
I

A New Audio Steganography Method Using Bi-LSB

Embedding and Secret Message Integrity Validation

(و Bi-LSBطريقة جديدة في علم اخفاء المعلومات الصوتية باستخدام أسلوب التخزين)

 التحقق من سلامة الرسالة

By

Mahmood Maher Salih

Superviser

Dr. Mudhafar Al-Jarrah

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Master Degree in Computer Science

Department of Computer Science

Faculty of Information Technology

Middle East University

Augest / 2015

 II

 بسم الله الرحمن الرحيم

كَاةَ لهَُمْ أجَْرُهُمْ عِندَ لََةَ وَآتوَُا الزَّ الحَِاتِ وَأقَاَمُوا الصَّ)) إنَِّ الَّذِينَ آمَنوُا وَعَمِلوُا الصَّ

 رَبِّهِمْ وَلََ خَوْفٌ عَليَْهِمْ وَلََ هُمْ يحَْزَنوُنَ ((

 صدق الله العظيم

(722اية)/ سورة البقرة

II

 III

 IV

Acknowledgment

I would like to thank Dr. Mudhafar Al-Jarrah for his supervision and continued

collaboration in each phase of the thesis, and his instructions that was very useful.

Also I would like to thank all Doctors who seek to develop our skills and

knowledge.

I am greatly indebted to my father and my mother, brothers, sisters and friends.

I am greatly indebted to Dr Mohammed Salem Mohammed Al-Atoum for his

support and explaning the related work which his authored

 V

Dedication

To The Remembrance My Brother Dr. Ahmed

 VI

Table of Contents

Authorization…………………………………………………………………………………… II

Examination Committee Decision…………………………………………………………… III

Acknowledgment .. III

Dedication .. V

Table of Contents .. VI

List of Figures ... IX

List of Tables ... X

Abbreviations .. XI

Abstract .. XII

الرسالة ملخص ... XIII

Chapter One: Introduction .. 1

1.1. Introduction .. 1

1.2. Problem Statement .. 2

1.3. Research Questions .. 3

1.4. Research Objectives ... 3

1.5. Research Scope .. 3

1.6. Contribution ... 4

1.7. Thesis outline ... 4

Chapter Two: The Theoretical Literature and Related Studies .. 6

2.1 Introduction ... 6

2.2 Background ... 6

2.3 MP3 Audio Structure .. 8

2.3.1 Introduction .. 8

2.3.2 MP3 File Structures ... 10

 VII

2.3.3 MP3 Frame Headers .. 11

2.4 Steganography... 14

2.4.1 Properties of Steganography .. 15

2.4.2 Types of Steganography .. 17

2.4.3 Steganography Medium ... 18

2.4.4 Methods of Audio Steganography ... 20

2.5 Integrity Methods .. 23

2.6 Related Studies.. 24

Chapter Three: Research Methodology .. 31

3.1 Introduction ... 31

3.2 Research Framework .. 31

3.3 Available Datasets .. 34

3.4 Designed System ... 36

3.4.1 Importing data from audio files .mat ... 36

3.4.2 Preparing the Cover Message .. 37

3.4.3 Preparing the Secret Message .. 37

3.4.4 Applying the Embedding Process .. 38

3.4.5 Applying the Distortion Evaluation of the Message .. 39

3.4.6 Applying the Integrity Validation message ... 39

3.4.7 Applying Attack ... 39

3.5 Summary of Designed System Stages .. 40

Chapter Four: Results and Discussion .. 42

4.1. Introduction .. 42

4.2. Embedding phase results .. 43

4.2.1. Results of Embedding the First Secret Audio Message .. 43

 VIII

4.2.2. Results of Embedding the Second Secret Audio Message ... 45

4.3. Attack Part ... 46

4.3.1. Adding AWGN Attack to the First Secret Audio Message .. 46

4.3.2. Adding AWGN Attack to the Second Secret Audio Message 49

4.4 Integrity Part ... 52

4.4.1. Results of Applying Checksum, Hash Function and Frequency Methods to the First

Secret Audio Message... 54

4.4.2. Results of Applying Checksum, Hash Function and Frequency Methods to the Second

Secret Audio Message... 56

 4.5 Results of Applying Attack and Integrity Methods on 1-LSB……………………………58

Chapter Five: Conclusion and Future Works.. 61

Conclusions ... 61

Future works ... 62

References ... 63

Appendix………………………………………………………………………………………....70

 IX

List of Figures

Figure 2.1 Conceptual model of an MP3 file (Maciak, Ponniah & Sharma, 2008). 10

Figure 2.2 MP3 Headers (Maciak, Ponniah & Sharma, 2008). .. 11

Figure 2.3 MP3 Headers Fields (Maciak, Ponniah & Sharma, 2008). ... 12

Figure 2.4 The basic steganography Model .. 15

Figure 2.5 Trade-off among undetectability, capacity and robustness ... 17

Figure 3. 1 Research framework………………………………………………………………33

Figure 3.2 OPTS information ... 36

Figure 3. 3 designed system stages ... 40

Figure 4.1 Simulation stages …………………………………………………………………..42

Figure 4.2 PSNR results for methods ... 44

Figure 4.3 PSNR results for methods ... 45

Figure 4.4 Degradation in PSNR values after adding the AWGN attack with 0.1 variance 48

Figure 4. 5 Degradation in PSNR values after adding the AWGN attack with 0.3 variance 49

Figure 4.6 Resultant degradation in PSNR values after adding the AWGN attack with

0.1 variance ... 51

Figure 4. 7 Resultant degradation in PSNR values after adding the AWGN attack with

0.3 variance ... 51

Figure 4.8 Comparison between the three integrity methods after adding an AWGN with

0.1 variance ... 55

Figure 4.9 Comparison between the three integrity methods after adding an AWGN with

0.1 variance ... 57

file:///C:/Users/future/Desktop/Last%20thesis.docx%23_Toc428256332

 X

List of Tables

Table 2.1 Fields of MP3 Headers (Maciak, Ponniah & Sharma, 2008) 13

Table 3.1 Cover dataset………………………………………………………………………..35

Table 4.1 PSNR results for methods……….………………………………………………......43

Table 4.2 Enhancement percentage between the current method and the traditional methods for the

five cover messages .. 44

Table 4.3 PSNR results for methods ... 45

Table 4.4 Enhancement percentage between the current method and the traditional methods for the

five cover messages .. 46

Table 4.5 Results of adding AWGN to the first secret message - awgn=0.1 47

Table 4.6 Results of adding AWGN to the first secret message - awgn=0.3 47

Table 4.7 Results of adding AWGN to the second secret message -awgn=0.1 50

Table 4.8 Results of adding AWGN to the second secret message awgn=0.3 50

Table 4.9 Comparison between different integrity methods ... 54

Table 4.10 Adding AWGN with 0.1 variance .. 55

Table 4.11 Comparison between different integrity methods ... 56

Table 4.12 Adding AWGN with 0.1 variance .. 57

Table 4.13 Results of adding AWGN to the first secret message for 1-LSB technique 58

Table 4. 14Adding AWGN with 0.1 variance for 1-LSB technique .. 59

 XI

Abbreviations

A/D

Analog to Digital

AWGN Additive white Gaussian noise

BAF Embedding Before All Frames

BF Embedding Between Frames

Bi-LSB Bi Least Significant Bit

D/A Digital to Analog

db decibels

IEC International Electro-Technical Commission

ISO International Standard Organization

LSB Least Significant Bit

M16M Mod 16 Method

M4M Mod 4 Method

MPEG Moving Picture Expert Group

MSE Mean Square Error

PBS Padding Byte Stuffing

PSNR Peak Signal to Noise Ratio

SO Stego Object

HAS human auditory system

STMDF Steganographic technique based on minimum

deviation of fidelity

UHBS Unused Header Bit Stuffing

 XII

A new Audio Steganography Method Using Bi-LSB Embedding and Secret

Message Integrity Validation

by

Mahmood Maher Salih

Superviser

Dr. Mudhafar Al-Jarrah

Abstract

Steganography is an advanced data hiding technique that has been widely investigated in

the recent years due to its efficiency in protecting the security of information exchanged over the

internet. Recently, several steganography methods have been introduced and developed to ensure

the transmission of data in a secured way. However, some of those methods, such as the Least

Significant Bit (LSB) technique have certain limitations concerning the verification of attacks in

the secret messages. Therefore, this work introduces the development of Bi-LSB steganography

method using the MATLAB program as a solution for the low security and capacity limitations of

the traditional used LSB techniques.

The performance of the developed Bi-LSB technique is then compared with that of three

traditional LSB techniques; 1-LSB, 2-LSB and 4-LSB based on using them in embedding the same

secret messages in the same cover ones and then computing the Peak Signal to Noise Ratio (PSNR)

values after adding a AWGN with different variance values to the stego file before extracting the

secret message. In addition, various methods of integrity are used. A comparison is performed

among the extracted messages and the original ones with the use of three integrity techniques;

checksum, hash function and frequency techniques. The obtained results illustrated that the

presented Bi-LSB technique outperforms the traditional LSBs in terms of PSNR values. It can be

concluded that the increase in attack variance results in more degradation in the PSNR value of

the secret message. In addition, the hash function check method offers the best correlation

percentage among the extracted messages and the original ones.

 Keywords: Steganography, LSB, Bi-LSB, embedding, extracting, AWGN, integrity

 XIII

(و التحقق من Bi-LSBلتخزين)طريقة جديدة في علم اخفاء المعلومات الصوتية باستخدام اسلوب ا

 سلَمة الرسالة

 الطالب

 محمود ماهر صالح علَوي الجبوري

 المشرف

 الدكتور مظفر الجراح

 ملخص الرسالة

على اطاق واسع في السنوات الأخيرة اظرا حيث تم اليحث فيهاخفاء الييااات لإتقنية متقدمة هيإخفاء المعلومات

عدة طرق في السنوات الاخيرة الماضية, تم تقديم وتطوير لكفاءتها في حماية أمن المعلومات المتيادلة عير شيكة الااترات.

ود فيما لديها بعض القي LSB مثل تقنية طرقال ومع ذلك، فإن بعض تلك. اقل الييااات بطريقة آمنة ضمانل خفاء المعلوماتلإ

خفاء المعلومات باستخدام لإ Bi-LSBتصميم طريقة هذا العمليقدم لذلك،. سريةالرسائل على اليتعلق بالتحقق من الهجمات

 .التقليدية LSBالمنخفضة لتقنيات ال قدرة الوللامنية كحل الماتلاب براامج

 & LSB, 2-LSB-1 وهي: LSBل تقليدية تقنيات ثلاثةمع اداء Bi-LSBفي هذا العمل, تم مقاراة اداء طريقة ال

4- LSB ومن ثم حساب قيم اسية ذروة الاشارة الى الرسائلبنفس الرسائل السريةبالاعتماد على استخدامهم في اخفاء افس

تم عمل قيل استخراج الرسالة السرية. stego ملف ال إلى مختلفة قيم تياين مع AWGN بعد إضافة (PSNR) الضوضاء

 checksum, hashوهي integrityمقاراة ايضا بين الرسائل المستخرجة والرسائل السرية باستخدام ثلاثة طرق لل

function and frequency techniques .ان تقنية أوضحت النتائجBi-LSB طرق ال علىتتفوقLSB من حيث التقليدية

. للرسائل السرية. PSNR ال في قيمةاين للهجمات يزيد من الااخفاض في قيمة التي الزيادة. يمكن تلخيص ان PSNRقيم

 المستخرجة والرسائل الاصلية اسية الارتياط بين الرسائلتعطي افضل hash function checkطريقة ال وبالإضافة إلى ذلك،

 الصوتية اخفاء المعلومات, كلمات مفتاحيه: علم الَخفاء , التضمين , التحقق من سلَمة الرساله

0

Chapter One

 Introduction

 1

Chapter One: Introduction

1.1. Introduction

Information is shared globally through the Internet, in digital form (Fricker & Schonlau, 2002).

There are issues and challenges regarding the security of information in transit from senders to

receivers. The major issue is the protection of digital data against any form of intrusion,

penetration, and theft. The major challenge is developing a solution to protect information and

ensure their security during transmission (Feruza & Kim, 2007). Three components of information

security are confidentiality, integrity, and availability (Feruza & Kim, 2007). Confidentiality

ensures that information is kept secret from any unauthorized access. This could be done through

information hiding techniques, namely cryptography and steganography (Lenti, 2000).

Cryptography involves the act of encryption and decryption of a digital data. The major

weaknesses of such techniques are that even though the message has been encrypted, it still exists.

Steganography dwells on concealing any digital data in an innocuous digital carrier, the word

steganography is derived from an old Greek word which means covered writing (Katzenbeisser &

Petitcolas, 2000).

Steganography has been used in for concealing secret messages during ancient times (Rahim,

Bhattacharjee & Aziz, 2014). It was used by Histiaeus, the tyrant of Miletus, who, in 499 BC,

tattooed the scalps of his slaves with a hidden message with a command for his men to attack the

Persian (Huayin & Chang-Tsun, 2008; Emelia, Sugathan & Ho, 2008). The message became

hidden when the slaves' hair grew back. According to researchers, steganography can be described

as a study of the means of hiding secondary information within primary information without

affecting the size of information nor the cause of any form of distortion which could be perceived

(Liu, Sung & Qiao, 2009); (Ganeshkumar & Koggalage, 2009); (Petrovic & Yang, 2009); (Lee,

Bell, Huang, Wang & Shyu, 2009);(Jangra & Singh, 2014).

The primary information, known as the carrier or host, was embedded within the secondary

information, which is typically hidden and could be in the form of a file or message. The media

with the embedded information is called stego signal, file, bit stream or sequence (Matthews,

2003);(Khairullah, 2009); (Alla, Prasad & Siva, 2009); (Changder, Debnath & Ghosh, 2009); (

Qi, Ye, & Liu, 2009); (Farouk, 2014).

 2

Steganography is one of the two techniques used for covert communication. However,

watermarking is the second technique that can embed watermark into host cover to keep copyright

for the hosts. Steganography typically establishes point-to-point data security (Mandala, Kotagiri

& Kapala, 2013). The strength of steganographic technique, in keeping the data in the carrier

medium against attacks or alteration is weak during transmission, storage or format conversion is

weak (Katzenbeisser & Petitcolas, 2000)

The process of embedding information in host media in steganography technique and

watermarking is usually done transparently (Manimegalai, Gomathi, Ponniselvi & Santha, 2014).

The difference between steganography and watermarking is that while steganography is a

technique which hides the information, visible watermarking actually allows the third person to

see the message (Cvejic & Seppanen, 2004);(Neeta, Snehal & Jacobs, D, 2006).

Thus, in terms of watermarking visible and invisible, the process needs to ensure robustness

so that any intentional attacks would not compromise, remove, or cause destruction of the

information in any way in the marked media while at the same time preserving the quality of the

signal (Scagliola, Pérez & Guccione, 2009); (Bhattacharyya & Sanyal, 2012). The invisible

watermarking technique is the most suitable technique in cases where knowledge of the hidden

information could cause possible manipulations (Yusnita & Othman, 2007); (Naji, Zaidan, Zaidan,

Shihab & Khalifa, 2009).

1.2. Problem Statement

Audio steganography is an efficient method to secure embedded data and sent it through

internet. Unfortintully the integrity message method is not focuses in steganography technique as

well as LSB technique is not introduced encrypted method before embedding secret message.

As result this work introduces the development of an advanced Bi Least Significant Bit (Bi-

LSB) MP3 audio steganography method to addresses the security problems of LSB. Furthermore,

an integrity part is added at the receiver to ensure the integrity messages is recived correctly or

not.

 3

1.3. Research Questions

The main research question is: how to develop a new steganography algorithm based on the

LSB technique to address the security issues?

Several other questions relating to this:

 How to implement the Bi-LSB technique in MP3 steganography?

 How to implement a new attack to the Bi-LSB technique?

 What is the best evaluation integrity method for the extracted messages?

1.4. Research Objectives

This study dwells on providing Bi Least Significant Bit (Bi-LSB) MP3 audio steganography

technique that will circumvent the drawbacks studied in the LSB techniques. The specific

objectives are:

 To design algorithm for MP3 audio (Bi Least Significant Bit) steganography systems

capable of solving security problems observed in LSB technique.

 To implement an attack in MP3 steganography

 To ensure verifiable extraction of the embedded message.

1.5. Research Scope

This research focuses on Bi LSB technique on MP3 audio files. The unit of analysis is the

security of the proposed technique. The following are the highlights:

 Embedding audio into MP3 audio format after compression.

 Using spatial domain.

 Bi LSB algorithm.

 This research does not focus on real time application.

 Applying different methods for Integrity of the message.

 4

1.6. Contribution

The main contributions of the current work are:

 Enhancement the performance of PSNR compared with three traditional LSB techniques.

 Applying different methods for Integrity of the secret message.

 Applying an attacks in stego file before extraction, to check if that message is altred or not.

1.7. Thesis outline

The research report will consist of the following chapters:

Chapter One: Introduction.

The first chapter of this research includes a research background and demonstrates the problem

statement, research questions and objectives

Chapter Two: Literature Review.

This chapter reviews some of the related works concerning the development of steganography

methods

Chapter Three: Research Methodology.

This chapter explores the description and implementation of the research which mainly lie in

implementing the audio steganography method using Bi-LSB embedding and secret message

integrity validation

Chapter Four: Result and Discussion.

This chapter introduces a detailed discussion of the study results aided with the required

diagrams and graphs.

Chapter Five: Conclusion and Future Works.

This chapter concludes the whole work that has been introduced and summarizes the obtained

results

 5

Chapter Two

The Theoretical Literature and Related Studies

 6

Chapter Two: The Theoretical Literature and Related Studies

2.1 Introduction

The information revolution is the key technology in which the information has been gathered,

processed and distributed as an interface between users, and many of the offices in this world. The

development of communication makes the source of information to be more valuable and content

with active speed like the International Network (Internet). The security issue is the main

requirement for every system or protocol, which deals with information. To keep something secret,

two basic ideas can be used:

Rules can be used to change the object to a form that is unrecognizable in such a way that

original object is formed and can only be recognized by people who know these rules. This is

referred in Greek term Cryptography, meaning secret writing (Polpitiya & Khan, 2001). The

object can as well be hidden in a place that is secret where nobody will find it apart from the people

familiar about the secret sender. The concerned methodology of this kind of information security

is referred to as Steganography, Greek term implying covered writing (Polpitiya & Khan, 2001).

2.2 Background

 Mandal and Sengupta (2011) proposed a (STMDF) with a minimum fidelity deviation of a

data embedding technique where 2 bit/byte had been changed by selecting the location randomly

between least significant bits (LSB) up to most significant bit (MSB). Also this method optimized

pixel intensity value after operation of embedding by comparing this value with value of original

pixel. The technique of STMDF had been compared with existing H.C. Wu method and Wu-Tsai’s

method, this show that the suggested method has better performance in parts of PSNR and stego

images fidelity.

 A steganography with a given distortion criteria is called combinatorial steganography by

Galand and Kabatiansky (2009), it is equivalent to Hamming spaces coverings or to what called

codes of centered correcting of error. Based on whether if an opponent is active or passive. A

creation of codes of centered correcting of error depends on algebraic geometry and a Reed-

Solomon code is suggested.

 7

 He and Luo (2008) found that the most of techniques of hiding data in digital video use (I)

structure to implant the confidential information so (P) and (B) structure capacity is wasted. So

that they analyze the algorithm of data hiding at first by using phase angle dissimilarity of the

vector of motion, on this base a new algorithm of steganography depends on motion vector phase

was suggested. The algorithm uses single motion vector phase to insert the confidential data in (P)

or (B) structure. In order to enhance the efficiency of embedding they used the method of matrix

encoding to obtain a better transaction between the hidden data amounts and the modification rate

of the motion vectors.

 The system of multimedia surveillance system purposed to provide safety and security of

public in a monitored space by Rahman, Hossain, Mouftah, El Saddik and Okamoto (2010).

Though, because of the surveillance nature, information of privacy sensitive, like gait, face, and

other physical factors depend on the captured medium from several sensors, could be exposed

without the worry of the people. So, it is wanted to have such mechanism which can conceal

information of privacy sensitive as much as probable, so far supporting efficient supervision tasks.

 Ramkumar, Akansu, and Alatan (1999) presented an information theoretic approximation

to achieve an approximate of bits number that can be concealed in sequences of compressed image.

They showed how adding of the signal of message in an appropriate transform field rather than the

domain of special can considerably increase the capacity of data hiding. Also they compared the

achievable capacities of data hiding with several block transform and show that the transform

selection could based on the needed robustness. Where, it is better to select transform that has a

good power compaction characteristic such as (Wavelet, DCT etc). When the needed robustness

is low, poorer power compaction characteristic of the transformer (such as Hartley or Hadamard

transform) are preferable selection for requirement of higher robustness.

 Yan and Ping (2009) implemented and constructed a novel algorithm in Steganography

depend on spatial domain to conceal information that have a large amount into BMP colored

image. It uses the secret data arrangement to cover distortion that is defined fixed Least Significant

Bits (LSBs) substitution techniques. The technique doesn’t need referencing of the original image

when the hided data are extracted from the stego image. So that their experimental results show

the suggested technique can accomplish high capacity with good quality of image. They also found

by an improvement and continued research in design of algorithms, steganography of neural based

 8

can be taken such a serious technique to conceal information so that the current work shows that

it was more capable than the most familiar algorithm such as Optimal Pixel Adjustment Process

(OPAP).

 A revolutionary scheme of steganographic was suggested by Kumar, Sasidharan,

Karthikha, Sherly, and Avani (2010) for compression of images, genetic and wavelets

programming was used. This method of image compression was built by depending on the Discret

Wavelet Packet Transform (DWPT) to make the image shorter, and to present better quality

degrees at enhanced compression ratios. Evolutions in genetic programs were allowed by

quantizing of images in the domain of wavelet, this is achieved without affecting in image quality

terms. At this approach diamond encoding is a novel model in data hiding. This encoding

(diamond) offers a simple way to create a very appreciable result than other results produced by

other embedding techniques. This technique has ability of concealing more confidential data while

maintaining the quality of stego image degradation imperceptible. The restoration of image was

also done by utilizing “morphological neural network” to provide an enhanced performance. This

technique not only maintains stego image of high quality but also hide bigger data amount into

cover image for confidential communication. An act of this system shows to be better than the

various used systems in parts of Peal Signal to Noise Ratio (PSNR).

2.3 MP3 Audio Structure

2.3.1 Introduction

One of the methods used to compress audio to digital form is MP3; it tries to consume the

minimum space possible, and at the same time keeps the quality of the audio with as good as

possible. This method in this area is one of the best achievements (Supurovic P, 1998).

“Moving Picture Expert Group (MPEG)” created MP3; it was formed in January 1988 with an

aim of creating standards that are applicable internationally, for coded representation of audio,

moving pictures and combination of both. To operate the group is under joint direction of “Electro-

Technical Commission (IEC) and “International Standard Organization (ISO)”. In the video world,

initial the aim was come up with a standard that allows playback of the audio to video material

from a device with the capacity to deliver at 1.5 million bits/second; in simple terms, the

 9

conventional CD-ROM. The year 1992 marks the period when MP3 was released as a part of

MPEG model. The term “MP3” has been used to refer to layer 3 of MPEG-1 mode of compression.

Layer-3 represents the highest complexity mod that has been optimized to ensure that at low

bit rate (about 128 kbit/s) there is highest quality (Brandenburg, 1999). By having inherent ability

that keeps down the file size without having compromise in quality of audibility, it has become

very successful. MP3 has caused online revolution being first audio format, which made the

sharing process of audio files on the Internet be feasible. In the past, high quality files required

many hours to download. With MP3, time to download has been cut to a tenth without any

identifiable change in the quality of “sound” of the audio. The MPEG algorithm achieves

perceptually lossless or transparent compression lossless, though the compression of MP3 is

considered loss because after compression, some data cannot be recovered. After doing some test,

there was a conclusion that expert listeners were not able to distinguish between original and codes

audio clips even when using a six to one ratio of compression (Pan, 1995).

When one looks for the reasons why MP3 and no other technology of compression have

emerged as main Internet audio delivery tool, the following is realized:

1. Open standard: this is the MPEG-1 layer 3. The specifications are made available to anyone

who is interested to implement the standards, because no single company owns the standard.

2. Availability of encoder and decoders: This is Drove by demand to have professional use,

many MP3 decoders and encoders are readily available for their purposeful use. This

accelerates and simplifies the MP3 technology adoption.

3. Supporting Technologies: Supporting technologies are the main enabling technology of audio

compressions. There is widespread Computer sound and computers are getting fast enough to

perform functions such as software audio encoding and even decoding. Fast internet access for

businesses, universities and the spread of CD-Audio writers and CD-ROM has had great

contribution to the ease in distributing MP3 format music via computers. Briefly, MPEG-1/2/3

layer 3 is the right technology that is available at the right and required time (Brandenburg,

1999).

 10

2.3.2 MP3 File Structures

Composition of MP3 files is done with short data frames, and headers being padded. Meta-

data tags can also be contained in MP3. The tags are two kinds, the ID3v1 that is the older format,

and is post-pended at end of file. The tag always has a length of 128 bytes and has seven fields;

they specify the name of the artist, album, song title, and genre and other specifications… Because

of lack of flexibility and its static size, the tag type is slowly being replaced by the ID3v2 standard

that are more advanced (Supurovic, 1998).

ID3v2 tags are more flexible and the newest and pre-pended to file. There are almost flexible

structure similar to the structure of the files of MP3 itself. ID3v2 tags are composed of their own

frames; the frames store various bits of information. This consists of the standard character strings

like the name of the artist, the title of the song or more advanced information on how the encoding

of the file was done. ID3v2 tags are useful in providing hints to the decoder. For instance, ID3v2

tags stores the equalization curves. ID3v2 tags have no set limits so in theory they can grow

indefinitely. Tag types can be included in MP3 files in circulation. Either a stenographer has to be

prepared to deal with tags of information present after or before the audio data stream as there is

no clear preference. It is logical however, to assume that ID3v1 tags will be increasingly rare in

future.

Figure 2.1 Conceptual model of an MP3 file (Maciak, Ponniah & Sharma, 2008).

The ID3v2 tags would be a target that is interesting for embedding information because of their

expandability. However, there is no guarantee that they will be present in every MP3 file.

 11

Therefore, the best approach is that the data be embedded into the data frames. It would be

appropriate to take a closer look at data frame before stenographic methodology is discussed.

2.3.3 MP3 Frame Headers

The sized of the frame are not obvious and it is therefore necessary to be able to identify the

start of a frame and the ends. This is not difficult because it would first appear. There is a frame

header pre-pended to each frame. All the headers are identical in Content and structure. Thus, MP3

header identification is just a matter of matching the pattern.

Synchronization (Sync) block are 12-bit block in each header, and they are the ones that start

as shown in figure (2.2). The Sync represents a string of one’s, whose role is to help the decoder

to home in on a header. Hence, to identify a frame one simply requires to detect a 12 consecutive

bits initialized to be 1.

However, the pattern is not

necessarily special to a header. Indeed, the pattern can be easily identified in any data block that

is longer. There are other few checks which are performed to check a 4-byte data block as a header:

 The Bit-rate field is not 0000 or 1111.

 The Frequency field is not 11.

 Figure 2.2 MP3 Headers (Maciak, Ponniah & Sharma,

2008).

 12

 The Layer field is not 00.

A 4-byte block that does not violate the above conditions and starts with the Sync is probably

a header (id3, 2014).

Fig (2.3) indicates another view of the MP3 header where characters are used to mark the the

fields;

Table (2.1) has a brief explanations of each field.

Figure 2.3 MP3 Headers Fields (Maciak, Ponniah & Sharma, 2008).

 13

Table 2.1 Fields of MP3 Headers (Maciak, Ponniah & Sharma, 2008)

Location Use Size

A The Frame sync 12

B The Audio Version, MPEG (MPEG-1, 2…) 2

C The MPEG layer noted as (Layer I, II, III, etc.) 2

D Protection (checksum following header if on) 1

E
Bitrate index (In order to specify MPEG layer and version,

lookup the table used)
4

F
Rate frequency Sampling (44.1kHz…, lookup table

determines this)
2

G Padding bit (off or on, unfilled frames compensator) 1

H Private bit (off or on, allows for specific triggers applications) 1

I
Channel mode (dual channel, joint stereo, single channel,

stereo)
2

J
Mode extension (To conjoin channel data, it is used only with

joint sterio)
2

K Copyright (off or on) 1

L Original (on if original and if off, copy of the original) 1

M Emphasis (original recording emphasis; largely obsolete) 2

 14

2.4 Steganography

Steganography is an ancient art that has been reborn in recent years; this art hides the idea that

there is communication happening (Provos, 2001). Here the aim is to have a communication

channel that is convert between two parties, the two channel existence is to be hidden to a possible

attacker (Kivanc, 2002).

Steganography basically, takes single piece of information and then hides the information

within another computer file (sounds recordings, images, and texts) containing insignificant or

unused areas of data. It takes the advantage of the areas, where it replaces them with information.

These files can later be transported or sent without anyone getting to know what really is inside it

(Katzenbeisser & Petitcolas, 2000).

Precisely, Steganography in today’s connected society has an increasingly important role, as

digital copyright protections and covert communications demands continue to rise (Matthews,

2003).

Steganography is concerned with methods of ensuring that secret message is embedded (which

can be serial number or a covert communication or a copyright mark) in a cover message (like an

audio recording or a video film, or even computer code). Parameterization of the embedding is

done by a key; without the knowledge of existence of this key. It is hard for a third party to remove

or detect the embedded material, when cover object has material embedded in it, this is called stego

object. For instance, we might embed a text in a cover image or a mark in a cover text to give or

giving a stego-image or stego text, and so on.

In a stego system that is perfect, the stego image is not being distinguishable from the original

cover. A cover can easily detect and then possibly reconstruct the message. In order to avoid

accidental reuse, both receiver and sender should destroy all covers they already have used for

transfer of information (Johnson, Duricn & Jajodia, 2001).

 15

The Basic Steganography System Model

The basic steganography system model is indicated in the diagram below (Cacciaguerra &

Ferretti, 2001).

Figure 2.4 The basic steganography Model

Each method of hiding data consists of:

 Embedding algorithm;

 Extracting algorithm;

The use of embedding algorithm is to hide secret messages in a cover/carrier) where as the key

protects the embedding process so that only those passing the secret key word can have access to

the hidden message.

The application of extracting algorithm is done to a modified returns and carrier of the hidden

secret message.

2.4.1 Properties of Steganography

Each technique of data hiding must have particular properties, dictated by the application

intended. The most crucial properties of data hiding schemes are capacity, robustness, and

undetectability, several definitions for the concepts are described below:

Embedding

algorithm

Network

Transmission

Extracting

algorithm

Discrete

Message

Discrete

Message

Stegokey

cover

Stegokey

Embedding

algorithm

 16

A. Robustness

The embedded data needs to be immune to modification, ranging from intelligent and

intentional attempt for removal to any manipulations anticipated (Bender, Gruhl, Morimoto & Lu,

1996). Instances are nonlinear and linear filters (sharpening, blurring, median filtering),

recoloring, loose compression, resampling, scaling, noise adding, rotation, cropping, printing /

scanning/ copying, Analog to Digital (A/D) conversion and Digital to Analog (D/A) conversions.

Robustness does not have attacks on embedding schemes, which are based knowledge of the

availability of the detector or on function embedding algorithm or, robustness implying resistance

to “blind”, or common image operations or non-targeted modifications (Fridrich, 1998).

B. Capacity

Capacity is the amount of information, which can be hidden relative to the cover size (Lin,

Delp & Edward, 1998). There are Trade-offs between the degree of host signal degradation and

the quantity of the embedded data. A data-hiding method can be able to operate with either high

resistance to modification or high-embedded data rate, but not on both. As one goes high, the other

must be decrease (Bender, Gruhl, Morimoto & Lu, 1996). A bitplane tool encompasses methods,

which apply LSB insertion as well as noise manipulation. The approaches are most common in

steganography and are easy to apply in audio and image. With little, if any, perceptible impact to

carrier, a surprising amount of information can be hidden (Katzenbeisser & Petitcolas, 2000).

However, the approaches are vulnerable to small changes resulting from lossy compression or

image processing (Johnson, Duricn & Jajodia, 2001).

C. Undetectability

The property is required in order to secure covert communication. For instance, if a

steganography method is using the noise component of digital images to embed a secret message,

it should do so while not making statistically significant changes to the noise in the carrier. The

undetectability concept is inherently tied to statistical model of the source of image. If an attacker

has a model of the source that is more detailed, he can be able to detect the hidden message

presence, note that the ability to detect the hidden message presence does not automatically mean

the ability to be able to read the message (Fridrich, 1998).

 17

 Capacity

Robustness Undetectability

Figure 2.5 Trade-off among undetectability, capacity and robustness

2.4.2 Types of Steganography

There are three types that steganography can be divided into:

1. Pure Steganography

When the system does not need to change secret info it is called a “Pure Steganography”,

such as stego-key. The process can be represented as the following: mapping E: C×M→ C,

Where C represents all possible covers, and M is all the possible messages. While the formula

D: C → M is used to extract any secret message exists out of the cover, of course │C│≥│M│is

necessary condition. Algorithms here are not public, only senders or receivers can access

extraction process and embedding (Katzenbeisser S., Peticotas F., 2000).

This type provides the least security, because communication using it leads senders and

receivers to only depend on assumptions that other parties don’t care about secret messages

sent by them, like Internet messages (Dunbar B., 2002).

 18

2. Private (Secret) Key Steganography

This type it is needed to change the secret key through communication. The message is

embedded into a cover message using a secret key (stego-key). People who know the secret

key can get the original message that is inside the cover message and read it. While in pure

steganography secret key is more liable to be intercepted, in private steganography, there is a

secret channel and stego key exchanges through it. In case private steganography messages

intercepted, only people who know the keys can see the message and extract it (Dunbar B.,

2002).

3. Public Key Steganography

This type relies on the means of public cryotograghy keys, which are systems that both

public and secret key to secure communication channels between people who want to

communicate privately. At the sending side, the message is coded by public key, but only the

secret key that mathematically corresponds with this public code can decode the message.

Advantages of Public key steganography are clearly found in the more effective

implementation public key cryptography, it has different stages of security, that prevents other

parties from joining the communication without suspicion of the steganography used, and they

must also know how to crack the algorithm used (Dunbar B., 2002).

2.4.3 Steganography Medium

Revolution in computer and internet fields have given steganography a specific

importance. Many changes happened to old native carriers due to the use of steganography in

computer based technologies. These carriers could be relative to many kinds of data, they may

be for text, disks, audio, images, sound, network traffic, or other digital data transmission forms

(Johnson N.F., Duricn Z., Jajodia S., 2001). Data hiding techniques are illustrated below:

1. Hiding in Text

It is may be needed to hide some of or the whole text written in documents. Web browsers

ignore some formatting like additional line breakers, spaces and tabs, so that HTML files are

used to transfer date. These extra line breakers, tabs and so on could not be observed before

 19

reaching the web page source. Various ways could be used to hide text information like (line-

shift coding, word-shift coding) (Johnson N.F., Duricn Z., Jajodia S., 2001).

2. Hiding in Image

Most probable images are wanted to be secretly sent. For HVS attributes, many points

should be taken into consideration in images hiding, such as luminance effects, edge masking,

and contrast. More than one part out of 30 for random patterns may exhibit changes, hence

HVS does not have high sensitivity to luminance changes. Another important property for

HVS, is the low sensitivity to small spatial frequency, like changes in image brightness.

Images are non-causal, so that pixels or blocks could be accessed easily by hiding techniques

(Bender W., Gruhl D., Morimoto N., Lu A, 1996).

3. Hiding in Video

Mostly, hiding in videos uses the techniques used for sound and image hiding, because

already video forms of images and sounds. Video consists of moving images with sounds,

actually this is an advantage, any small distortion will not be noticed by user due to this

continuous amount of data (Karen R., 2001).

4. Hiding in Audio

Audio hiding is particularly challenging due to its large frequency range, which is more

than 1000 to 1, and also a power more than 1000,000 to 1. Audio signals are also sensitive to

random noise. Noise can be detected if it is in the range of one to million in sound files (Bender

W., Gruhl D., Morimoto N., Lu A, 1996).

In audio hiding, user should take advantage of of HAS weakness, but should also take care

from its high sensitivity (Sellars D., 2003).

 “The Magic Triangle” is the name of the Inaudibility strength and capability of the

algorithm used in hiding, they are three paradoxical requirements for audio hiding. But HAS is

more reliable, loud sounds can cover quiet sounds, due to the limited differential range of HAS.

HAS perceives relative phase only, but does not perceive absolute phase. Finally, there are

some environmental distortions so common as to be ignored by the listener in most cases. These

 20

“holes” can be exploited by data hiding techniques. One of the drawbacks could be eliminated

by data hiding is the ability to ignore environmental disturbances.

To understand the techniques of audio file information hiding, audio signal transmission

should be understood first. Also, it is needed to understand the audio Digital representation,

and the medium of transmission. The contents of digital representation of an audio file are:

1. Sampling Quantization.

2. Sampling Rate.

Quantization is a linear 16-bit, or 8-bit logarithm. The range of the sampling rate is between 8

kHz to 44.1 kHz (CD quality. Nyquist theorem shows that “the maximum usable sound

frequency is bounded by sampling-rate/2”. These elements are important in hiding techniques

(Sellars D., 2003).

 This document takes the secret media MP3 form, and also saved as an MP3.

2.4.4 Methods of Audio Steganography

The best fitting technique can be chosen after understanding what mediums audio signal

transfer through:

1. Amplitude Modification

A popular method for amplitude modification is called LSBs insertion, this method could

be implemented in steganography or watermarking (Katzenbeisser S., Peticotas F., 2000). LSBs

insertion the errors may occur during digitizing of audio signals.

It is obvious in this method data is encoded into LBSs of audio data. For example, let’s

take a 16-bit sampled file, data hiding can use the least four significant bits. Nevertheless,

distortion may happen to the hidden data, also it may be detected while it is hidden. Hidden

data could be alerted by resembling or noise. But changes in the LSB may make audible noise

(Sellars D., 2003). At risk of data distortion may happen during copying, compression, or A/D,

D/A conversion (Yang Y., 2001). LBSs insertion is a simple technique, but it is rarely used,

this makes other techniques more likable.

 21

2. Phase Coding

Another method of hiding audio data is phase coding, it refers the phase of the audio signal

to a reference phase, which is representing the data. All phases are adjusted to match the relative

phase required.

Phase coding is effective for signals coding in order to adjust noise ratio. When the phases

between frequency segments change, an obvious dispersion will appear. Anyhow, unacceptable

modifications could be detected, in case which involve small modifications on phase. In this

case an inaudible coding could be done.

Usually, listeners can not notice changes on audio when the phase coding done with smooth

phase shifts, this makes phase coding one of the most effective methods in terms of noise ratio

concerns(Yang Y., 2001).

Phase coding has a very low supporting data rate. Actually, this is a major drawback of this

method (Polpitiya A.D., Khan W.J., 2001).

3. Spread Spectrum Coding

Another method of hiding information in audio signals is “ Spread Spectrum Coding” SSC.

Conservation of power and bandwidth is a need in transferring audio data, so the

communication channel tends to make frequency region of audio signals as narrow as possible.

In (Bender W., Gruhl D., Morimoto N., Lu A, 1996), a method discussed naming “Direct

Sequence Spread Spectrum” (DSSS) encoding. In this method a chip is used to multiply an

audio signal in order to spread it, a greater length sequence is modulated at a certain rate. The

sampling rate can be chosen as the rate of the chip, because the host signals are already discrete

signals. One problem in using DSSS, is how to determine the right the beginning and the end

of the chip phase locking quanta, this should be taken into consideration by the discrete signals

nature. However, a greater rate of the chip and so a greater rate of associated data is available.

Actually, without this, a many algorithms of signal locking could be used, but they are

expensive. Unluckily, DSSS results in extra random noise to audio signal, e coding does not

(Bender W., Gruhl D., Morimoto N., Lu A, 1996).

 22

 A “Frequency Hopped Spread Spectrum” (FHSS) encoding method is also uses spread

spectrum, in this technique the carrier signal frequency hops quickly from certain frequency to

another when it is alerted in a certain way (Katzenbeisser S., Peticotas F., 2000). The novel

audio signal is split into small parts, each part is carried by a special frequency associated with

it (Chen P., Hoffman D., 2002).

Using spread spectrum coding is mainly useful due to its resistance to variations. It is

difficult to adjust the embedded data without making observable destruction for the cover data.

So, the data is spread through the cover information.

4. Echo Data Hiding

In this coding method, an audio signal is considered as a host signal to embed the data in,

by providing an echo. Data hiding is done by adjusting three echo parameters: decay rate,

initial amplitude, and offset (delay). When the offset between the novel signal and the echo

decreases, the two signals combine. In certain point, human can not observe any difference

between these two signals. Echo here is introduced as an additional resonance (Bender W.,

Gruhl D., Morimoto N., Lu A, 1996).

Data could be hidden in the audio file by using dissimilar time delays that separate the

novel and echo signals from each other. The novel signal may be divided into several small

parts, in order to allow embedding more than one bit, each part of this signal could be echoed

to a certain bit. All independent encoded segments are existing in the last cover data

(Katzenbeisser S., Peticotas F., 2000).

This technique “Echo Data Hiding”, works specially good to sound files that do not contain

added degradation, like the case where there is a time for silence in the file, or when there is

losses in encoding or some noise in the signal (Sellars D., 2003).

 23

2.5 Integrity Methods

1. Hash function method

It is a typical integrity method that used widely in various protocols and applications. It

maps the strings of various lengths to short constant sizes (Sivathanu.et al, 2005). It has an essential

role in the current cryptography. In practice, hash functions depend on taking a message as an

input and then offer a specific output that is related to the hashes of that message. The main idea

concerning hash functions is that the hashes act as compact delegate image, which known as

imprints, digests or digital fingerprints of the input string. Those functions are widely utilized in

data integrity in combination with models of digital signature since messages are usually hashed

first, where then hashes are signed instead of the original message. In practice, hashes of messages

must be uniquely specialized with one input in reality. Generally, hash functions must have of

those properties; simplicity to be computed and compression. (Menezes.et al, 1996)

One of the main hash functions classes is the Message Authentication Codes (MACs). It

permits recognizing messages using symmetric methods. This technique takes two main distinct

inputs; message and secret key to offers an output with steady size with the purpose to offer data

integrity, symmetric authentication of data and recognition in symmetric-key models. Another type

of hash functions is the Modification Detection Codes (MDCs), which offer hashes of messages.

The main purpose of the MDCs is to simplify, in combination with further mechanisms, the

integrity of data for various applications. Those codes are subclasses of the un-keyed hash

functions as well as they can be classified into two classes; one-way hash functions (OWHFs),

where finding a certain input that hashes for a known hash is not an easy issue and collision

resistant hash functions (CRHFs), where finding two inputs with the same hash is not an easy

issue. (Menezes.et al, 1996)

Another type of hash functions is the Modification Detection 5 (MD5), which offers 16

byte hash value. This function is broadly utilized in cryptographic applications and verification of

data integrity. It depends on processing a message with variable length into a output with a fixed

length. (Menezes.et al, 1996)

 24

2. Checksum

Checksum is a one of the main methods that used to carry out integrity checks. It can be

calculated for disk data as well as it can be saved steadily. It depends on comparing the stored

calculated values with the newly ones for each data read. This method is mainly produced with the

use of the hash function method. The checksum method assists in the detection of variations in the

integrity. However, it could not offer any help in the recovery of data due to the mismatch among

the saved and computed checksums values, where this means that one of them is adjusted without

offering any information concerning the legitimate one. The saved checksums can be corrupted or

modified. Another reason for the recovery problem of the checksum is that it is mainly calculated

with the use of one-way hash function, where data then could not be reconstructed to offer values

of checksum. (Sivathanu.et al, 2005)

Checksums are used widely to reduce duplicates in data objects, since those duplicate

objects have the same checksum value. Those objects can be recognized based on using rationally

collision-resistant checksum model based on comparing the checksums of those objects. Another

use for the checksums is in the indexing of data. Although the collision-resistant checksums are

bigger than traditional integers, they can assist in offering double functionality with minimum

costs. Checksums can be used also to name handles, which provides a simple method to receive

the related checksums to block, where this in turn helps in enhancing the integrity checking

performance. (Sivathanu.et al, 2005)

2.6 Related Studies

Few researches used MP3 as a cover in steganography. Many researchers worked on wave

steganography. We will now explain and discuss the current MP3 steganography methods:

1. Embedding in header frame

a. Unused Header Bit Stuffing (UHBS):

Frame headers of the MP3 are made up of fields like the private bit, copyright bit, original bit,

and emphasis bit. However, their use is commonly omitted in a number of MP3 players. Such

fields are the important aspect of frame, which aids the interpretation of information that is

concealed in audio signal. They can be properly applied to embed undisclosed massage where they

 25

replace the undisclosed massage bit stream through the bits in the field. But, if in the process of

replacing bit stream with bits in the field there is a fuilure the actual content of the secret message

received within the frame is lost and this makes signal recovery to be more challenging (Maciak,

Ponniah & Sharma, 2008). The work in Cacciaguerra & Ferretti (2001) highlighted the probability

that audio steganography could achieve capacity that is good and low robustness by using of 4 bits

in each header frame of the audio signal to the embeded secret messages.

b. Padding Byte Stuffing (PBS):

According to Zaturenskiy, (2009), stuffing of padding byte was recently established as being

one of steganography techniques. Its approach is relatively straightforward in terms of

implementation. It represents regular and fine storage capability and contains the ability to

program 1 byte of information for any frame so long as there is accessibility of padding bytes.

MP3 file is a given example of the medium of material that can well utilize the method of padding

byte stuffing because it can allow for hundreds of frames in a secret message, specifically when

the filling bytes are not able to take any audio information

c. Embedding Before All Frames (BAF):

Atoum, Suleiman, Rababaa, Ibrahim & Ahmed (2011) developed BAF , their approach embeds

into MP3 file the embeds text files. The text file is encrypted by use of RSA algorithm in order to

increase the undisclosed secret message security. Encrypted information is filled in the first frame.

This process is done time and again sequentially until the frame headers are filled. Approximately

15 KB is used when encryption algorithm is utilized; otherwise, it takes around 30 KB for MP3

file. Even with the chances of the secret message to be sniffed, there are many advantages in using

this approach; for example, the method of padding and the unused bit even after the frames must

have been filled, provides more encoding capability.

d. Embedding Between Frames (BF):

Atoum, Suleiman, Rababaa, Ibrahim & Ahmed (2011) developed technique of Steganography

that embeds between frames (BF). It as well embeds text file to MP3 file like the BAF and

information is encrypted in bits format by use of RSA algorithm to provide extra protection for

that concealed secret messages. There is a difference between BF and BAF that exists in the way

 26

text files are inserted into the frames. This does not start with the first frame seen; but it selects the

frame it chooses. Again, in terms of capacity, compared to BAF, BF uses around d40 MB with

encryption algorithm, it however requires 80 MB with original format. Although BF provides a

higher capacity for embedding text file, it is still prone to attack. Literature review shows that the

embedding information method after compression is hard task since the process of embedding is

done after the compression and the text file are located in the location of unused bits and not in

audio data. The platform provided by this technique is prone to attack as a result of the content of

the sent secret message which can easily be deciphered by third party sniffing by use of the

communication link. It also provides limited capacity for hiding the message that is secret.

However, the problem with capacity would be resolved if the LSB technique used 2, 3 and 4 bit

exchange in the audio data (8-bit for sample) to insert speech in MP3 file. While addressing the

security problem, the use of key as a lock for the concealed secret message is a viable approach

that could achieve maximum security for concealed secret messages.

2. Audio data Embedding

a. M4M Method:

Bhattacharyya, Kundu, Chakraborty & Sanyal (2011) proposed a new method for

imperceptible audio data hiding for an audio file with wav or mp3 format. This approach is based

on the Mod 16 Method (M16M) designed for image, the Mod 4 Method (M4M), along with

Number Sequence Generator Algorithm to avoid embedding data in the consecutive indexes of the

audio, which would eventually assist prevent distortion in quality of audio. The input messages

exist in any digital form, and are often treated as bit streams. The positions of embedding are

selected on the basis of some mathematical function that de-ends on the data value of the digital

audio stream. Data embedding is performed by mapping every two-bit of the secret message in

each of the seed positions based on the remainder of the intensity value while divided by 4. The

extraction process starts with the selection of those seed positions required during embedding. On

the receiver’s side, a different reverse operation is carried out to the extract of the original

information.

 27

b. M16M Method:

Bhattacharyya, Kundu & Sanyal (2011) proposed a new imperceptible method of audio data

hiding for audio file with mp3 or wav format. The approach is based on the method of Mod 16

(M16M) designed for image, the Mod 16 Method for audio (M16MA), and used alongside with a

Number Sequence Generator Algorithm that help avoid embedding data in consecutive indexes of

the audio, this would help prevent distortion of audio quality. Input message can exist in any digital

form and is commonly treated as a bit stream. The positions of emending are selected based on

some mathematical function that de-ends of the data value of the digital audio stream. The

embedding of data is performed by mapping every four-bit of the secret message in each of the

seed positions based on the remainder of the intensity value when divided by 16. Extraction process

starts by selecting those seed positions required during embedding. On the receiver’s side, a

different reverse operation is carried out to extract the original information.

c. New Secure Scheme in Audio Steganography (SSAS)

Atoum, Suleiman, Rababaa, Ibrahim & Ahmed (2011), developed (SSAS) the most significant

and public standard for audio compression on the Internet is the “secret digital music MP3 files”.

To ascertain high rates of compression and shrunk the main file to the smallest possible size, the

MP3 uses a devastating technologies for compression. In the process of protecting the “digital

media files”, there are many algorithms that used in the data hiding, are known the steganographic

algorithms, which defined as covered writing. This algorithm has three types; “public key

steganography”, the “secret key steganography”, and “pure steganography”. Applications, which

are used in the data hiding, there is a requirement for hiding algorithms on the side of the sender,

and detecting algorithms and mechanism on the side of the receiver. The authorized persons just

can retrieve the hiding data and messages. The data hiding pivotal parameters are; capacity,

invisibility, complexity, security, and reliability. The authors discussed a new method on

steganographic based on the algorithm of “novel data-embedding”, to embed information between

the frames of MP3.

The requirements of the proposed method are; program of “k-lite multi-media player” and MP3

file of CBR type. In the evaluation phase, a three scales have been utilized; the time spent in the

embedding process and extracting process, the size of the embedded file, and the audio quality,

 28

the results shows that the size of the embedded file will impact on the size of the file cover, because

in the embedding process, the “hidden text” inserts between the frames. BF has an ability of embed

40960 KB within stumpy time and preserve the quality of the sound, where the BAF does not

overtake 6 KB. The spent time in the extracting process increases the file size (Atoum, Suleiman,

Rababaa, Ibrahim & Ahmed, 2011).

3. Developed method for Audio Steganography with the Use of Message Integrity

Atoum, Ibrahim, Sulong, & Zamani (2013) proposed that basically the designer for

Steganography technique used a basic model for embedding and extracting the secret messages.

Some of them used a key for embedded message in the host signal and also used the same key to

extract secret messages.

The basic model of steganography used real information for the secret message that is

embedded in the cover media, and the result stego-object contains the cover and the message.

However, the probability for attackers to destroy the secret message and to read it is increased. So

the attacked secret message can be modified or removed as it is has been discovered by because

the attacker.

The proposed method has given two solutions: firstly, to scramble the secret message before it

is embedded. Secondly, the verification process is used after extracting the secret message so as to

check the secret message that was attacked, deleted and modified.

Additionally, the proposed method with random selections provides a high level of robustness,

where these results are more similar to the results of the original cover than the results of the

proposed method with sequential selection. Also, the random selection produces higher security

as compared to the sequential selection. This is due the fact that the random embedding of the

secret message makes it very difficult for the attacker to extract the whole message that is hidden

inside the stego-object.

 29

Evaluation of Audio Steganography performance based on adding AWGN for Messages

“Additive white Gaussian noise (AWGN)” is a fundamental model of noise, which mainly

utilized in information theories to imitate the impact of random natural processes. The additive

property comes from the fact that this model is added for any noise, which may be inherent for

information systems, the white property represents its uniform power all thorugh the information

system frequency range, while the Gaussian property represents its normal distribution in time

domain with zero average value of time domain (Alam, 2009).

Tomar (2012) developed an efficient data hiding method based on LSB technique and Rivest-

Shamir-Adleman (RSA) encryption method to encrypt secret data, transform then into binary

sequence bits and hide then in cover pixels based on chaning the cover pixels LSBs. The author

studied the effect of AWGN on the extracted messages based on transmitting the steganography

image over an AWGN channel with simulating the impacts of this noise. This transmission results

in introducing the noise in it, thus, stego images can be corrupted via this noise as well as embedded

secret data bits can be infeluenced by this noise. Results demonstrated that the presented method

offered low Bit Error Rates (BERs) with high Signal to Noise Ratios (SNR) and small number of

hidden data bits corrupted through AWGN.

Shahadi and Razali Jidin (2011) studied the resistance of their developed audio steganography

algorithm to AWGN based on both “blocks matching” and “wavelet packet transform”. Results

demonstrated that the proposed algorithm has capacity more than 35% of the size of the input

audio signal with adequate SNR. In addition, results proved that the proposed method is resistance

to AWGN to around 25 db.

Shahreza and Shalmani (2008) and Santosa and Bao (2005) proposed that the LSB is the

mainly utilized method in embedding data in the disceret wavelet transform domain. However,

they proposed that although this methods has better stego-signal capacity and quality, it is very

sensitive to AWGN, mainly during embedding secret data in high frequencies components that

include low power.

 30

Chapter Three

 Research Methodology

 31

Chapter Three: Research Methodology

3.1 Introduction

This chapter explores the conducted methodology in this work to offer an advanced Bi Least

Significant Bit (Bi-LSB) MP3 audio steganography technique to solve the security problem of

traditional LSB techniques and offer an efficient method to hide audio information in more secured

way with the use of the MATLAB program version 2014/a. All the conducted procedures and

principles in this work to achieve the main purpose of this study are proposed in details.

3.2 Research Framework

In this section, the proposed Bi-LSB MP3 audio steganography technique is explained in

details. This method depends on replacing the second right most LSB of each sample in the cover

message with a bit of the secret message to enhance the security.

The framework of this research includes three main phases; preprocessing, embedding and

extracting and message validation. The preprocessing is applied to enhance the security of

messages to be hidden in an MP3 file. The embedding and extracting stage includes designing the

proposed algorithm for MP3 files to solve the current security problem of the traditional LSB

technique, while the message validation step is applied to develop another method to hide

messages to recognize the efficiency of hidden messages in MP3 files.

To evaluate the performance of the presented Bi-LSB method, a AWGN with different

variance values is added to the tego file before extracting the secret message, where the PSNR

values are then computed and compared with those obtained before adding that noise. The

following figure describes the presented method.

 32

Importing

cover message

Importing

secret message

Preprocessing

Converting all decimal values

into binary

The length in

seconds of the secret

message is less than

Yes

No

Calculations are stopped

Kbps of the secret

message is less

than the cover one?

Yes

No

Calculations are stopped

Specify the size of the secret message

Calculate the required size for embedding

 33

Figure 3. 1 Research framework

Embedding

Choosing the traditional or

improved LSB technique

Initializing the stego-object

with the cover vector

Applying a FOR Loop for

embedding

Message validation

Computing both the PSNR

and MSE

 34

3.2.1 Preprocessing Phase

Both the input cover (C) and the Message (M) are MP3 files. In this work, the secret message

is validated and preproced based on implementing three methods; checksum, hash function and

frequently comparison in order to generate the codebook. The resultant preprocessed C and M files

are then used in the second stage.

3.2.2 Embedding and Extracting Phase

This phase includes two main processes; embedding and extracting. In the embedding process,

both the preprocessed C and M files are processed to offer a Stego Object (SO). After that, the Bi-

LSB method is used to embed the secret message in the cover. In the extracting processes, the SO

is then processed to extract the M file.

3.2.3 Message Validation Phase

The traditional steganography methods hide the secret message , but does detect if a message

contant is altered during communication. In this work, a contant validation step is added to ensure

that the extracted message is exactly the same as the original secret message. This is done by using

three contant validation functions (checksum , hash function (MD5) , frequency).

Those methods generate a codebook , which is then used and compared with the hidden

message to check if that message is attacked or not.

3.3 Available Datasets

Both the cover and secret messages in this work are MP3 files since they achieve a good data

compression when considering the limitations in the human hearing to eliminate information

without affecting the sound quality perception. Since there is no efficient number of researchers

who used MP3 files as cover messages, there is available standard dataset to apply embedding and

extracting algorithms to generate results. This is because most researchers depend on using .wav

file, where this results in available standard dataset for it. In this dataset, wav file contains 12

different genres; (Classical, Jazz, Country, and R&B, Rap, Reggae, Pop, Rock, Blues, Hip-hop,

Dance and Metal).

 35

The generation of MP3 files depends on using a certain program to convert each genre from

wav file to MP3 one, such as the Free Make Audio converter. On the other hand, there are five

different bit rate encoding compression methods to compress MP3 files; 320 kbps, 256 kbps, 196

kbps, 128 kbps and 96 kbps, where they differ in their impact on the sound quality. In other words,

the increase in the number of bits per sample results in an increase in the quality of sound. The

sampling frequency for bit rate for 320, 256 and 192 kbps is 48 KHz, while it is 44.1 KHz for the

128 kbps and 22.050 KHz for the 96 kbps. The following table illustrates the MP3 standard dataset,

which generated to be used in this work.

Table 3.1 Cover dataset

From the table above, it can be concluded that the size of wav file is bigger than that of the

MP3 files. Furthermore, the difference in sizes between MP3 file depend on the time of music and

the number of bits per sample. The used database is available with Dr. Mohammad Al atoum;

moh_atoom1979@yahoo.com

Name of

genre

Time Size of file

(WAV)

Size under

320kbps

Size under

256kbps

Size under

192kbps

Size under

128kbps

Size under

96kbps

Minute (MB) (MB) (MB) (MB) (MB) (MB)

Classical 2:54 14.7 6.67 5.33 4 2.66 2

Jazz 3:12 16.2 7.34 5.87 4.4 2.93 2.2

Country 3:42 18.7 8.48 6.78 5.08 3.39 2.54

R&B 3:51 19.4 8.81 7.05 5.29 3.52 2.64

Rap 3:59 20.1 9.14 7.31 5.48 3.65 2.74

Reggae 3:59 20.1 9.14 7.31 5.48 3.65 2.74

Pop 4:00 20.2 9.16 7.33 5.49 3.66 2.75

Rock 4:33 23 10.4 8.35 6.26 4.17 3.13

Blues 4:41 11.8 10.7 8.59 6.44 4.29 3.22

Hip-hop 5:27 27.5 12.4 9.98 7.48 4.99 3.74

Dance 6:12 31.3 14.2 11.3 8.53 5.68 4.26

Metal 6:28 32.6 14.8 11.8 8.88 5.92 4.44

mailto:moh_atoom1979@yahoo.com

 36

3.4 Designed System

The proposal system is designed using the MATLAB program version 2014/a. The designed

system aims to import the audio file in the MATLAB from the MP3 file, prepare both the cover

and secret messages, apply the embedding process, validate and evaluate the message and display

results.

3.4.1 Importing data from audio files .mat

In this stage, the user is asked to select the cover audio file to be imported to the MATLAB,

which must be in the same directory of the MATLAB script. The “mp3read.m” script is used to

import the audio file in the MATLAB workspace to generate the following variables:

 Cover : vector containing all the frames of the cover audio file (between -1 and +1)

 FS : sampling rate

 NBITS : number of bits (usually 8 bit).

 OPTS : structure containing different information as shown in the following figure

Figure 3.2 OPTS information

 37

3.4.2 Preparing the Cover Message

In this step, the cover file is initially converted from decimal to binary, mp3read and mp3write

is used to read cover messages.

3.4.3 Preparing the Secret Message

After preparing the cover audio file, the secret message is then prepared to be embedded in the

cover file. In this step, three methods are applied , in each method the codbook is extracted in the

preprocessing step, the values of codebook are saved to compared later with extractation step. In

this step, the user is asked to select the secret message audio file to be imported to the system using

the “uigetfile” and “mp3read” functions, where this file must be in the same directory of the

MATLAB script. This in turn creates the following variables:

 Message : vector containing all the frames of the secret message audio file

(between -1 and +1)

 FS_Message : sampling rate of the secret message

 NBITS_Message : number of bits of the secret message (usually 8)

 OPTS_Message : structure containing different information of the secret message

After that, the secret message audio values are converted then into positive values with the use

of the abs function to be then converted from decimal to binary values. After that, two checks are

applied. The first check is applied to check if the length of the secret message is less than the cover

one or not in order to recognize if the audio file is a mono or stereo one with the use of the OPTS

structure, particularly the OPTS_Message.fmt.mpgPad. When the length is bigger, a warning

message is generated and the calculations are stopped immediately. A single column vector is

created in the first case, while a double column matrix is generated in the second one; left and right

channel, where the average among them is considered in this condition.

The second check is applied to check if the bit rates; kbps of the secret message is less than the

cover oner not, the cover messgae should be suitable to the secret message in size format.A

warning message is generated and the calculation are stopped immediately. After that, the user is

asked if he/she wants to insert the whole audio file or just a part of it, the available choices are 1

for choosing the whole audio file and 2 for choosing a part of it. In the second case, the initial and

 38

the final instants must be offered in terms of seconds. After that, the secret message is converted

from decimal to binary.

3.4.4 Applying the Embedding Process

In this stage, the user is asked to verify the desired type of LSB technique; traditional or

improved one. After that, the stego-object is initialized with the cover vector. Then, a Generation

Randomly (GR) value, which a random number of the cover message is chosen, where then the

secret message in binary code is reshaped in one row in order to be used in the LSB algorithm in

an ease way based on determining the number of LSBs and initializing two counters; k and w. A

For-loop for message embedding is then generated to start at GR and with using a step of

mod(i,100) to embed the secret message in the cover audio. For the traditional technieu, in each

one of the cycle iterations, the selected byte is modified using the following logic:

 If the 4-LSB is used, then bits from 2nd to 5th bits are substituted with the first available 4

bits in the secret message

 If the 2-LSB is used, then bits 2nd to 3rd are substituted with the first available2 bits in the

secret message

 If the 1-LSB is used, only the 2nd bit is substituted with the first bit available in the secret

message

For the improved Bi-LSB technique, in each one of the cycle iterations, bits are hidden as

follows:

 Hiding 1 bit in the first byte

 Hiding 2 bits in second byte

 Hiding 2 bits in third byte

 Hiding 1 bit in fourth byte and repeat

After that, the modified byte is converted back from binary to decimal to generate the stego

object. In each one of the iterations, the counter k is updated depending on the chosen LSB

algorithm.

 39

3.4.5 Applying the Distortion Evaluation of the Message

In this stage, the Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) are

calculated. Both represent the two error metrics used for comparing cover quality. The PSNR and

MSE can be calculated using the following formulas, respectively:

MSE =
1

N
∗ ∑((X(i) − Y(i)

N

i=1

)^2

PSNR = 10 log 10
(MAX)^2

MSE

Where, X is the original cover, Y is the stego-object, N is the size of cover and MAX is the

maximum variation in the input cover.

3.4.6 Applying the Integrity Validation message

In this stage, different intgerity methods are applied, were each method, codebook is saved and

compared later with extrcation process. The checksum technique offers integrity certification to

simplify the recognition of packets, which carry secret data at the end of received message. The

hash function represents the mapping of digital data with random size to data. The offered values

by this function are known as hash codes, hash sums, has values or hashes. The frequency

technique represents counting the number of ones in the message and comparing it with that

number in the extracted message.

3.4.7 Applying Attack

In order to evaluate the performance of the developed method, an AWGN with different

variance values is added to the stego file before extracting the secret message. This is performed

using the MATLAB program version 2014/a.

 40

3.5 Summary of Designed System Stages

Apply the embedding process, validate and evaluate the message and display results.

Figure 3. 3 designed system stages

Importing the audio cover

and secret messages

Preparing the cover message

Preparing the secret message

Implementing the Bi-LSB

technique to embed the secret

message

Validating and evaluating the

message

Display results

Extracting the secret message

from the stego object

Implementing and Evaluating

the PSNR after entered

attack

 41

Chapter Four

 Results and Discussion

 42

Chapter Four: Results and Discussion

4.1. Introduction

The conducted work in this research aims to design an effective Bi Least Significant Bit (Bi-

LSB) MP3 audio steganography technique to find a solution for the security problem of traditional

LSB techniques. In addition, it offers an efficient method to hide audio information in more

secured way with the use of the MATLAB program, version 2014/a. The main functions of the

code are illustarted in Appendix, where the full code is available with the student, you can get it

based on contacting him via mail: mms_8921@yahoo.com

In this work, MP3 audio messages are hidden in cover using both the presented Bi-LSB

technique and the traditional LSB techniques in order to compare and evaluate the performance of

both systems. The audio message is embedded in the cover one using a for-loop as proposed where

the selected byte in each cycle iteration is modified using the current Bi-LSB and three traditional

LSB techniques; 4-LSB, 2-LSB and 1-LSB. The following chart explores the simulation parts.

Figure 4.1 Simulation stages

The obtained results of those three parts are illustrated and discussed below in the following

sections.

Hiding secret messages in the

cover

Applying attacks

Checking the intergity

mailto:mms_8921@yahoo.com

 43

4.2. Embedding phase results

In this part, secret messages are hidden in various cover messages using both the improved and

traditional LSB techniques. In this work, two cases are explored for hiding two different secret

messages in five cover messages to compare the current technique with the traditional one. Those

two cases are explored in the following sub-sections.

4.2.1. Results of Embedding the First Secret Audio Message

The resultant PSNR values after embedding a secret message; “Blues_96_msg1.mp3” with a

size around 1MByte , in five different cover messages using the developed Bi-LSB technique in

this project and three traditional LSB techniques; 4-LSB, 2-LSB and 1-LSB are shown in the

following table and figure.

Table 4.1 PSNR results for methods

Cover messages Length

of cover

messages

size of

cover

messages

(MB)

Embedded secret

message

4-LSB

2nd to

5th

2-LSB

2nd and

3rd

1-LSB

2nd

Proposed

method

Blues_cover1_320.mp3 04.41 10.7 Blues_96_msg1.mp3 44.3862 63.4260 76.2214 95.2852

Classical_cover2_320.mp3 03.12 8.67 Blues_96_msg1.mp3 35.5372 45.8897 57.2895 75.8143

Jazz_cover3_320.mp3 03.12 8.34 Blues_96_msg1.mp3 47.3317 69.7706 83.1974 102.7913

Pop_cover4_320.mp3 04.00 9.16 Blues_96_msg1.mp3 38.7945 50.9703 57.9350 73.4542

R&B_cover5_320.mp3 03.51 8.81 Blues_96_msg1.mp3 46.7376 68.5931 81.9648 101.4737

 44

Figure 4.2 PSNR results for methods

It can be clearly seen that the PSNR results of the proposed method are better than those of the

traditional LSB for all genre names. As shown above, the Jazz offers the highest PSNR since it is

one of the MP3 that includes higher noise than other audio files. Thus, it offers high PSNR. The

following table shows the enhancement percentage between the current method and the traditional

methods for the five cover messages.

Table 4.2 Enhancement percentage between the current method and the traditional methods for the five cover messages

Cover messages enhancement

percentage between

the proposed

method and the

4LSB

enhancement

percentage between

the proposed method

and the 2LSB

enhancement

percentage between

the proposed method

and the 1LSB

Blues_cover1_320.mp3
53.41% 33.43% 20.00%

Classical_cover2_320.mp3
53.12% 39.47% 24.43%

Jazz_cover3_320.mp3
53.95% 32.12% 19.06%

Pop_cover4_320.mp3
47.18% 30.60% 21.12%

R&B_cover5_320.mp3
53.94% 32.40% 19.22%

 45

4.2.2. Results of Embedding the Second Secret Audio Message

The obtained PSNR values for embedding a secret message; “Jazz_128_msg2.mp3” with a

size around 1MByte, in five different cover messages using the developed Bi-LSB technique and

4-LSB, 2-LSB and 1-LSB traditional techniques are shown in the following table and figure.

Table 4.3 PSNR results for methods

Cover messages Length of

cover

messages

size of

cover

message

(MB)

Embedded

secret message

4-LSB

2nd to 5th

2-LSB

2nd and

3rd

1-LSB

2nd

Proposed

method

Blues_cover1_320.mp3 04.41 10.7 Jazz_128_

msg2.mp3

41.7497 63.7926

76.3927 94.5494

Classical_cover2_320.m

p3

03.12 8.67 Jazz_128_

msg2.mp3

29.0487 50.3877

62.0994 79.9468

Jazz_cover3_320.mp3 03.12 8.34 Jazz_128_

msg2.mp3

48.6016 71.6625

84.7373 103.2509

Pop_cover4_320.mp3 04.00 9.16 Jazz_128_

msg2.mp3

45.1153 67.4984

80.3707 98.6931

R&B_cover5_320.mp3 03.51 8.81 Jazz_128_

msg2.mp3

39.0752 54.7370

61.7298 76.7305

Figure 4.3 PSNR results for methods

 46

The developed technique in this work also outperforms other traditional methods in terms of

PSNR values for embedding the second secret message. As shown above, the Jazz offers the

highest PSNR since it is one of the MP3 that includes higher noise than other audio files. The

enhancement percentage between the current method and the traditional methods for the five cover

messages are shown in the table below.

Table 4.4 Enhancement percentage between the current method and the traditional methods for the five cover messages

Cover messages enhancement

percentage between

the proposed

method and the

4LSB

enhancement

percentage between

the proposed method

and the 2LSB

enhancement

percentage between

the proposed

method and the

1LSB

Blues_cover1_320.mp3
55.84% 32.52% 19.20%

classical_cover2_320.mp3
63.66% 36.97% 22.32%

Jazz_cover3_320.mp3
52.92% 30.59% 17.93%

Pop_cover4_320.mp3
54.28% 31.60% 18.56%

R&B_cover5_320.mp3
49.07% 28.66% 19.54%

4.3. Attack Part

In this part, an attack; Additive White Gaussian noise (AWGN) is added to the stego file before

extracting the message in the previous two cases as explored below in order to extract the message

and compare it with the original one based on computing the PSNR percentage.

4.3.1. Adding AWGN Attack to the First Secret Audio Message

In this case, an AWGN attack is added to the Blues_96_msg1.mp3 secret message, which

embedded in the proposed five cover messages using the current Bi-LSB technique, with several

variances. The following table shows the obtained PSNR values for the attack for 0.1 bits/sec/Hz

and 0.3 bits/sec/Hz variance, for the all band of the stego file.

 47

Table 4.5 Results of adding AWGN to the first secret message - awgn=0.1

Cover messages Embedded secret

message

PSNR

without

attack

Noise 1

varianc

e

PSNR

with

attack

Degredatio

n

percentage

Blues_cover1_320.mp3
Blues_96_msg1.mp

3
95.2852 0.1

92.522

7
2.89%

Classical_cover2_320.mp

3

Blues_96_msg1.mp

3
75.8143 0.1 70.517

3
6.98%

Jazz_cover3_320.mp3
Blues_96_msg1.mp

3

102.791

3
0.1 98.633

1
4.04%

Pop_cover4_320.mp3
Blues_96_msg1.mp

3
73.4542 0.1 70.521

1
3.99%

R&B_cover5_320.mp3
Blues_96_msg1.mp

3

101.473

7
0.1 97.522

7
3.89%

The table below shows the achieved PSNR values for the attack for 0.3 bits/sec/Hz variance,

for the all band of the stego file.

Table 4.6 Results of adding AWGN to the first secret message - awgn=0.3

Cover messages Embedded secret

message

PSNR

without

attack

Noise 2

varianc

e

PSNR

with

attack

Degredatio

n

percentage

Blues_cover1_320.mp3
Blues_96_msg1.mp

3
95.2852 0.3

90.117

4 5.42%

Classical_cover2_320.mp

3

Blues_96_msg1.mp

3
75.8143 0.3 68.157

7 10.09%

Jazz_cover3_320.mp3
Blues_96_msg1.mp

3

102.791

3
0.3 94.944

7 7.63%

Pop_cover4_320.mp3
Blues_96_msg1.mp

3
73.4542 0.3 64.541

1 12.13%

R&B_cover5_320.mp3
Blues_96_msg1.mp

3

101.473

7
0.3 93.954

7 7.40%

It can be concluded that there is an obvious degradation in PSNR value after adding an AWGN.

As shown in the tables above, the degredation in the PSNR value increases with the increase in the

noise variance value.

 48

The resultant degradation in PSNR values after adding the AWGN attack with 0.1 and 0.3

variance is shown in the following figures.

Figure 4.4 Degradation in PSNR values after adding the AWGN attack with 0.1 variance

The above figure illustrates that highest PSNR values occurred at Jazz_cover3, while miumum

values of PSNR occurred at Pop_cover4.

 49

Figure 4. 5 Degradation in PSNR values after adding the AWGN attack with 0.3 variance

The above figure illustrates that highest PSNR values occurred at Jazz_cover3, while miumum

values of PSNR occurred at Pop_cover4. while deviation in PSNR in all cases is widley appear at

variance 0.3.

4.3.2. Adding AWGN Attack to the Second Secret Audio Message

This section explores the obtained results after adding an AWGN attack to the

Jazz_128_msg2.mp3 secret message, which embedded using the current Bi-LSB technique in the

proposed five cover messages, with 0.1 and 0.3 bits/sec/Hz variance. The resultant degredation in

the PSNR values are shown in the following two tables

 50

Table 4.7 Results of adding AWGN to the second secret message -awgn=0.1

Cover messages Embedded secret

message

PSNR

without

attack

Noise 1

varianc

e

PSNR

with

attack

1

Degredat

ion

percenta

ge

Blues_cover1_320.mp3 Jazz_128_msg2.m

p3

94.5494 0.1 91.488

4
3.23%

Classical_cover2_320.

mp3

Jazz_128_msg2.m

p3

79.9468 0.1 75.514

9
5.54%

Jazz_cover3_320.mp3 Jazz_128_msg2.m

p3

103.250

9

0.1 97.633

1
5.44%

Pop_cover4_320.mp3 Jazz_128_msg2.m

p3

98.6931 0.1 94.522

7
4.22%

R&B_cover5_320.mp3 Jazz_128_msg2.m

p3

76.7305 0.1 71.522

7
6.78%

Table 4.8 Results of adding AWGN to the second secret message awgn=0.3

Cover messages Embedded secret

message

PSNR

without

attack

Noise 2

varianc

e

PSNR

with

attack

1

Degredatio

n

percentage

Blues_cover1_320.mp3 Jazz_128_msg2.m

p3

94.5494 0.3 88.514

4 6.38%

Classical_cover2_320.m

p3

Jazz_128_msg2.m

p3

79.9468 0.3 71.744

4 10.25%

Jazz_cover3_320.mp3 Jazz_128_msg2.m

p3

103.250

9

0.3 94.514

4 8.46%

Pop_cover4_320.mp3 Jazz_128_msg2.m

p3

98.6931 0.3 90.759

4 8.03%

R&B_cover5_320.mp3 Jazz_128_msg2.m

p3

76.7305 0.3 66.544

7 13.27%

The tables above illustrate that there is a clear degradation in the PSNR values after adding the

AWGN noise. In addition, it is obvious that the degradation in the PSNR values is directly related

to the noise variance value, where it is more for 0.3 variance value than that of the 0.1 value.

The resultant degradation in PSNR values after adding the AWGN attack with 0.1 and 0.3

variance are shown in the following figures.

 51

Figure 4.6 Resultant degradation in PSNR values after adding the AWGN attack with 0.1 variance

The above figure illustrates that PSNR values with attack is clearly appear at R&B_cover5 , while

its effect is very small at Blues_cover1.

Figure 4. 7 Resultant degradation in PSNR values after adding the AWGN attack with 0.3 variance

 52

The above figure illustrates that PSNR values with attack is clearly appear at Classical_cover2 ,

while its effect is very small at Blues_cover1.

4.4 Integrity Part

In this step, the hidden secret message in the cover in the presented two cases are extrcated and

compared with the original secret message. In this stage, the resulate are obtaned by comaping

values of codebook with extraction stage. This is performed using three techniques; checksum,

hash function and frequency methods:

 The checksum technique offers steganogram integrity certification to simplify the

recognition of packets, which carry secret data at the end of receieved message. This

technique counts the number of bits in the extracted message to chek if it is the same as the

original one, as shown below

% 1) checksum

if (sum(sum(double(dec2bin(message_extracted*2^(NBITS-1),NBITS))))-

size(Mex_extracted,1)*size(Mex_extracted,2)*48)==(sum(sum(double(dec2bin(abs(message_extracte

d_with_white_noise)*2^(NBITS-1),NBITS))))-size(Mex_extracted,1)*size(Mex_extracted,2)*48)

 disp('Checksum: 100 %')

else

 disp(['Checksum: ',num2str((sum(sum(double(dec2bin(message_extracted*2^(NBITS-

1),NBITS))))-

size(Mex_extracted,1)*size(Mex_extracted,2)*48)/(sum(sum(double(dec2bin(abs(message_extracted

_with_white_noise)*2^(NBITS-1),NBITS))))-

size(Mex_extracted,1)*size(Mex_extracted,2)*48)*100),' %'])

end

 53

 The hash function represents the mapping of digital data with random size to data. The

offered values by this function are known as hash codes, hash sums, has values or hashes.

The main properties of this function are that it is a one-way technique, where the digest is

produced from the message, not ice-versa and it is a one-to-one function, where there is

some probability that the same digest can result from two different messages, as shown

below.

 % 2) hash function check

if DataHash(message_extracted)==DataHash(message_extracted_with_white_noise)

 disp('Hash function check: 100 %')

else

 disp(['Hash function check:

',num2str(DataHash(message_extracted)/DataHash(message_extracted_with_white_noise)*100),' %'])

end

 The frequency technique represents counting the number of ones in the message and

comparing it with that number in the extracted message, as shown below

% 3) frequency check

ones_in_original_mex=length(find(double(dec2bin(abs(message_extracted_with_white_noise)*2^(NB

ITS-1)))));;

ones_in_extracted_mex=length(find(double(dec2bin(abs(message_extracted)*2^(NBITS-1)))));;

if ones_in_original_mex==ones_in_extracted_mex

 disp('Frequency check: 100 %')

else

 disp(['Frequency check: ',num2str(ones_in_extracted_mex/ones_in_original_mex*100),' %'])

end

 54

4.4.1. Results of Applying Checksum, Hash Function and Frequency

Methods to the First Secret Audio Message

The following table represents the achieved correlation percentage among the original first

message and the extracted one without adding noise.

Table 4.9 Comparison between different integrity methods

Cover msg Checksum
hash function

check

frequency

check

Blues_cover1_320.mp3 Blues_96_msg1.mp3 100% 100% 100%

Classical_cover2_320.mp3 Blues_96_msg1.mp3 100% 100% 100%

Jazz_cover3_320.mp3 Blues_96_msg1.mp3 100% 100% 100%

Pop_cover4_320.mp3 Blues_96_msg1.mp3 100% 100% 100%

R&B_cover5_320.mp3 Blues_96_msg1.mp3 100% 100% 100%

As shown in the table above, the correlation among the original message and the extrcated one

is 100% when there is no added noise for the message.

Adding Addadtive white gaussian noise can be done ashsown below.

% Adding white gaussian noise to message extracted

adding_wn=input('Do you want to add white noise to extracted message? (yes 1, no 2): ');

if adding_wn==1

 message_extracted_with_white_noise=awgn(message_extracted,10);

else

 message_extracted_with_white_noise=message_extracted;

end

 55

Based on adding an AWGN to the stego file before extrcation, the achieved correlation

percentage among the original message and the extracted one are shown in the following tables.

Table 4.10 Adding AWGN with 0.1 variance

Cover msg Checksum %
hash function

check %

frequency

check %

Blues_cover1_320.mp3 Blues_96_msg1.mp3 20.9695 % 86.2071 % 50 %

Classical_cover2_320.mp3 Blues_96_msg1.mp3 21.0825 % 91.4787 % 50 %

Jazz_cover3_320.mp3 Blues_96_msg1.mp3 20.9695 % 86.2071 %
50 %

Pop_cover4_320.mp3 Blues_96_msg1.mp3 20.9869 % 90.6557 %
50 %

R&B_cover5_320.mp3 Blues_96_msg1.mp3 20.9925 % 81.8492 % 50 %

As shown in the table above, the best achieved correlation percentage for the three cover

messages is by the has function check method, while the minimum achieved results are for the

checksum one. The following table disply those results.

Figure 4.8 Comparison between the three integrity methods after adding an AWGN with 0.1 variance

 56

4.4.2. Results of Applying Checksum, Hash Function and Frequency

Methods to the Second Secret Audio Message

The table below disply the achieved correlation percentage among the original second

message and the extracted one without adding noise

Table 4.11 Comparison between different integrity methods

Cover msg Checksum
hash function

check

frequency

check

Blues_cover1_320.mp3 Jazz_128_msg2.mp3 100% 100% 100%

Classical_cover2_320.mp3
Jazz_128_msg2.mp3

100% 100% 100%

Jazz_cover3_320.mp3
Jazz_128_msg2.mp3

100% 100% 100%

Pop_cover4_320.mp3
Jazz_128_msg2.mp3

100% 100% 100%

R&B_cover5_320.mp3
Jazz_128_msg2.mp3

100% 100% 100%

As shown in the table above, the correlation among the original message and the extrcated one

is 100% when there is no added noise for the second message.

Based on adding an AWGN to the stego file before extracted secret message, the achieved

correlation percentage among the original message and the extracted one are shown in the

following table.

 57

Table 4.12 Adding AWGN with 0.1 variance

Cover msg Checksum %
hash function

check %

frequency

check %

Blues_cover1_320.mp3 Jazz_128_msg2.mp3 73.4203 % 92.0659 %
87.5 %

Classical_cover2_320.mp3
Jazz_128_msg2.mp3

73.6589 % 91.3738 % 87.5 %

Jazz_cover3_320.mp3
Jazz_128_msg2.mp3

73.6275 % 92.3676 %
87.5 %

Pop_cover4_320.mp3
Jazz_128_msg2.mp3

73.6275 % 91.3676 %
87.5 %

R&B_cover5_320.mp3
Jazz_128_msg2.mp3

73.3995 % 89.5476 % 87.5 %

As shown in the table above, the best achieved correlation percentage for the three cover

messages is by the hash function check method, while the minimum achieved results are for the

checksum one. The following table disply those results.

Figure 4.9 Comparison between the three integrity methods after adding an AWGN with 0.1 variance

 58

4.5 Results of Applying Attack and Integrity Methods on 1-LSB

In this case, an AWGN attack is added to the Blues_96_msg1.mp3 secret message, which

embedded in the proposed five cover messages using 1-LSB technique. The following table shows

the obtained PSNR values for the attack for 0.1 bits/sec/Hz, for the all band of the stego file.

Table 4.13 Results of adding AWGN to the first secret message for 1-LSB technique

Cover messages Embedded secret

message

PSNR

without

attack

Noise 1

variance

PSNR

with

attack

Blues_cover1_320.mp3 Blues_96_msg1.mp3 76.2214 0.1 65.1109

Classical_cover2_320.mp3 Blues_96_msg1.mp3 57.2895 0.1 48.0195

Jazz_cover3_320.mp3 Blues_96_msg1.mp3 83.1974 0.1 71.9531

Pop_cover4_320.mp3 Blues_96_msg1.mp3 57.9350 0.1 47.1057

R&B_cover5_320.mp3 Blues_96_msg1.mp3 81.9648 0.1 69.9001

The tables above illustrate that there is a clear degradation in the PSNR values after adding the

AWGN noise. In addition, it is obvious that the degradation in the PSNR is much worst compared

with proposed method (BI-LSB).

 59

The table below shows the correlation percentage among the original message and the

extracted one after adding the AWGN to the stego file before extracted secret message for the 1-

LSB technique

Table 4. 14Adding AWGN with 0.1 variance for 1-LSB technique
Cover msg Checksum %

hash function

check %

frequency

check %

Blues_cover1_320.mp3 Blues_96_msg1.mp3 18.50 % 83.59 % 44.47 %

Classical_cover2_320.mp3 Blues_96_msg1.mp3 20.45 % 87.43 % 44.47 %

Jazz_cover3_320.mp3 Blues_96_msg1.mp3 17.51 % 82.19 % 44.47 %

Pop_cover4_320.mp3 Blues_96_msg1.mp3 18.11 % 88.95 % 44.47 %

R&B_cover5_320.mp3 Blues_96_msg1.mp3 18.27 % 79.47% 44.47 %

As shown in the table above, the 1-LSB technique offers low correlation percentages for the three

integrity methods in comparison with the results of the presented Bi-LSB one.

 60

Chapter Five
Conclusion and Future Works

 61

Chapter Five: Conclusion and Future Works

Conclusions

This work introduces the development of an advanced Least Significant Bit (LSB) technique;

Bi-LSB to solve the low security and capacity problems of the traditional used LSB techniques,

which do not provide a step for encrypting data, and if secret message is sequentially or randomly

embedded and attackers know this pattern of embedding the message, they can obtain the message.

In addition, the validation code of those techniques is stored in the stego object. Therefore, the Bi-

LSB technique is developed in this work to solve those problems and offer an efficient method to

hide audio information in more secured way with the use of the MATLAB program.

The developed technique includes three main steps; preprocessing, embedding and extracting

and message validation. In the first stage, the main purpose is to improve the security of messages

to be hidden in an MP3 file. In the second stage, the proposed algorithm is designed for MP3 files

to solve the current security problem of the traditional LSB technique. In the final stage, another

method is implemented to hide messages to recognize the efficiency of hidden messages in MP3

files.

The performance of the developed Bi-LSB technique is compared with that of three traditional

LSB techniques; 1-LSB, 2-LSB and 4-LSB based on using them in embedding the same secret

messages in the same cover ones. The main simulation parts of both techniques are: hiding,

integrity and attack. In the hiding part, two secret messages are hidden in five cover messages

using both techniques. The integrity stage represents extracting the hidden secret message in the

cover ones and comparing them with the original secret messages using three techniques;

checksum, hash function and frequency. In the attack part, an Additive white Gaussian noise

(AWGN) is added to the stego file before extrcation with different variances.

Results of the hiding part illustrate that the Peak Signal to Noise Ration (PSNR) results of the

proposed method are better than those of the traditional LSB for all genre names and all used secret

messages. Results demonstrated that the average enhancement percentage of PSNR between the

current method and 4LSB, 2LSB and 1LSB for the first secret message are 52.32%, 33.60% and

 62

20.76%, respectively, while for the second secret message are: 55.15%, 32.06% and 19.51%,

respectively. This indicates that the highest enhancement is with the 4LSB method, while the

lowest one is with the 1LSB method. On the other hand, the average degredation in the PSNR

values after adding an AWGN with 0.1 variance for the first secret message is 4.35%, while it is

8.53% after adding an AWGN with 0.3 variance. For the second secret message, the averages

degredation in the PSNR values after adding an AWGN with 0.1 and 0.3 variance are 5.04% and

9.27%, respectively. Thus, the degradation in the PSNR values is directly related to the noise

variance value.

In addition, the achieved correlation percentage for the three integrity methods; checksum,

hash function and frequency check without noise is 100% for all cover messages, while it

decreased with the presence of noise. For the first secret message, the average correlation

percentages for the checksum, hash function and frequency check are 21%, 87.28% and 50%,

respectively, while for the second secret messages, those values are 73.54%, 91.34% and 87.5%,

respectively. Thus, the best correlation percentage was for the hash function check method, while

the minimum one was for the checksum method.

Future works

This work can be enhanced in the future based on applying it in hiding more secret messages and

adding other types of noises.

Different parameters can be added in order to get high PSNR or to improve message integrity , the

following points can be used as future work in this research

 Assign specific packet as reference points between sender and receiver in order to detect

any attack in the message.

 Choose different data set in order to compare the work with and without compression of

the voice.

 Study the effect of compression ratio on the performance of PSNR.

 63

References

 Atoum, M. S., Ibrahimn, S., Sulong, G., Zeki, A., & Abubakar, A. (2013, December).

Exploring the Challenges of MP3 Audio Steganography. In Advanced Computer Science

Applications and Technologies (ACSAT), 2013 International Conference on (pp. 156-161).

IEEE.

Alam, S. (2009). Effect of Additive White Gaussian Noise (AWGN) on the Transmitted Data.

Assignment submitted to fulfill the MSc Telecommunications and Computer Networks Engineering

Alla, K., Prasad, R., & Siva R. (2009). An Evolution of Hindi Text. Journal of Computer Science.

9 (5).113-117

Atoum, M. S., Al-Rababah, O. A., & Al-Attili, A. I. (2011)b. New technique for hiding data in

audio file. Journal of Computer Science, 11(4), 173-177.

Atoum, M. S., Ibrahim, S., Sulong, G., & Ahmed, A. (2012). MP3 Steganography: Review.

Journal of Computer Science issues, 9(6).

Atoum, M. S., Suleiman, M., Rababaa, A., Ibrahim, S., & Ahmed, A. (2011)a. A Steganography

Method Based on Hiding secrete data in MPEG / Audio Layer III. Journal of Computer Science.

11 (5).184-188

Atoum, M.S., Ibrahim, S., Sulong, G. & Zamani, M. (2013). A New Method for Audio

Steganography Using Message Integrity. Journal of Convergence Information Technology. 8. 35-

44

Bender W., Gruhl D., Morimoto N., & Lu A. (1996). Techniques for Data Hiding”, IBM System

Journal, vol.35, [online]: available at: http://isj.www.media.mit.edu/isj/SectionA/ 313.pdf

Bhattacharyya, S., & Sanyal, G. (2012). Audio Steganalysis of LSB Audio Using Moments and

Multiple Regression Model. International Journal of Advances in Engineering & Technology.

3(1). 145-160

Bhattacharyya, S., Kundu, A. & Sanyal, G. (2011). a Novel Audio Steganography Technique by

M16MA. International Journal of Computer Application. 30 (8). 26-34

http://isj.www.media.mit.edu/isj/SectionA/313.pdf

 64

Bhattacharyya, S., Kundu, A., Chakraborty, K., & Sanyal, G. (2011). Audio Steganography Using

Mod 4 Method. Journal of Computing. (8).30-38

Brandenburg K. (1999). MP3 and AAC Explained, Proceeding of AES. 17th International

Conference on High Quality Audio Coding, [online]: available at: http://web.unic.ca/~jinxing/

wmp3/3-1.pdf

Cacciaguerra S., & Ferretti S. (2001). Data Hiding: Steganography and Copyright Marking.

Department of Computer Science, University of Bologna, Italy, [online]: available at:

http://www.cs.unibo.it/~scacciag/home-file/teach/datahiding.pdf

Changder, S., Debnath, N. C., & Ghosh, D. (2009). A New Approach to Hindi text Steganography

by Shifting Matra. International Conference on Advances in Recent Technologies in

Communication and Computing. 199-202

Cvejic, N., & Seppanen, T. (2004). Reduced Distortion Bit-Modification For LSB Audio

Steganography. International Conference on Signal Processing.3. 2318-2321

Dunbar B. (2002). “A detailed look at Steganographic Techniques and their use in an Open

Systems Environment”, SANS Institute.

Emelia A., Sugathan, S. K., & Ho, A. (2008). Receiver Operating Characteristic (Roc) Graph to

Determine the Most Suitable Pairs Analysis Threshold Value. Advances in Electrical and

Electronics Engineering. 224-230

Farouk, M. H. (2014). Steganography and Security of Speech Signal. In Application of Wavelets

in Speech Processing. Springer International Publishing. 45-47

Feruza, Y., & Kim, T. (2007). IT Security Review: Privacy, Protection, Access Control, Assurance

and System Security. International Journal of Multimedia and Ubiquitous Engineering, 2(2), 17-

32.

Francia, G. A., & Gomez, T. S. (2006). Steganography Obliterator: An Attack on the Least

Significant Bits. Information Security Curriculum Development Conference. 85-91

http://web.unic.ca/~jinxing/wmp3/3-1.pdf
http://web.unic.ca/~jinxing/wmp3/3-1.pdf
http://www.cs.unibo.it/~scacciag/home-file/teach/datahiding.pdf

 65

Fricker, R., & Schonlau, M. (2002). Advantages and Disadvantages of Internet Research Surveys:

Evidence from the Literature. Field Methods, 14(4), 347-367. doi:10.1177/152582202237725

Fridrich J. (1998) . Applications of Data Hiding in Digital Images. Tutorial for the (ISPACS’98)

Conference, Melbourne, Australia, URL: http://www.ssie.Binghamton.edu/~jirif.

Galand, F & Kabatiansky, G. A. (2009). Coverings, Centered Codes, and Combinatorial

Steganography. Supported in part by the Russian Foundation for Basic Research, Moscow.

Ganeshkumar, V., & Koggalage, R. L. W. (2009). Secured Communication using Steganography

Framework with Sample RTF Implementation. 4th International Conference on Industrial and

Information Systems.15-21

Groenewald, T. (2004). A Phenomenological Research Design Illustrated

He, X. & Luo, Z. (2008). A Novel Steganographic Algorithm Based on the Motion Vector Phase.

International Conference on Computer Science and Software Engineering, China.

Huayin, S & Chang-Tsun, L. (2008). Maintaining Information Security in E-Government through

Steganography. Department of Computer Science, University of Warwick, UK

id3. (2014). The Private Life of MP3 Frames. [online]: available at: www.id3.org/MP3frame.html

Jangra, T., & Singh, D. (2014). Message Guided Random Audio Steganography Using Modified

LSB Technique. International Journal of Computers & Technology. 12 (5)5. 3464-3469

Johnson N.F., Duricn Z., & Jajodia S. (2001). Information Hiding: Steganography and

Watermarking Attack and Counter measurements. Kluwer Academic Publishers, USA

Johnson N.F., Duricn Z., Jajodia S. (2001). “Information Hiding: Steganography and

Watermarking Attack and Countermeasurments”, Kluwer Academic Publishers, USA.

Karen R. (2001) “Steganography and Steganalysis”, URL:www.krenn.n1/univ/cry/

steg/article.pdf.

Katzenbeisser S. & Petitcolas F. (2000). Information Hiding Techniques for Steganography and

Digital Watermarking. Artech House Inc

http://www.ssie.binghamton.edu/~jirif
http://www.id3.org/MP3frame.html

 66

Khairullah, M. (2009). A Novel Text Steganography System Using Font Color of the Invisible

Characters in Microsoft Word Documents. International Conference on Computer and Electrical

Engineering. 1. 482-484

Kivanc, M. (2002). Information Hiding Codes and their Applications to Images and Audio, PhD

Thesis, University of Illinois at Urbana-Champaign

Kumar, G., Sasidharan, S., Karthikha, N., Sherly, A., & Avani, Y. (2010). An Efficient Embedding

and Restoration Steganographic Scheme for Secure Multimedia Communication. International

Conference on Advances in Computer Engineering, India.

Lee, Y.K., Bell, G., Huang, S.Y., Wang, R.Z. & Shyu, S.J. (2009). An Advanced Least-

Significant-Bit Embedding Scheme for Steganographic Encoding. Advances in Image and Video

Technology. Berlin / Heidelberg: Springer. 349-360

Lenti J. (2000). Steganographic Methods. Department Of Control Engineering and Information

Technology, Budapest University. Periodica Poltechnica Ser. El. Eng. 44, 249–258

Lin T., Delp J. & Edward. (1998). A Review of Data Hiding in Digital Images. [online]: available

at: http://www.ece.purdue.edu/~ace

Liu, Q., Sung, A. H., & Qiao, M. (2009). Novel Stream Mining for Audio Steganalysis. ACM

Multimedia Conference. 95-104

Liu, Q., Sung, A. H., & Qiao, M. (2009). Spectrum steganalysis of WAV audio Streams. In

Machine Learning and Data Mining in Pattern Recognition. 582-593

Maciak .L, Ponniah. M., & Sharma. R. (2008). MP3 STEGANOGRAPHY

Mandal, J. K. & Sengupta. M. (2011). Steganographic Technique Based on Minimum Deviation

of Fidelity (STMDF). Second International Conference on Emerging Applications of Information

Technology. India.

Mandala, J., Kotagiri, S., & Kapala, K. (2013). Watermarking Scheme for Color Images”.

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS). 2 (5).

179-182

http://www.ece.purdue.edu/~ace

 67

Manimegalai, P., Gomathi, K. S., Ponniselvi, D., & Santha, M. (2014). The Image Steganography

and Steganalysis Based On Peak-Shaped Technique for MP3 Audio and Video. International

Journal of Computer Science and Mobile Computing. 3 (1). 300-308

Matthews, C. (2003).Behind The Music: Principles of Audio Steganography

Menezes, A., van Oorschot, P. and Vanstone, S. (1996). Hash Functions and Data Integrity,

Handbook of Applied Cryptography. By CRC Press

Naji A.W., Zaidan A. A., Zaidan B.B., Shihab A., & Khalifa, O. (2009). Novel Approach for

Secure Cover File of Hidden Data in the Unused Area Within exe File Using Computation between

Cryptography and Steganography. International Journal of Computer Science and Network

security. 9. 294-300

Neeta, D., Snehal, K., & Jacobs, D. (2006). Implementation of LSB Steganography and Its

Evaluation for Various Bits. International Conference on Digital Information Management. 173-

178

Pan, D. (1995). A Tutorial on MPEG / Audio Compression. IEEE Multimedia. 60 – 74

Petrovic, R., & Yang, D. T. (2009). Audio Watermarking in Compressed Domain. International

Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services. 395-

401

Polpitiya A.D., & Khan W.J. (2001). Information Hiding in Audio Files with Encryption”, Data

Security Project, Washington University

Provos N. (2001). Probabilistic Method for Improving Information Hiding. CITI Technical Report

01-1

Qi, Y., Ye, L., & Liu, C. (2009). Wavelet Domain Audio Steganalysis for Multiplicative

Embedding Model. International Conference on Wavelet Analysis and Pattern Recognition. 429-

432

Rahim, L. B. A., Bhattacharjee, S., & Aziz, I. B. (2014). An Audio Steganography Technique to

Maximize Data Hiding Capacity along with Least Modification of Host. In Proceedings of the

 68

First International Conference on Advanced Data and Information Engineering (DaEng-

2013) Springer Singapore. 277-289

Rahman, S.M.M., Hossain, M.A., Mouftah, H., El Saddik, A. & Okamoto, E. (2010). Real Time

Privacy Sensitive Data Hiding Approach Based on Chaos Cryptography, IEEE, Canada.

Ramkumar, M., Akansu, A. & Alatan, A. (1999). On The Choice Of Transforms For Data Hiding

In Compressed Video. IEEE, USA.

Santosa, R. and Bao, P. (2005). Audio to image wavelet transform based audio steganography.

Proceeding of 47th International Symposium, ELMAR, pp. 209- 212

Scagliola, M., Pérez, F., & Guccione, P. (2009). An Extended Analysis of Discrete Fourier

Transform - Rational Dither Modulation For Non-White Hosts”, 1st IEEE International Workshop

On Information Forensics and Security. 146-150

Sellars D., (2003) “An Introduction to Steganography”, University of Camberge.

Shahadi, H., Jidin, R. (2011). High Capacity and Resistance to Additive Noise Audio

Steganography Algorithm. IJCSI International Journal of Computer Science Issues. 8 (2). pp. 176-

184

Shahreza, S. and Shalmani, M. (2008). High capacity error free wavelet Domain Speech

Steganography. IEEE International conference on acoustics, speech, and signal processing, pp.

1729 - 1732.

Sivathanu, G. Wright, C. P and Zadok, E. (2005). Ensuring Data Integrity in Storage: Techniques

and Applications. a report submitted to Stony Brook University

Supurovic P. (1998). MPEG Audio Compression Basics. [online]: available at:

http://www.chested. chalmers.se\~kf96svgu

Supurovic. P. (1998). MPEG Audio Frame Header. Data Voyage, [online]: available at:

www.dv.co.yu/mpgscript/mpeghdr.htm#MPEGTAG

Tomar, G. (2012). Effect of Noise on image steganography based on LSB insertion and RSA

encryption. IOSR Journal of Engineering. 2(3) pp: 473-477

http://www.dv.co.yu/mpgscript/mpeghdr.htm#MPEGTAG

 69

Yan, W. & Ping, L. (2009). A New Steganography Algorithm Based on Spatial Domain. Second

International Symposium on Information Science and Engineering, China.

Yang Y. (2001). “Digital Watermarking Technology”, Faculty of Computer Science, Dalhousie

University, URL: http://www.cs.dal.ca/~yyang/6505/6605.pdf.

Yusnita Y. & Othman O. K. (2007). Digital Watermarking for Digital Images using Wavelet

Transform. 14th IEEE International Conference On Telecommunications. Penang, Malaysia

Zaturenskiy. M. (2009). Behind The Music: MP3 steganography. [online]: available at:

http://www.cpd.iit.edu/netsecure09/MIKHAIL_ZATURENSKIY.pdf

http://www.cs.dal.ca/~yyang/6505/6605.pdf
http://www.cpd.iit.edu/netsecure09/MIKHAIL_ZATURENSKIY.pdf

 70

Appendix

The full code is available with the student, you can get it based on contacting him via mail:

mms_8921@yahoo.com

function [Y,FS,NBITS,OPTS] = mp3read(FILE,N,MONO,DOWNSAMP,DELAY)
% MP3READ Read MP3 audio file via use of external binaries.
% Y = MP3READ(FILE) reads an mp3-encoded audio file into the
% vector Y just like wavread reads a wav-encoded file (one channel
% per column). Extension ".mp3" is added if FILE has none.
% Also accepts other formats of wavread, such as
% Y = MP3READ(FILE,N) to read just the first N sample frames (N
% scalar), or the frames from N(1) to N(2) if N is a two-element vector.
% Y = MP3READ(FILE,FMT) or Y = mp3read(FILE,N,FMT)
% with FMT as 'native' returns int16 samples instead of doubles;
% FMT can be 'double' for default behavior (to exactly mirror the
% syntax of wavread).
%
% [Y,FS,NBITS,OPTS] = MP3READ(FILE...) returns extra information:
% FS is the sampling rate, NBITS is the bit depth (always 16),
% OPTS.fmt is a format info string; OPTS has multiple other
% fields, see WAVREAD.
%
% SIZ = MP3READ(FILE,'size') returns the size of the audio data contained
% in the file in place of the actual audio data, returning the
% 2-element vector SIZ=[samples channels].
%
% [Y...] = MP3READ(FILE,N,MONO,DOWNSAMP,DELAY) extends the
% WAVREAD syntax to allow access to special features of the
% mpg123 engine: MONO = 1 forces output to be mono (by
% averaging stereo channels); DOWNSAMP = 2 or 4 downsamples by
% a factor of 2 or 4 (thus FS returns as 22050 or 11025
% respectively for a 44 kHz mp3 file);
% To accommodate a bug in mpg123-0.59, DELAY controls how many
% "warm up" samples to drop at the start of the file; the
% default value of 2257 makes an mp3write/mp3read loop for a 44
% kHz mp3 file be as close as possible to being temporally
% aligned; specify as 0 to prevent discard of initial samples.
% For later versions of mpg123 (e.g. 1.9.0) this is not needed;
% a flag in mp3read.m makes the default DELAY zero in this case.
%
% [Y...] = MP3READ(URL...) uses the built-in network
% functionality of mpg123 to read an MP3 file across the
% network. URL must be of the form 'http://...' or
% 'ftp://...'. 'size' and OPTS are not available in this mode.
%
% Example:
% To read an mp3 file as doubles at its original width and sampling rate:
% [Y,FS] = mp3read('piano.mp3');
% To read the first 1 second of the same file, downsampled by a
% factor of 4, cast to mono, using the default filename
% extension:
% [Y,FS4] = mp3read('piano', FS/4, 1, 4);
%

mailto:mms_8921@yahoo.com

 71

% Note: Because the mp3 format encodes samples in blocks of 26 ms (at
% 44 kHz), and because of the "warm up" period of the encoder,
% the file length may not be exactly what you expect, depending
% on your version of mpg123 (recent versions fix warmup).
%
% Note: requires external binaries mpg123 and mp3info; you
% can find binaries for several platforms at:
% http://labrosa.ee.columbia.edu/matlab/mp3read.html
%
% See also mp3write, wavread.

% $Header: /Users/dpwe/matlab/columbiafns/RCS/mp3read.m,v 1.6 2009/12/08

16:35:23 dpwe Exp dpwe $

% 2003-07-20 dpwe@ee.columbia.edu This version calls mpg123.
% 2004-08-31 Fixed to read whole files correctly
% 2004-09-08 Uses mp3info to get info about mp3 files too
% 2004-09-18 Reports all mp3info fields in OPTS.fmt; handles MPG2LSF sizes
% + added MONO, DOWNSAMP flags, changed default behavior.
% 2005-09-28 Fixed bug reading full-rate stereo as 1ch (thx bjoerns@vjk.dk)
% 2006-09-17 Chop off initial 2257 sample delay (for 44.1 kHz mp3)
% so read-write loop doesn't get progressively delayed.
% You can suppress this with a 5th argument of 0.
% 2007-02-04 Added support for FMT argument to match wavread
% Added automatic selection of binary etc. to allow it
% to work cross-platform without editing prior to
% submitting to Matlab File Exchange
% 2007-07-23 Tweaks to 'size' mode so it exactly agrees with read data.
% 2009-03-15 Added fixes so 'http://...' file URLs will work.
% 2009-03-26 Added filename length check to http: test (thx fabricio guzman)

% find our baseline directory
path = fileparts(which('mp3read'));

% %%%%% Directory for temporary file (if needed)
%------------------------------
tmpdir = 'E:\sounds\tmp\'; % don't forget trailing slash
rmcmd = 'del';
%------------------------------
% % Try to read from environment, or use /tmp if it exists, or use CWD
tmpdir = getenv('TMPDIR');
if isempty(tmpdir) || exist(tmpdir,'file')==0
 tmpdir = '/tmp';
end
if exist(tmpdir,'file')==0
 tmpdir = '';
end
% ensure it exists
%if length(tmpdir) > 0 && exist(tmpdir,'file')==0
% mkdir(tmpdir);
%end

%%%%%% Command to delete temporary file (if needed)
rmcmd = 'rm';

%%%%%% Location of the binaries - attempt to choose automatically

 72

%%%%%% (or edit to be hard-coded for your installation)
%---------------------------------------
mpg123 = 'E:\sounds\mpg123.exe';
mp3info = 'E:\sounds\mp3info.exe';
ame = 'E:\sounds\lame.exe';
%---------------------------------------
ext = lower(computer);
if ispc
 ext = 'exe';
 rmcmd = 'del';
end
% mpg123-0.59 inserts silence at the start of decoded files, which
% we compensate. However, this is fixed in mpg123-1.9.0, so
% make this flag 1 only if you have mpg123-0.5.9
MPG123059 = 0;
mpg123 = fullfile(path,['mpg123.',ext]);
mp3info = fullfile(path,['mp3info.',ext]);

%%%%% Check for network mode
if length(FILE) > 6 && (strcmp(lower(FILE(1:7)),'http://') == 1 ...
 || strcmp(lower(FILE(1:6)),'ftp://'))
 % mp3info not available over network
 OVERNET = 1;
else
 OVERNET = 0;
end

%%%%% Process input arguments
if nargin < 2
 N = 0;
end

% Check for FMT spec (per wavread)
FMT = 'double';
if ischar(N)
 FMT = lower(N);
 N = 0;
end

if length(N) == 1
 % Specified N was upper limit
 N = [1 N];
end
if nargin < 3
 forcemono = 0;
else
 % Check for 3rd arg as FMT
 if ischar(MONO)
 FMT = lower(MONO);
 MONO = 0;
 end
 forcemono = (MONO ~= 0);
end
if nargin < 4
 downsamp = 1;

 73

else
 downsamp = DOWNSAMP;
end
if downsamp ~= 1 && downsamp ~= 2 && downsamp ~= 4
 error('DOWNSAMP can only be 1, 2, or 4');
end

% process DELAY option (nargin 5) after we've read the SR

if strcmp(FMT,'native') == 0 && strcmp(FMT,'double') == 0 && ...
 strcmp(FMT,'size') == 0
 error(['FMT must be ''native'' or ''double'' (or ''size''), not

''',FMT,'''']);
end

%%%%%% Constants
NBITS=8;

%%%%% add extension if none (like wavread)
[path,file,ext] = fileparts(FILE);
if isempty(ext)
 FILE = [FILE, '.mp3'];
end

if ~OVERNET
 %%%%%% Probe file to find format, size, etc. using "mp3info" utility
 cmd = ['"',mp3info, '" -r m -p "%Q %u %b %r %v * %C %e %E %L %O %o %p" "',

FILE,'"'];
 % Q = samprate, u = #frames, b = #badframes (needed to get right answer

from %u)
 % r = bitrate, v = mpeg version (1/2/2.5)
 % C = Copyright, e = emph, E = CRC, L = layer, O = orig, o = mono, p = pad
 w = mysystem(cmd);
 % Break into numerical and ascii parts by finding the delimiter we put in
 starpos = findstr(w,'*');
 nums = str2num(w(1:(starpos - 2)));
 strs = tokenize(w((starpos+2):end));

 SR = nums(1);
 nframes = nums(2);
 nchans = 2 - strcmp(strs{6}, 'mono');
 layer = length(strs{4});
 bitrate = nums(4)*1000;
 mpgv = nums(5);
 % Figure samples per frame, after
 % http://board.mp3-tech.org/view.php3?bn=agora_mp3techorg&key=1019510889
 if layer == 1
 smpspfrm = 384;
 elseif SR < 32000 && layer ==3
 smpspfrm = 576;
 if mpgv == 1
 error('SR < 32000 but mpeg version = 1');
 end
 else

 74

 smpspfrm = 1152;
 end

 OPTS.fmt.mpgBitrate = bitrate;
 OPTS.fmt.mpgVersion = mpgv;
 % fields from wavread's OPTS
 OPTS.fmt.nAvgBytesPerSec = bitrate/8;
 OPTS.fmt.nSamplesPerSec = SR;
 OPTS.fmt.nChannels = nchans;
 OPTS.fmt.nBlockAlign = smpspfrm/SR*bitrate/8;
 OPTS.fmt.nBitsPerSample = NBITS;
 OPTS.fmt.mpgNFrames = nframes;
 OPTS.fmt.mpgCopyright = strs{1};
 OPTS.fmt.mpgEmphasis = strs{2};
 OPTS.fmt.mpgCRC = strs{3};
 OPTS.fmt.mpgLayer = strs{4};
 OPTS.fmt.mpgOriginal = strs{5};
 OPTS.fmt.mpgChanmode = strs{6};
 OPTS.fmt.mpgPad = strs{7};
 OPTS.fmt.mpgSampsPerFrame = smpspfrm;
else
 % OVERNET mode
 OPTS = [];
 % guesses
 smpspfrm = 1152;
 SR = 44100;
 nframes = 0;
end

if SR == 16000 && downsamp == 4
 error('mpg123 will not downsample 16 kHz files by 4 (only 2)');
end

% process or set delay
if nargin < 5

 if MPG123059
 mpg123delay44kHz = 2257; % empirical delay of lame/mpg123 loop
 mpg123delay16kHz = 1105; % empirical delay of lame/mpg123 loop for 16

kHz sampling
 if SR == 16000
 rawdelay = mpg123delay16kHz;
 else
 rawdelay = mpg123delay44kHz; % until we know better
 end
 delay = round(rawdelay/downsamp);
 else
 % seems like predelay is fixed in mpg123-1.9.0
 delay = 0;
 end
else
 delay = DELAY;
end

if downsamp == 1
 downsampstr = '';

 75

else
 downsampstr = [' -',num2str(downsamp)];
end
FS = SR/downsamp;

if forcemono == 1
 nchans = 1;
 chansstr = ' -m';
else
 chansstr = '';
end

% Size-reading version
if strcmp(FMT,'size') == 1
 Y = [floor(smpspfrm*nframes/downsamp)-delay, nchans];
else

 % Temporary file to use
 tmpfile = fullfile(tmpdir, ['tmp',num2str(round(1000*rand(1))),'.wav']);

 skipx = 0;
 skipblks = 0;
 skipstr = '';
 sttfrm = N(1)-1;

 % chop off transcoding delay?
 %sttfrm = sttfrm + delay; % empirically measured
 % no, we want to *decode* those samples, then drop them
 % so delay gets added to skipx instead

 if sttfrm > 0
 skipblks = floor(sttfrm*downsamp/smpspfrm);
 skipx = sttfrm - (skipblks*smpspfrm/downsamp);
 skipstr = [' -k ', num2str(skipblks)];
 end
 skipx = skipx + delay;

 lenstr = '';
 endfrm = -1;
 decblk = 0;
 if length(N) > 1
 endfrm = N(2);
 if endfrm > sttfrm
 decblk = ceil((endfrm+delay)*downsamp/smpspfrm) - skipblks + 10;
 % we read 10 extra blks (+10) to cover the case where up to 10 bad
 % blocks are included in the part we are trying to read (it happened)
 lenstr = [' -n ', num2str(decblk)];
 % This generates a spurious "Warn: requested..." if reading right
 % to the last sample by index (or bad blks), but no matter.
 end
 end

 % Run the decode
 cmd=['"',mpg123,'"', downsampstr, chansstr, skipstr, lenstr, ...
 ' -q -w "', tmpfile,'" "',FILE,'"'];

 76

 %w =
 mysystem(cmd);

 % Load the data
 Y = wavread(tmpfile);

% % pad delay on to end, just in case
% Y = [Y; zeros(delay,size(Y,2))];
% % no, the saved file is just longer

 if decblk > 0 && length(Y) < decblk*smpspfrm/downsamp
 % This will happen if the selected block range includes >1 bad block
 disp(['Warn: requested ', num2str(decblk*smpspfrm/downsamp),' frames,

returned ',num2str(length(Y))]);
 end

 % Delete tmp file
 mysystem([rmcmd,' "', tmpfile,'"']);

 % debug
% disp(['sttfrm=',num2str(sttfrm),' endfrm=',num2str(endfrm),'

skipx=',num2str(skipx),' delay=',num2str(delay),' len=',num2str(length(Y))]);

 % Select the desired part
 if skipx+endfrm-sttfrm > length(Y)
 endfrm = length(Y)+sttfrm-skipx;
 end

 if endfrm > sttfrm
 Y = Y(skipx+(1:(endfrm-sttfrm)),:);
 elseif skipx > 0
 Y = Y((skipx+1):end,:);
 end

 % Convert to int if format = 'native'
 if strcmp(FMT,'native')
 Y = int16((2^15)*Y);
 end

end

%%%
function w = mysystem(cmd)
% Run system command; report error; strip all but last line
[s,w] = system(cmd);
if s ~= 0
 error(['unable to execute ',cmd,' (',w,')']);
end
% Keep just final line
w = w((1+max([0,findstr(w,10)])):end);
% Debug
%disp([cmd,' -> ','*',w,'*']);

%%%
function a = tokenize(s,t)

 77

% Break space-separated string into cell array of strings.
% Optional second arg gives alternate separator (default ' ')
% 2004-09-18 dpwe@ee.columbia.edu
if nargin < 2; t = ' '; end
a = [];
p = 1;
n = 1;
l = length(s);
nss = findstr([s(p:end),t],t);
for ns = nss
 % Skip initial spaces (separators)
 if ns == p
 p = p+1;
 else
 if p <= l
 a{n} = s(p:(ns-1));
 n = n+1;
 p = ns+1;
 end
 end
end

function mp3write(D,SR,NBITS,FILE,OPTIONS)
% MP3WRITE Write MP3 file by use of external binary
% MP3WRITE(Y,FS,NBITS,FILE) writes waveform data Y to mp3-encoded
% file FILE at sampling rate FS using bitdepth NBITS.
% The syntax exactly mirrors WAVWRITE. NBITS must be 16.
% MP3WRITE(Y,FS,FILE) assumes NBITS is 16
% MP3WRITE(Y,FILE) further assumes FS = 8000.
%
% MP3WRITE(..., OPTIONS) specifies additional compression control
% options as a string passed directly to the lame encoder
% program; default is '--quiet -h' for high-quality model.
%
% Example:
% To convert a wav file to mp3 (assuming the sample rate is
% supported):
% [Y,FS] = wavread('piano.wav');
% mp3write(Y,FS,'piano.mp3');
% To force lame to use 160 kbps (instead of default 128 kbps)
% with the default filename extension (mp3):
% mp3write(Y,FS,'piano','--quiet -h -b 160');
%
% Note: The actual mp3 encoding is done by an external binary,
% lame, which is available for multiple platforms. Usable
% binaries are available from:
% http://labrosa.ee.columbia.edu/matlab/mp3read.html
%
% Note: MP3WRITE will use the mex file popenw, if available, to
% open a pipe to the lame encoder. Otherwise, it will have to
% write a large temporary file, then execute lame on that file.
% popenw is available at:

 78

% http://labrosa.ee.columbia.edu/matlab/popenrw.html
% This is a nice way to save large audio files as the
% incremental output of your code, but you'll have to adapt the
% central loop of this function (rather than using it directly).
%
% See also: mp3read, wavwrite, popenw.

% 2005-11-10 Original version
% 2007-02-04 Modified to exactly match wavwrite syntax, and to
% automatically find architecture-dependent binaries.
% 2007-07-26 Writing of stereo files via tmp file fixed (thx Yu-ching Lin)
%
% $Header: /Users/dpwe/matlab/columbiafns/RCS/mp3write.m,v 1.2 2007/07/26

15:09:16 dpwe Exp $

% find our baseline directory
[path] = fileparts(which('mp3write'));

% %%%%% Directory for temporary file (if needed)
% % Try to read from environment, or use /tmp if it exists, or use CWD
tmpdir = getenv('TMPDIR');
if isempty(tmpdir) || exist(tmpdir,'file')==0
 tmpdir = '/tmp';
end
if exist(tmpdir,'file')==0
 tmpdir = '';
end
% ensure it exists
%if length(tmpdir) > 0 && exist(tmpdir,'file')==0
% mkdir(tmpdir);
%end

%%%%%% Command to delete temporary file (if needed)
rmcmd = 'rm';

%%%%%% Location of the binary - attempt to choose automatically
%%%%%% (or edit to be hard-coded for your installation)
ext = lower(computer);
if ispc
 ext = 'exe';
 rmcmd = 'del';
end
lame = fullfile(path,['lame.',ext]);

%%%% Process input arguments
% Do we have NBITS?
mynargin = nargin;
if ischar(NBITS)
 % NBITS is a string i.e. it's actually the filename
 if mynargin > 3
 OPTIONS = FILE;
 end
 FILE = NBITS;
 NBITS = 16;
 % it's as if NBITS had been specified...
 mynargin = mynargin + 1;

 79

end

if mynargin < 5
 OPTIONS = '--quiet -h'; % -h means high-quality psych model
end

[nr, nc] = size(D);
if nc < nr
 D = D';
 [nr, nc] = size(D);
end
% Now rows are channels, cols are time frames (so interleaving is right)

%%%%% add extension if none (like wavread)
[path,file,ext] = fileparts(FILE);
if isempty(ext)
 FILE = [FILE, '.mp3'];
end

nchan = nr;
nfrm = nc;

if nchan == 1
 monostring = ' -m m';
else
 monostring = '';
end

lameopts = [' ', OPTIONS, monostring, ' '];

%if exist('popenw') == 3
if length(which('popenw')) > 0

 % We have the writable stream process extensions
 cmd = ['"',lame,'"', lameopts, '-r -s ',num2str(SR),' - "',FILE,'"'];

 p = popenw(cmd);
 if p < 0
 error(['Error running popen(',cmd,')']);
 end

 % We feed the audio to the encoder in blocks of <blksize> frames.
 % By adapting this loop, you can create your own code to
 % write a single, large, MP3 file one part at a time.

 blksiz = 10000;

 nrem = nfrm;
 base = 0;

 while nrem > 0
 thistime = min(nrem, blksiz);
 done = popenw(p,32767*D(:,base+(1:thistime)),'int16be');
 nrem = nrem - thistime;

 80

 base = base + thistime;
 %disp(['done=',num2str(done)]);
 end

 % Close pipe
 popenw(p,[]);

else
 disp('Warning: popenw not available, writing temporary file');

 tmpfile = fullfile(tmpdir,['tmp',num2str(round(1000*rand(1))),'.wav']);

 wavwrite(D',SR,tmpfile);

 cmd = ['"',lame,'"', lameopts, '"',tmpfile, '" "', FILE, '"'];

 mysystem(cmd);

 % Delete tmp file
 mysystem([rmcmd, ' "', tmpfile,'"']);

end

%%%
function w = mysystem(cmd)
% Run system command; report error; strip all but last line
[s,w] = system(cmd);
if s ~= 0
 error(['unable to execute ',cmd,' (',w,')']);
end
% Keep just final line
w = w((1+max([0,findstr(w,10)])):end);
% Debug
%disp([cmd,' -> ','*',w,'*']);

function Hash = DataHash(Data, Opt)
% DATAHASH - Checksum for Matlab array of any type
% This function creates a hash value for an input of any type. The type and
% dimensions of the input are considered as default, such that UINT8([0,0])

and
% UINT16(0) have different hash values. Nested STRUCTs and CELLs are parsed
% recursively.
%
% Hash = DataHash(Data, Opt)
% INPUT:
% Data: Array of these built-in types:
% (U)INT8/16/32/64, SINGLE, DOUBLE, (real or complex)
% CHAR, LOGICAL, CELL (nested), STRUCT (scalar or array, nested),
% function_handle.
% Opt: Struct to specify the hashing algorithm and the output format.
% Opt and all its fields are optional.
% Opt.Method: String, known methods for Java 1.6 (Matlab 2009a):

 81

% 'SHA-1', 'SHA-256', 'SHA-384', 'SHA-512', 'MD2', 'MD5'.
% Known methods for Java 1.3 (Matlab 6.5):
% 'MD5', 'SHA-1'.
% Default: 'MD5'.
% Opt.Format: String specifying the output format:
% 'hex', 'HEX': Lower/uppercase hexadecimal string.
% 'double', 'uint8': Numerical vector.
% 'base64': Base64 encoded string, only printable ASCII
% characters, shorter than 'hex', no padding.
% Default: 'hex'.
% Opt.Input: Type of the input as string, not case-sensitive:
% 'array': The contents, type and size of the input [Data] are
% considered for the creation of the hash. Nested CELLs
% and STRUCT arrays are parsed recursively. Empty arrays

of
% different type reply different hashs.
% 'file': [Data] is treated as file name and the hash is

calculated
% for the files contents.
% 'bin': [Data] is a numerical, LOGICAL or CHAR array. Only the
% binary contents of the array is considered, such that
% e.g. empty arrays of different type reply the same

hash.
% Default: 'array'.
%
% OUTPUT:
% Hash: String, DOUBLE or UINT8 vector. The length depends on the hashing
% method.
%
% EXAMPLES:
% % Default: MD5, hex:
% DataHash([]) % 7de5637fd217d0e44e0082f4d79b3e73
% % MD5, Base64:
% Opt.Format = 'base64';
% Opt.Method = 'MD5';
% DataHash(int32(1:10), Opt) % bKdecqzUpOrL4oxzk+cfyg
% % SHA-1, Base64:
% S.a = uint8([]);
% S.b = {{1:10}, struct('q', uint64(415))};
% Opt.Method = 'SHA-1';
% DataHash(S, Opt) % ZMe4eUAp0G9TDrvSW0/Qc0gQ9/A
% % SHA-1 of binary values:
% Opt.Method = 'SHA-1';
% Opt.Input = 'bin';
% DataHash(1:8, Opt) % 826cf9d3a5d74bbe415e97d4cecf03f445f69225
%
% NOTES:
% Function handles and user-defined objects cannot be converted uniquely:
% - The subfunction ConvertFuncHandle uses the built-in function FUNCTIONS,
% but the replied struct can depend on the Matlab version.
% - It is tried to convert objects to UINT8 streams in the subfunction
% ConvertObject. A conversion by STRUCT() might be more appropriate.
% Adjust these subfunctions on demand.
%
% MATLAB CHARs have 16 bits! In consequence the string 'hello' is treated

as

 82

% UINT16('hello') for the binary input method. Use this to get the hash of

an
% ASCII-string (Result as defined in RFC 1321!):
% Opt.Method = 'MD5'; Opt.Input = 'bin';
% DataHash(uint8('abc'), Opt); % '900150983cd24fb0d6963f7d28e17f72'
%
% DataHash uses James Tursa's smart and fast TYPECASTX, if it is installed:
% http://www.mathworks.com/matlabcentral/fileexchange/17476
% As fallback the built-in TYPECAST is used automatically, but for large
% inputs this can be more than 100 times slower.
%
% Tested: Matlab 7.7, 7.8, 7.13, WinXP/32, Win7/64
% Author: Jan Simon, Heidelberg, (C) 2011-2015

matlab.THISYEAR(a)nMINUSsimon.de
%
% See also: TYPECAST, CAST.
% FEX:
% Michael Kleder, "Compute Hash", no structs and cells:
% http://www.mathworks.com/matlabcentral/fileexchange/8944
% Tim, "Serialize/Deserialize", converts structs and cells to a byte stream:
% http://www.mathworks.com/matlabcentral/fileexchange/29457
% Jan Simon, "CalcMD5", MD5 only, much faster C-mex:
% http://www.mathworks.com/matlabcentral/fileexchange/25921

% $JRev: R-v V:022 Sum:68JCxGh2/Q0N Date:30-Mar-2015 01:35:37 $
% $License: BSD (use/copy/change/redistribute on own risk, mention the

author) $
% $File: Tools\GLFile\DataHash.m $
% History:
% 001: 01-May-2011 21:52, First version.
% 007: 10-Jun-2011 10:38, [Opt.Input], binary data, complex values

considered.
% 011: 26-May-2012 15:57, Fixed: Failed for binary input and empty data.
% 014: 04-Nov-2012 11:37, Consider Mex-, MDL- and P-files also.
% Thanks to David (author 243360), who found this bug.
% Jan Achterhold (author 267816) suggested to consider Java objects.
% 016: 01-Feb-2015 20:53, Java heap space exhausted for large files.
% Now files are process in chunks to save memory.
% 017: 15-Feb-2015 19:40, Collsions: Same hash for different data.
% Examples: zeros(1,1) and zeros(1,1,0)
% complex(0) and zeros(1,1,0,0)
% Now the number of dimensions is included, to avoid this.
% 022: 30-Mar-2015 00:04, Bugfix: Failed for strings and [] without

TYPECASTX.
% Ross found these 2 bugs, which occur when TYPECASTX is not installed.
% If you need the base64 format padded with '=' characters, adjust
% fBase64_enc as you like.

% OPEN BUGS:
% Nath wrote:
% function handle refering to struct containing the function will create
% infinite loop. Is there any workaround ?
% Example:
% d= dynamicprops();
% addprop(d,'f');
% d.f= @(varargin) struct2cell(d);

 83

% DataHash(d.f) % infinite loop

% Main function:

===
% typecastx creates a shared data copy instead of the deep copy as Matlab's
% TYPECAST - for a [1000x1000] DOUBLE array this is 100 times faster!
persistent usetypecastx
if isempty(usetypecastx)
 % Java is needed:
 if ~usejava('jvm')
 Error_L('NoJava', 'Java is required.');
 end

 usetypecastx = ~isempty(which('typecastx')); % Run the slow WHICH once

only
end

% Default options: --

Method = 'MD5';
OutFormat = 'hex';
isFile = false;
isBin = false;

% Check number and type of inputs: --

nArg = nargin;
if nArg == 2
 if isa(Opt, 'struct') == 0 % Bad type of 2nd input:
 Error_L('BadInput2', '2nd input [Opt] must be a struct.');
 end

 % Specify hash algorithm:
 if isfield(Opt, 'Method')
 Method = upper(Opt.Method);
 end

 % Specify output format:
 if isfield(Opt, 'Format')
 OutFormat = Opt.Format;
 end

 % Check if the Input type is specified - default: 'array':
 if isfield(Opt, 'Input')
 if strcmpi(Opt.Input, 'File')
 isFile = true;
 if ischar(Data) == 0
 Error_L('CannotOpen', '1st input FileName must be a string');
 end

 elseif strncmpi(Opt.Input, 'bin', 3) % Accept 'binary' also
 isBin = true;
 if (isnumeric(Data) || ischar(Data) || islogical(Data)) == 0 || ...
 issparse(Data)
 Error_L('BadDataType', ...

 84

 '1st input must be numeric, CHAR or LOGICAL for binary

input.');
 end
 end
 end

elseif nArg ~= 1 % Bad number of arguments:
 Error_L('BadNInput', '1 or 2 inputs required.');
end

% Create the engine: --

try
 Engine = java.security.MessageDigest.getInstance(Method);
catch
 Error_L('BadInput2', 'Invalid algorithm: [%s].', Method);
end

% Create the hash value: --

if isFile
 % Check existence of file:
 Found = FileExist(Data);
 if ~Found
 Error_L('FileNotFound', 'File not found: %s.', Data);
 end

 % Open the file:
 FID = fopen(Data, 'r');
 if FID < 0
 Error_L('CannotOpen', 'Cannot open file: %s.', Data);
 end

 % Read file in chunks to save memory and Java heap space:
 Chunk = 1e6;
 [Data, Count] = fread(FID, Chunk, '*uint8');
 Engine.update(Data);
 while Count == Chunk
 [Data, Count] = fread(FID, Chunk, '*uint8');
 Engine.update(Data);
 end
 fclose(FID);

 % Calculate the hash:
 if usetypecastx
 Hash = typecastx(Engine.digest, 'uint8');
 else
 Hash = typecast(Engine.digest, 'uint8');
 end

elseif isBin % Contents of an elementary array, type tested

already:
 if isempty(Data) % Nothing to do, Engine.update fails for empty

input!
 if usetypecastx % Bugfix: Consider missing typecastx

 85

 Hash = typecastx(Engine.digest, 'uint8');
 else
 Hash = typecast(Engine.digest, 'uint8');
 end

 elseif usetypecastx % Faster typecastx:
 if isreal(Data)
 Engine.update(typecastx(Data(:), 'uint8'));
 else
 Engine.update(typecastx(real(Data(:)), 'uint8'));
 Engine.update(typecastx(imag(Data(:)), 'uint8'));
 end
 Hash = typecastx(Engine.digest, 'uint8');

 else % Matlab's TYPECAST is less elegant:
 if isnumeric(Data)
 if isreal(Data)
 Engine.update(typecast(Data(:), 'uint8'));
 else
 Engine.update(typecast(real(Data(:)), 'uint8'));
 Engine.update(typecast(imag(Data(:)), 'uint8'));
 end
 elseif islogical(Data) % TYPECAST cannot handle LOGICAL
 Engine.update(typecast(uint8(Data(:)), 'uint8'));
 elseif ischar(Data) % TYPECAST cannot handle CHAR
 Engine.update(typecast(uint16(Data(:)), 'uint8'));
 % Bugfix: Line removed
 end
 Hash = typecast(Engine.digest, 'uint8');
 end

elseif usetypecastx % Faster typecastx:
 Engine = CoreHash_(Data, Engine);
 Hash = typecastx(Engine.digest, 'uint8');

else % Slower built-in TYPECAST:
 Engine = CoreHash(Data, Engine);
 Hash = typecast(Engine.digest, 'uint8');
end

% Convert hash specific output format: --------------------------------------

switch OutFormat
 case 'hex'
 Hash = sprintf('%.2x', double(Hash));
 case 'HEX'
 Hash = sprintf('%.2X', double(Hash));
 case 'double'
 Hash = double(reshape(Hash, 1, []));
 case 'uint8'
 Hash = reshape(Hash, 1, []);
 case 'base64'
 Hash = fBase64_enc(double(Hash));
 otherwise
 Error_L('BadOutFormat', ...
 '[Opt.Format] must be: HEX, hex, uint8, double, base64.');

 86

end

% return;

%

*
function Engine = CoreHash_(Data, Engine)
% This method uses the faster typecastx version.

% Consider the type and dimensions of the array to distinguish arrays with

the
% same data, but different shape: [0 x 0] and [0 x 1], [1,2] and [1;2],
% DOUBLE(0) and SINGLE([0,0]):
% < v016: [class, size, data]. BUG! 0 and zeros(1,1,0) had the same hash!
% >= v016: [class, ndim, size, data]
Engine.update([uint8(class(Data)), ...
 typecastx([ndims(Data), size(Data)], 'uint8')]);

% Special treatment for sparse arrays - store the indices at first and the
% values afterwards:
if issparse(Data)
 % Replace Data by vector of non-zero elements:
 [i1, i2, Data] = find(Data);
 Engine.update(typecastx(i1, 'uint8'));
 Engine.update(typecastx(i2, 'uint8'));
end

if isstruct(Data) % Hash for all array elements and

fields:
 F = sort(fieldnames(Data)); % Ignore order of fields
 Engine = CoreHash_(F, Engine); % Consider the fieldnames

 for iS = 1:numel(Data) % Loop over elements of struct array
 for iField = 1:length(F) % Loop over fields
 Engine = CoreHash_(Data(iS).(F{iField}), Engine);
 end
 end

elseif iscell(Data) % Get hash for all cell elements:
 for iS = 1:numel(Data)
 Engine = CoreHash_(Data{iS}, Engine);
 end

elseif isnumeric(Data) || islogical(Data) || ischar(Data)
 if isempty(Data) == 0
 if isreal(Data) % TRUE for LOGICAL and CHAR also:
 Engine.update(typecastx(Data(:), 'uint8'));
 else % Complex input:
 Engine.update(typecastx(real(Data(:)), 'uint8'));
 Engine.update(typecastx(imag(Data(:)), 'uint8'));
 end
 end

elseif isa(Data, 'function_handle')

 87

 Engine = CoreHash_(ConvertFuncHandle(Data), Engine);

elseif (isobject(Data) || isjava(Data)) && ismethod(Data, 'hashCode')
 Engine = CoreHash_(Data.hashCode, Engine);

else % Most likely this is a user-defined object:
 try
 Engine = CoreHash_(ConvertObject(Data), Engine);
 catch
 warning(['JSimon:', mfilename, ':BadDataType'], ...
 ['Type of variable not considered: ', class(Data)]);
 end
end

% return;

%

*
function Engine = CoreHash(Data, Engine)
% This methods uses the slower TYPECAST of Matlab
% See CoreHash_ for comments.

Engine.update([uint8(class(Data)), ...
 typecast([ndims(Data), size(Data)], 'uint8')]);

if isstruct(Data) % Hash for all array elements and

fields:
 F = sort(fieldnames(Data)); % Ignore order of fields
 Engine = CoreHash(F, Engine); % Catch the fieldnames
 for iS = 1:numel(Data) % Loop over elements of struct array
 for iField = 1:length(F) % Loop over fields
 Engine = CoreHash(Data(iS).(F{iField}), Engine);
 end
 end
elseif iscell(Data) % Get hash for all cell elements:
 for iS = 1:numel(Data)
 Engine = CoreHash(Data{iS}, Engine);
 end
elseif isempty(Data)
elseif isnumeric(Data)
 if isreal(Data)
 Engine.update(typecast(Data(:), 'uint8'));
 else
 Engine.update(typecast(real(Data(:)), 'uint8'));
 Engine.update(typecast(imag(Data(:)), 'uint8'));
 end
elseif islogical(Data) % TYPECAST cannot handle LOGICAL
 Engine.update(typecast(uint8(Data(:)), 'uint8'));
elseif ischar(Data) % TYPECAST cannot handle CHAR
 Engine.update(typecast(uint16(Data(:)), 'uint8'));
elseif isa(Data, 'function_handle')
 Engine = CoreHash(ConvertFuncHandle(Data), Engine);
elseif (isobject(Data) || isjava(Data)) && ismethod(Data, 'hashCode')
 Engine = CoreHash(Data.hashCode, Engine);
else % Most likely a user-defined object:

 88

 try
 Engine = CoreHash(ConvertObject(Data), Engine);
 catch
 warning(['JSimon:', mfilename, ':BadDataType'], ...
 ['Type of variable not considered: ', class(Data)]);
 end
end

% return;

%

*
function FuncKey = ConvertFuncHandle(FuncH)
% The subfunction ConvertFuncHandle converts function_handles to a struct
% using the Matlab function FUNCTIONS. The output of this function changes
% with the Matlab version, such that DataHash(@sin) replies different

hashes
% under Matlab 6.5 and 2009a.
% An alternative is using the function name and name of the file for
% function_handles, but this is not unique for nested or anonymous

functions.
% If the MATLABROOT is removed from the file's path, at least the hash of
% Matlab's toolbox functions is (usually!) not influenced by the version.
% Finally I'm in doubt if there is a unique method to hash function

handles.
% Please adjust the subfunction ConvertFuncHandles to your needs.

% The Matlab version influences the conversion by FUNCTIONS:
% 1. The format of the struct replied FUNCTIONS is not fixed,
% 2. The full paths of toolbox function e.g. for @mean differ.
FuncKey = functions(FuncH);

% ALTERNATIVE: Use name and path. The <matlabroot> part of the toolbox

functions
% is replaced such that the hash for @mean does not depend on the Matlab
% version.
% Drawbacks: Anonymous functions, nested functions...
% funcStruct = functions(FuncH);
% funcfile = strrep(funcStruct.file, matlabroot, '<MATLAB>');
% FuncKey = uint8([funcStruct.function, ' ', funcfile]);

% Finally I'm afraid there is no unique method to get a hash for a function
% handle. Please adjust this conversion to your needs.

% return;

%

*
function DataBin = ConvertObject(DataObj)
% Convert a user-defined object to a binary stream. There cannot be a unique
% solution, so this part is left for the user...

% Perhaps a direct conversion is implemented:

 89

DataBin = uint8(DataObj);

% Or perhaps this is better:
% DataBin = struct(DataObj);

% return;

%

*
function Out = fBase64_enc(In)
% Encode numeric vector of UINT8 values to base64 string.
% The intention of this is to create a shorter hash than the HEX format.
% Therefore a padding with '=' characters is omitted on purpose.

Pool = [65:90, 97:122, 48:57, 43, 47]; % [0:9, a:z, A:Z, +, /]
v8 = [128; 64; 32; 16; 8; 4; 2; 1];
v6 = [32, 16, 8, 4, 2, 1];

In = reshape(In, 1, []);
X = rem(floor(In(ones(8, 1), :) ./ v8(:, ones(length(In), 1))), 2);
Y = reshape([X(:); zeros(6 - rem(numel(X), 6), 1)], 6, []);
Out = char(Pool(1 + v6 * Y));

% return;

%

*
function Ex = FileExist(FileName)
% A more reliable version of EXIST(FileName, 'file'):
dirFile = dir(FileName);
if length(dirFile) == 1
 Ex = ~(dirFile.isdir);
else
 Ex = false;
end

% return;

%

*
function Error_L(ID, varargin)

error(['JSimon:', mfilename, ':', ID], ['*** %s: ', varargin{1}], ...
 mfilename, varargin{2:nargin - 1});

% return;

