logout' from
'javax.security.auth.login.LoginContext'-
- are not logged in the previous or next
statements.

category: Backdoor Vulnerabilities

This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security Standard)
Requirement #10: "Track and monitor all access
to network resources and cardholder data".

See BENEFITS section for more of the
SECURITY RELEVANCE.

PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

21.

This rule identifies code that attempts to
access or set System properties through

category: Backdoor Vulnerabilities
category: Malicious Code

CWE-15: External Control

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.webappsec.org/projects/threat/classes/cross-site_scripting.shtml
http://www.webappsec.org/projects/threat/classes/cross-site_scripting.shtml
http://www.webappsec.org/projects/threat/classes/cross-site_scripting.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/79.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml

81

Do not access
or set System

properties

"java.lang.System". An error is reported
for each occurrence.

Code which accesses or sets System properties
may be malicious. See BENEFITS for
more information.

of System or Configuration
Setting

http://cwe.mitre.org/data/de
finitions/15.html

22.

Do not access
the class

loader in a
web

component

Web components should not access the
class loader. This rule will flag any call
to the method 'Class.getClassLoader()' in
a web component. A class or interface is
considered a web component if it
extends or implements a type from the
"javax.servlet" package.

category: Backdoor Vulnerabilities

Accessing the class loader is a suspicious security
pattern, as it is typically unnecessary for a web
application. Use of the class loader may indicate
malicious code.

N/A

23.

Do not call
'Socket. set
SocketImpl
Factory()' or

'URL.set
URL Stream

Handler
Factory()' in a

web
component

Web components should not set network
socket factories or URL stream handler
factories. This rule will flag a violation
for each call to
'Socket.setSocketImplFactory()' or
'URL.setURLStreamHandlerFactory()' in
a web component. A class or interface is
considered a web component if it
extends or implements a type from the
"javax.servlet" package.

category: Backdoor Vulnerabilities

By setting default socket factories, a web
application will interfere with the web-
communication provided by the web server. This
is likely to have unintended consequences and
side-steps the security provided by the container.

N/A

24.

Avoid using
dynamically

loaded classes
in

"privileged"
code blocks

This rule flags a violation if the 'run()'
method of a
"java.security.PrivilegedAction" or
"java.security.PrivilegedExceptionActio
n" implementation calls a method
commonly used for dynamic class
loading. The following method calls are
flagged:
1) Class.forName()
2) ClassLoader.loadClass()
3) ClassLoader.findClass()

category: Backdoor Vulnerabilities
Implementations of 'PrivilegedAction' and
'PrivilegedExceptionAction' are used to interact
with sensitive data or operations. Only "trusted"
classes should be interacted with in privileged
code blocks. By using dynamically loaded classes
it becomes difficult to know whether the loaded
class should be trusted or not.

"Writing Secure Java Code:
A Taxonomy of Heuristics

and an Evaluation of
Static Analysis Tools" by

Michael Ware.

25.

Use "read-
only" Access

Mode for
Castor
queries

This rule identifies calls to the
overloaded method "execute()" made by
Castor queries (a class implementing
"org.exolab.castor.jdo.Query"). A
violation is flagged if the "execute ()"
method called does not specify an
Access Mode or the access mode is not
"read-only".

category: Backdoor Vulnerabilities

Calling "execute()" with no AccessMode uses
"shared" mode by default. Use of a mode other
than "read only" allows the query to be written to,
which may leave the query open to malicious
behavior.

1. Cigital Java Security
Rulepack # 18 and # 19:

http://www.cigital.com/sec
uritypack/view/index.html

2. Query (Castor JavaDoc)
http://castor.codehaus.org/j
avadoc/org/exolab/castor/jd

o/Query.html

3. Access Mode (Castor
JavaDoc)

http://castor.codehaus.org/j
avadoc/org/exolab/castor/m
apping/AccessMode.html

26.

Wrap

"privileged"
method

invocations in
"final"

methods

This rule flags a violation if a call to a
user-specified "privileged" method is
made from a non-"final" method.

category: Backdoor Vulnerabilities

"Privileged" method calls should be made only
from "final" methods to prevent an attacker from
attempting to override or bypass the code.

1. "Writing Secure Java
Code: A Taxonomy of

Heuristics and an
Evaluation of Static

Analysis Tools" by Michael
Ware

2. Cigital Java Security

Rulepack # 64:
http://www.cigital.com/sec
uritypack/view/index.html

http://cwe.mitre.org/data/definitions/15.html
http://cwe.mitre.org/data/definitions/15.html
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
http://castor.codehaus.org/javadoc/org/exolab/castor/jdo/Query.html
http://castor.codehaus.org/javadoc/org/exolab/castor/jdo/Query.html
http://castor.codehaus.org/javadoc/org/exolab/castor/jdo/Query.html
http://castor.codehaus.org/javadoc/org/exolab/castor/mapping/AccessMode.html
http://castor.codehaus.org/javadoc/org/exolab/castor/mapping/AccessMode.html
http://castor.codehaus.org/javadoc/org/exolab/castor/mapping/AccessMode.html
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html

82

27.

Wrap

"privileged"
method

invocations in
"private"
methods

This rule flags a violation if a call to a
user-specified "privileged" method is
made from a non-"private" method.

category: Backdoor Vulnerabilities

"Privileged" method calls should be made only
from "private" methods to limit exposure of
privileged or sensitive information. Declaring a
method "private" may also aid in preventing an
attacker from attempting to override or bypass the
code.

1. "Writing Secure Java
Code: A Taxonomy of

Heuristics and an
Evaluation of Static

Analysis Tools" by Michael
Ware:

http://www.mikeware.us/th
esis/ware-

writingsecurejavacode-
may08.pdf

2. Cigital Java Security

Rulepack # 63:
http://www.cigital.com/sec
uritypack/view/index.html

28.

Inspect usage
of 'Date',

'Time' objects
and 'System.
current Time

Millis ()'
method

invocations

This rule identifies variable declarations
that are 'java.util.Date', 'java.sql.Date' or
'java.sql.Time' objects, it also searches
for method invocations of 'System. get
Current Time Millis()'. An error is
reported for each occurrence.

category: Backdoor Vulnerabilities
category: Malicious Code

Date and Time objects can be entry points for
security attacks. System times might also indicate
areas where malicious code has been placed. By
identifying the usage of those elements, you can
assess how are they being used, and determine
whether access to important functionality is based
on 'Date' and 'Time' objects or system times.

N/A

29.

Inspect usage
of 'getName()'

from
'java.lang.Cla

ss' object

This rule identifies code where
'getName()' gets the name of a class. A
message is reported for each occurrence.

category: Backdoor Vulnerabilities
category: Malicious Code

Use of the 'getName()' method of
"java.lang.Class" often indicates logic which
relies on comparing classes by name. Code logic
should not rely on comparing classes by name. If
classes are compared by name, it may be possible
for an attacker to add a malicious class with the
same package name and class name as the
expected class. This may allow for the execution
of code in the malicious class instead of the
execution of code in the expected class.

N/A

30.
Do not use
threads in

web
components

Web components should not use threads.
This rule will flag a violation for each
instantiation of "java.lang.Thread" (or
any class extending "Thread") in a Web
component. A class or interface is
considered a web component if it
extends or implements a type from the
"javax.servlet" package.

category: Deadlocks and Race Conditions

Using threads in a web component is likely to
lead to confusion and unintended consequences,
as the web component is already being used in a
web server which itself is a threaded environment.
Avoid using threads in web components to
prevent errors related to concurrency between the
web application and the web server.

CWE-383: J2EE Bad
Practices: Direct Use of

Threads
http://cwe.mitre.org/data/de

finitions/383.html

31.

Do not pass

byte arrays to
ObjectOutput
Stream in the
'writeObject()

' method

This rule identifies code that passes byte
arrays to Object Output Stream in the
'write Object()' method. An error is
reported if byte[] fields are passed to
Object Output Stream. write(byte[]) in a
custom serialization method (write
Object). Fields of type byte[] should be
cloned before being passed to the
serialization output stream.

category: Erratic Application Behavior
category: Data Security

The class ObjectOutputStream may be subclassed
by a malicious class that tries to modify object-
internal data. When a direct reference to the
byte[] field is passed to the Object Output Stream,
this reference can be used to access and modify
the array contents. Passing a clone of the original

Secure Programming for
Linux and Unix HOWTO -

Chap 10. Language-
Specific Issues

http://www.dwheeler.com/s
ecure-programs/Secure-

Programs-
HOWTO/java.html (rule

#14)

http://www.mikeware.us/thesis/ware-writingsecurejavacode-may08.pdf
http://www.mikeware.us/thesis/ware-writingsecurejavacode-may08.pdf
http://www.mikeware.us/thesis/ware-writingsecurejavacode-may08.pdf
http://www.mikeware.us/thesis/ware-writingsecurejavacode-may08.pdf
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/java.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/java.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/java.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/java.html

83

array makes this kind of attack impossible.

32.
Do not

compare
Class objects

by name

This rule identifies code that compares
class objects with the 'getName ()'
method. An error is reported for each
occurrence.

Enforce code access control. See BENEFITS for
more information.
.

Statically Scanning Java
Code: Finding Security

Vulnerabilities. John Viega,
Gary McGraw, Tom

Mutdosch, and Edward W.
Felten IEEE SOFTWARE
September/October 2000

http://www.javaworld.com/
javaworld/jw-12-1998/jw-

12-securityrules_p.html

CWE-486: Comparison of
Classes by Name

http://cwe.mitre.org/data/de
finitions/486.html

33.
Do not use

AWT classes
in Web

components

Web components should not use AWT
components. This rule will flag a
violation for each method invocation
from the "java.awt" package in a web
component. A class or interface is
considered a web component if it
extends or implements a type from the
"javax.servlet" package.

category: Erratic Application Behavior

Web components which have AWT code in them
are likely to have unanticipated functionality from
an architectural point of view, which decreases
the quality and security of the application.
Additionally, it may represent an entry point for
an attacker.

N/A

34.

Enforce
returning a
defensive
copy in
'clone()'
methods

This rule identifies classes that
implement 'java.lang.Cloneable', but do
not initialize the mutable fields of a
clone object to defensive copies in the
'clone()' method. An error is reported for
each occurrence.

category: Erratic Application Behavior

If a mutable field in a Cloneable object is not
initialized by a defensive copy, when users
change the state of that mutable field on the
Cloneable object, the field in the original object
will be changed as well.

N/A

35.
Do not stop

the JVM in a
web

component

Web components should not stop the
JVM. This rule will flag any call to the
method 'System.exit()' in a web
component. A class or interface is
considered a web component if it
extends or implements a type from the
"javax.servlet" package.

category: Erratic Application Behavior

Stopping the JVM stops all applications running
on the JVM, and could cause a widespread denial
of service if exploitable by an attacker.

CWE-382: J2EE Bad
Practices: Use of

System.exit()
http://cwe.mitre.org/data/de

finitions/382.html

36.

Do not pass
user-given
mutable
objects

directly to
certain types

This rule checks that mutable objects,
which are passed as parameters to
methods, are not passed directly to
certain constructors. Instead of passing
these objects directly, a copy should be
made. This way, the objects cannot be
unexpectedly changed while in use. A
violation is flagged for each occurrence.

category: Erratic Application Behavior

Enforcing this rule will help to protect against the
OWASP 2013 Top 10 application vulnerability
"A4-Insecure Direct Object References". See
BENEFITS section.

This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications". Specifically, this rule
helps to test for Issue 6.5.4: "Insecure direct
object references".

1. "Writing Secure Java
Code: A Taxonomy of

Heuristics and an
Evaluation of Static

Analysis Tools" by Michael
Ware

2. PCI Data Security

Standard:
https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

3. OWASP Top 10 2013
(A4-Insecure Direct Object

References):
https://www.owasp.org/ind

ex.php/Top_10_2013-

http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
http://cwe.mitre.org/data/definitions/486.html
http://cwe.mitre.org/data/definitions/486.html
http://cwe.mitre.org/data/definitions/382.html
http://cwe.mitre.org/data/definitions/382.html
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10

84

Top_10

37.

Do not
declare

"static" fields
in web

components

Web components should not contain
non-final static fields. This rule will flag
a violation for each non-final static field
in a web component. A class or interface
is considered a web component if it
extends or implements a type from the
"javax.servlet" package.
N/A

category: Erratic Application Behavior

Because web components are part of a multi-user,
threaded environment (provided by the web
server), static fields are likely to be modified in
unanticipated ways and should not be used (in
web components) as sources for data.

N/A

38.

Do not
change the

input streams
of

'java.lang.Sys
tem' in a web
component

Web components should not change the
input streams of 'java.Lang.System'.
This rule will flag any call to the method
'System.setIn()' in a web component. A
class or interface is considered a web
component if it extends or implements a
type from the "javax.servlet" package.

category: Erratic Application Behavior

Changing the input streams of 'System' is a
suspicious security pattern.

N/A

39.

Do not store
user-given
mutable
objects

directly into
variables

This rule checks that mutable objects
which are passed as parameters to
methods are not stored directly into
variables. Instead of storing these
objects directly into variables, a copy
should be made. This way, the objects
cannot unexpectedly be changed in the
calling method. A violation is flagged
for each occurrence.

category: Erratic Application Behavior

See BENEFITS section.

http://www.dwheeler.com/s
ecure-programs/Secure-

Programs-
HOWTO/java.html

40.

Avoid calling
specified

methods from
web

components
and EJBs

There are certain methods which should
not be called from web components
(servlets) and EJBs. This
parameterizable rule will flag a violation
if a method specified in the parameters is
called.

category: Erratic Application Behavior

Use of certain methods may be considered unsafe
in web components or EJBs. Furthermore, certain
methods should be avoided as they are considered
bad practice or not advised by the Java API. For
example, Sockets should be avoided in web
applications as they are prone to error and other
alternatives exist. Using unexpected or
inappropriate methods may result in unpredictable
behavior which can lead to loss of security.

N/A

41.

Limit the
number of

"AccessContr
oller.doPrivil
eged" calls
per class

This rule flags a violation if a class
contains greater than a user-specified
number of
"AccessController.doPrivileged" calls.

category: Erratic Application Behavior

Following this rule can minimize the amount and
locations of security of code which can reduce
code complexity and make it less prone to errors.

"Writing Secure Java Code:
A Taxonomy of Heuristics

and an Evaluation of
Static Analysis Tools" by
Michael Ware Common
Weakness Enumeration:

http://cwe.mitre.org/data/de
finitions/250.html

42.

Limit the
number of

lines in
"privileged"
code blocks

This rule flags a violation if the "run()"
method of a
"java.security.PrivilegedAction" or
"java.security.PrivilegedExceptionActio
n" implementation contains greater than
the specified number of lines.

category: Erratic Application Behavior

Privileged code should be kept minimized to
improve clarity and reduce chances for errors.

"Writing Secure Java Code:
A Taxonomy of Heuristics

and an Evaluation of
Static Analysis Tools" by
Michael Ware Common
Weakness Enumeration:

http://cwe.mitre.org/data/de
finitions/250.html

43.
Inspect 'static'
fields which

may have

This rule identifies "static" fields which
may have been intended to be declared

category: Erratic Application Behavior

A "static" field which is not also declared "final"

CWE-500: Public Static
Field Not Marked Final

http://cwe.mitre.org/data/de

http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/java.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/java.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/java.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/java.html
http://cwe.mitre.org/data/definitions/250.html
http://cwe.mitre.org/data/definitions/250.html
http://cwe.mitre.org/data/definitions/250.html
http://cwe.mitre.org/data/definitions/250.html
http://cwe.mitre.org/data/definitions/500.html

85

intended to be
declared

'static final'

"static final" instead. This rule will check
the following types:
- primitive types
- java.lang.Boolean
- java.lang.Byte
- java.lang.Character
- java.lang.Double
- java.lang.Float
- java.lang.Integer
- java.lang.Long
- java.lang.Short
- java.lang.String

An error is reported for each occurrence.

may be changed by other classes and break the
logic of the application.

finitions/500.html

44.

Implement

'readObject()'
and

'writeObject()
' for all

'Serializable'
classes

This rule identifies 'Serializable' classes
that do not implement the 'readObject()'
and/or 'writeObject()' methods. By
default, the rule checks that
'readObject()' is implemented in all
classes implementing the
'java.io.Serializable' interface. The rule
can be parameterized to also check for
'writeObject()'. An error is reported for
each occurrence.

category: Erratic Application Behavior
category: Input Validation

Even if your class uses the default serialized
form, you should still use 'readObject()' and
'writeObject()' and validate all serialized data to
guarantee security and class invariants.

1. Joshua Bloch: "Effective
Java - Programming

Language Guide"
Addison Wesley, 2001, pp.

218-219
2. Cigital Java Security

Rulepack # 10:
http://www.cigital.com/sec
uritypack/view/index.html

LOG

@move-from
PB.OROM(v5.1)

45.

Do not pass
exception

messages into
output in
order to

prevent the
application

from leaking
sensitive

information

This rule identifies code that passes
exception messages into output. An error
is reported when a catch clause calls an
output method and the exception being
caught in the catch clause appears in the
list of parameters or is used as the calling
object.

category: Exposing Sensitive Data
category: Error Handling
Sensitive information might be leaked when
exception messages are passed into output.
Hackers trying to gain information about a server
application could look at exception messages
leaked from the server. The recommended way to
obtain exception information is to deploy a
logging system (instead of using print methods).
Enforcing this rule will help to protect against the
OWASP 2013 Top 10 application vulnerability
"A6-Sensitive Data Exposure".
This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications".
Specifically, this rule helps to test for Issue 6.5.7:
"Improper error handling".

OWASP Top 10 2013 (A6-
Sensitive Data Exposure):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

PCI Data Security

Standard:
https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

Common Weakness
Enumeration:

http://cwe.mitre.org/data/de
finitions/209.html

http://cwe.mitre.org/data/de
finitions/311.html

http://cwe.mitre.org/data/de
finitions/497.html

46.
Store

sensitive data
in mutable

objects

This rule flags a violation if sensitive
data is not stored in mutable objects.
The following cases are flagged:
1) A "javax.swing.JPasswordField" calls
"getSelectedText()" or "getText()", both
of which return a String
2) A "password" method specified in the
parameter table, which returns a char[] is
converted to a String through use of
either the "String(char[])" or
"String(char[],int,int)" constructor

category: Exposing Sensitive Data

Sensitive data should be stored as mutable objects
so they can be overwritten after use. For example,
a password is frequently stored as a "char[]".
After use the password could be cleared by using
"Arrays.fill()". However, if thepassword were
instead stored as a String, then the value may
persist in memory as the garbage collector is
responsible for removing the String from
memory.

47.

Use 'post'
instead of
'get' for

Web forms which contain password
fields should use the 'post' method
instead of the 'get' method to
communicate this information to other

category: Exposing Sensitive Data See
BENEFITS section.

OWASP Top 10 2013:
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/209.html
http://cwe.mitre.org/data/definitions/209.html
http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/497.html
http://cwe.mitre.org/data/definitions/497.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10

86

credential
transfers

pages. This rule will flag a violation for
any 'form' tag which has 'get' for its
'method' attribute and which contains in
its body an 'input' tag which has the type
'password'.

Common Weakness
Enumeration:

http://cwe.mitre.org/data/de
finitions/352.html

http://cwe.mitre.org/data/de
finitions/598.html

48.

Clear

sensitive
data after

use

This rule flags a violation if sensitive
data is not cleared after use.
This rule checks "private" fields and
local variables which are assigned the
return value of
"java.swing.JPasswordField#getPasswor
d()" or
"java.io.Console#readPassword()". If the
return value of those methods are never
cleared through use of
"java.util.Arrays#fill()" or in a loop then
a violation is flagged.

category: Exposing Sensitive Data Sensitive data
should be cleared after it is no longer needed to
ensure that it spends as little time in memory as
possible.

1. Console (Java Platform
SE 6):

http://java.sun.com/javase/6
/docs/api/java/io/Console.ht

ml

2. JPasswordField (Java
Platform SE 6):

http://java.sun.com/javase/6
/docs/api/javax/swing/JPass

wordField.html

3. Cigital Java Security
Rulepack # 57:

http://www.cigital.com/sec
uritypack/view/index.html

49.
Avoid storing
sensitive data
in plaintext in

a cookie

This rule finds sensitive data in the
javax.servlet. http.Cookie constructor
and detects dangerous situations such as
1) when a cookie stores passwords
2) when a cookie stores roles
3) when a cookie stores user identifiers

These situations are recognized by
cookie name and value.
A violation is reported for each usage of
a Cookie constructor where such data is
passed.

category: Exposing Sensitive Data Enforcing this
rule will help to protect against many of the
OWASP Top 10 application vulnerabilities, such
as:
A6-Sensitive Data Exposure
See BENEFITS.

1. CWE-315: Plaintext
Storage in a Cookie

http://cwe.mitre.org/data/de
finitions/315.html

2. CWE-807: Reliance on

Untrusted Inputs in a
Security Decision

http://cwe.mitre.org/data/de
finitions/807.html

3. OWASP Top 10 2013:

https://www.owasp.org/ind
ex.php/Top_10_2013-

Top_10
Avoid methods that might

expose internal
representations

50.
by returning

arrays or
other mutable

fields

This rule identifies methods that might
expose internal representations by
returning arrays or other mutable objects.
An error is reported for each occurrence.
If an array field or any other mutable
field is declared as "private", "package-
private" or "protected", and there is a
return statement that returns the
reference to the mutable object, then the
caller would be able to modify the
content of the field regardless of the
accessibility modifiers on the field.
Enforcing this rule will help to protect
against the OWASP Top 10 application
vulnerability "A4-Insecure Direct Object
Reference".

category: Exposing Sensitive Data See
BENEFITS section.

OWASP Top 10 2013 (A4-
Insecure Direct Object

Reference):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

CWE-495: Private Array-

Typed Field Returned From
A Public Method

http://cwe.mitre.org/data/de
finitions/495.html

51.
Inspect
instance
fields of

serializable

This rule identifies non-transient, non-
final instance fields within Serializable
classes. An error is reported for each
occurrence.

category: Exposing Sensitive Data Any non-
transient, non-final instance field will be
serialized. Those fields might carry confidential
data which should either not be serialized or

CWE-499: Serializable
Class Containing Sensitive

Data
http://cwe.mitre.org/data/de

http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/598.html
http://cwe.mitre.org/data/definitions/598.html
http://java.sun.com/javase/6/docs/api/java/io/Console.html
http://java.sun.com/javase/6/docs/api/java/io/Console.html
http://java.sun.com/javase/6/docs/api/java/io/Console.html
http://java.sun.com/javase/6/docs/api/javax/swing/JPasswordField.html
http://java.sun.com/javase/6/docs/api/javax/swing/JPasswordField.html
http://java.sun.com/javase/6/docs/api/javax/swing/JPasswordField.html
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
http://cwe.mitre.org/data/definitions/315.html
http://cwe.mitre.org/data/definitions/315.html
http://cwe.mitre.org/data/definitions/807.html
http://cwe.mitre.org/data/definitions/807.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://cwe.mitre.org/data/definitions/495.html
http://cwe.mitre.org/data/definitions/495.html
http://cwe.mitre.org/data/definitions/499.html

87

objects to
make sure

they will not
expose

sensitive
information

should be encrypted before serialization.

finitions/499.html

52.

Do not
expose data

with a
'FileNotFoun
d' exception

This rule identifies method calls that
throw uncaught FileNotFound
exceptions. A violation is reported for
each occurrence.

If a method calls the java.io.FileInputStream
constructor to read an underlying configuration
file and that file is not present, a
java.io.FileNotFoundException containing the file
path is thrown. Propagating this exception back to
the method caller exposes the layout of the file
system. Many forms of attack require knowing or
guessing locations of files.

http://www.oracle.com/tech
network/java/seccodeguide-

139067.html#2-1

53.

Do not
interrogate or

modify
security
policy

information
in a web

component

Web components should not interrogate
or modify security policy information in
the container. This rule will flag any call
to the method 'getPolicy()' or the method
'setPolicy()' from the class
'java.security.Policy' in a web
component.
A class or interface is considered a web
component if it extends or implements a
type from the "javax.servlet" package.

category: Exposing Sensitive Data Interrogating
the security policy can create security exposures,
particularly if the results of the interrogation were
to be disseminated outside the
container: for example, if they were sent to a Web
client. This information would enable a malicious
entity to better plan an attack against the container
and/or enterprise.
Enforcing this rule will help to protect against the
OWASP 2013 Top 10 application vulnerability
"A6-Sensitive Data Exposure".

OWASP Top 10 2013 (A6-
Sensitive Data Exposure):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

54.
Declare

"transient"
fields

"private"

This rule identifies "transient" fields
which are not declared "private".A
violation is flagged for each case.

category: Exposing Sensitive Data Fields marked
"transient" frequently contain sensitive data. They
should also be marked "private" to help prevent
unintended access of the data.
Enforcing this rule will help to protect against the
OWASP 2013 Top 10 application vulnerability
"A6-Sensitive Data Exposure".

OWASP Top 10 2013 (A6-
Sensitive Data Exposure):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

"Writing Secure Java Code:
A Taxonomy of Heuristics

and an Evaluation of
Static Analysis Tools" by

Michael Ware:
http://www.mikeware.us/th

esis/ware-
writingsecurejavacode-

may08.pdf

55.

Avoid

"transient"
fields in

serialPersiste
ntFields array

This rule identifies "transient" fields
which are referenced by a
"serialPersistentFields" array. This rule
flags a violation if the following
conditions are met:
1. The class is Serializable
2. "serialPersistentFields" has the proper
format of "private static final
ObjectStreamField[]
serialPersistentFields"
3. The field matching the "name"
parameter of any of the
ObjectStreamField is "transient"

category: Exposing Sensitive Data Fields marked
"transient" frequently contain sensitive data. Any
field containing sensitive data should not be
referenced in the "serialPersistentFields" array.

"Writing Secure Java Code:
A Taxonomy of Heuristics
and an Evaluation of Static
Analysis Tools" by Michael

Ware

DefiningSerializable Fields
for a Class

http://docs.oracle.com/javas
e/1.5.0/docs/guide/serializat

ion/spec/serial-
arch.html#6250

56. Avoid writing
to Consoles

This rule identifies calls to the 'flush',
'format', or 'printf' method of a
'java.io.Console'. This rule also identifies
calls to an output method by the
'PrintWriter' returned from a call to

category: Exposing Sensitive Data Output to a
Console may reveal system data or leftover
debugging information which could then be used
by an attacker.

CWE - CWE-497:
Information Leak of System

Data (1.5)
http://cwe.mitre.org/data/de

finitions/497.html

http://www.oracle.com/technetwork/java/seccodeguide-139067.html%232-1
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%232-1
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%232-1
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.mikeware.us/thesis/ware-writingsecurejavacode-may08.pdf
http://www.mikeware.us/thesis/ware-writingsecurejavacode-may08.pdf
http://www.mikeware.us/thesis/ware-writingsecurejavacode-may08.pdf
http://www.mikeware.us/thesis/ware-writingsecurejavacode-may08.pdf
http://docs.oracle.com/javase/1.5.0/docs/guide/serialization/spec/serial-arch.html%236250
http://docs.oracle.com/javase/1.5.0/docs/guide/serialization/spec/serial-arch.html%236250
http://docs.oracle.com/javase/1.5.0/docs/guide/serialization/spec/serial-arch.html%236250
http://docs.oracle.com/javase/1.5.0/docs/guide/serialization/spec/serial-arch.html%236250
http://cwe.mitre.org/data/definitions/497.html
http://cwe.mitre.org/data/definitions/497.html

88

'java.io.Console#writer()'. A violation is
reported for each occurrence.

57.
Do not log

confidential
or sensitive
information

This rule identifies usage of certain
phrases in string literals used in specified
logging methods. The literal will be
flagged if it is in the definition of a
logging method or passed in as a
parameter. Custom methods and
qualified names can be specified, as can
the strings to flag.

Some information, such as Social Security
numbers (SSNs) and passwords, are highly
sensitive. This information should not be kept for
longer than necessary,nor where it may be seen,
even by administrators. For instance, it should not
be sent to log files and its presence should not be
detectable through searches.

Enforcing this rule will help to protect against the
OWASP 2013 Top 10 application vulnerability
"A6-Sensitive Data Exposure".

OWASP Top 10 2013 (A6-
Sensitive Data Exposure):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

http://www.oracle.com/tech
network/java/seccodeguide-

139067.html#2-2

Common Weakness
Enumeration:

http://cwe.mitre.org/data/de
finitions/311.html

http://cwe.mitre.org/data/de
finitions/533.html

http://cwe.mitre.org/data/de
finitions/534.html

58.

Avoid calling
print methods

of
'System.err'

or
'System.out'

This rule flags calls to the 'format()',
'print()', 'println()', and 'write()' methods
of 'System.err' and System.out'. These
methods are commonly used for
debugging purposes.

category: Exposing Sensitive Data Debug
statements can contain information about
implementation details that should not be leaked
to the user.
Enforcing this rule will help to protect against the
OWASP 2013 Top 10 application vulnerability
"A2-Broken Authentication and Session
Management".

OWASP Top 10 2013 (A2-
Broken Authentication and

Session Management):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

59.

Encapsulate
all redirect

and forward
URLs with a

validation
function

This rule identifies if redirect URLs or
forward URLs are not encapsulated
validation method invocations. An error
is reported for each occurrence.

Enforcing this rule will help to protect against
some of the OWASP Top 10 2013 application
vulnerabilities, including:
A10-Unvalidated Redirects and Forwards
It concerns also CWE 2010 Top 25 - Insecure
Interaction Between Components

OWASP Top 10 2013
(A10-Unvalidated Redirects

and Forwards):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

CWE-601: URL

Redirection to Untrusted
Site ('Open Redirect')

http://cwe.mitre.org/data/de
finitions/601.html

60.
Avoid using
"SELECT *"

in SQL
queries

The "splat" character (the wild-card
character "*") should not be used in the
"SELECT" portion of an SQL query.
The specific fields needed should be
specified instead. This rule will flag a
violation for each String in which the
pattern "SELECT *" appears.

category: Input-Based Attacks

Allowing the use of "SELECT *" in code is a bad
security practice because it is likely to grant the
programmer more access to data from the
database than is required. In general, only the
data that is absolutely necessary should be
accessed, and this data should be filtered based on
the user and their role.

N/A

61.

Encapsulate

all dangerous
data returning
methods with
a validation

function

This rule will flag the following cases:
1. method invocations which return
dangerous data which are not
encapsulated validation method
invocations e.g
HttpServletRequest.getParameter(String)
2. tainted data is passed to dangerous
methods without having been previously
validated e.g
DatagramChannel.reveive(ByteBuffer)
3. method invocations which throws

category: Input-Based Attacks
category: Code Quality

Input validation needs to be performed on all
dangerous data in order to prevent security
vulnerabilities.
Enforcing this rule will help to protect against
many of the OWASP Top 10 application
vulnerabilities, including:
A1-Injection
A3-Cross-Site Scripting (XSS)

OWASP Top 10 2013:
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

PCI Data Security

Standard:
https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%232-2
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%232-2
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%232-2
http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/533.html
http://cwe.mitre.org/data/definitions/533.html
http://cwe.mitre.org/data/definitions/534.html
http://cwe.mitre.org/data/definitions/534.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://cwe.mitre.org/data/definitions/601.html
http://cwe.mitre.org/data/definitions/601.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml

89

RemoteException (if "Remote methods"
is checked in the rule parameter)

An error is reported for each occurrence.

This sources of tainted data include
thousands of methods that are too
numerous to list here. These methods
are taken from various APIs and
libraries, including but not limited to:
* Java Standard Library
* Apache ECS
* JDBC
* Hibernate
* Struts
* Spring
* XPath

Data sources which are considered
tainted by default:
* Parameters of never called methods
* Parameters of remote methods
* Data defined by native methods
* Data from non-validating Struts forms
* Data retrieved from the net

Additional data sources which may be
considered tainted from rule parameters:
* Servlet requests
* Files
* Pipes
* Remote methods
* Reflection methods
* Environment variables and system
properties
* Database
* Stream-oriented APIs (streams, readers
and channels)
* Console
* GUI controls

This rule will not flag the following
cases (see EXAMPLE below):
- a dangerous method is encapsulated by
a validation method
- the return value of a dangerous method
is assigned to a variable and the variable
is then encapsulated by a validation
method

A4-Insecure Direct Object Reference
A7-Missing Function Level Access Control
A8-Cross-Site Request Forgery (CSRF)

This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications".Specifically, this rule
helps to test for Issue 6.5.1: "Unvalidated input".

Common Weakness
Enumeration:

http://cwe.mitre.org/data/de
finitions/79.html

http://cwe.mitre.org/data/de
finitions/352.html

62.

Avoid XPath
injection

when
evaluating

XPath queries

This rule will flag the following cases:
1. An XPath query is concatenated with
variables (fields, parameters and local
variables).
2. 'XPathVariableResolver' is not set on
XPath variables (if the parameter is
enabled).
An error is reported for each occurrence.

category: Input-Based Attacks
If an XPath query is concatenated with variables,
it may allow attackers to inject the query with
data that will lead the application to execute in a
waythat programmers did not intend.
For a similar rule, see
'BD.SECURITY.TDXPATH'

N/A

63.

Do not extend
from the

Struts classes
'ActionForm'

and
'DynaActionF

orm'

This rule makes sure that classes do not
extend from the class
"org.apache.struts.action.
ActionForm" or from the class
"org.apache.struts.action.DynaActionFor
m".
A violation will be flagged for each class

category: Input-Based Attacks

If an ActionForm is not validated, the values
passed to the system can cause various types of
security errors based on unvalidated inputs such
as SQL injection, cross-site scripting, and other
injection vulnerabilities.

CWE - CWE-104: Struts:
Form Bean Does Not

Extend Validation Class
(1.5)

http://cwe.mitre.org/data/de
finitions/104.html

http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/104.html
http://cwe.mitre.org/data/definitions/104.html

90

extending either ActionForm or
DynaActionForm.

64.
Avoid

temporary
files

This rule identifies calls to the
'createTempFile' methods of
'java.io.File'. A violation is reported for
each occurrence.

category: Input-Based Attacks

Temporary files may be created with loose
permissions that could allow an attacker to
unexpectedly alter the file. This could disrupt the
application or have farther reaching security
consequences depending on what the file is used
for.

N/A

65.
Canonicalize
all data before

validation

This rule identifies code that validates
data without first canonicalizing the data.
A violation will be flagged for each call
to one of the user-specified validation
methods which passes in a local variable
which was never passed to one of the
user-specified canonicalization methods.
A violation will also be flagged for each
call to a validation method which passes
in the return value of another method
call without first passing this return
value to a canonicalization method.

category: Input-Based Attacks

Enforcing this rule will help to protect against
some of the OWASP Top 10 application
vulnerabilities, including:
A1-Injection
A3-Cross-Site Scripting (XSS)

OWASP Top 10 2013:
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

CWE-79: Improper

Neutralization of Input
During Web Page

Generation ('Cross-site
Scripting')

http://cwe.mitre.org/data/de
finitions/79.html

66.

Always call

'super.validat
e()' from

validation
methods in

'ActionForm'
classes

This rule checks to make sure that
overridden validation methods in classes
extending from
"org.apache.struts.action.ActionForm"
call "super.validate()". This enforces
usage of the validation mechanism. A
violation will be flagged for each
"validate" method in a class extending
from "ActionForm" which does not call
"super.validate()".

category: Input-Based Attacks

See BENEFITS section.

N/A

67.
Use wrapper
methods to

secure native
methods

This rule will flag any native method
that is called outside of a wrapper class.
Native methods do not benefit from the
security checks and buffer overflow
protections that are standard in java
methods. Any native method not
declared private will be flagged, along
with any private native method that is
called more than one time in the file.

Java code is subject to runtime checks for type,
array bounds, and library usage. Native code, on
the other hand, is generally not. While pure Java
code is effectively immune to traditional buffer
overflow attacks, native methods are not. To offer
some of these protections during the invocation of
native code, do not declare a native method
public. Instead, declare it private and
expose the functionality through a public Java-
based wrapper method. A wrapper can safely
perform any necessary input validation prior to
the invocation of the native method.

http://www.oracle.com/tech
network/java/seccodeguide-

139067.html#5-3

CWE-111: Direct Use of
Unsafe JNI

http://cwe.mitre.org/data/de
finitions/111.html

68.

Use
'prepareCall'

or
'prepareState
ment' instead

of
'createStatem

ent'

This rule will flag any use of the method
"createStatement()" from the interface
"java.sql.Connection". Instead,
"prepareCall" or "prepareStatement()"
should be used. A violation is flagged for
each occurrence.

category: Input-Based Attacks

"java.sql.Statement" is typically the culprit in
SQL Injection vulnerabilities in Java, as there is
no way to parameterize the query without needing
to escape SQL meta-characters. Using objects of
type "prepareCall()" or "prepareStatement()"
instead of "createStatement()" can help prevent
SQL injection vulnerabilities.

Enforcing this rule will help to protect against the

OWASP Top 10 2013 (A1-
Injection):

https://www.owasp.org/ind
ex.php/Top_10_2013-

Top_10

CWE-89: Improper
Neutralization of Special
Elements used in an SQL

Command ('SQL Injection')
http://cwe.mitre.org/data/de

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/79.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%235-3
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%235-3
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%235-3
http://cwe.mitre.org/data/definitions/111.html
http://cwe.mitre.org/data/definitions/111.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://cwe.mitre.org/data/definitions/89.html

91

OWASP Top 10 2013 application vulnerability
"A1-Injection"

finitions/89.html

69.

Avoid storing

usernames
and

passwords in
plain text in
Castor 'jdo-

conf.xml' files

This rule checks for Castor usernames
and passwords which are stored in plain
text in 'jdo-conf.xml' files. Castor
usernames and passwords should always
be encrypted if they are to be stored in
XML files. Since there are many
different kinds of encryption algorithms
in the market, in this rule, we assume
that an encrypted password is a
combination of uppercase letters,
lowercase letters, digits and symbols. A
violation will be flagged for each Castor
username or password which is stored in
a 'jdo-conf.xml' file and which does not
contain an
uppercase letter, lowercase letter, digit
and symbol.

category: Unsafe Environment Configuration

If a user stores a plain text username or password
in a Castor configuration file, the username or
password can easily be stolen by anyone with
access to that file. This makes it very easy for
hackers to steal the username or password.

This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications". Specifically, this rule
helps to test for Issue 6.3.6: "Removal of custom
application accounts, user IDs, and passwords
before applications become active or are released
to customers".

This rule also helps to enforce the PCI DSS
Requirement #8: "Assign a unique ID to each
person with computer access." Specifically, this
rule helps to test for Issue 8.4: "Render all
passwords unreadable during transmission and
storage on all system components using strong
cryptography" and Issue 8.5.11: "Use passwords
containing both numeric and alphabetic
characters."

1. Cigital Java Security
Rule Pack # 17:

http://www.cigital.com/sec
uritypack/view/index.html

2. PCI Data Security

Standard:
https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

3. CWE-798: Use of Hard-
coded Credentials

http://cwe.mitre.org/data/de
finitions/798.html

70.

Ensure that

passwords are
not stored in
plain text and

are
sufficiently

long

The rule identifies the following insecure
password Strings in the configuration
file:
- empty password string
- password which is too short
- plain text password

An error is reported for each occurrence.
A plain text password is a password
which is not encrypted. Since there are
many different kinds of encryption
algorithms in the market, in this rule, we
assume that an encrypted password is a
combination of uppercase letters,
lowercase letters, digits and symbols.

category: Unsafe Environment Configuration
If a user stores a plain text password in a XML
configuration file or property file, his password
can easily be stolen by someone (including
hackers) who can access that file. If the empty
String is used as a password, it can be guessed
very easily. If the password is fewer than 6
characters(by default) in length, it is very easy to
guess even using a brute force approach of trial
and error.
This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications". Specifically, this rule
helps to test for Issue 6.3.6: "Removal of custom
application accounts, user IDs, and passwords
before applications become active or are released
to customers".

1. Common Weakness
Enumeration:

http://cwe.mitre.org/data/de
finitions/258.html

2. Cigital Java Security

Rulepack # 25:
http://www.cigital.com/sec
uritypack/view/index.html

3. PCI Data Security

Standard:
https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

4. Common Weakness
Enumeration:

http://cwe.mitre.org/data/de
finitions/256.html

http://cwe.mitre.org/data/de
finitions/798.html

71.

Ensure WS-
Security is
enabled in

WebSphere
'ibm-

webservicescl
ient-ext.xmi'

files

This rule identifies if
<securityRequestGeneratorServiceConfi
g> or
<securityResponseConsumerServiceCon
fig> tags are missing in WebSphere
'ibm-webservicesclient-ext.xmi' files.
Omitting these tags will cause the
integrity and confidentiality of SOAP
messages to not be guaranteed. An error
is reported for each occurrence.

category: Unsafe Environment Configuration
WS-Security enhances the security of SOAP
messages at the message level. If WS-Security is
not enabled, message integrity and confidentiality
will depend on transport security.

http://www.redbooks.ibm.c
om/redbooks/pdfs/sg24725

7.pdf

72.
Avoid

unencrypted
passwords in

This rule identifies if the password in a
<securityToken> tag is not encrypted in
WebSphere 'ibm-webservicesclient-

category: Unsafe Environment Configuration If
passwords are not encrypted, they may be stolen
by attackers if the message is sent over an

1.
http://www.redbooks.ibm.c
om/redbooks/pdfs/sg24725

http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/798.html
http://cwe.mitre.org/data/definitions/798.html
http://cwe.mitre.org/data/definitions/258.html
http://cwe.mitre.org/data/definitions/258.html
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/256.html
http://cwe.mitre.org/data/definitions/256.html
http://cwe.mitre.org/data/definitions/798.html
http://cwe.mitre.org/data/definitions/798.html
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf

92

WebSphere
'ibm-

webservicescl
ient-ext.xmi'

files

ext.xmi' files. An unencrypted password
will be exposed to attackers if the
message is sent over an insecure
channel.
An error is reported for each occurrence.

insecure channel.
This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications". Specifically, this rule
helps to test for Issue 6.3.6: "Removal of custom
application accounts, user IDs, and passwords
before applications become active or are released
to customers".
This rule also helps to enforce the PCI DSS
Requirement #8: "Assign a unique ID to each
person with computer access." Specifically, this
rule helps to test for Issue 8.4: "Render all
passwords unreadable during transmission and
storage on all system components using strong
cryptography" and Issue 8.5.11: "Use passwords
containing both numeric and alphabetic
characters.".
Enforcing this rule will help to protect against
some of the OWASP Top 10 application
vulnerabilities including "A6-Sensitive Data
Exposure".

7.pdf

2. PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

3. OWASP Top 10 2013
(A6-Sensitive Data

Exposure):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

4. Common Weakness

Enumeration:
http://cwe.mitre.org/data/de

finitions/798.html

73.

Ensure all
web content
directories

have a
"welcome

file"

This rule identifies if web content
directories didn't have a "welcome file"
which the "welcome files" are specified
in 'web.xml'. An error is reported for
each occurrence.

Enforcing this rule will help to protect against
some of the OWASP Top 10 2013 application
vulnerabilities, including:

A5-Security Misconfiguration

For example, if a web content directory, '/admin'
didn't have a welcome file, hackers will be able to
see and download all the files in '/admin' directory
by typing url 'http://notsafe.com/admin'

OWASP Top 10 2013 (A5-
Security Misconfiguration):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

74.

Ensure WS-
Security is
enabled in

WebSphere
'ibm-

webservices-
ext.xmi' files

This rule identifies if
<securityRequestConsumerServiceConfi
g> or
<securityResponseGeneratorServiceConf
ig> tags are missing in WebSphere
'ibm-webservices-ext.xmi' files.
Omitting these tags will cause the
integrity and confidentiality of the SOAP
messages to not be guaranteed. An error
is reported for each occurrence.

category: Unsafe Environment Configuration

WS-Security enhances the security of SOAP
messages at the message level. If WS-Security is
not enabled, message integrity and confidentiality
will rely upon the security of the transport
mechanism.

http://www.redbooks.ibm.c
om/redbooks/pdfs/sg24725

7.pdf

75.

Avoid
unencrypted
passwords in
WebSphere

'ibm-
webservices-
ext.xmi' files

This rule identifies if passwords in
<securityToken> tags are not encrypted
in WebSphere 'ibm-webservices-
ext.xmi' files. Unencrypted passwords
will be exposed to attackers if messages
are sent over an insecure channel. An
error is reported for each occurrence.

category: Unsafe Environment Configuration

If passwords are not encrypted, they may be
stolen by attackers if the message is sent over an
insecure channel.
This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications". Specifically, this rule
helps to test for Issue 6.3.6: "Removal of custom
application accounts, user IDs, and passwords
before applications become active or are released
to customers".

This rule also helps to enforce the PCI DSS
Requirement #8: "Assign a unique ID to each
person with computer access." Specifically, this
rule helps to test for Issue 8.4: "Render all
passwords unreadable during transmission and
storage on all system components using strong

1.
http://www.redbooks.ibm.c
om/redbooks/pdfs/sg24725

7.pdf

2. PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

3. OWASP Top 10 2013
(A6-Sensitive Data

Exposure):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

4. CWE-798: Use of Hard-

coded Credentials

https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://cwe.mitre.org/data/definitions/798.html
http://cwe.mitre.org/data/definitions/798.html
http://notsafe.com/admin'
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10

93

cryptography" and Issue 8.5.11: "Use passwords
containing both numeric and alphabetic
characters."

Enforcing this rule will help to protect against
some of the OWASP Top 10 application
vulnerabilities including "A6-Sensitive Data
Exposure".

http://cwe.mitre.org/data/de
finitions/798.html

76.

Avoid
defining
multiple

security roles
with the same

name in
'web.xml'

files

A common mistake in 'web.xml' files is
to define multiple security roles with the
same name. This rule will flag a
violation for any case where there are
multiple '<security-role>' elements
within a 'web.xml' file which all specify
the same role name.

category: Unsafe Environment Configuration

Including multiple '<security-role>' elements with
the same name can lead to unauthorized access to
resources. The last security role with a given role
name will most likely be chosen if there are
multiple security roles with the same role name.
This can cause unintended access to be granted.
Enforcing this rule will help to protect against the
OWASP 2013 Top 10 application vulnerability,
including:
A5-Security Misconfiguration
A7-Missing Function Level Access Control

Cigital Java Security
Rulepack # 31:

http://www.cigital.com/sec
uritypack/view/index.html

OWASP Top 10 2013:

https://www.owasp.org/ind
ex.php/Top_10_2013-

Top_10

CWE-863: Incorrect
Authorization

http://cwe.mitre.org/data/de
finitions/863.html

77.

Ensure SOAP
messages are
encrypted in
WebSphere

'ibm-
webservicescl
ient-ext.xmi'

files

This rule identifies if
<requiredConfidentiality> and
<confidentiality> tags are not configured
correctly or are missing in WebSphere
'ibm-webservicesclient-ext.xmi' files.
Omitting these tags will cause the SOAP
messages to be unencrypted. An error is
reported for each occurrence.

category: Unsafe Environment Configuration
If SOAP messages are encrypted at the message
level, the messages will be confidential, which
means that you do not need to worry about the
transport security.

Enforcing this rule will help to protect against the
OWASP 2013 Top 10 application vulnerability,
including:
A5-Security Misconfiguration
A6-Sensitive Data Exposure

http://www.redbooks.ibm.c
om/redbooks/pdfs/sg24725

7.pdf

OWASP Top 10 2013:
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

78.

Ensure SOAP
messages are

digitally
signed in

WebSphere
'ibm-

webservicescl
ient-ext.xmi'

files

This rule identifies if <requiredIntegrity>
and <integrity> tags are not configured
correctly or are missing in WebSphere
'ibm-webservicesclient-ext.xmi' files.
Omitting these tags will cause the
integrity of SOAP message to not be
guaranteed. An error is reported for each
occurrence.

category: Unsafe Environment Configuration If
the SOAP message is digitally signed, the
receiver can use the signature to verify the
integrity of the message in order to detect whether
the message was modified by a third party or not.

Enforcing this rule will help to protect against the
OWASP 2013 Top 10 application vulnerability
"A6-Sensitive Data Exposure".

http://www.redbooks.ibm.c
om/redbooks/pdfs/sg24725

7.pdf

OWASP Top 10 2013 (A6-
Sensitive Data Exposure):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

79.

Ensure SOAP
messages are
encrypted in
WebSphere

'ibm-
webservices-
ext.xmi' files

This rule identifies if
<requiredConfidentiality> or
<confidentiality> tags are missing or not
configured properly in WebSphere 'ibm-
webservices-ext.xmi' files. Omitting
these tags will cause SOAP messages to
be unencrypted. An error is reported for
each occurrence.

category: Unsafe Environment Configuration

If SOAP messages are encrypted at the message
level, this ensures that the messages will be
confidential. This means that you do not need to
worry about the transport security.

Enforcing this rule will help to protect against the
OWASP 2013 Top 10 application vulnerability,
including:
A5-Security Misconfiguration
A6-Sensitive Data Exposure

http://www.redbooks.ibm.c
om/redbooks/pdfs/sg24725

7.pdf

OWASP Top 10 2013:
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

80.

Ensure SOAP

This rule identifies if <requiredIntegrity>
or <integrity> tags are missing or not
configured properly in WebSphere 'ibm-
webservices-ext.xmi' files. Omitting

category: Unsafe Environment Configuration If
SOAP messages are digitally signed, the receiver
can use the signature to verify the integrity of the
message. That way, the receiver can detect

http://www.redbooks.ibm.c
om/redbooks/pdfs/sg24725

7.pdf

http://cwe.mitre.org/data/definitions/798.html
http://cwe.mitre.org/data/definitions/798.html
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://cwe.mitre.org/data/definitions/863.html
http://cwe.mitre.org/data/definitions/863.html
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf

94

messages are
digitally
signed in

WebSphere
'ibm-

webservices-
ext.xmi' files

these tags will cause the integrity of
SOAP message to not be guaranteed. An
error is reported for each occurrence.

whether the message was modified by a third
party or not.
Enforcing this rule will help to protect against the
OWASP 2013 Top 10 application vulnerability
"A6-Sensitive Data Exposure".

OWASP Top 10 2013 (A6-
Sensitive Data Exposure):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

81.

Ensure that
'axis.develop
ment.system'

is set to
"false" in

Axis 'server-
config.wsdd'

files

This rule identifies cases where the
parameter 'axis.development.system' is
set to "true" in an Apache Axis 'server-
config.wsdd' file. An error is reported
for each occurrence.

category: Unsafe Environment Configuration

'axis.development.system' should only be set to
"true" during the development phase. Having this
property set to "true" in production code will
cause stack traces and other debugging
information to be exposed to the user. This
information is likely to include sensitive
information and implementation details that
should not be exposed to the user.

"Apache Axis Reference
Guide", "Global Axis

Configuration" section:
http://ws.apache.org/axis/ja
va/reference.html#GlobalA

xisConfiguration

82.

Ensure that
'axis.enableLi
stQuery' is set
to "false" in
Axis 'server-
config.wsdd'

files

This rule identifies if the parameter
'axis.enableListQuery' is set to "true" in
an Apache Axis 'server-config.wsdd' file.
An error is reported for each occurrence.

category: Unsafe Environment Configuration

If 'axis.enableListQuery' is set to "true" in a
'server-config.wsdd' file, it will cause the current
system config to be listed. This can expose
sensitive information such as passwords.

"Apache Axis Reference
Guide", "Global Axis

Configuration" section:
http://ws.apache.org/axis/ja
va/reference.html#GlobalA

xisConfiguration

83.

Ensure that

'axis.disableS
erviceList' is
set to "true"

in Axis
'server-

config.wsdd'
files

This rule identifies cases where the
parameter 'axis.disableServiceList' is set
to "false" in an Apache Axis 'server-
config.wsdd' file. The
'axis.disableServiceList' parameter is set
to "false" by default, so a violation will
also be flagged if this parameter is not
specified. An error is reported for each
'server-config.wsdd' file where
'axis.disableServiceList' is either not
specified or explicitly set to "false".

category: Unsafe Environment Configuration

'axis.disableServiceList' should not be set to
"false" because doing so will allow the available
services to be listed when a "GET" request is
performed on the servlet root. This can allow
access to a list of features which should not be
exposed to the public.

"Apache Axis Reference
Guide", "Global Axis

Configuration" section:
http://ws.apache.org/axis/ja
va/reference.html#GlobalA

xisConfiguration

84.

Ensure that
the 'Encrypt'
directive is

specified for
each 'items'
tag in Axis2
configuration

files

This rule checks that the actions defined
within the "InflowSecurity" and
"OutflowSecurity" parameters of Apache
Axis2 'services.xml' and 'axis2.xml' files
specify the "Encrypt" directive. For each
"action" defined within an
"InflowSecurity" or "OutflowSecurity"
parameter, the rule will check that the
'<items>' tag specifies the "Encrypt"
directive so that messages will be
properly encrypted. The rule will flag a
violation for each '<items>' tag which is
missing the "Encrypt" directive.
'services.xml' and 'axis2.xml' files which
do not use the Rampart security module
(i.e., those which do not contain a
'<module ref="rampart" />' tag) will be
ignored.

category: Unsafe Environment Configuration
For "items" tags contained within
"InflowSecurity" and "OutflowSecurity"
parameters, it is recommended that the "Encrypt"
directive always be specified.
Without this directive, messages will not have any
encryption, and message security will rely on the
security of the transport mechanism.
Enforcing this rule will help to protect against
some of the OWASP Top 10 application
vulnerabilities including "A5-Security
Misconfiguration

"Securing SOAP Messages
with Rampart":

http://ws.apache.org/axis2/
modules/rampart/1_3/securi

ty-module.html

OWASP Top 10 2013 (A5-
Security Misconfiguration):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

85.
Ensure that
each filter

mapped in a

Each filter mapping in a 'web.xml' file
should include a '<filter-name>' element
with the name of a filter defined within

category: Unsafe Environment Configuration

Cigital Java Security
Rulepack # 34:

http://www.cigital.com/sec

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://ws.apache.org/axis/java/reference.html%23GlobalAxisConfiguration
http://ws.apache.org/axis/java/reference.html%23GlobalAxisConfiguration
http://ws.apache.org/axis/java/reference.html%23GlobalAxisConfiguration
http://ws.apache.org/axis/java/reference.html%23GlobalAxisConfiguration
http://ws.apache.org/axis/java/reference.html%23GlobalAxisConfiguration
http://ws.apache.org/axis/java/reference.html%23GlobalAxisConfiguration
http://ws.apache.org/axis/java/reference.html%23GlobalAxisConfiguration
http://ws.apache.org/axis/java/reference.html%23GlobalAxisConfiguration
http://ws.apache.org/axis/java/reference.html%23GlobalAxisConfiguration
http://ws.apache.org/axis2/modules/rampart/1_3/security-module.html
http://ws.apache.org/axis2/modules/rampart/1_3/security-module.html
http://ws.apache.org/axis2/modules/rampart/1_3/security-module.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.cigital.com/securitypack/view/index.html

95

'web.xml' file
has a

corresponding
definition

that 'web.xml' file. A common mistake
is for a filter mapping to specify the
name of a filter that is missing a
definition. This rule will flag a violation
for each '<filter-mapping>' element in a
'web.xml' file which contains a '<filter-
name>' element which specifies the
name of a filter for which there is no
corresponding '<filter>' element in the
'web.xml' file.

Filters are often used to prevent common attacks
such as URL injection and HTTP request
injection. If you attempt to use a filter to prevent
attacks but fail to define the filter correctly, the
filter will not be effective in preventing attacks.
To ensure security, you must make sure that there
is a corresponding '<filter>' element for each
'<filter-mapping>' element.

uritypack/view/index.html

86.

Ensure that
'InflowSecurit

y' and
'OutflowSecu

rity'
parameters

are specified
in Axis2

configuration
files

This rule checks that an "InflowSecurity"
and "OutflowSecurity" parameter is
specified for each <service> or
<axisconfig> tag defined in an Apache
Axis2 'services.xml' file or 'axis2.xml'
file. By default, a violation will be
flagged for each <service> or
<axisconfig> tag defined within an
Apache Axis2 'services.xml' or
'axis2.xml' file which does not contain
either an "InflowSecurity" or an
"OutflowSecurity" child tag.
'services.xml' and 'axis2.xml' files which
do not use the Rampart security module
(those which do not contain a '<module
ref="rampart" />' tag) will be ignored.

category: Unsafe Environment Configuration If
the "InflowSecurity" or "OutflowSecurity"
parameter is missing, messages are not
guaranteed to be secure. Their security will
depend on the security of the mechanism used to
transport the messages. You should always
specify these
parameters for each <service> and <axisconfig>
tag to make sure that the messages are secure.
Enforcing this rule will help to protect against
some of the OWASP Top 10 application
vulnerabilities including "A5-Security
Misconfiguration".

"Securing SOAP Messages
with Rampart":

http://ws.apache.org/axis2/
modules/rampart/1_3/securi

ty-module.html

OWASP Top 10 2013 (A5-
Security Misconfiguration):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

87.

Include an
appropriate

'<login-
config>'

element to
specify the

type of
authentication

to be
performed in

'web.xml'
files

When using 'auth-constraint' elements to
control access to resources in a 'web.xml'
file, you must also include a 'login-
config' element to specify the type of
user authentication to be performed. The
four recognized types of user
authentication are:

- BASIC
- FORM
- DIGEST
- CLIENT-CERT

This rule will flag a violation for each
'web.xml' file which includes at least one
'auth-constraint' element but which either
does not contain a 'login-config' element
or contains a 'login-config' element
which specifies an authentication method
which is not one of the four recognized
authentication methods.

category: Unsafe Environment Configuration
If you omit the 'login-config' element from a
'web.xml' file which is supposed to perform
access control or if you include an incorrect
'login-config' element, it may be possible for
unauthorized users to access sensitive resources.
To ensure that proper access control is performed,
you should always include a 'login-config'
element which specifies one of the four
recognized types of user authentication listed in
the "DESCRIPTION" section.
Enforcing this rule will help to protect against
some of the the OWASP 2013 Top 10
application vulnerability including:
A2-Broken Authentication and Session
Management
A5-Security Misconfiguration

Cigital Java Security
Rulepack # 33:

http://www.cigital.com/sec
uritypack/view/index.html

OWASP Top 10 2013:

https://www.owasp.org/ind
ex.php/Top_10_2013-

Top_10

Common Weakness
Enumeration:

http://cwe.mitre.org/data/de
finitions/862.html

88.

Avoid using
plain text

passwords in
Axis 'wsdd'

files

This rule checks that plain text
passwords are not used in Apache Axis
'.wsdd' files. A violation will be flagged
for each "passwordType" parameter in a
'.wsdd' file which has the value
"PasswordText" unless encryption is
performed.
Using the password type
"PasswordText" without any encryption
is dangerous because it may allow
passwords to be transmitted in plain text.
By default, "passwordType" parameters
with value "PasswordText" will not be
flagged if there is also an "action"
parameter which specifies to use
encryption on the password. By default,

category: Unsafe Environment Configuration

Passwords of type "PasswordText" will be sent in
plain text unless they are encrypted. This is
dangerous from a security standpoint because the
passwords can be easily stolen if they are sent
over an insecure channel.

This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications". Specifically, this rule
helps to test for Issue 6.3.6: "Removal of custom
application accounts, user IDs, and passwords
before applications become active or are released
to customers".

1. "WSS4J":
http://ws.apache.org/wss4j/

package.html

2. CWE-522: Insufficiently
Protected Credentials

http://cwe.mitre.org/data/de
finitions/522.html

3. PCI Data Security

Standard:
https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

4. CWE-798: Use of Hard-

http://ws.apache.org/axis2/modules/rampart/1_3/security-module.html
http://ws.apache.org/axis2/modules/rampart/1_3/security-module.html
http://ws.apache.org/axis2/modules/rampart/1_3/security-module.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://cwe.mitre.org/data/definitions/862.html
http://cwe.mitre.org/data/definitions/862.html
http://ws.apache.org/wss4j/package.html
http://ws.apache.org/wss4j/package.html
http://cwe.mitre.org/data/definitions/522.html
http://cwe.mitre.org/data/definitions/522.html
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml

96

a violation will also not be flagged if
there is no "action" parameter which
specifies to use the "UsernameToken"
action.

This rule also helps to enforce the PCI DSS
Requirement #8: "Assign a unique ID to each
person with computer access." Specifically, this
rule helps to test for Issue 8.4: "Render all
passwords unreadable during transmission and
storage on all system components using strong
cryptography" and Issue 8.5.11: "Use passwords
containing both numeric and alphabetic
characters."

coded Credentials
http://cwe.mitre.org/data/de

finitions/798.html

89.

Restrict
access to JSPs
in 'web.xml'

files by
including a

security
constraint for

'*.jsp' files

JSP files often contain Javascript and
Java code which should not be exposed
to
all users. Thus, it is a good idea to
always include a security constraint in
all 'web.xml' files which restricts access
to '*.jsp' files. This rule will
flag a violation for each 'web.xml' file
which does not contain a
'<security-constraint>' element
restricting access to '*.jsp' resources. It
will also flag a violation for each
'web.xml' file which contains a
'<security-constraint>' element which
allows access to '*.jsp' resources to all
users by specifying '*' for the role name.

category: Unsafe Environment Configuration
JSP files should not be accessible to all users
because they often contain business logic
implemented in Javascript or Java code which
should have restricted access. The best way to
restrict access to JSP files is to define security
roles and to limit access to '*.jsp' resources using
a '<security-constraint>' element.

Cigital Java Security

Rulepack # 35:
http://www.cigital.com/sec
uritypack/view/index.html

90.

Ensure that
the 'Signature'

directive is
specified for
each 'items'
tag in Axis2
configuration

files

This rule checks that the actions defined
within the "InflowSecurity" and
"OutflowSecurity" parameters of Apache
Axis2 'services.xml' and 'axis2.xml' files
specify the "Signature" directive. For
each "action" defined within an
"InflowSecurity" or "OutflowSecurity"
parameter, the rule will check that the
"items" tag specifies the "Signature"
directive so that messages will contain a
signature which allows the receiver to
verify the authenticity of the message.
The rule will flag a violation for each
'<items>' tag which is missing the
"Signature" directive.
'services.xml' and 'axis2.xml' files which
do not use the Rampart security module
(i.e., those which do not contain a
'<module ref="rampart" />' tag) will be
ignored.

category: Unsafe Environment Configuration
For '<items>' tags contained within
"InflowSecurity" and "OutflowSecurity"
parameters, it is recommended that the
"Signature" directive always be specified.
Specifying the "Signature" directive will ensure
that messages contain a signature which allows
the receiver to verify the integrity of the message.
Enforcing this rule will help to protect against
some of the OWASP Top 10 application
vulnerabilities including "A5-Security
Misconfiguration".

"Securing SOAP Messages
with Rampart":

http://ws.apache.org/axis2/
modules/rampart/1_3/securi

ty-module.html

OWASP Top 10 2013 (A5-
Security Misconfiguration):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

Parasoft Jtest Static Analysis

Rules > Security
[SECURITY] > Unsafe

Environment Configuration
[SECURITY.UEC]

91.

Always

specify error
pages in
web.xml

This rule identifies 'web.xml' files which
do not specify any 'error-page' elements.
A violation is reported for each
occurrence. This rule also has parameters
which can be used to check the format of
'error-page' elements as well as if certain
error codes or exception types are
covered.

category: Unsafe Environment Configuration

Failure to specify an 'error-page' for common
situations may result in a default error page being
displayed. In the case of exceptions, data may be
displayed to the user which reveals inner
workings of the application. An attacker could
then use this information to manipulate or exploit
the application.

N/A

92.

Session
identifiers

should be at
least 128 bits

long to
prevent brute-
force session

Session identifiers should be at least 128
bits long to prevent brute-force attacks.
This rule check deployment descriptor
files and identifies uses of Session-ID
with a width less than that set in the
parameters.

category: Unsafe Environment Configuration

1. CWE-6: J2EE
Misconfiguration:

Insufficient Session-ID
Length

http://cwe.mitre.org/data/de
finitions/6.html

http://cwe.mitre.org/data/definitions/798.html
http://cwe.mitre.org/data/definitions/798.html
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
http://ws.apache.org/axis2/modules/rampart/1_3/security-module.html
http://ws.apache.org/axis2/modules/rampart/1_3/security-module.html
http://ws.apache.org/axis2/modules/rampart/1_3/security-module.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://127.0.0.1:55474/help/nav/16
http://127.0.0.1:55474/help/nav/16
http://127.0.0.1:55474/help/topic/com.parasoft.xtest.standards.eclipse.core.java/rules/SECURITY.html
http://127.0.0.1:55474/help/topic/com.parasoft.xtest.standards.eclipse.core.java/rules/SECURITY.html
http://127.0.0.1:55474/help/topic/com.parasoft.xtest.standards.eclipse.core.java/rules/SECURITY.html
http://127.0.0.1:55474/help/topic/com.parasoft.xtest.standards.eclipse.core.java/rules/SECURITY.UEC.html
http://127.0.0.1:55474/help/topic/com.parasoft.xtest.standards.eclipse.core.java/rules/SECURITY.UEC.html
http://127.0.0.1:55474/help/topic/com.parasoft.xtest.standards.eclipse.core.java/rules/SECURITY.UEC.html
http://127.0.0.1:55474/help/topic/com.parasoft.xtest.standards.eclipse.core.java/rules/SECURITY.UEC.html
http://cwe.mitre.org/data/definitions/6.html
http://cwe.mitre.org/data/definitions/6.html

97

guessing 2. Sun Java System
Application Server
Platform Edition 8
Developer's Guide.

Chapter 5 Deployment
Descriptor Files

http://download.oracle.com/
docs/cd/E19518-01/817-

6087/dgdesc.html

3. OWASP Brute force
attack

https://www.owasp.org/ind
ex.php/Brute_force_attack

4. ASDR TOC

Vulnerabilities OWASP
Insufficient Session-ID

Length
https://www.owasp.org/ind
ex.php/Insufficient_Session

-ID_Length

93.
Avoid using
the SOAP
Monitor
module

Apache Axis 2 comes with a utility
called the SOAP Monitor module. For
security reasons, you should only enable
this module for debugging purposes.
This rule identifies cases where the
SOAP Monitor module is enabled in an
'axis2.xml' file.

category: Unsafe Environment Configuration

When the SOAP Monitor module is enabled, it is
easy for attackers to eavesdrop on SOAP
messages sent and received by a Web application.
To protect sensitive information, this utility
should always be disabled.

"Apache Axis Reference
Guide":

http://ws.apache.org/axis2/1
_4_1/soapmonitor-

module.html

94.

Ensure that
each security

role
referenced in
a 'web.xml'
file has a

corresponding
definition

Each security role referenced within an
'<auth-constraint>' element of a
'web.xml' file must have a corresponding
'<security-role>' element with the same
role name. The '<security-role>' element
is the element which defines the security
role. If this element is missing, any
resource which is specified to only allow
access to that security role will be
inaccessible to users who are
supposed to be in that security role. A
violation will be flagged for each '<auth-
constraint>' element which specifies a
role name for which there is no
corresponding '<security-role>' element.

category: Unsafe Environment Configuration

Failure to properly define security roles will lead
to denial of access to anyone who is supposed to
be in the specified role.
Enforcing this rule will help to protect against
some of the OWASP Top 10 application
vulnerabilities including "A5-Security
Misconfiguration".

Cigital Java Security
Rulepack # 30:

http://www.cigital.com/sec
uritypack/view/index.html

OWASP Top 10 2013 (A5-
Security Misconfiguration):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

CWE-863: Incorrect

Authorization
http://cwe.mitre.org/data/de

finitions/863.html

95.

Ensure that
sessions are

configured to
time out
within a

reasonable
amount of

time in
'web.xml'

files

You should be careful to configure a
reasonable session timeout within each
'web.xml' file. Configuring a reasonable
session timeout will ensure that users can
comfortably browse the Web application
without leaving the session open too
long in case they forget to log out. The
standard way to configure a session
timeout in a 'web.xml' file is with a
'<session-timeout>' element like in the
following example:

<web-app>

category: Unsafe Environment Configuration

A2-Broken Authentication and Session
Management If a session is left open for too long,
it may allow an unauthorized user to start using
the session. People often forget to log out of Web
applications, so it is best to protect them from
malicious users by automatically logging them
out after a certain amount of time. This is
especially true for Web applications which are
used at public terminals.
If you do not set an explicit session timeout in the

Cigital Java Security
Rulepack # 29:

http://www.cigital.com/sec
uritypack/view/index.html

OWASP Top 10 for 2013

(A2-Broken Authentication
and Session Management):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

CWE-613: Insufficient

http://download.oracle.com/docs/cd/E19518-01/817-6087/dgdesc.html
http://download.oracle.com/docs/cd/E19518-01/817-6087/dgdesc.html
http://download.oracle.com/docs/cd/E19518-01/817-6087/dgdesc.html
https://www.owasp.org/index.php/Brute_force_attack
https://www.owasp.org/index.php/Brute_force_attack
https://www.owasp.org/index.php/Insufficient_Session-ID_Length
https://www.owasp.org/index.php/Insufficient_Session-ID_Length
https://www.owasp.org/index.php/Insufficient_Session-ID_Length
http://ws.apache.org/axis2/1_4_1/soapmonitor-module.html
http://ws.apache.org/axis2/1_4_1/soapmonitor-module.html
http://ws.apache.org/axis2/1_4_1/soapmonitor-module.html
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://cwe.mitre.org/data/definitions/863.html
http://cwe.mitre.org/data/definitions/863.html
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10

98

...
<session-config>
<session-timeout>30</session-timeout>
</session-config>

</web-app>

'web.xml' file, it will be left up to the container to
determine the length of the timeout. You should
specify an explicit timeout to prevent the
container from enforcing a timeout which is too
long or no timeout at all.

Session Expiration
http://cwe.mitre.org/data/de

finitions/613.html

96.

Ensure that
the

'Timestamp'
directive is

specified for
each 'items'
tag in Axis2
configuration

files

This rule checks that the actions defined
within the "InflowSecurity" and
"OutflowSecurity" parameters of Apache
Axis2 'services.xml' and 'axis2.xml' files
specify the "Timestamp" directive. For
each "action" defined within an
"InflowSecurity" or "OutflowSecurity"
parameter, the rule will check that the
'<items>' tag specifies the "Timestamp"
directive so that messages will contain a
timestamp which will help to prevent
Replay attacks. The rule will flag a
violation for each "items" tag which is
missing the "Timestamp" directive.
'services.xml' and 'axis2.xml' files which
do not use the Rampart security module
(i.e., those which do not contain a
'<module ref="rampart" />' tag) will be
ignored.

category: Unsafe Environment Configuration
For '<items>' tags contained within
"InflowSecurity" and "OutflowSecurity"
parameters, it is recommended that the
"Timestamp" directive always be specified.
Specifying the "Timestamp" directive will ensure
that messages contain a timestamp. This will help
to prevent replay attacks. A replay attack
happens when an attacker intercepts a message
and then sends it at
a later time when the message is a security risk.
If the message contains a timestamp, the receiver
will be able to determine that the message is stale
and reject it.

Enforcing this rule will help to protect against
some of the OWASP Top 10 application
vulnerabilities including "A5-Security
Misconfiguration".

"Securing SOAP Messages

with Rampart":
http://ws.apache.org/axis2/
modules/rampart/1_3/securi

ty-module.html

OWASP Top 10 2013 (A5-
Security Misconfiguration):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

97.

Ensure that

all
constrained

resources are
protected

with a '<user-
data-

constraint>'
element in
'web.xml'

files

'<security-constraint>' elements in
'web.xml' files can contain a '<user-data-
constraint>' element. While the '<user-
data-constraint>' element is optional, it is
recommended that you always include it
for constrained resources because the
'<user-data-constraint>' element allows
you to specify how data sent between the
client and the container will be
protected. According to the Java EE 5
Tutorial (See the "REFERENCES"
section), the following are legal values
for
the '<transport-guarantee>' element
which must be defined within the '<user-
data-constraint>' element:
- "CONFIDENTIAL" when the
application requires that data be
transmitted so as to prevent other
entities from observing the contents of
the transmission
- "INTEGRAL" when the application
requires that the data be sent between
client and server in such a way that it
cannot be changed in transit
- "NONE" to indicate that the container
must accept the constrained requests on
any connection, including an unprotected
one
You should always include a '<user-data-
constraint>' element with a '<transport-
guarantee>' element which specifies the
appropriate level of security.

This rule will flag a violation for each
'<security-constraint>' element in a
'web.xml' file which contains a non-
empty '<auth-constraint>' element and

category: Unsafe Environment Configuration

Resources which contain an '<auth-constraint>'
element are generally supposed to be protected.
This means that communication between the
client and the container should also be protected
for these resources. The way to do this is to
include a '<user-data-constraint>' element with
either "INTEGRAL" or "CONFIDENTIAL"
specified for the transport guarantee.

Even in cases where the communication does not
need to be protected, you should specify "NONE"
for the transport guarantee to make this explicit.

1. The Java EE 5 Tutorial:

http://java.sun.com/javaee/5
/docs/tutorial/doc/bnbxw.ht

ml

2. Cigital Java Security
Rulepack # 32:

http://www.cigital.com/sec
uritypack/view/index.html

http://cwe.mitre.org/data/definitions/613.html
http://cwe.mitre.org/data/definitions/613.html
http://ws.apache.org/axis2/modules/rampart/1_3/security-module.html
http://ws.apache.org/axis2/modules/rampart/1_3/security-module.html
http://ws.apache.org/axis2/modules/rampart/1_3/security-module.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://java.sun.com/javaee/5/docs/tutorial/doc/bnbxw.html
http://java.sun.com/javaee/5/docs/tutorial/doc/bnbxw.html
http://java.sun.com/javaee/5/docs/tutorial/doc/bnbxw.html
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html

99

which does not contain a '<user-data-
constraint>' element.

98.

Avoid using
plain text

passwords in
Axis2

configuration
files

This rule checks that plain text
passwords are not used in Apache Axis2
'services.xml' and 'axis2.xml' files. For
each '<action>' defined within an
"InflowSecurity" or "OutflowSecurity"
parameter, the rule will check that the
password type is not set to
"PasswordText". A violation will be
flagged for each '<action>' tag which
contains a
'<passwordType>PasswordText</passw
ordType>' child tag. By default, a
violation will not be flagged if the
'<items>' tag also specifies to use
"Encrypt" to encrypt the plain text
password. By default,a violation will
also not be flagged if the '<items>' tag
does not specify to
use the "UsernameToken" directive.
'services.xml' and 'axis2.xml' files which
do not use the Rampart security module
(i.e., those which do not contain a
'<module ref="rampart" />' tag) will be
ignored.

category: Unsafe Environment Configuration

Using the "UsernameToken" directive with a
plain text password and no encryption is
dangerous because the password may be stolen by
attackers if the message is sent over an insecure
channel. Passwords should always be encrypted
before being sent over an insecure channel.
This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications". Specifically, this rule
helps to test for Issue 6.3.6: "Removal of custom
application accounts, user IDs, and passwords
before applications become active or are released
to customers".
This rule also helps to enforce the PCI DSS
Requirement #8: "Assign a unique ID to each
person with computer access." Specifically, this
rule helps to test for Issue 8.4: "Render all
passwords unreadable during transmission and
storage on all system components using strong
cryptography" and Issue 8.5.11: "Use passwords
containing both numeric and alphabetic
characters."

1. "Securing SOAP
Messages with Rampart":
http://ws.apache.org/axis2/
modules/rampart/1_3/securi

ty-module.html

2. PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

3. Common Weakness
Enumeration:

http://cwe.mitre.org/data/de
finitions/798.html

99.

Avoid
misconfigurin
g timestamps
in WebSphere

'ibm-
webservicescl
ient-ext.xmi'

files

This rule identifies if the
<addTimestamp> tag is missing in
WebSphere 'ibm-webservicesclient-
ext.xmi' files or the expiration is missing
in the <addTimestamp> tag. Omitting
the <addTimestamp> tag or the
expiration will cause the SOAP message
to be vulnerable to replay attacks. An
error is reported for each occurrence.

category: Unsafe Environment Configuration
If the timestamp is missing or the timestamp
never expires in the SOAP message, it may be
vulnerable to replay attacks. A replay attack
happens when an attacker intercepts a message
and then sends it at a later time (when the
message is harmful).

http://www.redbooks.ibm.c
om/redbooks/pdfs/sg24725

7.pdf

100.

Avoid

unsigned
timestamps in
WebSphere

'ibm-
webservicescl
ient-ext.xmi'

files

This rule identifies if there is an
<addTimestamp> tag in WebSphere
'ibm-webservicesclient-ext.xmi' files but
there is no digital signature for the
timestamp. Any unsigned timestamp is
vulnerable to replay attacks. An error is
reported for each occurrence.

category: Unsafe Environment Configuration
If the timestamp is not signed, an attacker can
intercept the SOAP message, modify the
timestamp and send a malicious message to the
receiver.

http://www.redbooks.ibm.c
om/redbooks/pdfs/sg24725

7.pdf

101.

Avoid
misconfigur

ing
timestamps

in
WebSphere

'ibm-
webservices

-ext.xmi'
files

This rule identifies if an
<addTimestamp> tag is missing in
WebSphere 'ibm-webservices-ext.xmi'
files or an expiration is missing in the
<addTimestamp> tag. Omitting the
<addTimestamp> tag or the expiration
will cause the SOAP messages to be
vulnerable to replay attacks. An error is
reported for each occurrence.

category: Unsafe Environment Configuration

If the timestamp is missing or the timestamp
never expires in the SOAP message, the
application may be vulnerable to replay attacks. A
replay attack happens when an attacker intercepts
a message and then sends it at a later time (when
the message is harmful).

http://www.redbooks.ibm.c
om/redbooks/pdfs/sg24725

7.pdf

102.

Ensure that
the Rampart

WS-
Security

module is
enabled in

Axis2

Apache Axis2 comes with a security
module called "Rampart" which provides
WS-Security features. This module is
enabled by adding a '<module
ref="rampart"/>' tag to the 'services.xml'
or 'axis2.xml' file. This rule will flag a
violation for each 'services.xml' or

category: Unsafe Environment Configuration

The Apache Rampart WS-Security module is
provided with Apache Axis2 to ensure message
integrity and confidentiality. If Rampart is
disabled, it makes it difficult to guarantee
message integrity and confidentiality.

"Securing SOAP Messages
with Rampart":

http://ws.apache.org/axis2/
modules/rampart/1_3/securi

ty-module.html

OWASP Top 10 2013 (A5-

http://ws.apache.org/axis2/modules/rampart/1_3/security-module.html
http://ws.apache.org/axis2/modules/rampart/1_3/security-module.html
http://ws.apache.org/axis2/modules/rampart/1_3/security-module.html
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/798.html
http://cwe.mitre.org/data/definitions/798.html
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://ws.apache.org/axis2/modules/rampart/1_3/security-module.html
http://ws.apache.org/axis2/modules/rampart/1_3/security-module.html
http://ws.apache.org/axis2/modules/rampart/1_3/security-module.html

100

configuratio
n files

'axis2.xml' file which is missing the tag
'<module ref="rampart"/>'. Without this
tag, Rampart will be disabled.

Enforcing this rule will help to protect against
some of the OWASP Top 10 application
vulnerabilities including "A5-Security
Misconfiguration".

Security Misconfiguration):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

103.

Avoid
unsigned

timestamps
in

WebSphere
'ibm-

webservices
-ext.xmi'

files

This rule identifies if there is an
<addTimestamp> tag in a WebSphere
'ibm-webservices-ext.xmi' file but there
is no digital signature for that timestamp.
Any unsigned timestamp is vulnerable to
replay attacks. An error is reported for
each occurrence.

category: Unsafe Environment Configuration

If a timestamp is not signed, an attacker can
intercept the SOAP message, modify the
timestamp, and send the message to the receiver
at a later time (when the message is harmful).
Since the timestamp has been altered, the receiver
has no way of telling that the message is stale.

http://www.redbooks.ibm.c
om/redbooks/pdfs/sg24725

7.pdf

104.

Use 'https'
instead of

'http' for the
'transportRe
ceiver' and
'transportSe

nder' in
'axis2.xml'

configuratio
n files

This rule identifies cases where the
transport sender or transport receiver
specified in the 'axis2.xml' configuration
file uses "http" instead of "https". A
violation will be flagged for each
"transportSender" or "transportReceiver"
tag where the name attribute is set to
"http".

category: Unsafe Environment Configuration

If sensitive data is being transmitted, you should
use "https" (or some other secure protocol)
instead of "http" since "https" uses SSL to ensure
that data is secure. The "http" protocol does not
provide any encryption.
This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security Standard)
Requirement #4: "Encrypt transmission of
cardholder data across open, public networks".
Specifically, this rule helps to test for Issue 4.1:
"Use strong cryptography and security protocols
such as SSL/TLS or IPSEC to safeguard sensitive
cardholder data during transmission over open,
public networks."
Enforcing this rule will help to protect against the
OWASP 2013 Top 10 application vulnerability
"A6-Sensitive Data Exposure".

1. "HTTP Transport":
http://ws.apache.org/axis2/1

_4_1/http-transport.html

2. "CWE-311: Failure to
Encrypt Sensitive Data":

http://cwe.mitre.org/data/de
finitions/311.html

3. PCI Data Security

Standard:
https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

4. OWASP Top 10 2013
(A6-Sensitive Data

Exposure):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

105.

Ensure that
"REST" is
disabled in
'axis2.xml'

configuratio
n files

This rule checks that "REST" is disabled
in Apache Axis 2 'axis2.xml'
configuration files. A violation will be
flagged for each 'axis2.xml' file which
sets the "disableREST" parameter to
"false".

category: Unsafe Environment Configuration

"REST" does not have any message security
standards, so it is dangerous to use "REST".
Some people prefer to always have "REST"
disabled.

N/A

106.

Ensure all
exceptions
are either

logged with a
standard
logger or
rethrown

This rule identifies code that does not
log caught exceptions with a standard
logger or rethrow caught exceptions. If
the exception could be handled without
using a standard logger or rethrowing the
exception, then a comment should be
added.

category: Unsafe Error Handling and Logging

Using a logging mechanism to track exceptions
caught could provide a clearer and more secure
overview of the possible security vulnerabilities.
A prompt and accurate fix could be made based
on the information. Enforcing this rule will help
to protect against the OWASP 2007 Top 10
application vulnerability "A6 - Information
Leakage and Improper Error Handling".

This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications". Specifically, this rule
helps to check for Issue 6.5.7:"Improper error
handling".

OWASP Top 10 2007 (A6 -
Information Leakage and

Improper Error Handling):
http://www.owasp.org/inde

x.php/Top_10_2007-A6

PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

CWE-390: Detection of
Error Condition Without

Action
http://cwe.mitre.org/data/de

finitions/390.html

107. Do not This rule identifies custom 'ClassLoader' category: Weak Security Controls

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247257.pdf
http://ws.apache.org/axis2/1_4_1/http-transport.html
http://ws.apache.org/axis2/1_4_1/http-transport.html
http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/311.html
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.owasp.org/index.php/Top_10_2007-A6
http://www.owasp.org/index.php/Top_10_2007-A6
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/390.html
http://cwe.mitre.org/data/definitions/390.html

101

define
custom class

loaders

declarations. A message is reported for
each occurrence.

category: Malicious Code

Creating a custom class loader that is not secure
can allow the loading of malicious classes.

http://www.unix.org.ua/orel
ly/java-

ent/security/ch03_04.htm

108.

Do not pass
mutable

objects to
'ObjectOutp
utStream' in

the
'writeObject
()' method

This rule identifies code that directly
passes mutable fields to
ObjectOutputStream in the
'writeObject()' method. An error is
reported if these fields are passed to
'ObjectOutputStream.writeObject(Object
)' in a custom serialization method
(writeObject). Certain types of fields
should be cloned before being passed to
the serialization output stream.

category: Weak Security Controls
category: Data Security

The class ObjectOutputStream may be subclassed
by a malicious class that tries to modify object-
internal data. When a direct reference to a
mutable field is passed to the
ObjectOutputStream, this reference can be used to
access and modify the field's content. Passing a
copy of the field to the 'writeObject(Object)'
method makes this kind of attack impossible.

N/A

109.

Ensure

arguments
passed to
certain

methods
come from
predefined

methods list

There are certain methods whose
arguments should always come from a
valid source--otherwise, passing such
arguments creates a security risk. For
instance, the seed used for generating
random values must be different each
time and should not be predictable. If the
seed can be guessed or known, then the
pseudo-random numbers can be
determined.

This rule will flag a violation for any
case where the method specified in the
parameter table is not called with an
argument from a valid source (also
specified in parameter table).

category: Weak Security Controls

Passing constant or predictable values to certain
methods creates a security risk. Use values from
valid/verified sources only.

CWE-329: Not Using a
Random IV with CBC

Mode
http://cwe.mitre.org/data/de

finitions/329.html

CWE-336: Same Seed in
PRNG

http://cwe.mitre.org/data/de
finitions/336.html

CWE-337: Predictable Seed

in PRNG
http://cwe.mitre.org/data/de

finitions/337.html

110.

Avoid

passing
hardcoded

usernames/pa
sswords/URL
s to database
connection

methods

Passing constant values into a database
connection method is a security risk.
These constant values can include the
username, password, and URL for
accessing the database. Instead of using
constant Strings to connect to a database,
the programmer should get database
connection Strings from a secure source.
By default, this rule will check the
following things:
1. this rule will look for any calls to the
"getConnection()" method of
"java.sql.DriverManager" where all the
arguments are constant Strings.
2. this rule will check for the password is
hard-coded or not when callin the
"getConnection()" method of
"java.sql.DriverManager".
3. this rule will check indirect calls to
"getConnection()".

category: Weak Security Controls
category: Data Security

If constant database connection Strings are found
in a method, they probably were accidentally left
in the code. They should be taken out of all
production code because leaving these Strings in
the code can grant unauthorized users access to
data.

This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications". Specifically, this rule
helps to test for Issue 6.3.6: "Removal of custom
application accounts, user IDs, and passwords
before applications become active or are released
to customers".

This rule also helps to enforce the PCI DSS
Requirement #8: "Assign a unique ID to each
person with computer access". Specifically, this
rule helps to test for Issue 8.5.8: "Do not use
group, shared, or generic accounts and
passwords".

PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

CWE-259: Use of Hard-
coded Password

http://cwe.mitre.org/data/de
finitions/259.html

CWE-798: Use of Hard-

coded Credentials
http://cwe.mitre.org/data/de

finitions/798.html

http://www.unix.org.ua/orelly/java-ent/security/ch03_04.htm
http://www.unix.org.ua/orelly/java-ent/security/ch03_04.htm
http://www.unix.org.ua/orelly/java-ent/security/ch03_04.htm
http://cwe.mitre.org/data/definitions/329.html
http://cwe.mitre.org/data/definitions/329.html
http://cwe.mitre.org/data/definitions/336.html
http://cwe.mitre.org/data/definitions/336.html
http://cwe.mitre.org/data/definitions/337.html
http://cwe.mitre.org/data/definitions/337.html
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/259.html
http://cwe.mitre.org/data/definitions/259.html
http://cwe.mitre.org/data/definitions/798.html
http://cwe.mitre.org/data/definitions/798.html

102

111.

Avoid using

insecure
algorithms

for
cryptograph

y

Some methods in the Java SDK and the
Java Cryptographic Extension library
require the specification of an algorithm
to be used for data encryption.
Examples of such methods which take
the name of an algorithm as a parameter
are:

- the 'getInstance()' methods of
"java.security.MessageDigest"
- the 'getInstance()' methods of
"javax.crypto.Cipher"
- the 'getInstance()' methods of
"javax.crypto.KeyGenerator"

There are a wide variety of algorithms
which can be passed into these methods,
but some algorithms are insecure and
should not be used. To ensure that none
of these insecure algorithms are used,
you should select algorithms for each of
these methods from an approved list of
algorithms. See the "PARAMETERS"
section for more details about which
algorithms should be used with each
type.

This rule will flag a violation for each
case where an algorithm which is not in
the approved list of algorithms is passed
to the 'getInstance()' method of a type.
The types which are checked and the
appropriate algorithms to use with each
type are specified in the parameter lists.

The rule also checks that padding is used
with the "RSA" algorithm when calling
the 'getInstance()' method of
'javax.crypto.Cipher'. Cigital (See link #
6 in the "REFERENCES" section)
recommends that you always use an
OAEP (Optimal Asymmetric Encryption
Padding) padding mode with the "RSA"
algorithm. Without padding, the
algorithm is considered insecure. A
violation will be flagged for each case
where the 'getInstance()' method of
'javax.crypto.Cipher' is called with
"RSA" as an argument (with no
padding). See the example shown below
for more details.

`category: Weak Security Controls
category: Cryptography

Use of an insecure cryptographic algorithm may
result in data being easy to decrypt. You should
use a strong algorithm to ensure that sensitive
data cannot be easily decrypted. Selecting an
algorithm from a list of algorithms known to be
secure will help to achieve this goal.

This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security Standard)
Requirement #3: "Protect stored cardholder data".
Specifically, this rule helps to check for the
requirement to use "strong cryptography with
associated key management processes and
procedures".

Enforcing this rule will help to protect against the
OWASP 2013 Top 10 application vulnerability
A6-Sensitive Data Exposure

1. the OWASP "Guide to

Cryptography":
http://www.owasp.org/inde
x.php/Guide_to_Cryptograp

hy

2. the OWASP page
"Using the Java

Cryptographic Extensions":
http://www.owasp.org/inde
x.php/Using_the_Java_Cry

ptographic_Extensions

3. PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

4. "Writing Secure Java
Code: A Taxonomy of

Heuristics and an
Evaluation of

Static Analysis Tools" by
Michael Ware

5. "JavaTM Cryptography

Architecture API
Specification & Reference":
http://docs.oracle.com/javas
e/1.5.0/docs/guide/security/

CryptoSpec.html

6. Cigital Java Security
Rule Pack # 12 & # 13:

http://www.cigital.com/sec
uritypack/view/index.html

7. Common Weakness

Enumeration:
http://cwe.mitre.org/data/de

finitions/327.html
http://cwe.mitre.org/data/de

finitions/328.html
http://cwe.mitre.org/data/de

finitions/780.html

112.

Make all
member

classes and
interfaces
"private"

This rule identifies member classes and
interfaces that are not "private".
An error is reported for each occurrence.

category: Weak Security Controls
category: Code Quality

Enforce code access control. See BENEFITS for
more information.

Statically Scanning Java
Code: Finding Security

Vulnerabilities. John Viega,
Gary McGraw, Tom

Mutdosch, and Edward W.
Felten IEEE SOFTWARE
September/October 2000

Nigel Warren, Philip
Bishop: "Java in Practice -
Design Styles and Idioms

for Effective Java".
Addison-Wesley, 1999.

pp.10 - 11.

http://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/Using_the_Java_Cryptographic_Extensions
http://www.owasp.org/index.php/Using_the_Java_Cryptographic_Extensions
http://www.owasp.org/index.php/Using_the_Java_Cryptographic_Extensions
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://docs.oracle.com/javase/1.5.0/docs/guide/security/CryptoSpec.html
http://docs.oracle.com/javase/1.5.0/docs/guide/security/CryptoSpec.html
http://docs.oracle.com/javase/1.5.0/docs/guide/security/CryptoSpec.html
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/328.html
http://cwe.mitre.org/data/definitions/328.html
http://cwe.mitre.org/data/definitions/780.html
http://cwe.mitre.org/data/definitions/780.html

103

The Extension Mechanism
(Optional Package Sealing)
http://docs.oracle.com/javas
e/1.5.0/docs/guide/extensio

ns/spec.html#sealing

Twelve Rules for
developing more secure

Java code
http://www.javaworld.com/
javaworld/jw-12-1998/jw-

12-securityrules_p.html

LOG

@deprecated OOP.AIC

@severity-from 3(v6.0)

113.

Call
authenticati
on methods
to enforce

consistency

This rule identifies method declarations
which do not contain required
authentication method invocations. An
error is reported for each declaration
matching one of the user-specified
regular expressions which does not
contain a call to a centralized
authentication method (Centralized
authentication methods are specified in
the parameters).

category: Weak Security Controls
category: Code Quality

Authentication should be consistently applied in
user management methods. Enforcing this rule
will help to protect against many of the OWASP
Top 10 application vulnerabilities, such as:

A4-Insecure Direct Object Reference
A7-Missing Function Level Access Control

This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications" and Requirement #8:
"Assign a unique ID to each person with
computer access".
Specifically, this rule helps to test for Issue 6.5.3:
"Broken authentication and session management"
and Issue 8.5: "Ensure proper user authentication
and password management for non-consumer
users and administrators on all system
components as follows:".

OWASP Top 10 2013:
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

PCI Data Security

Standard:
https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

Common Weakness
Enumeration:

http://cwe.mitre.org/data/de
finitions/306.html

http://cwe.mitre.org/data/de
finitions/352.html

LOG

@severity-from 4(v8.0)

114.

Call access

control
methods to

enforce
consistency

This rule identifies method declarations
which do not contain required access
control method invocations. An error is
reported for each declaration matching
one of the user-specified regular
expressions which does not contain a call
to a centralized access control method
(Centralized access control methods are
specified in the parameters).

category: Weak Security Controls
category: Code Quality

Access control should be consistently applied in
user management methods. Enforcing this rule
will help to protect against many of the OWASP
Top 10 application vulnerabilities, such as:

A4-Insecure Direct Object Reference
A5-Security Misconfiguration
A7-Missing Function Level Access Control

This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications" and Requirement #8:
"Assign a unique ID to each person with
computer access". Specifically, this rule helps to
test for Issue 6.5.2: "Broken access control" and
Issue 8.5.16: "Authenticate all access to any
database containing cardholder data. This
includes access by applications, administrators,

OWASP Top 10 2013:
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

PCI Data Security

Standard:
https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

Common Weakness
Enumeration:

http://cwe.mitre.org/data/de
finitions/352.html

http://cwe.mitre.org/data/de
finitions/732.html

LOG

@severity-from 4(v8.0)

http://docs.oracle.com/javase/1.5.0/docs/guide/extensions/spec.html%23sealing
http://docs.oracle.com/javase/1.5.0/docs/guide/extensions/spec.html%23sealing
http://docs.oracle.com/javase/1.5.0/docs/guide/extensions/spec.html%23sealing
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/306.html
http://cwe.mitre.org/data/definitions/306.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/352.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/732.html
http://cwe.mitre.org/data/definitions/732.html

104

and all other users".

115.

Do not allow
password

fields to be
autocomplete

d

The "autocomplete" attribute for
password fields in web pages should be
set to "false" or "off". This rule will flag
a violation for any input tag where the
type attribute is "password" and the
"autocomplete" attribute is either not
specified or set to something other than
"false" or "off".

category: Weak Security Controls

Enforcing this rule will help to protect against
some of the OWASP Top 10 application
vulnerabilities, including:

A2-Broken Authentication and Session
Management
A8-Cross-Site Request Forgery (CSRF)

This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security Standard)
Requirement #8: "Assign a unique ID to each
person with computer access". Specifically, this
rule helps to test for Issue 8.5.8: "Do not use
group, shared, or generic accounts and
passwords".

See the BENEFITS section for more of the
SECURITY RELEVANCE.

OWASP Top 10 2013:
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

PCI Data Security

Standard:
https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

Common Weakness
Enumeration:

http://cwe.mitre.org/data/de
finitions/306.html

http://cwe.mitre.org/data/de
finitions/352.html

116.

Enforce

'SecurityMan
ager' checks

before setting
or getting

fields

This rule checks for the following cases:
1. 'SecurityManager' is not checked
before setting a field in 'setter'
methods.
2. 'SecurityManager' is not checked
before getting a field in 'getter'
methods.
3. 'SecurityManager' is not checked in
non-"final" and non-"private methods.

An error is reported for each occurrence.

category: Weak Security Controls

'SecurityManager.checkXXX()' is used to check
for permission before performing an unsafe or
sensitive operation. Therefore, it should be called
before performing any potentially sensitive
operations. Also, if a non-"private" method
contains sensitive operations, it should be
declared as "final" in order to avoid security holes
as the method may be overridden by hackers.

N/A

117.

Enforce
'SecurityMan
ager' checks

in methods of
'Cloneable'

classes

This rule flags the following cases in
Cloneable classes:
1. 'SecurityManager' is checked in
constructors, but not in the 'clone()'
method.
2. 'SecurityManager' is checked in the
'clone()' method, but not in the non-
"private" constructors.

An error is reported for each occurrence.

category: Weak Security Controls

'SecurityManager.checkXXX()' is used to check
for permission before performing an unsafe or
sensitive operation. If a constructor of a
Cloneable class has a SecurityManager check, it
means that the class contains sensitive data and
needs to check permission before class creation.
Therefore, similar SecurityManager checks
should be made in 'clone()' methods as this is
another way to create an instance of a class.

N/A

118.

Enforce
'SecurityMan
ager' checks

in methods of
'Serializable'

classes

This rule checks for the following cases
in Serializable classes:
1. 'SecurityManager' is checked in
constructors, but not in the
'readObject()' and 'readObjectNoData()'
methods.
2. 'SecurityManager' is checked in setter
methods, but not in the
'readObject()' method.
3. 'SecurityManager' is checked in getter
methods, but not in the
'writeObject()' method.
4. 'SecurityManager' is checked in the
'readObject()' or
'readObjectNoData()' methods, but not in
the non-"private" constructors.

category: Weak Security Controls

'SecurityManager.checkXXX()' is used to check
for permission before performing an unsafe or
sensitive operation. If a constructor, setter, or
getter method of a Serializable class has a
Security Manager check, it means that certain
methods are performing potentially sensitive
operations and need to check for permission.
Therefore, similar Security Manager checks
should be made in methods when doing
serialization.

N/A

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/306.html
http://cwe.mitre.org/data/definitions/306.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/352.html

105

An error is reported for each occurrence.

119.

Use

'java.security.
SecureRando
m' instead of
'java.util.Ran

dom' or
'Math.random

()'

This rule identifies declarations of the
'java.util.Random' object or method
invocations of 'Math.random()'. An error
is reported for each occurrence.

category: Weak Security Controls
category: Cryptography

Enforcing this rule will help to protect against the
OWASP Top 10 2013 application vulnerability
"A6-Sensitive Data Exposure". Avoid weak
random number generators. See BENEFITS for
more information.

OWASP Top 10 2013:
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

http://java.sun.com/j2se/1.5
.0/docs/api/java/security/Se

cureRandom.html

Common Weakness
Enumeration:

http://cwe.mitre.org/data/de
finitions/327.html

http://cwe.mitre.org/data/de
finitions/330.html

http://cwe.mitre.org/data/de
finitions/338.html

http://cwe.mitre.org/data/de
finitions/676.html

120.

Use the SSL-
enabled

version of
classes when

possible

SSL connections should be used when
possible. This rule will flag variable
declarations where the type of the
variable is one of the non-SSL-enabled
types in the list below.

non-SSL-enabled type
equivalent SSL-enabled type
-------------------- --------------

javax.net.ServerSocketFactory
javax.net.ssl.SSLServerSocketFactory
javax.net.SocketFactory
javax.net.ssl.SSLSocketFactory
java.net.HttpURLConnection
javax.net.ssl.HttpsURLConnection
java.net.ServerSocket
javax.net.ssl.SSLServerSocket
java.net.Socket
javax.net.ssl.SSLSocket
java.rmi.server.RMIClientSocketFactory
javax.rmi.ssl.SslRMIClientSocketFactor
y
java.rmi.server.RMIServerSocketFactory
javax.rmi.ssl.SslRMIServerSocketFactor
y
java.security.Permission
javax.net.ssl.SSLPermission

category: Weak Security Controls

Regular network connections can be sniffed by
anyone on the network, which could lead to
information disclosure. SSL connections are
encrypted, and thus are more secure in regards to
casual inspection. Enforcing this rule will help to
protect against the OWASP Top 10 application
vulnerability "A6-Sensitive Data Exposure".

This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security Standard)
Requirement #4: "Encrypt transmission of
cardholder data across open, public networks" and
Requirement #6: "Develop and maintain secure
systems and applications". Specifically, this rule
helps to check for Issue
4.1: "Use strong cryptography and security
protocols such as SSL/TLS or IPSEC to safeguard
sensitive cardholder data during transmission over
open, public networks" and Issue 6.5.7:
"Improper error handling".

OWASP Top 10 2013 (A6-
Sensitive Data Exposure):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

PCI Data Security

Standard:
https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

Common Weakness
Enumeration:

http://cwe.mitre.org/data/de
finitions/306.html

http://cwe.mitre.org/data/de
finitions/311.html

http://cwe.mitre.org/data/de
finitions/494.html

121.

Avoid hard-
coding the

arguments to
certain

methods

There are certain methods for which the
arguments should never be hard-coded
because hard-coding these arguments is
a security risk. For instance, any method
which takes a username or password as
an argument should require the user to
enter his username or password. These
methods should not accept hard-coded
constant values because using these
values will allow anyone access to
sensitive data. This rule will flag a
violation for any case where the methods
specified in the parameter table are
passed hard-coded constant values.

category: Weak Security Controls

Passing constant values to certain methods
represents a security risk. For instance, for the
method 'hash()' of the interface
"org.owasp.esapi.Encryptor" which is included in
the parameter list by default, passing a hard-coded
constant value as the second argument (the "salt")
is a security risk because the salt is used to
encrypt data and should not be exposed to users.
Passing in a constant value for the salt will allow
all the developers who work on the code to see
the salt. Even worse, anyone with access to the

PCI Data Security

Standard:
https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://java.sun.com/j2se/1.5.0/docs/api/java/security/SecureRandom.html
http://java.sun.com/j2se/1.5.0/docs/api/java/security/SecureRandom.html
http://java.sun.com/j2se/1.5.0/docs/api/java/security/SecureRandom.html
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/330.html
http://cwe.mitre.org/data/definitions/330.html
http://cwe.mitre.org/data/definitions/338.html
http://cwe.mitre.org/data/definitions/338.html
http://cwe.mitre.org/data/definitions/676.html
http://cwe.mitre.org/data/definitions/676.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/306.html
http://cwe.mitre.org/data/definitions/306.html
http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/494.html
http://cwe.mitre.org/data/definitions/494.html
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml

106

 byte code can use "javap -c" to find out the value
of the salt. This method is just one example of a
method which should not accept hard-coded
constant values. You should customize the
parameter table to list all the methods in your
application which should not be passed hard-
coded constant values.

This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications". Specifically, this rule
helps to test for Issue 6.3.6: "Removal of custom
application accounts, user IDs, and passwords
before applications become active or are released
to customers".

122.

Avoid
constructors

and
overriding
methods

which are
more

accessible
than those of
their super

classes

This rule identifies constructors and
overriding methods which are more
accessible than the constructors and
overridden methods in their super
classes. An error is reported for each
occurrence.

category: Weak Security Controls

If constructors and overriding methods are more
accessible than the constructors and overridden
methods in their super classes, attackers could
override the methods and gain unintended access
to the super class methods.

N/A

123.

Inspect usage
of standard

API calls that
bypass
security

This rule identifies method calls that
have the potential to bypass
SecurityManager checks. Certain
standard APIs in the core libraries of the
Java runtime enforce SecurityManager
checks, but allow those checks to be
bypassed depending on the immediate
caller's class loader. Other calls use the
immediate caller's class loader to find
and load the specified library, and
calling these methods using untrusted
objects is dangerous. It can be
dangerous to allow untrusted code to
have access to any return value that
comes from one of these methods.

These methods can be used safely, but
the objects that call them, the objects that
are used as parameters, and the objects
that they return need to be evaluated and
prevented from interacting with
untrusted code.

The Java SecurityManager allows applications to
implement security policies. Bypassing the
securityManager is an attack vector that should be
prevented, and can be prevented if these methods
are evaluated carefully or avoided completely.
Enforcing this rule will help to protect against the
OWASP 2013 Top 10 application vulnerability
"A9-Using Components with Known
Vulnerabilities".

OWASP Top 10 2013 (A9-
Using Components with
Known Vulnerabilities):

https://www.owasp.org/ind
ex.php/Top_10_2013-

Top_10

http://www.oracle.com/tech
network/java/seccodeguide-

139067.html#4-5
http://www.oracle.com/tech
network/java/seccodeguide-

139067.html#4-6

CWE-545: Use of Dynamic
Class Loading

http://cwe.mitre.org/data/de
finitions/545.html

124.

Avoid
turning raw

text into
xml

This rule identifies possible instances of
XML or HTML creation from raw text.
Any time a string literal is concatenated,
assigned to a string, or appended to a
string, StringBuffer, or StringBuilder,
this rule will flag. It is recommended
that XML or HTML creation libraries be
utilized, so that security checks may be
done.

Running improperly formed code can affect
security.

http://www.oracle.com/tech
network/java/seccodeguide-

139067.html#3-1

CWE-80: Improper
Neutralization of Script-
Related HTML Tags in a
Web Page (Basic XSS)

http://cwe.mitre.org/data/de
finitions/80.html

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%234-5
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%234-5
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%234-5
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%234-6
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%234-6
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%234-6
http://cwe.mitre.org/data/definitions/545.html
http://cwe.mitre.org/data/definitions/545.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%233-1
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%233-1
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%233-1
http://cwe.mitre.org/data/definitions/80.html
http://cwe.mitre.org/data/definitions/80.html

107

125.
Do not use

inner classes

This rule identifies classes that contain
inner classes. An error is reported for
each occurrence.

category: Weak Security Controls
category: Code Quality

Enforce code access control. See BENEFITS for
more information

http://www.javaworld.com/
javaworld/jw-12-1998/jw-

12-securityrules_p.html

126.

Allow only

certain
providers to
be specified

for the
'Security.ad
dProvider()'

method

This rule enforces that only certain
providers are passed to the
'addProvider()' method of
'java.security.Security'. By default, the
only acceptable providers are the
following:

- sun.security.pkcs11.SunPKCS11
- com.sun.net.ssl.internal.ssl.Provider
- com.sun.security.sasl.Provider
- com.sun.rsajca.Provider
- sun.security.provider.Sun
- com.sun.crypto.provider.SunJCE
- sun.security.jgss.SunProvider
- sun.security.rsa.SunRsaSign

It is recommended that only the
cryptography providers which are
provided by Sun be used.

category: Weak Security Controls
Category: Cryptography

If a custom cryptography provider is used, it may
implement the cryptography incorrectly, leaving
the application vulnerable. Only trusted
cryptography providers (like the Sun providers
listed above) should be used.

N/A

127.

Keep all
access
control

methods
centralized
to enforce

consistency

This rule identifies access control
methods which are called outside of their
centralized locations. An error is
reported for each occurrence. Instead of
calling access control methods directly, a
wrapper method should be used which
calls the method that does the actual
access control. The methods which do
the actual access control are specified in
the "Access control method names"
parameter. The wrapper methods which
are allowed to call these methods
directly are specified in the "Centralized
access control method names"
parameter. If a method not specified in
this parameter calls one of the methods
specified in the "Access control method
names" parameter, an error is flagged.

category: Weak Security Controls
category: Access Control

Access control should be centralized so that it can
be validated as consistent.

Enforcing this rule will help to protect against the
OWASP 2013 Top 10
application vulnerability, including:

A5-Security Misconfiguration
A7-Missing Function Level Access Control

This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security
Standard) Requirement #6: "Develop and
maintain secure systems and applications".
Specifically, this rule helps to test for Issue 6.5.2:
"Broken access control" .

OWASP Top 10 2013:
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

PCI Data Security

Standard:
https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

128.

Keep all

authenticati
on methods
centralized
to enforce

consistency

This rule identifies authentication
methods which are called outside of their
centralized location. An error is reported
for each occurrence. Instead of calling
authentication methods directly, a
wrapper method should be used which
calls the method that does the actual
authentication. The methods which do
the actual authentication are specified in
the "Authentication method names"
parameter. The wrapper methods which
are allowed to call these methods directly
are specified in the "Centralized
authentication method names"
parameter. If a method not specified in
this parameter calls one of the methods
specified in the "Authentication method
names" parameter, an error is flagged.

category: Weak Security Controls
category: Authentication

Authentication should be centralized so that it can
be validated as consistent.

Enforcing this rule will help to protect against the
OWASP 2013 Top 10
application vulnerability "A7-Missing Function
Level Access Control".

This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security
Standard) Requirement #6: "Develop and
maintain secure systems and applications"
and Requirement #8: "Assign a unique ID to each
person with computer access".
Specifically, this rule helps to test for Issue 6.5.3:
"Broken authentication
and session management" and Issue 8.5: "Ensure

OWASP Top 10 2013 (A7-
Missing Function Level

Access Control):
https://www.owasp.org/inde

x.php/Top_10_2013-
Top_10

PCI Data Security Standard:
https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

CWE-306: Missing
Authentication for Critical

Function
http://cwe.mitre.org/data/de

finitions/306.html

http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/306.html
http://cwe.mitre.org/data/definitions/306.html

108

proper user authentication and
password management for non-consumer users
and administrators on all system
components as follows:".

129.

Always clone
array

parameters
which are
stored to

fields

This rule flags a violation if an array
parameter is not cloned before being
stored in a field.

category: Weak Security Controls
If an array is not cloned before being stored in a
field then any external changes to the array
contents will be reflected in the stored array and
may affect functionality.

CWE-496: Public Data

Assigned to Private Array-
Typed Field

http://cwe.mitre.org/data/de
finitions/496.html

PMD Rulesets index:
ArrayIsStoredDirectly

http://pmd.sourceforge.net/r
ules/index.html

130.

Only call
"final"

methods from
specified

code blocks
in non-"final"

classes

This rule flags a violation if a non-"final"
method is called from a specified method
or "synchronized" statement of a non-
"final" class. This rule can be used to
perform security checks of code blocks
which run privileged or sensitive code.
See PARAMETERS.

category: Weak Security Controls

Non-"final" classes which perform privileged or
sensitive actions should avoid calling non-"final"
methods from certain code blocks. Only "trusted"
methods should be called from privileged code
and by allowing only calls to "final" methods
there are extra protections that the method being
called is the expected one.

"Writing Secure Java Code:
A Taxonomy of Heuristics

and an Evaluation of
Static Analysis Tools" by

Michael Ware

131.

Only
"clone()"

instances of
"final" classes

This rule flags a violation if a call to
"clone()" is made by an instance of a
non-"final" class.

category: Weak Security Controls

If a class is not declared "final" it may be possible
to construct a malicious subclass. For security
purposes, calls to "clone()" should be assumed
that they may operate on malicious data.
Therefore, to reduce the likelihood of this
occurring classes which may be cloned should be
declared "final".

"Writing Secure Java Code:
A Taxonomy of Heuristics

and an Evaluation of
Static Analysis Tools" by

Michael Ware

132.

Avoid using

cryptographic
keys which
are too short

In order to be secure, cryptographic keys
should be sufficiently long. This rule
will check for code which uses one of
the cryptography methods provided by
Java but specifies a key length which is
too short. The recommended minimum
key length differs for each algorithm.
By default, the rule will flag a violation
for each case where the "AES" algorithm
is used with a key shorter than 128 bits
or the "RSA" algorithm is used with a
key shorter than 1024 bits.

In order for this rule to find a violation,
the code must use either the 'init()'
method of "javax.crypto.KeyGenerator"
or the 'initialize()' method of
"java.security.KeyPairGenerator" to set
the size of the cryptographic key. The
code must also use the 'getInstance()'
method of either
"javax.crypto.KeyGenerator" or
"java.security.KeyPairGenerator" to

category: Weak Security Controls

According to the NIST (the National Institute of
Standards and Technology), using a key size of at
least 128 bits with the "AES" algorithm will
guarantee that the data remains secure until 2030.
Using a large key makes the data more difficult to
decrypt.

For the "RSA" algorithm, experts recommend
using a key that is at least 1024 bits long to ensure
that data is secure. This rule helps to protect
against the OWASP 2013 Top 10 application
vulnerability "A6-Sensitive Data Exposure".

1. "Recommendation for
Key Management - Part 1:

General (Revised)" by
NIST:

http://csrc.nist.gov/publicati
ons/nistpubs/800-57/sp800-
57-Part1-revised2_Mar08-

2007.pdf

2. "Writing Secure Java
Code: A Taxonomy of

Heuristics and an
Evaluation of

Static Analysis Tools" by
Michael Ware

3. Cigital Java Security
Rulepack # 11 and # 59:

http://www.cigital.com/sec
uritypack/view/index.html

4. OWASP Top 10 2013

(A6-Sensitive Data

http://cwe.mitre.org/data/definitions/496.html
http://cwe.mitre.org/data/definitions/496.html
http://pmd.sourceforge.net/rules/index.html
http://pmd.sourceforge.net/rules/index.html
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html

109

specify which algorithm is being used.

Exposure):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

133.

Inspect
instantiations

of
'ClassLoader'

objects

This rule identifies instantiations of
'ClassLoader' object. A message is
reported for each occurrence.

category: Weak Security Controls
category: Malicious Code

This rule prevents insecure class loaders. See
BENEFITS for more information.

Ensure that the class loader is secure

N/A

134.

Do not
override any
'ClassLoader'

method
except

'findClass()'

This rule identifies any overridden
methods of 'java.lang.ClassLoader'
except 'findClass'. An error is reported
for each occurrence.

category: Weak Security Controls
category: Malicious Code

Prevent insecure class loader. See BENEFITS for
more information.

ClassLoader (Java 2

Platform SE 5.0)
http://java.sun.com/j2se/1.5

.0/docs/api/

135.

Make your

'clone()'
method

"final" for
security

This rule identifies classes that
implement the Cloneable "interface", but
do not have a "final" 'clone()' method.
An error is reported for each occurrence.

category: Weak Security Controls
category: Code Quality

Enforce code access control. Seee BENEFITS for
more information.

Statically Scanning Java
Code: Finding Security

Vulnerabilities. John Viega,
Gary McGraw, Tom

Mutdosch, and Edward W.
Felten IEEE SOFTWARE
September/October 2000

Joshua Bloch : "Effective

Java - Programming
Language Guide" Addison
Wesley, 2001, pp. 45-52

http://www.javaworld.com/
javaworld/jw-12-1998/jw-

12-securityrules_p.html

CWE-491: Public
cloneable() Method

Without Final ('Object
Hijack')

http://cwe.mitre.org/data/de
finitions/491.html

136.

Do not define
custom

'SecurityMan
ager's

This rule identifies code that tries to
define a custom security manager that
extends 'java.lang.SecurityManager'. A
message is reported for each occurrence.

category: Weak Security Controls
category: Code Quality

An insecure custom security manager can grant
unauthorized classes access to privileged methods
and cause access control problems.

Cigital Java Security
Rulepack # 61 and # 62:

http://www.cigital.com/securi
typack/view/index.html

137.

Avoid using
hard-coded

cryptographic
keys

This rule identifies hard-coded
cryptographic keys. A violation is
reported for each occurrence.

category: Weak Security Controls

If a hard-coded cryptographic key is used the
application becomes more vulnerable to brute
force attacks. Enforcing this rule will help to
protect against some of the OWASP Top 10
application vulnerabilities including "A6-
Sensitive Data Exposure".

CWE - CWE-321: Use of
Hard-coded Cryptographic

key (1.5)
http://cwe.mitre.org/data/de

finitions/321.html

OWASP Top 10 2013 (A6-
Sensitive Data Exposure):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://java.sun.com/j2se/1.5.0/docs/api/
http://java.sun.com/j2se/1.5.0/docs/api/
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
http://cwe.mitre.org/data/definitions/491.html
http://cwe.mitre.org/data/definitions/491.html
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
http://cwe.mitre.org/data/definitions/321.html
http://cwe.mitre.org/data/definitions/321.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10

110

138.

Declare
subclasses of
'PrivilegedAct

ion',
'PrivilegedEx
ceptionAction

', and
'PrivilegedAct
ionException'

"final"

This rule flags a violation if a class is
non-"final" and satisfies one of the
following:
1. The class extends
"java.security.PrivilegedActionExceptio
n"
2. The class implements
"java.security.PrivilegedAction"
3. The class implements
"java.security.PrivilegedExceptionActio
n"

category: Weak Security Controls

"Privileged" classes and interfaces are used to
interact with sensitive data and operations. A
subclass or implementation should be declared
"final" to prevent an attacker from creating a
subclass and gaining access to sensitive
information.

"Writing Secure Java Code:
A Taxonomy of Heuristics

and an Evaluation of
Static Analysis Tools" by

Michael Ware

139.

Declare
subclasses of
'Permission'

and
'BasicPermiss

ion' "final"

This rule flags a violation if a class is
non-"final" and satisfies one of the
following:
1. The class extends
"java.security.BasicPermission"
2. The class extends
"java.security.Permission"

category: Weak Security Controls

"Permission" classes are used to interact with
sensitive data and operations. A subclass should
be declared "final" to prevent an attacker from
creating a subclass and gaining access to sensitive
information.

"Writing Secure Java Code:
A Taxonomy of Heuristics

and an Evaluation of
Static Analysis Tools" by

Michael Ware

140.

Ensure that

all
Permissions,
PrivilegedAct

ions, and
PrivilegedAct
ionExceptions
are declared
in the same

package

This rule enforces that all
'java.security.Permission',
'java.security.PrivilegedAction',
'java.security.PrivilegedExceptionAction
', and
'java.security.PrivilegedActionException
' classes are grouped together in the
same package. An error is reported for
each occurrence.

category: Weak Security Controls

'java.security.Permission' and
'java.security.PrivilegedAction' are used to check
for permissions and perform dangerous
operations. It is a good practice to separate these
security-critical modules from other modules.

N/A

141.

Declare the

'run()' method
of

'PrivilegedAct
ion' and

'PrivilegedEx
ceptionAction

'
implementati
ons "final"

This rule flags a violation if the 'run()'
method of a
"java.security.PrivilegedAction" or
"java.security.PrivilegedExceptionActio
n" implementation is not declared
"final".

category: Weak Security Controls

Implementations of 'PrivilegedAction' and
'PrivilegedExceptionAction' are used to to interact
with sensitive data or operations. If the 'run()'
method is not declared "final" an attacker could
subclass the implementation and override the
'run()' method. This may allow the privileged
code to be bypassed or otherwise interfered with.

"Writing Secure Java Code:
A Taxonomy of Heuristics

and an Evaluation of
Static Analysis Tools" by

Michael Ware

142.

Do not
declare fields
as "public"

"static"
"final"

'Collection' or
'Map' objects

This rule identifies "public" "static"
"final" fields that implement the
"java.util.Collection" or "java.util.Map"
interfaces. An error is reported for each
occurrence.

category: Weak Security Controls

See BENEFITS section.

Collections (Java 2
Platform SE 5.0)

http://java.sun.com/j2se/1.5
.0/docs/api/java/util/Collect

ions.html

143.

Ensure

'SecurityMa
nager' check

in
constructor
of "public"
non-"final"
sensitive

This rule checks "public" non-"final"
sensitive classes which do not perform a
SecurityManager "check" method in
their constructor. A class is considered
sensitive if it disallows cloning by
overriding the "clone()" method to throw
an exception.

category: Weak Security Controls

If a class prevents cloning, it usually implies that
there are intended restrictions on when new
instances can be created. Adding a
SecurityManager check in a constructor can add
additional security in limiting when a subclass is
allowed.

"Writing Secure Java Code:
A Taxonomy of Heuristics

and an Evaluation of
Static Analysis Tools" by

Michael Ware

http://www.oracle.com/tech
network/java/seccodeguide-

139067.html#7-2

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collections.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collections.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collections.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%237-2
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%237-2
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%237-2

111

type

144.

Classloaders
should only
be created
inside
doPrivileged
block

This code creates a classloader, which
needs permission if a security manage is
installed. If this code might be invoked by
code that does not have security
permissions, then the classloader creation
needs to occur inside a doPrivileged block.

category: Weak Security Controls

See BENEFITS section.

Collections (Java 2
Platform SE 5.0)

http://java.sun.com/j2se/1.5
.0/docs/api/java/util/Collect

ions.html

145.

Do not use
sockets in

web
components

Web components should avoid usinge
sockets. This rule will flag a violation
for each instantiation of
"java.net.Socket",
"java.net.ServerSocket", or any of their
subclasses from a web component. A
class or interface is considered a web
component if it extends or implements a
type from the "javax.servlet" package.

category: Weak Security Controls

See BENEFITS section.

Collections (Java 2
Platform SE 5.0)

http://java.sun.com/j2se/1.5
.0/docs/api/java/util/Collect

ions.html

146.

Ensure that an
appropriate

security
manager is set

This rule identifies code where a security
manager is not set through
'setSecurityManager' within 'main'. An
error is reported for each occurrence.

category: Weak Security Controls
category: Security Inspection

A missing security manager might result in
unauthorized access to privileged code. Different
applications have different security requirements
and concerns; consequently, appropriate security
managers should be assigned. For example,
standalone applications should have weaker
permissions than applications that are on a server.
Alternatively, the security manager can be set
through the command line.

Enforcing this rule will help to protect against
some of the OWASP Top 10 application
vulnerabilities, including:

A2 - Broken Authentication and Session
Management

OWASP Top 10 2013 (A2 -
Broken Authentication and

Session Management):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

Common Weakness

Enumeration:
http://cwe.mitre.org/data/de

finitions/180.html
http://cwe.mitre.org/data/de

finitions/306.html

147.

Do not call

'System.setPr
operty()' in a

web
component

Web components (a class or interface
that extends or implements a type from
the "javax.servlet" package) should not
call 'System.setProperty()'. A violation is
flagged for each occurrence.

category: Weak Security Controls

Calling setProperty in a web component ties the
implementation of the component to the system it
is running on, which is generally bad for
portability. Additionally, it could allow an attack
to set system properties, which has serious
security ramifications.

N/A

148.

Use the

''getSecure()''
and

''setSecure()''
methods to
enforce the

use of secure
cookies

When using variables of the type
'javax.servlet.http.Cookie', it is important
to make sure that all of the 'Cookie'
variables are secure. To do this, you
should use the 'setSecure()' and
'getSecure()' methods of 'Cookie'. This
rule will flag a violation for each
declaration of a local 'Cookie' object
where neither 'getSecure()' nor
'setSecure()' is called on the object.

category: Weak Security Controls
category: Session Management

If a 'Cookie' variable is not secure, there is no
guarantee that it will be sent using a secure
protocol (such as HTTPS or SSL). Enforcing this
rule will help to protect against some of the
OWASP Top 10 application vulnerabilities,
including:

A2-Broken Authentication and Session
Management
A8-Cross-Site Request Forgery (CSRF)

OWASP Top 10 2013:
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

PCI Data Security

Standard:
https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

Common Weakness
Enumeration:

http://cwe.mitre.org/data/de
finitions/614.html

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collections.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collections.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collections.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collections.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collections.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collections.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://cwe.mitre.org/data/definitions/180.html
http://cwe.mitre.org/data/definitions/180.html
http://cwe.mitre.org/data/definitions/306.html
http://cwe.mitre.org/data/definitions/306.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/614.html
http://cwe.mitre.org/data/definitions/614.html

112

This rule helps to enforce the PCI DSS (Payment
Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications". Specifically, this rule
helps to test for Issue 6.5.3: "Broken
authentication and session management".

http://cwe.mitre.org/data/de
finitions/306.html

http://cwe.mitre.org/data/de
finitions/352.html

http://cwe.mitre.org/data/de
finitions/807.html

149.

Use wrapper

methods
instead of

calling
dangerous or
problematic

methods
directly

(custom rule)

This rule checks that the methods
specified in the parameters as
"dangerous" are not called directly by
the user but are instead called using a
wrapper method. With the default
setting of the parameters, this rule will
check nothing. It must be customized.
Once methods are added to the
parameter list, a violation will be flagged
for each case where one of the
"dangerous/problematic" methods is
called outside of the corresponding
wrapper method.

category: Weak Security Controls

Enforcing this rule will help to protect against the
OWASP 2013 Top 10 application vulnerability
"A9-Using Components with Known
Vulnerabilities".

See BENEFITS section.

OWASP Top 10 2013 (A9-
Using Components with
Known Vulnerabilities):

https://www.owasp.org/ind
ex.php/Top_10_2013-

Top_10

150.

Always verify

JarFile
signatures

This rule identifies calls to
'java.util.jar.JarFile' constructors which
do not have verification enabled.

category: Weak Security Controls

Verification should be enabled for JarFile objects
when possible so that if a signature is present then
the JarFile is verified against it. This reduces the
chances of using a JarFile that has been tampered
with or that may contain tainted data.

CWE - CWE-347:
Improper Verification of
CryptographicSignature

(1.5)
http://cwe.mitre.org/data/de

finitions/347.html

JarFile (Java Platform SE
6)

http://java.sun.com/javase/6
/docs/api/java/util/jar/JarFil

e.html

151.
Inspect usage
of scripting

API

This rule identifies calls to
ObjectInputStream.defaultReadObject.
It
recommends that they be replaced with
calls to ObjectInputStream.readFields.

defaultReadObject can assign arbitrary objects to
non-transient fields and does not necessarily
return. readFields does not have these problems.

http://www.oracle.com/tech
network/java/seccodeguide-

139067.html#8-3

152.

Avoid using
anonymous
"privileged"
classes when

invoking
"AccessContr
oller.doPrivil

eged()"

This rule flags a violation if a call to
"AccessController.doPrivileged()" is
made using an anonymous subclass of
either "PrivilegedAction" or
"PrivilegedExceptionAction".

category: Weak Security Controls

Use of anonymous classes often increases
complexity and lowers readability. Furthermore,
security related code should be isolated when
possible. Creating an external subclass and using
it instead of an anonymous one allows for the
code to be kept with other security related code. If
a security policy or implementation is then
changed, the code can be more easily updated in
one
location and there are less chances for "old" code
to be left behind.

"Writing Secure Java Code:
A Taxonomy of Heuristics

and an Evaluation of
Static Analysis Tools" by

Michael Ware

153.

Avoid DNS
lookups for

decision
making

This rule checks if the return value of the
'java.net.InetAddress' method
'getHostName()' or
'getCanonicalHostName()' is checked
against a String for validation. A
violation is reported for each occurrence.
See NOTES and SECURITY

category: Weak Security Controls

Host names are vulnerable to DNS cache
poisoning. Therefore, decisions should not be
based on host names. Although IP addresses may
be spoofed, it is generally safer to make decisions
based on an IP address rather than host name.

CWE - CWE-247: Reliance

on DNS Lookups in a
Security Decision (1.5)

http://cwe.mitre.org/data/de
finitions/247.html

http://cwe.mitre.org/data/definitions/306.html
http://cwe.mitre.org/data/definitions/306.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/807.html
http://cwe.mitre.org/data/definitions/807.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://cwe.mitre.org/data/definitions/347.html
http://cwe.mitre.org/data/definitions/347.html
http://java.sun.com/javase/6/docs/api/java/util/jar/JarFile.html
http://java.sun.com/javase/6/docs/api/java/util/jar/JarFile.html
http://java.sun.com/javase/6/docs/api/java/util/jar/JarFile.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%238-3
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%238-3
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%238-3
http://cwe.mitre.org/data/definitions/247.html
http://cwe.mitre.org/data/definitions/247.html

113

RELEVANCE for more information.

When possible, multiple forms of verification
should be used.

154.

Always call
'HttpSession.i

nvalidate()'
before

'LoginContext
.login()'

This rule identifies calls to
'LoginContext.login()' which are not
preceded by a call to
'HttpSession.invalidate()'. A violation is
reported for each occurrence.

category: Weak Security Controls

If a session is not invalidated before a new login
is performed it may use the same session as the
previous logged in user. On public computers it
may be possible to record session information and
then gain access to a user's account if they log
into the same application. However, if a session is
invalidated before a login then this will not be
possible.

CWE - CWE-384: Session
Fixation (1.5)

http://cwe.mitre.org/data/de
finitions/384.html

155.

Avoid non-
random

"byte[]" when
using

IvParameterS
pec

This rule checks that IvParameterSpec is
initialized using a random byte array. A
byte array is considered to be random if
it was passed to
SecureRandom#nextBytes().

category: Weak Security Controls

Use of a non-random initialization vector may
result in unintended disclosure of information
which could be used by an attacker. Use of
"java.util.Random" is discouraged in favor of
"java.security.SecureRandom" as SecureRandom
is considered cryptographically strong, while
Random is not.

1. Cigital Java Security
Rulepack # 14:

http://www.cigital.com/sec
uritypack/view/index.html

2. IvParameterSpec (Java 2

Platform SE 5.0)
http://java.sun.com/j2se/1.5
.0/docs/api/javax/crypto/spe

c/IvParameterSpec.html

3. SecureRandom (Java 2.
Platform SE 5.0)

http://java.sun.com/j2se/1.5
.0/docs/api/java/security/Se

cureRandom.html

4. Initialization vector -
Wikipedia, the free

encyclopedia
http://en.wikipedia.org/wiki

/Initialization_vector

5. CWE-329: Not Using a
Random IV with CBC

Mode
http://cwe.mitre.org/data/de

finitions/329.html

156.

Avoid string
literals except

in constant
declarations
and calls to

System.out or
System.err's

'print' or
'println'
methods

This rule identifies the use of string
literals outside of string constant
declaration statements and calls to
"System.err.print", "System.err.println",
"System.out.print", and
"System.out.println". An error is
reported for each occurrence.

category: Weak Security Controls
category: Code Quality

Hard-coded constant strings in the code are error-
prone and hard to maintain.

N/A

157.

Ensure
'SecurityMan
ager' checks

before
'Socket'

transfers or
retrievals

This rule flags a violation if a call to
"Socket.getInputStream()" or
"Socket.getOutputStream()" is not
preceded by a call to a
"SecurityManager" "check" method. An
error is reported for each occurrence.

category: Weak Security Controls

"SecurityManager" is used to check for
permissions before performing unsafe or sensitive
operations. To improve security, transfers and
retrievals from sockets should be preceded by a
SecurityManager check.

1. "Writing Secure Java
Code: A Taxonomy of

Heuristics and an
Evaluation of Static

Analysis Tools" by Michael
Ware

2. OWASP Top 10 2013

(A6-Sensitive Data

http://cwe.mitre.org/data/definitions/384.html
http://cwe.mitre.org/data/definitions/384.html
http://www.cigital.com/securitypack/view/index.html
http://www.cigital.com/securitypack/view/index.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/crypto/spec/IvParameterSpec.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/crypto/spec/IvParameterSpec.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/crypto/spec/IvParameterSpec.html
http://java.sun.com/j2se/1.5.0/docs/api/java/security/SecureRandom.html
http://java.sun.com/j2se/1.5.0/docs/api/java/security/SecureRandom.html
http://java.sun.com/j2se/1.5.0/docs/api/java/security/SecureRandom.html
http://en.wikipedia.org/wiki/Initialization_vector
http://en.wikipedia.org/wiki/Initialization_vector
http://cwe.mitre.org/data/definitions/329.html
http://cwe.mitre.org/data/definitions/329.html

114

This rule helps to protect against the OWASP
2013 Top 10 application vulnerability "A6-
Sensitive Data Exposure".

This rule also helps to enforce the PCI DSS
(Payment Card Industry Data Security Standard)
Requirement #6: "Develop and maintain secure
systems and applications". Specifically, this rule
helps to test for Issue 6.3.1.4: "Validation of
secure communications".

Exposure):
https://www.owasp.org/ind

ex.php/Top_10_2013-
Top_10

3. PCI Data Security

Standard:
https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

158.

Do not call
the

'printStackTra
ce()' method

of
"Throwable"

objects

This identifies code that calls the no-
argument 'printStackTrace()' method of
"Throwable" objects. An error is
reported for each occurrence.

category: Exposing Sensitive Data
category: Error Handling

The application's internal information might be
revealed to the user in the error message. Avoid
using 'printStackTrace()' in production code
unless the output is redirected to a log file.

Enforcing this rule will help to protect against the
OWASP 2007 Top 10 application vulnerability
"A6 - Information Leakage and Improper Error
Handling". This rule helps to enforce the PCI
DSS (Payment Card Industry Data Security
Standard) Requirement #6: "Develop and
maintain secure systems and applications".
Specifically, this rule tests for Issue 6.5.7:
"Improper error handling".

OWASP Top 10 2007 (A6 -
Information Leakage and

Improper Error Handling):
http://www.owasp.org/inde

x.php/Top_10_2007-A6

PCI Data Security
Standard:

https://www.pcisecuritystan
dards.org/security_standard

s/pci_dss.shtml

CWE-209: Information
Exposure Through an Error

Message
http://cwe.mitre.org/data/de

finitions/209.html

159.

Field isn't
final but
should be

This static field public but not final, and
could be changed by malicious code or by
accident from another package. The field
could be made final to avoid this
vulnerability.

http://www.oracle.com/tech
network/java/seccodeguide-

139067.html#3-8

160.

Inspect usage
of scripting

API

This rule identifies instantiations of the
scripting API engine, because improper
usage of this object can result in
execution of untrusted code.

Running an untrusted script can result in
unexpected results, including security breaches.

http://www.oracle.com/tech
network/java/seccodeguide-

139067.html#3-8

161.

Make your
classes

nondeserializ
eable

This rule identifies classes that do not
have a "final" readObject() method. An
error is reported for each occurrence.

category: Weak Security Controls
category: Code Quality

Enforce code access control. See BENEFITS for
more information.

http://www.javaworld.com/
javaworld/jw-12-1998/jw-

12-securityrules_p.html

162.
Make

immutable
classes final

This rule identifies immutable classes
that are not declared final. It can also
identify fields of immutable classes that
are not declared final.

If a class that was intended to be immutable could
be changed, the security of any code using that
class could be compromised.

http://www.oracle.com/tech
network/java/seccodeguide-

139067.html#6-1

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://www.owasp.org/index.php/Top_10_2007-A6
http://www.owasp.org/index.php/Top_10_2007-A6
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
http://cwe.mitre.org/data/definitions/209.html
http://cwe.mitre.org/data/definitions/209.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%233-8
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%233-8
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%233-8
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%233-8
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%233-8
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%233-8
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%236-1
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%236-1
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%236-1

115

163.

May expose
internal
representation
by
incorporating
reference to
mutable
object

May expose internal representation by
incorporating reference to mutable
object

http://www.oracle.com/tech
network/java/seccodeguide-

139067.html#1-1
http://www.oracle.com/tech
network/java/seccodeguide-

139067.html#3-8

164.

Ensure that
Secure

Processing is
used

This rule identifies instantiations of
certain xml text builders that do not
explicitly set the
XMLConstants.FEATURE_SECURE_P
ROCESSING property to true. The
specified classes can be changed in the
parameters.

See benefits section.

http://www.oracle.com/tech
network/java/seccodeguide-

139067.html#1-1
http://www.oracle.com/tech
network/java/seccodeguide-

139067.html#3-8

165.

Defend
against
partially

initialized
instances of

non-final
classes

This rule identifies mutable classes that
do not have initializer flags at the end of
their constructors. It can also identify
initializer flags that are not volatile.

If an instance was only partially initialized, it
should not be able to be used or
operated on. Errors can be created which could
expose secure data.

http://www.oracle.com/tech
network/java/seccodeguide-

139067.html#7-3

166.
Make your

classes
noncloneable

This rule identifies classes without a
"final" clone () method. An error is
reported for each occurrence.

category: Weak Security Controls
category: Code Quality

Enforce code access control. See BENEFITS for
more information.

http://www.javaworld.com/
javaworld/jw-12-1998/jw-

12-securityrules_p.html

167.

Inspect

'Random'
objects or

'Math.random
()' methods
that could

indicate areas
where

malicious
code has been

placed

This rule identifies 'Random' objects or
'Math.random()' methods. A message is
reported for each occurrence.

category: Weak Security Controls
category: Malicious Code

Random number generators might indicate areas
where malicious code has been placed. Inspect the
code around random number generators for
security issues related to unusual behavior.

CWE-511: Logic/Time
Bomb

http://cwe.mitre.org/data/de
finitions/511.html

168.

Make your
classes

nonserializea
ble

This rule identifies classes that do not
have a "final" 'writeObject()' method. An
error is reported for each occurrence.

category: Weak Security Controls
category: Data Security

Avoid serialization of confidential data. See
BENEFITS for more information.

Statically Scanning Java
Code: Finding Security

Vulnerabilities. John Viega,
Gary McGraw, Tom

Mutdosch, and Edward W.
Felten IEEE SOFTWARE
September/October 2000
Joshua Bloch: "Effective

Java - Programming
Language Guide". Addison-
Wesley, 2001, pp. 213-217
http://www.javaworld.com/
javaworld/jw-12-1998/jw-

12-securityrules_p.html

CWE-499: Serializable
Class Containing Sensitive

Data
http://cwe.mitre.org/data/de

http://www.oracle.com/technetwork/java/seccodeguide-139067.html%231-1
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%231-1
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%231-1
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%233-8
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%233-8
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%233-8
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%231-1
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%231-1
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%231-1
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%233-8
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%233-8
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%233-8
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%237-3
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%237-3
http://www.oracle.com/technetwork/java/seccodeguide-139067.html%237-3
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
http://cwe.mitre.org/data/definitions/511.html
http://cwe.mitre.org/data/definitions/511.html
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules_p.html
http://cwe.mitre.org/data/definitions/499.html

116

finitions/499.html

169.

Use library
methods for

string
replacements

of special
characters in
HTML and

XML

This rule identifies calls to the replace
method in the string class that use certain
strings as parameters. Relevant
parameters are listed in the parameters
section.

Running improperly formed code can affect
security

http://www.oracle.com/tech
network/java/seccodeguide-

139067.html

170.

Malicious
code
vulnerability
Warnings

- All programming errors, but

also errors in system design or
specification, which cannot be
classified in another security
category are called logic errors.

- Thus, these errors are not
typical programming errors.

- Moreover, it is usually not
possible to test for resulting
security flaws.

FLO

Secologic, Java Web
Application Security, Best
Practice Guide, Document

Version 2.0.

171.

Avoid

'main()'
methods

because they
may allow

unauthorized
access to
classes

This rule identifies each main method
declared. An error is reported for each
occurrence.

category: Weak Security Controls

If a main method is accidentally left in the code, it
might allow unauthorized access to a class. See
BENEFITS for more information.

N/A

172.
Code

Injection
(COD)

- The injection of system and

script commands into a web
application or an application’s
server.

- This kind of attack mostly
applies to server side script
languages like PHP or Perl.

INP
PAT
RES

Secologic, Java Web
Application Security, Best
Practice Guide, Document

Version 2.0.

173.
Cookie
Security
(COO)

- This category includes several

security vulnerabilities based
on cookies, e.g., unfiltered
cookie content, cookie
poisoning, and flow injection
via cookies.

- In a broader sense, this section
is related to session
management.

INP

Secologic, Java Web
Application Security, Best
Practice Guide, Document

Version 2.0.

174.
Cross Site
Scripting

(XSS)

- Here, the attacker inserts code

into a URL or link.
- The malicious URL must be

executed by a web application's
user to have an effect.

- Misleading users to execute
such URLs is supported by the
URL itself which looks like a
trustworthy URL to the
application.

INP

Secologic, Java Web
Application Security, Best
Practice Guide, Document

Version 2.0.

http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html

117

- This only works when the
application is vulnerable to
XSS.

- The result can be, e.g., the
execution of malicious script
(e.g., JavaScript) commands on
the client side.

175.
Directory
Browsing Path Traversal

Secologic, Java Web
Application Security, Best
Practice Guide, Document

Version 2.0.

176.
Directory
Traversal Path Traversal

Secologic, Java Web
Application Security, Best
Practice Guide, Document

Version 2.0.
.

177.
Flow

Injection
(FLO)

- It is a special case of logic

errors and is usually not
detectable by security scanners.

- This vulnerability is based on
setting application states which
depend on untrustworthy user
data.

- Thus, the control flow of an
application’s code could be
influenced by an attacker.

LOG

Secologic, Java Web
Application Security, Best
Practice Guide, Document

Version 2.0.

178.
Information
Disclosure

(INF)

- An information disclosure

security flaw can be defined as
the emission of data or
information which is not
intended to become available
to the public.

- This can be internal or private
data.

- There are several issues in this
category which are not only
programming errors, like the
wrong or public storage of
sensitive data.

Information Disclosure (INF)

Secologic, Java Web
Application Security, Best
Practice Guide, Document

Version 2.0.

179.
Contain

Password
(INP)

- Usually any input/external data

– not only from users – of an
application has to be checked
to see whether it conforms to
intended formats or properties.

- Such procedures usually also
involve data filtering
(sanitization) and adequate
output encoding.

If input validation, filtering, and
output encoding are missing or
incomplete, this can enable a variety
of attacks.

COD
COO
RES
SQL
XSS

Secologic, Java Web
Application Security, Best
Practice Guide, Document

Version 2.0.

180.
Logic Errors

(LOG)

All programming errors, but also errors in
system design or specification, which
cannot be classified in another security
category are called logic errors.

FLO

Secologic, Java Web
Application Security, Best
Practice Guide, Document

Version 2.0.

118

Thus, these errors are not typical
programming errors.
Moreover, it is usually not possible to test
for resulting security flaws.

181.
Path

Browsing see Path Traversal

Secologic, Java Web
Application Security, Best
Practice Guide, Document

Version 2.0.

182.
Path

Traversal
(PAT)

Can be generally defined as unintended
access to application files or directories by
injecting (sub) paths and filenames.

The injection, for instance, can take
place into application URLs.

COD
INP
RES

Secologic, Java Web
Application Security, Best
Practice Guide, Document

Version 2.0.

183.
Category

Vulnerability Definition for the area of IT security Related to (attacks

Secologic, Java Web
Application Security, Best
Practice Guide, Document

Version 2.0.

184.
Resource
Injection

(RES)

Resource injection flaws can be defined as
a category of security vulnerability related
to unintentional access to system resources
via the application layer, like in the case of
path traversal.

COD
INP
PAT

Secologic, Java Web
Application Security, Best
Practice Guide, Document

Version 2.0.

185.
SQL Code
Injection

(SQL)

Results of successful attacks of this
category are the execution of arbitrary
SQL statements and commands on the
application’s database backend(s).

INP

Secologic, Java Web
Application Security, Best
Practice Guide, Document

Version 2.0.

186.
Unreleased
Resources

(UNR)

Some program resources, which are, e.g.,
variables and class instances (objects),
have to be explicitly unloaded for freeing
application memory.
If they are not released properly and not
caught by the Java garbage collector, they
might lead to increased memory
consumption.

Thus, in a broader sense, unreleased
resources can enable Denial of
Service‖ attacks and are a concern
for an application’s security.

Unreleased Resources (UNR)

Secologic, Java Web
Application Security, Best
Practice Guide, Document

Version 2.0.

187. SQL injection input containing SQL commands to a
database server for execution.

Security Code Guidelines,
Sun Microsystems, Inc.

http://java.sun.com/security
/seccodeguide.html

188.
Cross-site
scripting

exploit applications that output unchecked
input, this tricks the user to execute
malicious scripts.

Security Code Guidelines,
Sun Microsystems, Inc.

http://java.sun.com/security
/seccodeguide.html

189.
HTTP

response
splitting

- exploit applications that output input
verbatim to perform Web page
defacements or Web cache poisoning
attacks.

Security Code Guidelines,
Sun Microsystems, Inc.

http://java.sun.com/security
/seccodeguide.html

http://java.sun.com/security/seccodeguide.html
http://java.sun.com/security/seccodeguide.html

119

190. Path traversal
exploit unchecked user input to control
which files are accessed on the server.

Security Code Guidelines,
Sun Microsystems, Inc.

http://java.sun.com/security
/seccodeguide.html

191.
Command
injection

exploit user input to execute shell
commands.

Security Code Guidelines,
Sun Microsystems, Inc.

http://java.sun.com/security
/seccodeguide.html

	 5.2 Interpretation of Regression Results …………………….……..
	Chidamber and Kemerer Java Metrics
	These projects were applied following the proposed model 2 which previously had been explained in Chapter 4.
	5.2 Interpretation of Regression Results
	In this section we will present Interpretation of results project that used in this thesis, (ArgoUML , Shopizer-Ecommerce , Payment4j)
	Schieferdecker, I., Grossmann, J., & Schneider, M. (2012). Model-based security testing. Electronic Proceedings in Theoretical Computer Science,((MBT 2012). 1-12 Cornell University.‏ NY, USA.
	Classloaders should only be created inside doPrivileged block
	This static field public but not final, and could be changed by malicious code or by accident from another package. The field could be made final to avoid this vulnerability.
	Field isn't final but should be
	May expose internal representation by incorporating reference to mutable object
	May expose internal representation by incorporating reference to mutable object

