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Abstract

Cloud Computing has been defined as a new business model. It is an emerging
paradigm because of that it has been given high attention from many researchers. The
main advantage of cloud computing is to reduce the cost of computing while, at the
same time, the main disadvantage of using cloud computing is the lack of security. The
security of the database in the cloud computing is more critical. One solution for the
security problem is encryption, using encryption technique to secure database in the

cloud will cause other problem such as not preserve data order.

Order Preserving Encryption (OPE) is an encryption technique that used to preserve the
operations of data. OPE scheme solves partially the problem of searching over

encrypted data, but it leaks some information.

This thesis was used the order preserving encryption technique to preserve the order of
data. It has been investigated encryption techniques that preserve operations of data
such as OPE. This thesis studied the OPE function to identify the impact of several
parameters on the performance and security level of OPE. It is used the polynomial
function with the following parameters: the degree of polynomial function, the range of

coefficients, key sizes and data types/ data sizes. Accordingly, the parameters have been
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studied to find which parameter achieves a high performance with an optimal security

level.

This thesis was designed and implemented the software to compare and analyze the
performance of OPE function with the previous parameters. It has been imported data
from Northwind database, run the software using all the parameters, and analyzed the

results for each parameter.

Experiments were conducted to study the effect of several parameters on the
performance of OPE. This thesis computed the efficiency as trade- off between
performance and security level. The optimal efficiency level would be in the situation of
minimum loss in the performance with a high gain of security. This thesis found that
when increased the degree from 1 to 4 of the polynomial function, we will gain 75%
security level with loss 7% performance. The result showed that degree 4 of the
polynomial function is the optimal solution for that situation. This thesis found that
increasing the range of coefficients from range 1000 to range 10000 will gaining 90%
security levels with losing 3% performance. The result showed that range 10000 of the
coefficients is the optimal solution for that situation. This thesis found that increasing
the size of the key from size equal 16 bit to size equal 32 bit will gaining 50 % security
level with losing 9% performance. The result showed that key size equal 32 bit is the
optimal solution for that situation. However, this thesis found that the data type affect
the performance of OPE, but it is not significant. The result showed that the data size (6

bytes) achieved a high performance compared with the other sizes.

Keywords: Cloud Computing, Encrypted Data, Order Preserving Encryption

Technique, Polynomial function.
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Chapter One

Introduction



1.1 Introduction

Nowadays, there are many developments in the Information Technology (IT) field. The
cloud computing technology is one of these developments. Cloud computing can be
considered as a new business model. It is an emerging paradigm for that reason it has

been given high attention from many researchers.

Cloud computing appears as an important enabler for the IT industry. Cloud enables the
user to use it like "pay — as- you- use". Users moved their data and application to remote
outsource storage and can access it at any time. For this reason, it was one of the IT
interested terminologies. Cloud computing is considered as a group of services,
providing scalable, quality of service guaranteed, and inexpensive computing platform
on demand. Users have to manage various software installation, configuration and

update their data and applications (Dillon et al., 2010).

Cloud computing is defined as a pool of many concepts from virtualization, distributed
application design, grid computing, utility computing, and clustering. It helps
companies to access, manipulate, and configure the application over the network. Also,
it enables users to use cloud without the need to install software. Therefore; it reduces

the cost of computing, application hosting, and content storage (Mell & Grance, 2011).

Security of cloud computing has appeared as the significant issue because the data in the
cloud is typically in a shared environment nearby data from other users. Ramgovind et
al. stated that security issue used to prevent data loss, running software from an
unauthorized user, and sharing the resource. They stated that the data must be encrypted
to prevent an unauthorized user from accessing it. Encryption is an effective method

that makes data unusable and safe (Ramgovind et al., 2010).



The main advantage of cloud computing is to reduce the cost of computing while; at the
same time the disadvantage of the cloud computing is the security leakage. One solution
for securing database problem is the encryption; encryption in the cloud will cause other
problem. Many encryption techniques do not preserve operations on data. There are two
types of encryption technique that preserve operations on data: Homomorphic
encryption technique and Order Preserving Encryption technique (OPE) (Agrawal et al.,

2004).

Homomorphic encryption techniques preserve the arithmetic operation (+,-,*, /). There
are two types of homomorphic: Fully Homomorphic Encryption (FHE) and Partially
Homomorphic Encryption (PHE). FHE is used to preserve all arithmetic operations.

PHE is used to preserve some arithmetic operations (Mohanty, 2013).

The main important points in the encryption database are searching operation and
indexing. This thesis investigated on searching over encrypted data and the encryption
techniques that preserve operations on data such as OPE. This thesis studied the OPE
function and used the polynomial function with the following parameters: the degree of
polynomial function, the range of coefficients, key sizes and data types/ data sizes. The
purpose of these parameters is: the degree and the range of coefficients decide the
security level of the polynomial function. The key sizes have been used in the
encryption technique to study the effect of these key sizes on the performance of OPE.
This thesis has been suggested three data types of studying the effect of the data type on

the performance of OPE.



It has been studied the impact of several parameters on the performance and security
level of OPE. The aim of this thesis is to find the optimal point as a trade-off between

security level and performance.

1.2 Problem Statement

Cloud computing is one of the recent technologies and provides many services to users.
Search over encrypted data is a challenging problem in the cloud security field. Security
is a fundamental issue in the cloud computing paradigm. The traditional encryption
techniques are preventing unauthorized access to sensitive data while at the same time
do not preserve the order of data. OPE scheme solves the problem of searching over
encrypted data partially, but it leaks some information. Enhancing the security of OPE
will reduce the performance (execution in time). This thesis studies the effect of using
OPEs function (polynomial function) with regards to performance and security level.
This thesis investigated the performance and security level of encryption protocols by
using several parameters. These parameters are the degree of polynomial function, the

range of coefficients, key sizes and data types/sizes.

1.3 Research Questions
Goals of this thesis have been accomplished by answering the following questions:

1. Which OPEs’ function (Polynomial degree) can achieve a “high” performance
with “an optimal” security level over OPE?

2. Which range of coefficients can achieve a high performance with an optimal
security level?

3. What is the effect of using several key sizes on the performance of OPE and

security level?



4. What is the effect of using several data types and sizes on the performance of

OPE?

1.4 Limitations and Scope

This thesis studies the performance and security level of encryption protocol without
enhancing the OPE technique itself. To apply our experiments, we run several
polynomial degrees with all the parameters without using an actual database over actual
cloud computing. The time of each experiment is computed by using a computer with
properties (Intel (R) Core (TM) i3, CPU 2.50GHz, RAM 4GB, 64-bit Operating
System, Windows 8). The focus of this thesis will be on the execution time of the

parameters not on database re-indexing time.

1.5 Objective
The objective of this thesis is to find the effect of the parameters on the OPE
performance. The objective of this thesis is to find the efficiency of the combination of

the parameters as a trade-off between security level and performance.

1.6 Contribution
The contribution of this research can be summarized in the following:

e ldentified how much the effect of following parameters degree of the
polynomial, the range of coefficients, key sizes, data types/ sizes on the
performance and security of OPEs.

o Identified the efficiency for many cases for several parameters as a trade-off
between security level and performance.

o Identified the optimal efficiency as the minimum increment in the performance

with a high gain of security.



1.7 Motivation

During the recent years, cloud computing was obtaining more interest from IT
companies and people. Cloud computing shares data and resources on the cloud,
therefore; cloud must be protected data from attackers. Securing of cloud database is
more critical because of this reason the people reduced using of the cloud. The
encryption technique is a suitable way to protect data.

Understanding how one can searching over encrypted data by using order preserving
encryption technique (OPE). Searching over encrypted data is important for any
database developers and IT students to encrypt the data with preserve the order of the
original data. Cloud computing is an important model. Finding the solution is a big
motivation because there are several organization interests with the security. It has

motivated us to work on securing cloud database with preserve the order of data.

1.8 Methodology

The methodology of this thesis is a combination of descriptive and quantitative
research. The methodology mainly based on building several experiments by using
OPEs technique to study the performance and security level. Data will be collected and
implemented using OPE technique. Performance and security level will be recorded

then analyzed to answer the main questions of this thesis.

This thesis adopted polynomial function because the security level of it was approved
by (Ozsoyoglu et al., 2003). They stated that the security level for each function will be
monitored by counting their coefficients and also stated that the high number of

coefficients means high-security level.



This thesis ran many experiments by using the polynomial function with several
parameters (degree of the polynomial function, the range of coefficients, key sizes, data
types/sizes). The performance (execution in time) will be measured by using tools such
as (set begin - time and set end- time). This thesis compared and evaluated the results
of each experiment based on the trade-off between performance and security level. The
optimal efficiency has been defined as the minimum loss in the performance with a high

gain of security. The methodology has been divided into the following phases:-

e Studying Phase
This phase described and studied the OPE technique and the type of each OPE
function.

e Design and Implementation Phase
This phase has been designed and implemented OPE technique and used
polynomial function with several parameters (degree of the polynomial, range
of coefficients, key sizes, data types/ sizes).

e Evaluation Phase
This phase compared and analyzed the results for each experiment to find
which one of parameters (degree of the polynomial, range of coefficients, key

sizes, data types/ sizes) achieved a good performance with high security level.

1.9 Thesis Outline
The list of this thesis is structured as follow:
e Chapter 2 provides the summary of the literature and reviews the related works.
We explain the main concept of cloud computing, types of cloud deployment,

and also several service models. We describe different types of encryption



techniques and specifically concern on order preserving encryption technique in
searching over encrypted data.

Chapter 3 explains the methodology in details. This chapter includes the
comparative analysis that is used to solve the research problem.

Chapter 4 presents the experimental results. The experiments were carried out
based on the performance and security level. This chapter displays the screen of
the implementation software and analyzes the result of this thesis.

Finally, Chapter 5 describes the conclusion of this thesis and suggests future

work to improve the performance.



Chapter Two

Literature Review
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2.1 Overview
Search over encrypted data in the cloud computing became important and had attention
by researchers. It is one of the challenge processes because it is difficult to let the data

storage conduct the search and response the query without loss of data confidentiality.

This thesis sheds a light on the previous related about the field of search over encrypted
data in the cloud computing that the data is outsourcing in the cloud. This thesis focuses
on the encryption technique that preserve the order of data such as OPE and focus on

how to use different encryption function with OPE that preserve the order.

This chapter provides a literature review and background on the main concepts covered
by this research. It is divided into four sections. Section 2.2 displays the most related
studies in the field of security of database cloud, homomorphic encryption techniques,
and order preserving encryption techniques. Section 2.3 discusses the main concept of
cloud computing, types of cloud deployment, and cloud services that are needed to
understand topics embedded in this thesis. Section 2.4 discusses the different types of
encryption techniques that are used to protect the data in the cloud then, discuss the
Order Preserving Encryption technique and the polynomial functions that are used to

preserve the order of data. Section 2.5 presents a summary for the chapter.

2.2 Literature Review
Many works of literature discussed several concepts and problems in the cloud

computing as follow.

Jadeja & Modi discussed the idea of cloud computing, and they defined it as an

emerging field of computer science. They said cloud computing as a computing
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environment because one party can be outsourced to another party and need a
connection network to access the computing power or resource like a database. They
present the main advantage of cloud computing such as users do not have to pay for
infrastructure. They also described the architecture of cloud computing such as

deployment and services of cloud computing (Jadeja & Modi, 2012).

Alam & Shakil reviewed the concept of cloud computing. The authors presented the
cloud computing concept and its characteristics, and then identified the several types of
cloud deployment and services models as public, private, hybrid, and community. They
also defined several cloud service as Software as a Service, Platform as a service,
database as a service and Infrastructure as a Service. They presented different examples
of cloud computing platform, security the cloud, reference architectures and data

storage in cloud computing (Alam & Shakil, 2015).

Sunitha & Prashanth discussed the data storage models and data security in cloud
computing system. They suggested the efficient algorithm for cloud security. This
method has offered important security services such as key generation, encryption and
decryption are provided in cloud computing system. They also presented the main goal

of manage the data and securely stored (Sunitha & Prashanth, 2010).

Liu et al. discussed an efficient technique for search over encrypted keyword in cloud
computing. They presented how the user can store and retrieve their personal data in an
encrypted form in the cloud, and they presented how the user can send queries in the
form of encrypted keywords. The authors explained that the encryption scheme may not
work well when a user wants to retrieve only files that contain certain keywords. They

presented the difficulties when the service provider could not determine which files
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contain keywords. They proposed an adequate privacy preserving keyword search
schema in cloud computing to allow search over encrypted data without leaking any

information (Liu et al., 2009).

Gentry described a fully homomorphic encryption scheme to solve the problem in
cryptography that allowed to compute arbitrary function over encrypted data without
decrypt it. They used a fully homomorphic scheme to support all arithmetic operations.
They also presented what homomorphic encryption scheme and how to use it to

improve the efficiency of secure multiparty computation (Gentry, 2009).

Mohanty explained the model of a framework that can be used to protect and manage
their data stored in the untrusted server. The author used the homomorphic to achieve
confidentiality; homomorphic is considered as one of the encryption techniques used to
protect the data from the users who want to store the data in the untrusted server.
Mohanty used a homomorphic encryption scheme for protecting the data, and update
encrypted files, instead of transmitting entire encrypted versions each time after an

update was explored (Mohanty, 2013).

Boldyreva et al. studied order preserving symmetric encryption for allowing efficient
range queries on encrypted data. They presented standard security notions for
encryption such as indistinguishability against chosen- plaintext attack is unachievable
by a practical OPE scheme. They presented a security of pseudorandom function and
related primitives asking that OPE scheme look as- random- as- possible subject to
order preserving constraints. They design an efficient OPE scheme and prove the

security based on pseudorandom of an underlying block cipher (Boldyreva et al., 2009).
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Boldyreva et al. studied and revisited security of order-preserving symmetric encryption
(OPE). They discussed the problem of characterizing what encryption via random order
preserving function (ROPF) leaks the information. They presented ROPF encryption
leaks approximate value of any plaintext as well as the approximate distance between
any two plaintexts. They studied a different type of order preserving encryption
technique such as random order preserving function (ROPF), modular order preserving
encryption (MOPE), Generalized Order preserving encrypting (GOPE), and they
improved the security of each OPE scheme to be a pseudorandom order preserving
function. They displayed the result that help the researchers to estimate the risk and
security guarantees of using a secure OPE in their application. They proposed an

efficient transformation that can be applied to any OPE scheme (Boldyreva et al., 2011).

Popa et al. discussed order preserving encryption technique that is used to sort the order
of ciphertext that matches with the sort of the order of plaintext. Order preserving
encryption enabled database and other application to process queries involving order
over encrypted data. Authors displayed several types of OPE function and explained
mOPE function, the first order-preserving encryption technique that achieves excellent
security. The problem of mOPE function, an adversary learns nothing but the order of
elements based on the ciphertexts. They proposed a stronger notion of same-time OPE
security that allows an adversary to learn only the order of elements present in an
encrypted database. They used OPE technique by adding the random noise to increase

the ambiguity (Popa et al., 2013).

Ozsoyoglu et al. discussed possibilities of encrypting the database and how to allow
querying of encrypted database efficiently. The authors believed that the best way to

protect data was by encrypt the database and allow querying over the encrypted data.
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They focused on finding the best technique to database encryption and finding the best
technique on querying over encrypted data. They classified encryption functions into
different functions such as open-Form encryption, closed-Form encryption, and
decryption function. They reviewed advantages and disadvantages of both types. They
encrypted an integer valued attributes. They used polynomial functions as the
encryption function and used the coefficients of the polynomial function as the key with

a specific range of coefficients (Ozsoyoglu et al., 2003).

Ren, et al. discussed privacy preserving ranked multi keyword search leveraging
polynomial function in cloud computing. They discussed how can protect data privacy
before outsourcing to the cloud that makes the data utilization a challenging task so, it is
enabled to search over encrypted data for supporting effective and efficient data
retrieval over a large number of documents in the cloud. The authors presented how can
search over encrypted data by using encryption function and Hash function to prevent
the adversary from learning the index keywords.

The used polynomial function to hide the encryption input keywords and search query
can describe as the coefficient of the polynomial function to prevent the adversary from

learning input keyword (Ren et al., 2014).

2.3 Background

2.3.1 Cloud Computing
Cloud computing is a model of computing which is dynamically access the applications,
resources as a service from anywhere at any time. It provides data storage,

infrastructure, and applications over the network (Zhang et al., 2010).
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Cloud computing providers both hardware and software necessary to run the
applications, it provides data storage as service so; the user can use it without the need

to be in the same location as the hardware that stores the data (Hut & Cebula, 2011).

In the recent years, the cloud computing became very popular and interested by many

users because it have several advantages as listed below (Marston et al., 2011).

- The main advantage of cloud computing is cost saving because its reduce
management cost through its offer online development and deployment through
the platform as a service model.

- It eliminates requires of organizations to run their platforms and maintain
hardware/ software infrastructure.

- It offers On-demand self-service to permit the user to access cloud services
through the online control panel.

- It offers accessibility, configuration, and manipulate the application over the
network at any time.

- It doesn't require installing software to access the application.

- It considered an efficiency model because cloud services have standard APIs
(application program interface), which provides easy communication with two
application or data sources, also easy backup and restore data.

- It has a feature of flexibility because it allows the user to pay per use; it means to

allow them to use the resource as much as they need.
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2.3.2 Cloud Deployment
Cloud computing is very interested from many organizations and individuals because it
does not need any development and maintenance. Cloud is an efficient model because it
provides pay per use or nothing pays for unused. Figure 2.1 shows the cloud
deployment models that are classified into six different types based on characteristics

and purpose of it.
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Figure 2.1: Deployment Model Adapted (Al-Khashab, 2014)

Public Cloud

Public cloud can be used and accessed by any consumers or large industry group. In this
model, cloud service provider has the full ownership of public cloud with own policy.
The characteristics of public cloud is less secure, reduce time and cost, and it doesn't

need to maintenance it (Boampong & Wahsheh, 2012).
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Private Cloud

A private cloud can be used and accessed by the specific user. The cloud infrastructure
Is managed by the organization or a third party. In this model, cloud service provider
has control over the infrastructure. Storage infrastructure associated is limited to a
single company without shared with any others. The characteristics of private cloud are

improving security, flexibility, and transparency (Boampong & Wahsheh, 2012).

Community Cloud

Community cloud can be accessed by a group of the organization. In this model, cloud
infrastructure is shared by several users that have the same policy and security
requirements. It can be managed by one of the organizations in the community or by a

third party (Boampong & Wahsheh, 2012).

Hybrid Cloud

In a hybrid cloud, the cloud infrastructure is a combination of two or more cloud
deployment types. This model has few limitations such as lack of flexibility, security.
The benefits of using this model type are to optimize organization's resources, reduce

cost while maintaining privacy and increase security (Boampong & Wahsheh, 2012).

Virtual Private Cloud

The virtual private cloud (VPC) is a combination of the private and the public cloud.
VPC represents a perfect balance between control on the private cloud and flexibility on
the public cloud. The advantage of using virtual private cloud the connection is secured

through VPN; control the security policies on the cloud (Boampong & Wahsheh, 2012).
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Personal Cloud

The personal cloud is the realization of different types of cloud deployments in which
any type of cloud deployment can become like a personal cloud. It is considered
exceptional cloud services because it provides an ideal solution for the secure sharing of
compute and storage resources. It classified into three types such as online desktop,
online storage, and web base application. Each one of these types is characterized by
free up in resources, processing power, and also in the web base application. In the
personal cloud, any device with an internet connection can consider as a personal device

via a web browser (Na et al., 2010).

2.3.3 Cloud Services

Cloud computing is a rented software that hosted in a shared environment. It is a
computing model in which virtualized resources are provided as a service over the
Internet. The important feature of cloud computing is cloud service that offers the
services through numerous delivery model. Figure 2.2 shows the architecture of cloud
computing is classified into three different services models such as Infrastructure as a

Service (laaS), Platform as a Service (PaaS), and Software as a Service (SaaS).
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Figure 2.2: Services of Cloud Computing Adapted (Alam & Shakil, 2015)

Infrastructure as a Service (1aaS)

laaS provides access to a fundamental resource over the network such as virtual
machine to enable cloud platforms and application to operate. It allows users to run their
operating system through virtualization software that are offered by the service
provider. Virtualization in laaS provides scalable deployment, installation, and
maintenance of software. In this model, users have full control over server infrastructure

and also it provides only basic security (SO, 2011).

Platform as a Service (PaaS)

PaaS is a set of software and development tools on the provider's servers. PaaS support
application hosting environment, possess development infrastructure including
programming environment, tools, and configuration. PaaS Provides flexibility and all

facilities to support building and delivering web application services. The advantage of
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PasS, users can build and deploy their application without installing any tools on their
device, users are not obligated to use an expensive hardware or software to develop the

applications offered in the cloud (SO, 2011).

Software as a Service (SaaS)

SaaS is a new of software development. In SaaS, the application is hosted as a service
so, it allows users to access their application through the network without the need to
install and run any software on their device. SaaS provides software over the network,
so users can rent software and run the application for pay- per - use instead of owning it.
SaasS is a more restrictive model than laaS, which constrains users to use an existing set

of services, rather than deploying it (SO, 2011).

2.4 Security of Database Cloud

Cloud storage is a service of cloud computing that allows users to move their data to the
cloud. The cloud database provides Database as a Service (DaaS) as a paradigm of
cloud service model. DaaS is a new model of data management, so it managed by a

cloud administrator and allows users to create, store, retrieve their data at the host site.

The benefit of using DaaS is service provider allow users for pay per use without the
need to purchase an expensive software. With DaaS users can access their data from
anywhere on the network, therefore; DaaS is considered as a low cost of data storage.
Data privacy is considered a significant issue for any database user. With cloud
computing, the data must be protected because it will be shared with unauthorized
access. The important characteristic of the cloud is providing proper security that

represents data security, privacy, availability, and integrity (Sunitha & Prashanth, 2010).
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The important characteristic of the cloud computing poses numerous security issues.
Important things to protect data from an unauthorized user based on security

requirement are listed below (Youssef & Alageel, 2012).

- Availability
The availability means cloud’s user can use, modify, and access their recourse at

any time from any location.

- Integrity
The integrity means the protection of data from unauthorized users and ensures

the data is modified only by authorized access.

- Confidentiality
Confidentiality means that only authorized user can access the sensitive or

critical data.

A Database has become an important component of cloud computing. It can be defined
as any form of structured, queryable storage that is hosted in the cloud. Cloud database

means different things to the different user (Al-hamami & Al-khashab, 2014).

The data is stored on multiple dynamic servers, rather than on the dedicated servers
used in traditional networked data storage. When storing database, the user sees a
virtual server, therefore; its provide scalability, high availability, optimized resource

allocation and multi-tenancy and (Ru et al., 2014).

Cloud multi-tenancy nature and outsourcing of sensitive data, critical application, and
cloud infrastructure causes the security and privacy problems. The data should be

encrypted before sending to the cloud to prevent unauthorized access to the original



22

data. Searching for encrypted data has many challenges that need to be solved such as
access control, security, performance query optimization and key management.
Encryption is considered the biggest concern that is used to encrypt data and to prevent
unauthorized access. There are two types of the encryption technique that preserve the
operations on data such as Homomorphic encryption and Order Preserving Encryption

technique (Yogamangalam & Sriram, 2013).

To protect the cloud database must be encrypted. The encryption in the cloud will cause
a problem. Many encryption techniques are not preserving the order of data. There are
two encryption techniques are used to preserve the order such as Homomorphic and

Order Preserve Encryption technique.

Homomorphic encryption technigue is use to preserve the mathematical functionality.
The encryption scheme is very useful to protect data from attackers. Encryption is
important for constructing Privacy Preserving protocols, because it’s a fundamental
issue in the cloud computing application.

This issue provides important features for cloud customers to protect their sensitive
data. The homomorphic encryption is described a special property of an encryption
scheme. That property permits users to perform computation on the ciphertext without
decrypting it or knowing the keys (Stehlé &Steinfeld, 2010).

The homomorphic approach divided into two types: Fully Homomorphic Encryption
(FHE) and Partially Homomorphic Encryption (PHE). FHE support all arithmetic
operations over encrypted data (ciphertext) without decrypt it. Homomorphic is

considered as partially if it offers one of arithmetic operation such as additive or
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multiplicative. There are several examples of PHE such as RSA, ElGamal

Cryptosystem, Paillier Cryptosystem (Gentry, 2009).

The main operation of the database will need the indexing, for example, Binary search
and preserve the order is important for indexing. This thesis investigated the order

preserving encryption technique to preserve the order.

2.4.1 Order Preserving Encryption

The problem of search queries on encrypted data leads to use an Order Preserving
Encryption (OPE) scheme that is an important method to solve search problem and
support all logical operations. It is a deterministic encryption scheme which means its

encryption function preserves numerical ordering of the plaintexts.

OPE is a technique used for encrypting data to preserve the order and make efficient
comparison operations on the encrypted data without decrypt the operands. The security
problem of OPE is not adequate and also there is some leak of information. OPE is used
for processing SQL queries over encrypted data because it can perform order operations
on ciphertext in the same way as plaintext. OPE scheme solves the problem of searching
for encrypted data partially, but it leaks some information. The three step of OPE
constriction are: model the input and target distributions as linear splines, transform the
plaintext into uniformly distributed database, and transforming the database into the
cipher database but in this case, the database are distributed according to the target distri

bution (Agrawal et al.,2004).

OPE is a deterministic symmetric key encryption scheme. It was used to ensure that the
Ciphertext preserve the order of the plaintext. There are several types of OPE as

follows.
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OPE scheme generates a sequence of the random number. It was used to encrypt an
integer value by adding the random number to it. This encryption technique was
considered as inefficient because it can be only used in a static system when the data has

been inserted to the database (Bebek, 2002).

Generalized Order Preserving Encryption (GOPE) scheme adopts a general
mathematical object as a ciphertext. The difference between the OPE scheme and
GOPE scheme where the ciphertext is a number in the OPE scheme while the ciphertext
in the GOPE is a mathematical object. GOPE scheme requires a special comparison
algorithm to compare between the ciphertext in the OPE and the GOPE (Boldyreva et

al., 2011).

Digit Order Preserving Encryption (DOPE) scheme used to preserve the order of data
by using a group of key agents. This scheme enables the distributed encryption to assure
that the OPE encryption key is not known by any entity in the system. DOPE has been
deployed the key agents between the database and the users. In DOPE scheme, the
master key is shared with the key agents where each key agent holds a different
encryption key. This scheme separates the key agents with a distinct key by using any
OPE scheme. The security problem of DOPE is the key agents can see the plain digit
therefore it discloses a part of the sensitive data. The adversary can use the key to
compromise the same digit for every data in the database if it compromises the database

and one of the key agents (Xiao et al., 2012).

2.4.2 Polynomial Function

A polynomial function is a function such as a quadratic, a cubic, a quartic, and so on,

involving only non-negative integer powers. Each polynomial function has a degree; the
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degree of this function is the highest value for n where C, is not equal to zero. A

polynomial of n degree is a function of the form: F(x) = C,X" + Cpy X" +...+ C1X+Co.

This function is used to hide encryption keyword in search over encrypted data. Search
query describes as the coefficient of the polynomial function because the coefficient is
used to prevent the adversary from learning data. The number of coefficients is used to

measure the security level. The high number of coefficients means the high security leve

Is (Ren, et al., 2014).

Polynomial function is used to encrypt the integer value by using the iterative
operations. The polynomial function used as the encryption function. The coefficients of
the polynomial function used as a key to restrict the users from discovered the key even
if discovered the encryption function.Ozsoyoglu et al. investigated the encryption functi
on such as the polynomial function applied to each an integer value. They used the

coefficients of the polynomial as a key with the range [1-25] (Ozsoyoglu et al., 2003).

Inside the OPE technique, there are several encryption function. These functions are
Single Encryption Function, Multiple Encryption Function, Nonlossy Multiple
Encryption Function, and Generating and Encryption Function. Single Encryption
Function used a single polynomial function as the encryption function. This function
considered the degree of security is the number of constants used by the function. Single
Encryption function was used to find the inverse of the n degree of the polynomial
function. Multiple Encryption Function used n function of the polynomial and each
function has its inverse. This function used to find a sequence of encryption function.
The Multiple Encryption Function used the constant of the polynomial as the key and it

applies the sequence of function in such a way that the output of the fi(x) becomes the
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input of the fi+1(x). This function applies the inverse of each function in the sequence in

reverse order (Ozsoyoglu et al., 2003).

2.5 Summary

All related work discussed important points in the cloud computing. They discussed the
main idea of the cloud and the advantage of using it. Some of the previous work
presented the different type of cloud deployment and cloud services models which is

very useful for the researchers.

They discussed the security issues and how to protect data from unauthorized access by
using different encryption techniques. Then, they explained an efficient technique that is
used for searching over encrypted data and explained how the user can store and

retrieve the data without losing it.

This chapter presented different types of encryption technique that is used to preserve
operations on data such as Homomorphic and Order Preserving Encryption technique.
Based on the related work, this thesis investigated OPEs function and adopted the
polynomial function with several parameters to study the effect of these parameters on

the performance and security level of OPE.



Chapter Three

OPE Comparative Analysis
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3.1 Introduction

Recently, cloud computing has become a topic of great interest but it has some problem.
One of that problem is the security which affect the data privacy. The data must be
encrypted before storing in outsourcing (cloud), the encryption provides a strong
guarantee to protect data so that, the information will be disclosed from unauthorized

used.

Due to the many researchers who have studied the field of search over encrypted data.
The problem of search over encrypted data, the encryption technique may not work well
when a user wants to retrieve files that contain certain keywords. Search over encrypted
data became a fundamental issue of great interest in the cloud computing era. Therefore;
the critical data must be encrypted before outsourcing to the cloud servers in order to

guarantee data confidentiality.

This thesis shed a light on the field of search over encrypted data. The order of data
must be preserve when searching over encrypted data. OPE is one of encryption
technique that used to preserve the order of data. OPE solves partially the problem of
searching over encrypted data, but it leaks some information. It has been adopted the
polynomial function with several parameters. These parameters are: degree of the

polynomial function, range of coefficients, key sizes, and data types/ sizes.

The purpose of each parameter as follow: this thesis used the degree of polynomial
function because it has been decided the security level of the polynomial function. It has
been used the range of coefficients depended on the Ozsoyoglu et al. approach; they
used the coefficients of the polynomial function as a key with the range of coefficients

[1-2°]. Therefore; this thesis has been used five different ranges of coefficients.
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This thesis used different key sizes depended on the Popa et al. approach; they added
the random noise to increase the ambiguity. Most encryption technique used the
maximum key size equal 64 bit, for example Block Cipher Encryption technigque used
the maximum key size equal 64 and the Advanced Encryption Standard used the key
size equal 128 bits but it is divided into two blocks. Each block equal 64 bits, therefore;
this thesis has been used the following different key sizes: maximum key size equal 16
bits, minimum key size equal 16 bits, and the key size between maximum and
minimum. This thesis has been used three different data types to study the effect of the

data type on the performance of OPE.

The steps of the methodology is used to conduct a comparative analysis of the
performance of OPE to find the high performance with high security level by using
OPEs function. The methodology is a combination of descriptive and quantitative
research. It was mainly based on studying and implementing OPE technique
(polynomial function) and observing the performance and security level with several
parameters. It has used quantitative research for doing many experiments and analyzing
the performance of the system. When we start building the experiments, the idea was to
run all the combinations to have up to 50 degrees of the polynomial function with
several parameters while at the same time the capacity of our computer does not run the
huge degree of the polynomial with several parameter. Hence, this thesis used the
degree of polynomial function till degree 12. Finally, we found that the number of the
experiment was very huge. Because of that, we divided the experiments into four parts.

Figure 3.1 shows the proposed model consists of the three phases.
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Figure 3.1: The Flowchart of the Methodology

e Studying Phase
In this phase, it has been studied the type of OPEs function especially polynomial

functions with several parameters.

e Design and Implementation Phase
In this phase, it has been collected the data from Northwind database then, studied the
OPE technique and adopted polynomial functions. This thesis used the polynomial
function because its security level was approved and proposed by (Ozsoyoglu et al.,

2003). Ozsoyoglu et al considered the coefficients as a key. They stated that the security



31

level for each polynomial function monitored by counting their coefficients, the less

number of coefficients means less security level.

This thesis has been designed and implemented the OPE technique (polynomial
function) with several parameters. Then run the OPE technique will all the parameters
and recorded the performance (the execution time for each the parameters). It has been
computed the execution time of each experiment by using two types of counter. The
first counter was used to compute the accumulated time of the experiment. The second
counter was used to compute the average time of different data size inside the
experiment. This thesis compared and analyzed all the results for all combinations

depending on the gain of security and the gain of the performance.

e Evaluation Phase
In this phase, it has been evaluated the results according to the performance and security
level for OPE function. The performance has been measured by using tools such as set
begin-time and set end time, the performance (execution time) measured by
millisecond. The security level has been measured by counting the coefficients of the
polynomial function. The less number of coefficients means less security level. The
efficiency has been computed as trade-off between performance and security level. The
optimal efficiency level would be in the situation of minimum loss in the performance

with high gain of security.

3.2 System Description

This thesis was described how to study the performance of order preserving encryption

technique. Based on the methodology, we divided our work into four procedures to
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study the effect of using different parameters with regards to performance and security

level. Figure 3.2 illustrates the system description in details.

j System Description
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Figure 3.2: System Description

3.2.1 First Procedure

This procedure studies the effect of different range of coefficients on the performance of
OPE. It was used five different ranges of coefficients with fixed parameters. These
ranges are: range 0-100 with step 10, range 100-1000 with step 100, range 1000-10000
with step 1000, range 10000-100000 with step 10000, range 100000-1000000 with step
100000. The fixed parameters are: degree of polynomial function for example degree 1,
keys size for example key size equal 16 bits, and fixed data types for example integer

data type.

It studies the result of each parameter to find which range achieves the high

performance with the optimal security level.
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3.2.2 Second Procedure

This procedure studies the effect of different degree of polynomial function on the
performance of OPE. It was used nine different degrees of polynomial function with
fixed parameters. These degrees are: degree 1, degree 2, degree 3, degree 4, degree 5,
degree 6, degree 8, degree 10, and degree 12. The fixed parameters are: range of
coefficient for example range 0-100 with step 10, keys size for example key size equal

32 bits, and fixed data type for example integer data type.

It studies the results of each parameter to find which degree achieves the high

performance with an optimal security level.

3.2.3 Third Procedure

This procedure studies the effect of different data types on the performance of OPE. It
was used three different data types with fixed parameters. These data types are: integer,
string, and both (alphanumeric). The fixed parameters are: degree of polynomial
function for example degree 5, range of coefficient for example range 100-1000 with

step 100, and key size equal 64 bits.

It studies the result of each parameter to find which data type achieves the high

performance with an optimal security level.

3.2.4 Fourth Procedure

This procedure studies the effect of different key sizes on the performance of OPE. It
was used three different key sizes with fixed parameters. These key sizes are: 16 bits, 32
bits, and 64 bits. The fixed parameters are: degree of polynomial function for example
degree 8, range of coefficient for example range 1000-10000 with step 1000, and fixed

data type for example integer data type
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It studies the result of each parameter to find which key size achieves the high

performance with an optimal security level.

3.3 The Main Algorithm
This algorithm is used to compare the performance of order preserving encryption using
four procedures. Each algorithm is called depending on the desired case of comparison

as listed below:-

Case A is called algorithm one. It used for different ranges of coefficient with

fixed data type, fixed key size, and fixed degree of polynomial function.

- Case B is called algorithm two. It used for different degrees of polynomial
function with fixed data type, fixed key size, and fixed range of coefficient.

- Case C is called algorithm three. It used for different data types with fixed
degree of polynomial function, fixed key size, and fixed range of coefficient.

- Case D is called algorithm four. It used for different key sizes with fixed degree

of polynomial function, fixed data type, and fixed range of coefficient.
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Algorithm 1: Main Algorithm

Algorithm: main algorithm

{

Switch(char) { // Char: desired case
Case(A): call range of coefficient algorithm
break;

Case(B): call degree of polynomial algorithm
break;

Case(C): call data type algorithm

break;

Case(D): call key size algorithm

break;

}

Range of Coefficient Algorithm

This algorithm is used to compare the performance of OPE by using different ranges of
coefficient with fixed data type, fixed key size, and fixed degree of polynomial function
to study the effect of these ranges on the performance of OPE. These ranges were:
Range one: [0-100], step 10

Range two: [0-1000], step 100

Range three: [0-10000], step 1000

Range four: [0-100000], step 10000

Range five: [0-1000000], step 100000

This algorithm records the time of the result and compare between each other. It has
been determined which range of coefficient can achieve a good performance of OPE.

The steps of this algorithm showing as a flowchart in figure 3.3.
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Algorithm 2: Range of Coefficient Algorithm

Algorithm: Range of Coefficient Algorithm
{

X € no. of range that is uses in this procedure

Data < Import data from Northwind database with selected data type

Degree < Input the degree of function

Key size € Input size of key

Key value € Rand key size (Key value)

Index < 0

Fori=0tox I/l range [0-100], range [0-1000], range [0-1000000]
Record € no. of record that is selected from Northwind database (import data)
Beginning < Input the first value from the range of coefficient

End < Input the last value of the range of coefficient

Step < Input the number of increment to the first value until reach to the last value of range
For H =1: record I/ loop of record number

For J= B: Step: End

F(x)=0

For Y=degree: -1: 0

F(X) € f(x) + (J *data [record] ™9

End for // end the loop Y of functions

Matrix [Index] € f(X) I/ this matrix use to save the result of each step of range
Index = Index + 1

End for // end the loop J of range with step
End for // end the loop H of the no. of range
End for // end the loop i of the record

Index €< 0

W & length (matrix)

Fori=0tow

Re-Index € Matrix [i]

Re-Index < encryption (Matrix [i] + Key value + Index)
Matrix2 [i] < Re-Index

Index €< Index +1

End for // end the loop that is use to save the new index
Return Matrix2

}
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Degree of Polynomial Algorithm

This algorithm is used to compare the performance of OPE by using different degrees of
polynomial function with fixed data type, fixed key size, and fixed range of coefficient
to study the effect of these degrees on the performance of OPE. The form of polynomial
function represented as follows: F(x) = C,X" + Cpq X" +...+ C1X +Co.

This algorithm records the time of the result and compare between each other. It has
been determined which degree can achieve a good performance of OPE. The steps of

this algorithm showing as a flowchart in figure 3.4.
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Figure 3.4: Flowchart of Degree of Polynomial Algorithm
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Algorithm 3: Degree of Polynomial Algorithm

Algorithm: Degree of Polynomial Algorithm
{

X € no. of functions that is uses in this procedure

Data < Import data from Northwind database with selected data type

Key size < Input size of key

Key value € Rand gey size (Key value)

Index € 0

Beginning < Input the first value from the range of coefficient

End < Input the last value of the range of coefficient

Step < Input the number of increment to the first value until reach to the last value of range
For i=0to x

Record € no. of record that is selected from Northwind database (import data)

Degree < Input the degree of function

For H =1: record I/ loop of record number

For J= B: Step: End

F(x)=0

For Y= degree: -1: 0

F(x) €< f(x) + (J *data [record]degree)

End for // end the loop Y of functions

Matrix [Index] € f(X) I this matrix use to save the result of each step of range

Index = Index +1

End for /I end the loop J of range with step
End for /I end the loop H of the no. of range
End for // end the loop i of the record

Index €< 0

W & length (matrix)

Fori=0tow

Re-Index € Matrix [i]
Re-Index < encryption (Matrix [i] + Key value + Index)

Matrix2 [i] € Re-Index
Index € Index +1

End for // end the loop that is use to save the new index
Return Matrix2

}
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Data Type Algorithm

This algorithm is used to compare the performance of OPE by using different data types
with fixed degree of polynomial function, fixed key size, and fixed range of coefficient
to study the effect of these types on the performance of OPE. This algorithm records the
time of the result and compare between each other. It has been determined which data
type can achieve a good performance of OPE. The steps of this algorithm showing as a

flowchart in figure 3.5.
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Figure 3.5: Flowchart of Data Type Algorithm
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Algorithm 4: Data Type Algorithm

Algorithm: Data Type Algorithm
{

X € no. of data type that is uses in this procedure

Degree < Input the degree of function

Key size < Input size of key

Key value € Rand key size (Key value)

Index € 0

Beginning < Input the first value from the range of coefficient

End < Input the last value of the range of coefficient

Step < Input the number of increment to the first value until reach to the last value of range
Fori=0to x

Data < Import data from Northwind database with selected data type

Record € no. of record that is selected from Northwind database (import data)
For H =1: record /l'loop of record number

For J= B: Step: End

F(x)=0

For Y= degree: -1: 0

F(x) € f(x) + (J *data [record]*®"®®)

End for // end the loop Y of functions

Matrix [Index] € f(x) /I this matrix use to save the result of each step of range
Index = Index +1

End for // end the loop J of range with step

End for I/l end the loop H of the no. of range

End for // end the loop i of the record

Index €< 0

W < length (matrix)

Fori=0tow

Re-Index € Matrix [i]

Re-Index < encryption (Matrix [i] + Key value + Index)

Matrix2 [i] € Re-Index

Index € Index +1

End for // end the loop that is use to save the new index

Return Matrix2
}
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Key Size Algorithm

This algorithm is used to compare the performance of OPE by using different sizes of
key with fixed range of coefficient, fixed data type, and fixed degree of polynomial
function to study the effect of different sizes of key the performance of OPE.

This algorithm records the time of the results and compare between each other. It has
been determined which key size can achieve an optimal performance of OPE. The steps

of this algorithm showing as a flowchart in figure 3.6.
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Algorithm 5: Key Size Algorithm

Algorithm: Key Size Algorithm
{

X € no. of keys that is uses in this procedure
Data < Import data from Northwind database with selected data type

Degree < Input the degree of function

Beginning < Input the first value from the range of coefficient

End < Input the last value of the range of coefficient

Step < Input the number of increment to the first value until reach to the last value of range
Fori=0to x

Key size < Input size of key

Key value € Rand key size (Key value)

Index < 0

Record < no. of record that is selected from Northwind database (import data)

For H =1: record /l'loop of record number

For J=B: Step: End

F(x)=0

For Y= degree: -1: 0

F(X) € f(x) + (J *data [record] ™9

End for // end the loop Y of functions

Matrix [Index] € f(X) I/ this matrix use to save the result of each step of range
Index = Index +1

End for /I end the loop J of range with step
End for // end the loop H of the no. of range
End for // end the loop i of the record

Index €< 0

W < length (matrix)

Fori=0tow

Re-Index € Matrix [i]

Re-Index < encryption (Matrix [i] + Key value + Index)

Matrix2 [i] < Re-Index

Index € Index +1

End for // end the loop that is use to save the new index

Return Matrix2
}




Chapter Four

Results and Analysis
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4.1 Overview

This chapter explains in details the experimental results and analysis. It is organized in
four sections. Section 4.2 introduces the chapter. Section 4.3 explains implementation
software. Section 4.4 explains the evaluation metrics. Section 4.5 explains the

experiments results and discusses their analysis.

4.2 Brief

The results of this thesis are to find the effect of using the polynomial function with
several parameters (Degree of polynomial, Range of coefficients, Key sizes, Data types/
sizes) on the performance of OPE. It has been implemented and designed the software
to compare and analyze the performance of OPE. Several experiments have been run
with several parameters and recorded the execution time for each data item. This thesis
computed the time for each experiment to study the performance of OPE. There were
two counters used to compute the time in each experiment. The first counter was used to
compute the accumulated time of the experiment. The second counter was used to
compute the average time of different data sizes in the same experiment. The results of
the experiment were compared and analyzed depending on the performance and security

level of OPE.

4.3 Implementation Software

This thesis has been designed and implemented a software to compare and analyze the
performance of OPE using VB.net version 2010 as programming language. The
software imported the data from Northwind database with the size of 200 records. We
found that when importing a large size of the database and ran all the parameters, the
experiment have been taken extended time because the combination of the parameters

was enormous and the experiment has not ended. In this thesis, Northwind database is
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not important and is not a parameter. Thus, it has been used the database to run several
experiments and to find the outcomes of these experiments. Therefore; we decided to
choose the 14 records from Northwind database that have all types of data (integer,
string, and both) and different data sizes (2 bytes, 3bytes, 4 bytes, 5 bytes, and 6 bytes).
It has been used the size 14 records from 200 records of the database to facilitate

studying the effect of several parameters on the performance of OPE.

The following figures displays the interfaces of the implementation software that shows
how it has been used the polynomial function with several parameters. The parameter
should be initialized before running the software. Figure 4.1 shows these parameters
and shows how to import the data with the size of 14 records from Northwind database.
The core of the implementation code is listed in Appendix E. The full implementation is

available via the email®.

o Form2 ==
[] By Equation [] ByDataType Il By Key @
O chek One Degree f(x) =ax +b Start From |0 To 100 Jumber |10
[]  check SecondDegree f(x) =ax”2 +bx +c Start From |0 To | 100 Jumber |10
[ Check Third Degree fix) = ax~3 +bx"2 +ox +d Start From 0 To | 100 Jumber 10
[0 chek Fourth Degree () = ax4 + bx*3 + oc2 +dx +e StartFrom |0 To | 100 Jumber |10
(] Check Fifth Degree flx) =ax~5 +bx"4 + "3 +dx"2 +ex +f Start From |0 To |100 Jumber |10
O Check Sixth Degree f{x) = %6 +bx"5 + 04 + dx"3 +ex”2 + fx+g Start From |0 To | 100 Jumber |10
O Check Eighth Degree f(x) = a8 + bx"7 + ™6 +dw"5 +ex™4 + it 3+qu2+hx+i StartFrom |0 To 100 Jumber |10
[ chek Tenth Degree f{x) = ax10 +bx"8 + cx*8 +dx"7 +£x"6 + P 5+ax 4Hhx " 3+2ixHx+k StartFrom |0 To | 100 Jumber |10
[0 chek Twelvth Degree f{x) = ax*12 +bxA11 + e 10 + xS +ex78 + PeAT+ae 5 Hhx A5+ 44+ 3 Hoc A2+ M Start From |0 To | 100 Jumber |10
Start From 0 To |00 Jumber |10
Save... Progress...
EmployeelD LastName FirstName Title TiteOfCourtesy  BirthDate HireDate Address Gity Region PostalC
3 _ Dodsworth Nancy Sales Represent... |Ms. 5/29/1960 5/1/1932 923 W, Capital ... |London WA 98401
188 Callahan Andrew Sales Represent... |Dr. 1/9/1958 8/14/1992 737 Moss Bay Bl... |London WA 98033
189 Dodsworth Janet Sales Represent... |Ms. 7j2{1969 4f1/1992 4125 Old Redmo... | Seattle WA 98052
190 Callahan Margaret Inside Sales Coo... |Mrs, 7j2{1969 5/3/1993 29 Garrett Hil London WA SW18IR
191 Dodsworth Staven Sales Represent... |Mr. 12/8/1968 10/17/1993 Coventry House... | Seattls WA EC2 7R
192 Callahan Michael Sales Represent... |Mr. 2/19/1952 10/17/1993 Edgeham Hollow... | Tacoma WA RG195P
193 Dodsworth Robert Vice President, S... | Mr. 8/30/1963 1/2/1994 4741 - 11th Ave... Krkland WA 98120
194 Callahan Laura Sales Represent... |Ms. 9/19/1958 3/5/1994 22 Houndstooth ... |Redmond WA WG2AT
195 Dodsworth Anne Sales Represent... |Ms. 3/4/1955 11/15/1994 21 Houndstooth ... [London WA WG2AT
196 Callahan Nancy Sales Manager Ms. 7/2/1963 1/2/1994 522 - 20th Ave. ... |London WA 98122
197 Dodsworth Andrew Sales Represent... |Mrs, 5/29/1960 3/5/1994 923 W, Capital ... |London WA 98401
198 Callahan Janet Sales Represent... | Mr. 1/9/1958 11/15/1994 737 Moss Bay Bl... |Seatile WA 98033
199 Dodsworth Margaret Inside Sales Coo... | Mr. 7j2{1969 5/1/1992 4125 Old Redmo... |London WA 98052
200 Callahan Steven Sales Represent... | Mr. 7j2{1969 8f14/1992 29 Garrett Hil Seattle WA SW18IR

Figure 4.1: Main Interface of Our Proposed Software

! Email: Hadeel alkazaz@yahoo.com
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Figure 4.2 shows the use of nine different degrees of polynomial function with selected

range, selected key sizes, and selected data types.

=y

ag! Form2
GetData |14 Import...
[ By Equation By Data Type | Integer v ) 32hit () 64bit
Check  OneDegree f(x) =ax +b Start From |0 To |100 Jumber |10
Check  Second Degree f(x) =ax*2 +bx +¢ Start From |0 To |100 Jumber |10
Check Third Degree f{x) = ax"3 +bx"2 + cx +d Start From |0 To |100 Jumber |10
Check Fourth Degree f{x) = ax”4 +bx"3 + x"2 +dx +e Start From 0 To [100 Jumber |10
Check Fifth Degree f(x) =ax"5 +bx"4 + o3 +dx"2 +ex +f Start From 0 To 100 Jumber |10
Check Sixth Degree f(x) = ax™6 +bx*5 + x4 +dx*3 +ex*2 + fxtg Start From |0 To 100 Jumber |10
Check Eighth Degree f(x) = ax*8 + bx"7 + ox*6 +dx*5 +ex*4 + H 3 +gx 2+hx+i Start From |0 To 100 Jumber |10
Check Tenth Degree f(x) = ax”10 +bx"9 + %8 + dx"7 +ex™6 + i 5S+gx " 4+hx " 3+2x Hx+k Start From |0 To (100 Jumber |10
Check Twelvth Degree f(x) = ax”12 +bx"11 + 10 +dx"9 +ex"8 + X 7+gx "G+ ™5 Hx 4+Hx "~ 3+ 2+Hx+H1 Start From |0 To | 100 Jumber |10
Start From |0 To |100 Jumber |10
Save... Progress...
EmployeelD Lasthame FirsthName Title TileOfCourtesy  BirthDate HireDate Address City Region Postalc
» 187 Dodsworth Nancy Sales Represent... |Ms. 5/29/1960 5/1/1992 923 W. Capital ... |London WA 93401
188 Callahan Andrew Sales Represent... |Dr. 1/9/1958 8/14/1992 737 Moss Bay Bl... |London WA 38033
189 Dodsworth Janet Sales Represent... |Ms. 7/2/1969 4{1/1992 4125 Old Redmo... |Seattle WA 98052
190 Callahan Margaret Inside Sales Coa... |Mrs, 7/2/1969 5/3/1993 29 Garrett Hil London WA SW18IR
191 Dodswarth Steven Sales Represent... |Mr. 12/8/1968 10f17/1933 Coventry House... |Seattle WA EC2 TR
192 Callahan Michael Sales Represent... |Mr. 2/19/1952 10/17/1993 Edgeham Hollow... |Tacoma WA RG195P
193 Dodsworth Robert Vice President, S... |Mr. 8/30/1963 1/2/1934 4741 - 11th Ave... |Kirkland WA 98120
194 Callzhan Laura Sales Represent... |Ms. 9/191958 3(5/1994 22 Houndstooth ... |Redmond WA WG2AT
195 Dodswaorth Anne Sales Represent.., |Ms. 3/4/1955 11151994 21 Houndstooth ... [London WA WGE2ALT
196 Callahan Nancy Sales Manager Ms. 7/2/1963 1/2/1994 522 - 20th Ave. ... [London WA 98122
197 Dodsworth Andrew Sales Represent... |Mrs. 5/29/1960 3/5/1994 923 W. Capital ... |London WA 93401
198 Callahan Janet Sales Represent... |Mr. 1/3/1958 11/15/1994 737 Moss Bay Bl... |Seattle WA 98033
199 Dodsworth Margaret Inside Sales Coo... |Mr. 7/2/1969 511992 4125 Old Redmo... |London WA 98052
200 Callahan Steven Sales Represent.., |Mr, 7/2/1969 8/14f1992 29 Garrett Hil Seattle WA SW18IR

Figure 4.2: The Interface of Using Different Degree of Polynomial Function

Figure 4.3 shows the use of five different ranges of coefficients with selected degree,

selected key sizes, and selected data types.
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- ]

L] Form2
GetData 14 Import...
[ By Equation By Data Type | Int=ger v By Key @ 16bit () 32bit () 64bit
Check One Degree fix) =ax +b Start From |0 To |100 Jumber |10
[ Ccheck SecondDegree f{x) =ax~2 +bx +c Start From 0 To 100 Jumber 10
(] Check Third Degree f{x) =ax"3 +bx*2 +cx +d Start From 0 To 100 Jumber 10
O Check Fourth Degree f(x) =ax"4 +bx~3 +cx"2 +dx +e StartFrom 0 To 100 Jumber 10
(| Check Fifth Degree f{x) =ax"5 +bx"4 + cx”3 + dx"2 +ex +f StartFrom 0 To 100 Jumber 10
[0 chek Sixth Degree (k) = ax*6 +bx~5 + 0c™4 + du3 +ex2 + fidg Start From 0 To | 100 Jumber |10
O Check Eighth Degree f(x) = ax"B +bx"7 + %6 +dx"5 +ex”4 + " 3+g " 2+hu+i StartFrom O To | 100 Jumber |10
D Chedk Tenth Degree f{x) = ax~10 +bx "9 +cx "8 +dx 7 + ex"6 + fie " 5+gx " +hx " 3+2ix +x +k Start From |0 To | 100 Jumber |10
O Check Twelvth Degree f{x) =ax*12 +bx"11 + 10 +dx™9 + X8 + A T+ge 6 +hi 5+ 44x "3 +hoc “2-4HLx+M Start From |0 To | 100 Jumber |10
StartFrom 0 To 100 Jumber |10
Save... Progress...
EmployeelD LastName FirstName Title TitleOfCourtesy BirthDate HireDate Address City Region PaostalC:
h Dodsworth Nancy Sales Represent... | Ms. 5/29/1960 5/1/1992 923W. Capital ... | London WA 93401
188 Callahan Andrew Sales Represent... |Dr. 1/9/1955 8/14/1992 737 Moss Bay Bl... | London WA 93033
189 Dodsworth Janet Sales Represent... |Ms. 7/2/1989 4/1/1992 4125 Old Redmo... | Seattle WA 98052
190 Callahan Margaret Inside Sales Coo... Mrs. 7121989 5/3/1993 29 Garrett Hill London WA SW18IR
191 Dodsworth Steven Sales Represent... |Mr. 12/8(1968 10/17/1993 Coventry House... |Seattle WA EC27R
192 Callahan Michael Sales Represent... |Mr. 2/19/1952 10/17/1993 Edgeham Hollow... | Tacoma WA RG195P
193 Dodsworth Robert Vice President, S... |Mr. 8/30/1963 1/2/1994 4741 - 11th Ave... Kirkland WA 93120
194 Callahan Laura Sales Represent... |Ms. 9/13/1958 3/5/1934 22 Houndstooth ... |Redmond WA WGE2ALT
185 Dodsworth Anne Salm@ 3/4/1955 11/15/1934 21 Houndstooth ... |London WA WGE2ALT
196 Callahan Mancy Sales Manager M. 7f2/1983 1/2/1934 522 - 20th Ave, ... |London WA 98122
187 Dodsworth Andrew Sales Represent... |Mrs, 5/29/1960 3/5/1994 923 W, Capital ... |London WA 98401
198 Callshan Janet Sales Represent... |Mr, 1/3/1958 11/15/1934 737 Moss Bay Bl... |Seatfle WA 98033
199 Dodsworth Margaret Inside Sales Coo... |Mr. 7/2/1959 5/1/1992 4125 Old Redmo. .. |London WA 98052
200 Callahan Steven Sales Represent... |Mr. 7/2/1959 8/14/1992 29 Garrett Hil Seattle WA SW18IR

Figure 4.3: The Interface of Using Different Range of Coefficients

Figure 4.4 shows the use of three different key sizes with selected range, selected

degree, and selected data types.

1
u]

ad Form2
GetData 14 Import...
By Eguation | Fifth Degree v By Data Type  Integer v D By Key ®
O Check One Degree f(x) = ax +b Start From |0 To | 100 Jumber |10
[  check SecondDegree f{x) = ax”2 +bx +c Start From |0 To 100 Jumber |10
0  chek Third Degree f{x) = ax*3 +bx*2 + cx +d Start From |0 To 100 Jumber |10
[0 Check Fourth Degree f(x) = ax*4 +bx*3 + cx*2 +dx +e Start From 0 To 100 Jumber |10
O Check Fifth Degree fix] = ax"5 +bx"4 + cx~3 +dx"2 +ex +f Start From 0 To |100 Jumber |10
O Check Sixth Degree f{x) = ax"6 + b5 + x4 +dx”"3 +ex"2 + fx+g Start From 0 To |100 Jumber |10
[} Check Eighth Degree f{x) = ax"8 +bx"7 + cx™6 +dx"5 +ex4 + fx*I+gx 2+hx+i Start From |0 To 100 Jumber |10
[} Check Tenth Degree fix) = ax~10 +bx"9 + o8 +dx"7 + ex™6 + fx " 5+gx~4+hx "3 +2ix+x+k Start From |0 To 100 Jumber |10
[ check Twelvth Degree f{x) = ax~12 +bx™11 + cx*10 + dx"9 +ex”8 + fx"7-+gx"6-thx " 5+x"4-+x "3 -Hx "2 Hx+M Start From |0 To [100 Jumber |10
Start From 0 To 100 Jumber |10
Save... Progress...
EmployeelD Lasthame FirstName Title TileOfCourtesy  BirthDate HireDate Address City Region PostalC
hmﬂﬁswmﬂw Nancy Sales Represent... |Ms. 5/25/1960 5/1/1992 923 W. Capital ... |London 07 95401
188 Callahan Andrew Sales Represent... |Dr. 1/9/1958 814/1992 737 Moss Bay Bl... |London ViA 98033
183 Dodsworth Janet Sales Represent... |Ms. 7/2/1963 4f1f1932 4125 Old Redma... |Seattle WA 95052
190 Callahan Margaret Inside Sales Coo... [Mrs. 7/2/1969 5/3/1993 29 Garrett Hill London WA SW1BIR
191 Dodsworth Steven Sales Represent... |Mr, 12/8/1968 10/17/1993 Coventry House. .. |Seattle VA EC2 7R
192 Callahan Michael Sales Represent... |Mr, 2/19/1952 10/17/1993 Edgeham Hollow... |Tacoma WA RE195P
193 Dodsworth Robert Vice President, 5... |Mr. 8/30/1963 1/2f1994 4741 - 11th Ave... |Kirkland WA 93120
194 Callahan Laura Sales Represent... |Ms. 9/19/1358 3/5/1934 22 Houndstooth ... |Redmond WA WG2AT
195 Dodsworth Anne Sales Represent... |Ms. 3f4f1955 11/15/1994 21 Houndstooth ... |London WA WG2AT
198 Callahan Nancy Sales Manager Ms. 7i2f1963 1/2f1994 522 - 20th Ave. ... London WA 95122
197 Dodsworth Andrew Sales Represent... |Mrs. 5/29/1960 3/5/1994 923 W. Capital ... |London WA 98401
198 Callahan Janet Sales Represent... |Mr, 1/9/1955 11/15/1994 737Moss Bay Bl... |Seattle 07 95033
199 Dodsworth Margaret Inside Sales Coo... |Mr, 721969 5/1f1992 4125 Old Redmo... |London WA 98052
200 Callahan Steven Sales Represent... |Mr. 7/2/1963 8/14/1992 29 Garrett Hil Seattle WA SW1BIR

Figure 4.4: The Interface of Using Different Key Sizes
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Figure 4.5 shows the use of three different data types with selected range, selected

degree, and selected key sizes.

o Form2 - 8
GetData 14 Import...
By Equation | Fifth Degree ~[] ByDataType Integer By Key ® 1sbit () 32bit () 64bit
[0  check  OneDegree f(x) =ax+b Start From 0 To |100 Jumber |10
O Check  Second Degree f(x) =ax”2 +bx +¢ Start From |0 To | 100 Jumber |10
(| Check Third Degree f{x) = ax*3 +bx"2 + ox +d Start From 0 To |100 Jumber |10
O Check Fourth Degree f{x) = ax"4 +bx"3 +cx"2 +dx +e Start From |0 To 100 Jumber |10
[0 Chek Fifth Degree f(x) = ax*5 + bx*4 + "3 +dx~2 +ex +f Start From |0 To 100 Jumber |10
O Check Sixth Degree f(x) = ax"6 +bx"5 + x4 +dx”3 +ex”2 + fu+g Start From |0 To | 100 Jumber |10
| Check Eighth Degree f{x) = ax™8 +bx"7 + cx"6 +dx"5 + ex™4 + fx " 3+gx " 2+hx+i Start From |0 To | 100 Jumber |10
O Check Tenth Degree f{x) = ax~10 +bx"8 + 08 +dx "7 + X6 + i 5+gu"d+hx"3+2ix-+Hx+ Start From |0 To 100 Jumber |10
[0 Chek Twelvth Degree f(x) = ax12 +bx11 + ox*10 + dx*9 + ex*8 + HA7+gx 6-+Hhx 5+ 4-Hx A3 Hoe~2-HxHA Start From 0 To 100 Jumber |10
StartFrom |0 To 100 Jumber |10
Save... Progress...
EmployeelD LastMame FirstName Title TiteOfCourtesy BirthDate HireDate Address City Region PostalC:
» 187 Dodsworth Nancy Sales Represent... |Ms. 5/29/1960 5/1/1992 923 W, Capital ... |London WA 93401
183 Callahan Andrew Sales Represent... |Dr. 1/9/1358 8/14/1992 737 Moss Bay Bl... | London WA 93033
189 Dodsworth Janet Sales Represent... |Ms, 7/2/1969 4/1/1992 4125 Old Redmo... |Seattle WA 98052
190 Callahan Margaret Inside Sales Coo... |Mrs, 7/2/1969 5/3f1993 29 Garrett Hil London WA SW1BIR
191 Dodsworth Steven Sales Represent... Mr. 12/8/1968 10/17/1993 Coventry House,., | Seatte WA EC27R
192 Callahan Michael Sales Represent... Mr. 2/18/1952 10/17/1993 Edgeham Hollow... | Tacoma WA RG195P
193 Dodsworth Robert Vice President, 5... Mr. 8/30/1963 1/2/1994 4741 - 11th Ave... | Kirkdand WA 93120
194 Callahan Laura Sales Represent... |Ms. 9/19/1958 3/5/1994 22 Houndstooth ... Redmaond WA WG2AT
195 Dodsworth Anne Sales Represent... |Ms, 3/4/1955 11/15/1994 21 Houndstooth ... |London WA WG2AT
196 Callahan Mancy Sales Manager Ms. 7/2/1963 1/2f1994 522 - 20th Ave. ... London WA 98122
197 Dodsworth Andrew Sales Represent... |Mrs. 5/29/19560 3[5/1994 923 W, Capital ... |London WA 98401
198 Callahan Janet Sales Represent... Mr. 1/9/1958 11/15/1994 737 Moss Bay Bl... | Seattle WA 98033
193 Dodsworth Margaret Inside Sales Coo... Mr. 7/2/1969 5/1/1392 4125 Old Redmo... |London WA 98052
200 Callahan Steven Sales Represent... Mr. 7/2/1969 8/14/1992 29 Garrett Hil Seattle WA SW18IR

Figure 4.5: The Interface of Using Different Data Types/ Sizes

4.4 Evaluation Metrics

This

the e

chapter has been used four evaluation metrics to evaluate and analyze the results of

Xperiments.

e The Relative Error

This metric is used to find the relative error of the performance time in different
degree of the polynomial function. It was used to compute the total of the
deviation for the degree of the polynomial function divided by the total
performance time for all degrees. The calculation of the Relative Error

(deviation) by:
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the total of deviation

The Relative Error = *100% ........ “.1)

the total performance time

Gain Security Level

This metric is used to find the gain of the security level as a percentage. The
gain of the security calculated as the difference between the maximum of the
parameters (degree of the polynomial, range of the coefficients, key sizes) and
the minimum of these parameters divided by the maximum of the parameters. It
has been computed the gain of the security to determine which one of these

parameters achieved the high security level.

maximum of paramter —minumum of parameters

Gain Security = *100% ...(4.2)

maximum of paramter

Loss of Performance

This metric is used to find the loss of the performance in each experiment to
determine which parameter can achieves a high performance. It has been
computed as a percentage of the performance. The loss of the performance
calculated as the difference between the maximum time (performance time) of
the parameters (degree of the polynomial, range of the coefficients, key sizes)
and the minimum time (performance time) of these parameters divided by the

maximum of the parameters.

ti th ] - ti th ini
Loss of Performance = ————— -2 C R % 100% vovveeeeen. (4.3)

time the maximum

Encryption (Re- Index)
This thesis has been used the encryption formula that is combined the two
approaches Ozsoyoglu et al. and Popa et al. to study the effect of the key size

over security level as well as the performance time (execution time).
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Encryption (Re-Index) = Function vaie + Key vaie + Original Index ........ (4.4)

4.5 Experimental Results and Analysis

This section has been presented the experimental results and analysis into four parts.
These parts are: the effect of several degrees of polynomial function, the effect of
several ranges of coefficients, the effect of several key sizes, and the effect of several
data types. It has been explained how to identify the efficiency between performance
and security level. Inside each experiment, there were many different experiments
depending on several parameters that have been selected in each experiment. All of

these parts will be discussed in details in following sub-sections.

4.5.1 The effect of using different degree of polynomial function

This experiment has been used different degrees of polynomial function with several
parameters to study the effect of these degrees on the performance of OPE. Nine
different degrees of polynomial were selected. These degrees were: degree 1, degree 2,
degree 3, degree 4, degree 5, degree 6, degree 8, degree 10, and degree 12. The selected
range of coefficients was the range 0-100 with step 10. Also three different key sizes
have been selected (16 bit, 32 bit, and 64 bit), and three different data types (integer,
string, both) with four different data sizes (3 byte, 4 byte, 5 byte, and 6 byte). The
degree will decide the security level of the polynomial function. It has been computed
the accumulated time of each degree to find which one of these degrees achieves a high
performance with high security level. The average time of each data sizes has been
computed in this experiment. For this section, we have done six types of experiments
that used different degree of polynomial to study the effect of these degrees on the

performance of OPE. For the sake of brevity, this thesis will explain only one group of
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experiments (Experiment 4.5.1) and will list only the summary of other group of
experiments. More samples of the experiment results are listed in Appendix A. All
results for all experiments are available via the email. In the following only experiment
4.5.1 will be explained in details to study the effect of using different degrees with

selected parameters.

Experiment 4.5.1

This experiment has been used nine different degrees of the polynomial function with
selected integer data type, the key size equal 16 bit, and range 0-100 with step 10 to
study the effect of these degrees on the performance of OPE. It has been computed the
accumulated time of each degree to find the optimal polynomial degree. The efficient
degree is the degree which gives the highest security level with minimum loss of
performance (execution time).

Table 4.1 and figure 4.6 shows the performance time of the nine degrees. The degree 12
had the highest performance time (14.38) and degree 1 had the lowest performance time
(9.88). This means that degree 1 achieved a high performance but a low security level
since the highest polynomial degree has the highest security level. The security level for
each degree had been monitored by counting their coefficients. As expected, the high
number of coefficients means high security level. This experiment has been found the

optimal point as a trade-off between security level and performance.
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Table 4.1: Results of Different Polynomial Function with (Integer, 16 bit, Range 0-100)

DataType |[KeySize |Range EquationID PerformanceTime
Integer 16 bit 0-100 Degree 1 9.88

Integer 16 bit 0-100 Degree 2 10.14

Integer 16 bit 0-100 Degree 3 11.79

Integer 16 bit 0-100 Degree 4 10.73

Integer 16 bit 0-100 Degree 5 12.24

Integer 16 bit 0-100 Degree 6 12.84

Integer 16 bit 0-100 Degree 8 13.15

Integer 16 bit 0-100 Degree 10 12.94

Integer 16 bit 0-100 Degree 12 14.38

Time of Different Polynomail Function
16.5
] 4
g 155
= 145
g 135 < _
E 125 + ® PerformanceTime
‘c__a 1357 ® Range of coefficients = 0-100
& 105 l Key Size= 16 bits
9.5
N q, g. 4 G Q, WO ® Data Type = Integer
ée?' ‘%@e’ oéz %e ‘ée@ éé" Q§cz, &e, &e,
20 o o of° f° F° &
O Q¥ 9 Q O R ¥
Degree of Polynomial Function

Figure 4.6: Different Polynomial Function

As expected that whenever the degree of polynomial increased, the performance time
will be increased. It has been used this as a controlling factor for the experiment. It has
been noticed that as shown in table 4.1 and figure 4.6 that the performance time is

increased for almost all degrees except for degree 4 and 10 of the polynomial function.
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The total time for all degrees is 108 while the deviation for degree 4 and 10 at

maximum is 2. Equation (4.1) has been used to calculate the Relative Error (deviation).

the total of deviation

The Relative Error = o8 * 100% =4/108*100= 4%

It has been found that the error is less than 4 % in all experiments.

From table 4.1 and figure 4.6, we derived table 4.2 that is used to compare between the
security and the performance in different degrees of the polynomial function. This thesis
has been used two equations to compute the gain of security and the loss of

performance. Table 4.2 has been compared several cases to find the optimal outcomes.

Table 4.2: Compare between Security and Performance in Different Degree

Row|Degree Gain Security Level [Loss of Performance
1 |Increased the degree from 1t012  |91% 31%

2 |Increased the degree from 1to 4 75% %

3 |Increased the degree from5to 8 31% 6%

4 |Increased the degree from5t0 10  |50% 5%

5  |Increased the degree from5t0 12  {58% 14%

In this experiment, degree 12 of the polynomial function has the maximum security
level and the degree 1 of the polynomial has the less security level. The degree decides
the security level of the polynomial function. We suppose to compute the percentage of
the gain of the security as the different between the maximum degree of the polynomial
and the minimum degree of the polynomial divided by the maximum degree of the

polynomial.

For example, row 1 in table 4.2 computes the gain of the security by using equation

(4.2) and computes the loss of the performance by using equation (4.3).
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degree 12—degreel *x100% =91 %

Gain Security Level =
degree 12

Time of degree 12 - Time of degree 1

Loss of Performance = * 100%

Time of degree 12

_ 14.38-9.88

* 100% =31%
14.38

Other examples are listed in table 4.2 which illustrates the results of the gain of security
and the loss of the performance. Also these are explained below.
e When the degree of the polynomial function increased from 1 to 12, we will gain
91% security level with 31% loss of performance.
e When the degree of the polynomial function increased from 1 to 4, we will gain
75% security level with 7% loss of performance.
e When the degree of the polynomial function increased from 5 to 8, we will gain
37% security level with 6% loss of performance.
e When the degree of the polynomial function increased from 5 to 10, we will gain
50% security level with 5% loss of performance.
e Furthermore, when the degree of the polynomial function increased from 5 to

12, we will gain 58% security level with 14 % loss of performance.

The results of table 4.2 conclude that when the degree of the polynomial function is
increased from 1 to 4, the security level will gain 75% with 7% loss of performance.
This experiment has found that degree 4 of the polynomial function is the optimal
choice.

In experiment 4.5.1, there are different sizes of data inside each degree. Table 4.3 and

figure 4.7 shows the different data sizes with different degrees of the polynomial
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function. In this experiment, it has been computed the average time of each size of data

(3 byte, 4 byte, 5 byte, and 6 bytes) in different degree of polynomial function (degreel,

degreeb, degree8, and degreel?).

Table 4.3: Results of Different Data Sizes in Different Polynomial Function

DataType | KeySize | Range [DataSize |Degree 1 |Degree 5 [Degree 8 |Degree 12 ?é?).size
Integer |16 hit 0-100 3byte 0.34 0.43 0.501 0.506 0.44
Integer |16 bit 0-100 |4byte ]0.34 0.44 0.45 0.52 0.43
Integer |16 bit 0-100 S5byte  0.34 0.41 0.51 0.507 0.44
Integer 16 bit 0-100 6byte ]0.39 0.48 0.46 0.51 0.46
Time of Different Data Sizes
06
0.55
]
E 05
—
8 w3 hyte
& 0.45
S — 4 byte
z 0.4 5 byte
— G byte
0.35 -
0.3
Degree 1 Degree 5 Degree 8 Degree 12
Degree of Polynomial Function

Figure 4.7: Different Data Sizes with Different Polynomial Function

From table 4.3 and figure 4.7, we derived table 4.4 that is used to compare between the
security and the performance with different data sizes. Table 4.4 has been compared

several cases to find the optimal outcomes.
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Table 4.4: Compare between Security and Performance with Different Data Sizes

Data Size Gain Security Level |Loss of Performance
1. Increased the size of data from 3 to 6 byte inDegree L |50% 12%
3y 2. Increased the degree from 1t0 5 80% 20%
3. Increased the degree from 1 t0 8 87% 32%
4. Increased the degree from 1 to 12 91% 32%
1. Increased the degree rom1t0 5 80% 22%
4byte 2. Increased the degree from 1 to 8 87% 24%
3. Increased the degree from 1 to 12 91% 34%
1. Increased the degree rom1t0 5 80% 20%
Shyte |2. Increased the degree from 1 t0 8 87% 32%
3. Increased the degree from 1 to 12 91% 32%
1. Increased the degree from 1 t0 5 80% 18%
6 byte |2. Increased the degree from 1 t0 8 87% 15%
3. Increased the degree from 1 to 12 91% 23%

It has been computed the gain of security and the loss of the performance with different

data sizes as a percentage and then compared between them. From table 4.4, we noticed

the following:-

1.

Data size (3 byte)

e Increasing the size of data in degree 1of the polynomial from 3 to 6 bytes

will gaining 50% security level with 12% losing of performance.

e When the degree increased from 1 to 5 of the polynomial function, we will

gain 80% security level with 20% loss of performance.

e When the degree increased from 1 to 8 of the polynomial function, we will

gain 87% security level with 32% loss of performance.

e When the degree increased from 1 to 12 of the polynomial function, we will

gain 91% security level with 32% loss of performance.
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2. Data size (4 byte)
e When the degree increased from 1 to 5 of the polynomial function, we will
gain 80% security level with 22% loss of performance.
e When the degree increased from 1 to 8 of the polynomial function, we will
gain 87% security level with 24% loss of performance.
e When the degree increased from 1 to 12 of the polynomial function, we will
gain 91% security level with 34% loss of performance.
3. Data size (5 byte)
e When the degree increased from 1 to 5 of the polynomial function, we will
gain 80% security level with 20% loss of performance.
e When the degree increased from 1 to 8 of the polynomial function, we will
gain 87% security level with 32% loss of performance.
e When the degree increased from 1 to 12 of the polynomial function, we will
gain 91% security level with 32% loss of performance.
4. Data size (6 byte)
e When the degree increased from 1 to 5 of the polynomial function, we will
gain 80% security level with 18% loss of performance.
e When the degree increased from 1 to 8 of the polynomial function, we will
gain 87% security level with 15% loss of performance.
e When the degree increased from 1 to 12 of the polynomial function, we will

gain 91% security level with 23% loss of performance.

The results of table 4.4 conclude that when the degree is from 1 to 8 of the polynomial
function will gain 87% security level with loss 15% performance. This experiment has

been found that degree 8 with data size (6 bytes) is the optimal outcomes.
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4.5.2 The effect of using different range of coefficients

This experiment has been used different range of coefficients with several parameters to
study the effect of these ranges on the performance of OPE. Five different ranges of
coefficients were selected. These ranges were range 0-100 with step 10, range 100-1000
with step 100, range 1000-10000 with step 1000, range 10000-100000 with step 10000,
and range 100000-1000000 with step 100000. The selected degrees of polynomial
function were degreel and degree 10. Also three different key sizes have been selected
(16 bit, 32 bit, 64 bit), and three different data types (integer, string, both) with different

data sizes (3 byte, 4 byte, 5 byte, and 6 byte).

It has been computed the accumulated time of each range to find which one of these
ranges achieves a high performance with high security level. The average time of each
data sizes has been computed in this experiment. For this section, we have done six
types of experiments that is used different range of coefficients to study the effect of
these ranges on the performance of OPE. For the sake of brevity, this thesis will explain
only one group of experiments (i.e. Experiment 4.5.2) and will list only the summary of
other group of experiments. More samples of the experiment results are listed in
Appendix B. All results for all experiments are available via the email. In the following
only experiment 4.5.2 will be explained in details to study the effect of using different

range of coefficients with selected parameters.

Experiment 4.5.2

This experiment has been used the same parameters in the previous experiment but in
this time, we used the different range of coefficient instead of different degrees of the
polynomial. This experiment was used five different ranges of coefficients with selected

degree 1 of the polynomial function, integer data type, the key size equal 16 bit to study
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the effect of these ranges on the performance of OPE. It has been computed the
accumulated time of each range to find the optimal range of coefficient. The efficient
range is the range which gives the highest security level with the minimum loss of
performance (execution time).

Table 4.5 and figure 4.8 shows the performance time of the five ranges. The range
10000-100000 had the highest performance time (11.08) and the range 100-1000 had
the lowest performance time (9.94). This means that the range 100-1000 achieved a
high performance. The security level for each range has been monitored by the number
of coefficients. The less number of coefficients means that the less security level. This
experiment has been found the optimal point as trade-off between security level and

performance.

Table 4.5: Results of Different Ranges of Coefficients

EquationlD |DataType |KeySize |Range of Coefficients |Step Performance Time

Degree 1 Integer 16bit |0-100 10 10.54
Degree 1 Integer 16 bit 100 - 1000 100 9.94

Degree 1 Integer 16 bit  |1000 - 10000 1000 10.26
Degree 1 Integer 16 bit 10000 - 100000 10000 11.08

Degree 1 Integer 16 bit 100000 - 1000000 100000 |11.01
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Time of Different Range of Coefficients
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) . M Degree of polynomial = 1
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Figure 4.8: Different Ranges of Coefficient

As expected that whenever the range of coefficient increased, the performance time will
be increased. It has been used this as a controlling factor for this experiment. It has been
noticed that as shown in table 4.5 that the performance time is increased for all ranges
except for range 100-1000 and 100000-1000000. The total time for all ranges is 53
while the deviation for range 1000 and 1000000 at maximum is 2. Equation (4.1) has
been used to calculate the Relative Error (deviation).

. the total of deviati
The Relative Error = coa 053 LI 100% =4/53*100=8 %

It has been found that the error is less than 8 % in all experiments.

From table 4.5 and figure 4.8, we derived table 4.6 that is used to compare between the
security and the performance in different ranges of coefficients. Table 4.6 has been

compared several cases to find the optimal choice.
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Table 4.6: Compare between Security and Performance in Different Range

Row |Range Gain Security Level [Loss of Performance
1 Increased the range from 100 to 100,000 99% 4%

2 Increased the range from 100 to 1000,000 |99% 4%

3 Increased therange from 1000 to 10,000 90% 3%

4 Increased therange from 1000 to 100,000 99% 10%

5 Increased the range from 1000 to 1000,000 |99% 9%

In this experiment, the range of coefficients decides the security level. The range
1000000 has the maximum security level and range 1000 has the minimum security
level. From table 4.6, we noticed that the gain of security is always between 90% and
99% because this thesis was used the large range of coefficients. This experiment
focused on the loss of performance and it has been considered that the minimum loss of

performance is the optimal range of coefficient.

For example, row 1 in table 4.6 computes the gain of the security by using equation

(4.2) and computes the gain of the performance by using equation (4.3).

range 100,000—range 100
range 100,000

* 100% =99 %

Gain Security Level =

Time of range 100,000 - Time of range 100

Loss of Performance = * 100%

Time of range 100,000

_11.08-10.54
~ 11.08

*100% =4%

Other examples are listed in table 4.6 which illustrates the results of the gain of security
and the loss of the performance. Also these are explained below.
e When the range of coefficient increased from 100 to 100,000, we will gain 99%

security level with 4% loss of performance.
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e When the range of coefficient increased from 100 to 1000,000, we will gain

99% security level with 4% loss of performance.

e When the range of coefficient increased from 1000 to 10,000, we will gain 90%

security level with 3% loss of performance.

e When the range of coefficient increased from 1000 to 100,000, we will gain

99% security level with 10% loss of performance.

e Furthermore, when the range of coefficient increased from 1000 to 1000,000, we

will gain 99% security level with 9% loss of performance.

The results of table 4.6 conclude that the range of coefficient is increased from 1000 to

10000, we will gain 90% security level with 3% loss of performance. This experiment

has been found that range 10000 is the best optimal choice.

In experiment 4.5.2, there are four different data sizes inside each range. Table 4.7 and

figure 4.9 shows the different data sizes with different range of coefficients. The

average time of each size of data has been computed. These sizes were: 3 bytes, 4 bytes,

5 bytes, and 6 bytes in different range of coefficients.

Table 4.7: Results of Different Data Sizes in different Range of Coefficients

. . |Range |Range  [Range Range Range Avg.
DataType |KeySize DataSize | 14 11001000 |1000 - 10000 |10000- 100000 |100000-1000000 [TDDsiz
Integer ~ |16bit  [3byte  ]0.71 |0.68 0.66 0.73 0.74 0.704
meer |16t Aty [069 |066  [0.60 073 074 0702
meer |16t [sbye  [068 |065 072 078 071 0.708
Integer ~ [16bit  |6hyte  {0.78 (071 0.73 0.79 0.78 0.75
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Figure 4.9: Different Data Sizes in Different Range of Coefficients

From table 4.7 and figure 4.9, we derived the table 4.8 that is used to compare between
the security and the performance with different data sizes. Table 4.8 has been compared

several cases to find the optimal choice.
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Table 4.8: Compare between Security and Performance with Different Data Sizes

Data Size Gain Security Level{Loss of Performance
3byte |L.Increased thesize of data from 3 to 6 byte in Range 0 -100 50% 8%
2.Increased the range from (0 - 100) to (10000 -100,000) 75% 2%
3.Increased the range from (0 - 100) to (100,000 -1000,000) 80% 4%
4.Increased the range from (100 - 1000) to (10000 -100,000) 50% 6%
5.Increased the range from (1000 - 10000) to (10000 - 100,000)  (25% 9%
4 byte  [L.Increased the range from (0 -100) to (10000 -100,000) 75% 5%
2.Increased the range from (0 -100) to (100,000 -1000,000) 80% 6%
3.Increased the range from (100 -1000) to (10000 -100,000) 50% 9%
4.Increased the range from (1000 -10000) to (10000 -100,000) 25% 5%
5byte  [L.Increased the range from (0 -100) to (10000 -100,000) 75% 12%
2.Increased the range from (0 -100) to (100,000 -1000,000) 80% 4%
3.Increased the range from (100 -1000) to (10000 -100,000) 50% 16%
4.Increased the range from (1000 -10000) to (10000 -100,000) 25% 7%
6 byte  |2.Increased the range from (0 -100) to (100,000 -1000,000) 75% 0%
3.Increased the range from (100 -1000) to (10000 -100,000) 50% 10%
4.Increased the range from (1000 -10000) to (10000 -100,000) 25% 7%

It has been computed the gain of security by using equation (4.2) and the loss of the

performance by using equation (4.2) with different data sizes as a percentage and then

compared between them. From table 4.8, we noticed the following.

1.

Data size (3 byte)

¢ Increasing the size of data in range (0-100) of coefficients from 3 to 6 bytes

will gaining 50% security level with 8% losing of performance.

e When the range of coefficients increased from (0- 100) to (10000 —

100,000), we will gain 75% security level with 2% loss of performance.

e When the range increased from (0- 100) to (100,000 —1000, 000), we will

gain 80% security level with 4% loss of performance.

e When the range increased from (100- 1000) to (10000- 100,000), we will

gain 50% security level with 6% loss of performance.
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When the range increased from (1000- 10000) to (10000- 100,000), we will

gain 25% security level with 9% loss of performance.

2. Datasize (4 byte)

When the range increased from (0-100) to (10000 —100,000), we will gain
75% security level with 5% loss of performance.

When the range increased from (0-100) to (100,000- 1000, 000), we will
gain 80% security level with 6% loss of performance.

When the range increased from (100-1000) to (10000- 100,000), we will
gain 50% security level with 9% loss of performance.

When the range increased from (1000-10000) to (10000-100,000), we will

gain 25% security level with 5% loss of performance.

3. Data size (5 byte)

When the range increased from (0-100) to (10000-100,000), we will gain
75% security level with 12% loss of performance.

When the range increased from (0-100) to (100,000-1000, 000), we will
gain 80% security level with 4% loss of performance.

When the range increased from (100-1000) to (10000-100,000), we will
gain 50% security level with 16% loss of performance.

When the range increased from (1000-10000) to (10000-100,000), we will

gain 25% security level with 7% loss of performance.

4. Data size (6 byte)

When the range increased from (0-100) to (100,000-1000, 000), we will
gain 75% security level with 0% loss of performance.
When the range increased from (0-100) to (100,000-1000, 000), we will

gain 50% security level with 10% loss of performance.



70

e When the range increased from (1000-10000) to (10000-100,000), we will

gain 25% security level with 7% loss of performance.
The results of table 4.8 conclude that the range of coefficients is increase from (0-100)
to (100,000-1000, 000) will gain 75% security level with no losing of performance.
This experiment has been found that range (100,000 - 1000, 000) with data size (6

bytes) is the best optimal choice.

4.5.3 The effect of using different key size

This experiment has been used different key sizes with several parameters to study the
effect of these keys on the performance of OPE. Three different key sizes were selected.
These key-sizes were: 16 bits, 32 bits, and 64 bits. For the sake of brevity, only four
degrees have been selected. The selected degrees of the polynomial function were
degreel, degreeb, degree8, and degreel?2 of the polynomial function. Also three
different data types have been selected (integer, string, and both) with different data
sizes (3 byte, 4 byte, 5 byte, 6 byte), and the range of coefficients was the range 0 -100,
step 10. The key-size will decide the security level of the encryption function. The
higher key-size will give a higher security level.

Keys and keys-sizes have essential role in deciding the security level for OPEs. There
were two approaches for using the keys to enhance the security of OPEs. Therese were
(Ozsoyoglu et al., 2003) and (Popa et al., 2009). In Ozsoyoglu et al. approach, they used
the polynomial function as the encryption function. They used the coefficients of the
polynomial function as a key with the range of coefficient [1-2°]. However, Popa et al.
enhanced the OPE security by adding a random noise to increase the ambiguity which

consequently enhance the security level.



71

This thesis combined the above two approaches to study the effect of key-size over
security level as well as the performance (execution time). It has been used an
encryption formula that combined the two approaches (Equation 4.4). In Equation 4.4,
the function value represents the value of the polynomial for several inputs with

different degrees and different coefficients. The effect of this function will represent
effect of Ozsoyoglu et al. approach. In addition to equation 4.4, Key yaue has been

generated randomly for each key size. The key value represents the Popa et al.
approach. Many experiments have been done using Equation 4.4 and the execution time
has been recorded. The new index will be used re-index of existing data in the database.

Encryption (Re-Index) = Function yaue + Key vaie + Original jngex

The value of the re-index must be an integer value to facilitate the search over encrypted
data. It has been computed the accumulated time of each key to find which one of these
keys achieves a high performance with high security level. The average time of each
data sizes has been computed in this group of experiments. We have done several
experiments using different key sizes (three sizes), different data types, and different
polynomial degrees to study the effect of these keys on the performance of OPE. For the
sake of brevity, this thesis will explain only one group of experiments (i.e. Experiment
4.5.3) and will list only the summary of other group of experiments. More samples of
the experiment results are listed in Appendix C. All results for all experiments are
available via the email. In the following, only experiment 4.4.3 will be explained in

details to study the effect of using different key-sizes with selected parameters.

Experiment 4.5.3
This experiment has been used the same parameters in the experiment 4.5.1 and

experiment 4.5.2 but in this time, we used the different key sizes instead of different
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degrees of polynomial and different range of coefficient. This experiment used three

different key sizes with selected integer data type, degree 1 of polynomial function, and

selected range of coefficient 0-100 with step 10 to study the effect of three different key

sizes on the performance of OPE. It has been computed the accumulated time of each

key size to find the optimal key size.

Table 4.9 and figure 4.10 shows the performance time of the three key sizes. The key

size equal 16 bit had the lowest performance time (8.76) and the key size equal 64 bit

had the highest performance time (12.08). As expected, the large size of key means high

security level. This experiment has been found the optimal point as a trade- off between

security level and performance.

Table 4.9: Results of Different Key Sizes

EquationID |DataType Range KeySize [PerformanceTime
Degree 1 Integer 0-100 16 bit 8.76
Degree 1 Integer 0-100 32 bit 9.73
Degree 1 Integer 0-100 64 bit 12.08
Time of Different Key Size
135 1~

E 125 1 B PerformanceTime

; 115 ¥~ B Degree of the polynomial =1

g 105 V¥~ | Range of coefficient = 0-100
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g5 I /
16 bit 32 bit 64 bit
Key Sizes

Figure 4.10: Results of Different Key Sizes
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From table 4.9 and figure 4.10, we derived table 4.10 that is used to compare between
the security and the performance in different key sizes. Table 4.10 has been compared

several cases to find the best optimal choice.

Table 4.10: Compare between Security and Performance in Different Key Size

Row [Key Size Gain Security Level [Loss of Performance
1 |Increased the Key from 16 bit to 32 bit (50% %

2 |Increased the Key from 16 bit to 64 bit |75% 27%

3 [Increased the Key from 32 hit to 64 bit |{50% 19%

In this experiment, key size equal 64 bits has the maximum security level and the key
size equal 16 bits has the minimum security level. We suppose to compute the
percentage of the gain of the security as the different between the maximum key size

and the minimum key size divided by the maximum key size.

For example, rowl in table 4.10 computes the gain of the security by using equation

(4.2) and computes the loss of the performance by using equation (4.3).

ey 32—key 16

k
i i - 0fy = 0,
Gain Securlty Level key 32 * 100 A) =50 %

Time of key 32 - Time of key 16
Y Y2 %100%

Loss of Performance = -
Time of key 32

_9.73-8.76
973

*100% =9%

Other examples are listed in table 4.10 which illustrates the results of the gain of

security and the loss of the performance.

e When the key size increased from size equal 16 bit to size equal 32 bit, we will

gain 50% security level with 9% loss of performance.
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e When the key size increased from size equal 16 bit to size equal 64 bit, we will

gain 75% security level with 27% loss of performance.

e When the key size increased from size equal 32 bit to size equal 64 bit, we will

gain 50% security level with 19% loss of performance.

The results of table 4.10 conclude that when the key size is increased from size

equal 16 bits to size equal 32 bits; the security level will gain 50% with loss 9%

performance. This experiment has been found that key size equal 32 bit is the best

optimal choice.

In experiment 4.5.3, there are different sizes of data inside each key size. Table 4.11 and

figure 4.11 shows the different data sizes with different key sizes. It has been computed

the average time of each size of data (3 bytes, 4 bytes, 5 bytes, and 6 bytes) in different

key size (16 bits, 32 bits, and 64 bits).

Table 4.11: Results of Different Data Sizes in Different Key Sizes

EquationID | DataType | Range | DataSize |Key 16 bit | Key 32 bit | Key 64 bit Avg_.
TDDsize
Degree 1 |Integer 0-100 (3 byte 0.31 0.32 0.49 0.37
Integer 0-100 |4 byte 0.31 0.37 0.39 0.35
Integer 0-100 |5 byte 0.31 0.408 0.38 0.36
Integer 0-100 (6 byte 0.37 0.33 0.34 0.34
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Figure 4.11: Different Data Sizes in Different Key Sizes

From table 4.11 and figure 4.11, we derived table 4.12 that is used to compare between

the security and the performance with different data sizes. Table 4.12 has been

compared several cases to find the optimal choice.

Table 4.12: Compare between Security and Performance with Different Data Sizes

Data Size Gain Security Level|Loss of Performance
3byte |1 Increased the size of data from 3 to 6 byte in Key sizel6 bit {50% 16%
2. Increased the key size from 16 bit to 32 bit 50% 3%
3. Increased the key size from 16 bit to 64 bit 7% 36%
4. Increased the key size from 32 bit to 64 bit 50% 43%
4byte |1 Increased the key size from 16 bit to 32 bit 50% 16%
2. Increased the key size from 16 bit to 64 bit 5% 20%
3. Increased the key size from 32 bit to 64 bit 50% 5%
5byte |1 Increased the key size from 16 bit to 32 bit 50% 22%
2. Increased the key size from 16 bit to 64 bit 5% 18%
6 byte |1. Increased the key size from 32 bit to 64 bit 50% 2%
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It has been computed the gain of the security by using equation (4.2) and the loss of the
performance by using equation (4.2) with different data sizes as a percentage and then
compared between them. From table 4.12, we noticed the following:-
1. Data size (3 byte)
¢ Increase the size of data in key size equal 16 1 from (3 byte) to (6 byte) will
gain 50% security level with 16% loss of performance.
e Increase the key size from key size equal 16 bit to key size equal 32 bit will
gain 50% security level with 3% loss of performance.
¢ Increase the key size from key size equal 16 bit to key size equal 64 bit will
gain 75% security level with 36% loss of performance.
e Increase the key size from key size equal 32 bit to key size equal 64 bit will
gain 50% security level with 34% loss of performance.
2. Data size (4 byte)
¢ Increase the key size from key size equal 16 bit to key size equal 32 bit will
gain 50% security level with 16% loss of performance.
e Increase the key size from key size equal 16 bit to key size equal 64 bit will
gain 75% security level with 20% loss of performance.
¢ Increase the key size from key size equal 32 bit to key size equal 64 bit will
gain 50% security level with 5% loss of performance.
3. Data size (5 byte)
e Increase the key size from key size equal 16 bit to key size equal 32 bit will
gain 50% security level with 22% loss of performance.
¢ Increase the key size from key size equal 16 bit to key size equal 64 bit will

gain 75% security level with 18% loss of performance.
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4. Data size (6 byte)
¢ Increase the key size from key size equal 32 bit to key size equal 64 bit will

gain 50% security level with 2% loss of performance.

The results of table 4.12 conclude that when using data size (6 byte) and the key size is
increased from size equal 32 bit to size equal 64 bit, the security level will gain 50%
with loss 2% performance. This experiment has been found that key size equal 64 bit is

the best optimal choice.

4.5.4 The effect of using different data type

This experiment has used different data types with several parameters to study the effect
of these types on the performance of OPE. Three different data types were selected.
These types were: integer, string, both (integer and string). The selected degrees of the
polynomial function were degree 1, degree 5, degree 8, and degree 12 of the polynomial
function. Also three different key sizes have been selected (16 bit, 32 bit, 64 bit), and
the range of coefficient was the range 0-100, step 10. It has been computed the
accumulated time for each data type to find which one of these types achieves a high
performance with high security level. The average time of each data size has been
computed in this experiment. From results of using different data types, we noticed the
following:
¢ Inthe integer data type, there were four different data sizes: 3 bytes, 4 bytes
, bbytes, and 6 bytes. In the string and both data type, there are five
different data sizes: 2 byte, 3 byte, 4 byte, 5 byte, and 6 bytes.
e In order to find the effect of string and both data type, we need to convert it

to number. Using the concatenation of the ASCII for each character as a
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value in the polynomial function has caused many overflow problems.
Therefore; this thesis has been used the summation of ASCII for each
character instead of the concatenation to prevent the overflow problems.

e Converting the string or alphanumeric data types to the ASCII code using
the summation of the ASCII codes will cause the size of data to be 3 bytes.
This is due to that the maximum data size was 6 characters with maximum
ASCII codes summation 999 (3 bytes).

e The results showed that the data type affect the performance of OPE but it

is not significant.

This thesis has been done several experiments using different data types (three types),
different key sizes, and different polynomial function. It has been studied the effect of
these types on the performance of OPE with several data types and several polynomial
degrees. For the sake of brevity, this thesis will explain only one group of experiments
(i.e. Experiment 4.5.4) and will list only the summary of other group of experiments.
More samples of the experiment results are listed in Appendix D. All results for all
experiments are available via the email. In the following only experiment 4.5.4 will be

explained in details to study the effect of using different types with selected parameters.

Experiment 4.5.4

This experiment used the same parameters in the experiment 4.5.1, experiment 4.5.2
and experiment 4.5.3 but in this time, we used the different data types instead of
different degrees of polynomial, different range of coefficient and different key sizes to
study the effect of three different data types on the performance of OPE. This

experiment used three different data types with selected degreel of polynomial function,
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range of coefficient (range 0-100, step 10) and the key size equal 16 bit. It has been
computed the accumulated time to find the optimal outcomes of the data type.

Table 4.13 and figure 4.12 shows the performance time of the three types of data. The
integer data type had the lowest performance time (8.48) and the both data type had the
highest performance time (11.14). As expected, the integer data type achieves a good
performance and the both data type achieves the worst performance. This experiment

has been found the optimal point between security level and performance.

Table 4.13: Results of Different Data Types

EquationID KeySize Range DataType | PerformanceTime
Degree 1 16 bit 0-100 Integer 8.48
Degree 1 16 bit 0-100 String 10.55
Degree 1 16 bit 0-100 Both 11.14

Time of Different Data Type

112
]
E H PerformanceTime

102 ¥
§ B Degree of the polynomial=1
[} -
E 9257 Range of coefficient = 0-100
& o pz e — ® Key Size =16 bits

integer String Both
Data Types

Figure 4.12: Results of Different Data Types

In experiment 4.4.4, there are three different data types. Table 4.14 and figure 4.13
shows the different data sizes in the integer data type with different degree of the
polynomial function. It has been computed the average time of each size of data (3 byte,

4 byte, 5 byte, 6 byte) in different degrees of the polynomial function.
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Table 4.14: Results of Different Data Sizes with Integer Data Type

DataType |[Key Size [Range [DataSize |Degree 1 |Degree 5 [Degree 8 |Degree 12 ¢\[/)gD Size
Integer (16 bit  |0-100 [3byte  |0.29 0.35 0.37 0.37 0.34
Integer  [16bit  |0-100 |4 byte |0.3 0.36 0.37 0.36 0.34
Integer {16 bit  [0-100 [5hyte  0.29 0.35 0.39 0.36 0.34
Integer |16 bit  |0-100 |6 byte  |0.36 0.4 0.43 0.41 0.4

Time of Different Data Size

0.5

0.45

g /\

i: 0.4 / -

g 0.35 - ‘__’——q— =3 byte

£ 7 : w— 4 byte

E 0.3 -~ 5 byte
0.25 6 byte

Degree 1 Degree 5 Degree 8 Degree 12

Degree of the Polynomial function

Figure 4.13: Results of Different Data sizes with Integer Data Type

From table 4.14 and figure 4.13, we derived table 4.15 that is used to compare between
the security and the performance with different data sizes. Table 4.15 has been

compared several cases to find the optimal outcomes.
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Table 4.15: Compare between Security and Performance with Different Data Sizes

Row (Data Size Gain Security Level |Loss of Performance
1 |3bye |1 Increased the size of data from 3 to 6 byte inDegree 1 |50% 19%
2 2. Increased the degree from 10 5 80% 1%
3 3. Increased the degree from 1 to 8 87% 21%
4 4. Increased the degree from 1 to 12 91% 21%
5

6 |dbyte |1 Increased the degree from1to 5 80% 16%
7 2. Increased the degree from1t0 8 87% 18%
8 3. Increased the degree from 1 to 12 91% 16%
9

10 |5hyte  |L Increased the degree from1to 5 80% 1%
11 2. Increased the degree from 1 to 8 87% 25%
12 3. Increased the degree from 1 to 12 91% 19%
13

14 |6byte |1 Increased the degree from 110 5 80% 10%
15 2. Increased the degree from 1 to 8 87% 16%
16 3. Increased the degree from 1 to 12 91% 12%

For example, rowl in table 4.15 computes the gain of the security by using equation

(4.2) and the gain of the performance by using equation (4.3).

Gain Security Level =

Loss of Performance =

data size 6—data size 3

data size 6

Time of data size 6 - Time of data size 3

* 100% =50 %

Time of data size 6

 0.36-0.29
T 036

*100% =19%

* 100%

Other examples are listed in tables 4.15 which illustrate the results of the gain security

and the gain of the performance. Also these are explained below.
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Data size (3 byte)

Increasing the size of data in degree 1 from 3 to 6 bytes will gaining 50%
security level with 19% losing of performance.

When the degree increased from 1 to 5, will gain 80% security level with
17% loss of performance.

When the degree increased from 1 to 8, we will gain 87% security level with
21% loss of performance.

When the degree increased from 1 to 12, we will gain 91% security level
with 21% loss of performance.

Data size (4 byte)

When the degree increased from 1 to 5, we will gain 80% security level with
16% loss of performance.

When the degree increased from 1 to 8, we will gain 87% security level with
18% loss of performance.

When the degree increased from 1 to 12, we will gain 91% security level
with 16% loss of performance.

Data size (5 byte)

When the degree increased from 1 to 5, we will gain 80% security level with
17% loss of performance.

When the degree increased from 1 to 8, we will gain 87% security level with
25% loss of performance.

When the degree increased from 1 to 12, we will gain 91% security level
with 19% loss of performance.

Data size (6 byte)
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e When the degree increased from 1 to 5, we will gain 80% security level with
10% loss of performance.

e When the degree increased from 1 to 8, we will gain 87% security level with
16% loss of performance.

e When the degree increased from 1 to 12, we will gain 91% security level

with 12% loss of performance.

The results of table 4.15 conclude that the data sizes of the integer data type are not
significant. It has been found that when using data size (6 bytes) and increasing the
degree of the polynomial function from 1 to 5 will gain 80% security level with loss
10% performance. Therefore; the data size (6 bytes) is the optimal outcomes compared

with others.

Table 4.16 and figure 4.14 shows the results of string data type when use different
degrees of the polynomial function. The string data type has been converted to the
ASCII code by using the summation number of the ASCII codes. Thus, the size of data
will be 3 bytes instead of different size of data. This is due to that the maximum data
size was 6 characters and the maximum summation of the ASCII code was 999 (3
bytes). The results showed that the string data type affects the performance of OPE but

it is not significant.

Table 4.16: Results of Different Data Sizes in String Data Type

Avg.

DataType |Key Size [Range |DataSize |Degree 1 |Degree 5|Degree 8 |Degree 12 TDDSize

String 16bit  ]0-100 |3byte |0.37 0.37 0.38 0.38 0.37
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Time of Data Size 3 byte in String Data Type
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Figure 4.14: Results of Different Data Sizes in String Data Type

Table 4.17 and figure 4.15 shows the results of both data type when use different

degrees of the polynomial function. The both data type has been converted to the ASCII

code by using the summation number of the ASCII codes. Thus, the size of data will be

3 bytes instead of different size of data. This is due to that the maximum data size was 6

characters and the maximum summation of the ASCII code was 999 (3 bytes). The

results showed that the both data type affects the performance of OPE but it is not

significant.

Table 4.17: Results of Different Data Sizes in Both Data Type

. . Avg.
DataType |[Key Size |Range  [DataSize |Degree 1 [Degree 5 [Degree 8|Degree 12 TDDSize
Both 16 bit 0-100 |3byte |0.38 0.41 0.42 0.41 0.4
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Chapter Five

Conclusion and Future Work
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5.1 Conclusion
This thesis concludes its finding in identifying the excellent analysis that can give us the
maximum security level with minimum execution time. The finding of this research was
to study the performance and security level of the polynomial function with several
parameters (degree of the polynomial, range of coefficients, key sizes, data types/sizes).
This thesis contributes in identify:
e The parameters that affect the performance and security of OPEs.
e The efficiency for many cases for several parameters as a trade-off between
performance and security level.
e The optimal efficiency as the minimum loss in the performance with a high gain
of security.
It has been built many experiments depending on the problem of OPE to achieve the
main goal of this research. This thesis accomplished many experiments to study the
effect of several parameters on the performance of OPE. It was found the optimal point
as a trade-off between security level and performance. The thesis has been computed the
gain of security and the gain of the performance as a percentage and then compared
between them. The results of the experiment will be presented as follows:
- Effect of using different degrees of polynomial function
e This thesis found that when increased the degree of the polynomial from 1 to 4,
we will gain 75% security level with 7% loss performance.
e This thesis has been found that degree 4 of the polynomial function is the
optimal outcomes.
- Effect of using different ranges of coefficients
e This thesis has been found that increasing the range of coefficients from 1000 to

10000 will gaining 90% security level with 3% losing performance.
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e This thesis has been found that range of coefficients 10000 is the optimal
outcomes.
- Effect of using different key sizes
e This thesis has been found that increasing the size of key from size equal 16 bits
to size equal 32 bits will gaining 50 % security level with 9% losing
performance.
e This thesis has been found that key size equal 32 bits is the optimal outcomes.
- Effect of using different data types
e This thesis has been found that the data types affect the performance of OPE but

it is not significant.

This thesis has been implemented and designed a software to compare and analyze the
performance of OPE. It has been run the software by using all the parameters and
recorded the running time for each parameter. It has been computed the time for each
experiment to study the performance of OPE. The results of the experiment has been
compared and analyzed depending on loss of the performance and the gain security

level of OPE.

5.2 Future Work

The comparative analysis for the performance of OPE in this thesis give strong basis for
a number of interesting directions for future work, which will lead to improve the
security level and the performance of OPE. We plan to study the effect of using non-
polynomial function on the performance. Additionally, using database operation such

as select, insert, delete, and update to compute the re-index time and to enhance the
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performance and security level of OPE. Finally, enhance the OPE technique to reduce

the leakage of information.
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The results of the experiment are very huge. This thesis has been presented a sample of

the results. For full results, you can contact the author via the email

A. Results of using different degree of polynomial function

Original Index |EquationlD |InputDataX | DataSize DataType  |Range of Coefficent Step | FunctionValue KeySize|KeyValue |PerformanceTime [TimePerRange |Relndex

1 1 428789 |6 Integer  |0,0 10 |0 16 880 0.105647 0.105647 881

2 1 428789 |6 Integer  |10,10 10 |4287500 16 880 0.184384 0.184384 4288782
3 1 428789 |6 Integer 120,20 10 18575800 16 880 0.244858 0.244858 8576683
4 1 428789 |6 Integer 130,30 10 |12863700 16 880 0.308731 0.308731 12864584
5 1 428789 |6 Integer  [40,40 10 |17151600 16 880 0.368352 0.368352 17152485
6 1 428789 |6 Integer 150,50 10 |21439500 16 880 0427156 0.427156 21440386
7 1 428789 |6 Integer 160,60 10 |25727400 16 880 0.485458 0.485458 25728287
8 1 428789 |6 Integer  |70,70 10 |30015300 16 880 0544238 0.544238 30016188
9 1 428789 |6 Integer 180,80 10 134303200 16 880 0.602629 0.602629 34304089
10 1 428789 |6 Integer  [90,90 10 138591100 16 880 0.661811 0.661811 38591990
11 1 428789 |6 Integer  |100,100 10 142879000 16 880 0924212 0.924212 42879891
12 1 46559 |5 Integer 10,0 10 |0 16 880 107542 0.0558537  [892

13 1 46559 |5 Integer  |10,10 10 465600 16 880 1.1353 0.115735 466493
14 1 46559 |5 Integer 120,20 10 |931200 16 880 119349 0.173929 932094
15 1 46559 |5 Integer 130,30 10 |1396800 16 880 1.25202 0.232455 1397695
16 1 46559 |5 Integer 140,40 10 |1862400 16 880 1.31056 0.290998 1863296
17 1 46559 |5 Integer  [50,50 10 |2328000 16 880 137158 0.352018 2328897
18 1 46559 |5 Integer  |60,60 10 |2793600 16 880 1.43073 041117 2794498
19 1 46559 |5 Integer 170,70 10 13259200 16 880 1.48945 0.46989 3260099
20 1 46559 |5 Integer 180,80 10 13724800 16 880 154907 0.529502 3725700
21 1 46559 |5 Integer  |90,90 10 [4190400 16 880 160723 0.587662 4191301
22 1 46559 |5 Integer  |100,100 10 [4656000 16 880 1.66666 0.647097 4656902
23 1 465 3 Integer  |0,0 10 |0 16 880 174278 0.0411772 1903

24 1 465 3 Integer 110,10 10 4660 16 880 1.8023 0.100696 5564

25 1 465 3 Integer  ]20,20 10 9320 16 880 1.86139 0.159786 10225

26 1 465 3 Integer 130,30 10 13980 16 880 192065 0.219049 14886

? Email address: Hadeel alkazaz@yahoo.com
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27 1 465 3 Integer 40,40 10 |18640 16 880 1.98053 0.278925 18547
28 1 465 3 Integer 50,50 10 ]23300 16 880 2.03942 0.337813 24208
29 1 465 3 Integer 60,60 10 |27960 16 880 2.09978 0.398172 28869
30 1 465 3 Integer 70,70 10 32620 16 880 2.16195 0.460346 33530
31 1 465 3 Integer 80,80 10 |37280 16 880 2.2187 0.517098 38191
32 1 465 3 Integer 90,90 10 41840 16 880 2.27758 0.575978 42852
33 1 465 3 Integer 100,100 10 |46600 16 880 2.33849 0.636883 47513
34 1 2344 - Integer 0,0 10 |0 16 880 24174 0.0430563  |914

35 1 2344 4 Integer 10,10 10 23450 16 880 2.47592 0.101567 24365
36 1 2344 4 Integer 20,20 10 |46500 16 880 2.53611 0.161767 47816
37 1 2344 4 Integer 30,30 10 |70350 16 880 2.59431 0.219963 71267
38 1 2344 4 Integer 40,40 10 |93800 16 880 2.65359 0.279242 94718
39 1 2344 - Integer 50,50 10 |117250 16 880 27129 0.338554 118169
40 1 2344 4 Integer 60,60 10 ]140700 16 880 2.7715% 0.397241 141620
41 1 2344 4 Integer 70,70 10 |164150 16 880 2.83173 0.45738 165071
42 1 2344 4 Integer 80,80 10 |187600 16 880 2.89116 0.516807 188522
43 1 2344 - Integer 90,90 10 211050 16 880 2.95068 0.576335 211973
44 1 2344 4 Integer 100,100 10 234500 16 880 3.01015 0.635803 235424
45 1 452 3 Integer 0,0 10 |0 16 880 3.08722 0.0420123  |925

46 1 452 3 Integer 10,10 10 ]4530 16 880 3.1462 0.101 5456
47 1 452 3 Integer 20,20 10 9060 16 880 3.20566 0.160458 9987
48 1 452 3 Integer 30,30 10 13590 16 880 3.26566 0.220461 14518
49 1 452 3 Integer 40,40 10 18120 16 880 3.32606 0.280858 19049
50 1 452 3 Integer 50,50 10 |22650 16 880 3.4051 0.359898 23580
51 1 452 3 Integer 60,60 10 |27180 16 880 3.48256 0.437356 28111
52 1 452 3 Integer 70,70 10 31710 16 880 3.54294 0.497737 32642
53 1 452 3 Integer 80,80 10 |36240 16 880 3.60218 0.556975 37173
54 1 452 3 Integer 90,90 10 |40770 16 880 3.66146 0.616257 41704
55 1 452 3 Integer 100,100 10 |45300 16 880 3.72139 0.676183 46235
56 1 3453 - Integer 10,0 10 |0 16 880 3.79945 0.0420743 936

57 1 3453 4 Integer 10,10 10 |34540 16 880 3.85771 0.10033 35477
58 1 3453 4 Integer 20,20 10 |69080 16 880 3.91777 0.160388 70018
59 1 3453 - Integer 30,30 10 |103620 16 880 3.97655 0.219173 104559
60 1 3453 4 Integer 40,40 10 |138160 16 880 4.03759 0.280214 139100
61 1 3453 - Integer 50,50 10 |172700 16 880 4.0976 0.340225 173641
62 1 3453 4 Integer 60,60 10 |207240 16 880 415753 0.400156 208182
63 1 3453 - Integer 170,70 10 |241780 16 880 422752 0.470143 242723
64 1 3453 4 Integer 80,80 10 |276320 16 880 428778 0.530399 277264
65 1 3453 4 Integer 90,90 10 |310860 16 880 434594 0.588562 311805
66 1 3453 4 Integer 100,100 10 |345400 16 880 4.40786 0.650482 346346
67 1 15964 |5 Integer 0,0 10 |0 16 880 4.48435 0.0410672  |947

68 1 15964 |5 Integer 10,10 10 ]159650 16 880 4.54487 0.101583 160598
69 1 15864 |5 Integer 20,20 10 |319300 16 880 4.60479 0.16151 320249
70 1 15964 |5 Integer 30,30 10 |478950 16 880 4.66504 0.221761 479900
71 1 15864 |5 Integer 40,40 10 |638600 16 880 472473 0.281446 639551
72 1 15964 |5 Integer 50,50 10 |798250 16 880 4.78492 0.341635 799202
73 1 15964 |5 Integer 60,60 10 ]957900 16 880 4.84341 0.400132 958853
74 1 15964 |5 Integer 70,70 10 |1117550 16 880 450375 0.460464 1118504
75 1 15964 |5 Integer 80,80 10 |1277200 16 880 496342 0.520133 1278155
76 1 15864 |5 Integer 90,80 10 |1436850 16 880 5.02457 0.581289 1437806
77 1 15964 |5 Integer 100,100 10  |1596500 16 880 5.08562 0.642336 1597457
78 1 465 3 Integer 0,0 10 |0 16 880 5.16312 0.0414925  ]958

79 1 465 3 Integer 10,10 10 |4660 16 880 5.22246 0.100834 5619
80 1 465 3 Integer 20,20 10 |9320 16 880 5.28254 0.160912 10280
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81 1 465 3 Integer 30,30 10 13980 16 880 5.34204 0.220418 14941
82 1 465 3 Integer 40,40 10 18640 16 880 5.40251 0.28089 19602
83 1 465 3 Integer 50,50 10 23300 16 880 5.46294 0341314 24263
84 1 465 3 Integer 60,60 10 27960 16 880 5.52403 0.402401 28924
85 1 465 3 Integer 70,70 10 |32620 16 880 5.58312 0.461497 33585
86 1 465 3 Integer 80,80 10 37280 16 880 5.64231 0.520686 38246
87 1 465 3 Integer 90,90 10 41940 16 880 5.70249 0.580864 42507
88 1 465 3 Integer 100,100 10 46600 16 880 5.76218 0.640557 47568
89 1 2344 4 Integer 0,0 10 |0 16 880 5.84028 0.0413603  [969

90 1 2344 - Integer 10,10 10 23450 16 880 5.90036 0.101431 24420
91 1 2344 4 Integer 20,20 10 46500 16 880 5.96118 0.162251 47871
92 1 2344 4 Integer 30,30 10 70350 16 880 6.02105 0.222122 71322
93 1 2344 4 Integer 40,40 10 ]93800 16 880 6.08415 0.285219 94773
94 1 2344 - Integer 50,50 10 117250 16 880 6.14457 0.345648 118224
95 1 2344 4 Integer 60,60 10 140700 16 880 6.20479 0.40586 141675
96 1 2344 4 Integer 70,70 10 |164150 16 880 6.26423 0.465302 165126
97 1 2344 - Integer 80,80 10 ]187600 16 880 6.32571 0.526788 188577
98 1 2344 - Integer 90,90 10 211050 16 880 6.38595 0.587022 212028
99 1 2344 4 Integer 100,100 10 234500 16 880 6.4466 0.64767 235479
100 1 452 3 Integer 0,0 10 |0 16 880 6.5235 0.0410372  |980
101 1 452 3 Integer 10,10 10 ]4530 16 880 6.58336 0.100899 5511
102 1 452 3 Integer 20,20 10 |5060 16 880 6.644 0.161536 10042
103 1 452 3 Integer 30,30 10 13550 16 880 6.70444 0.221975 14573
104 1 452 3 Integer 40,40 10 |18120 16 880 6.76424 0.281778 19104
105 1 452 3 Integer 50,50 10 22650 16 880 6.825 0.342538 23635
106 1 452 3 Integer 60,60 10 27180 16 880 6.88466 0.402195 28166
107 1 452 3 Integer 70,70 10 |31710 16 880 6.94388 0.461412 32697
108 1 452 3 Integer 80,80 10 ]36240 16 880 7.00291 0.520445 37228

109 1 452 3 Integer 90,90 10 [40770 16 880 7.06236 0.579893 41759

110 1 452 3 Integer  1100,100 10 45300 16 880 7.12721 0.644743 46290

111 1 5467 4 Integer 10,0 10 |0 16 880 7.20926 0.0450305 991

112 1 5467 4 Integer 10,10 10 54680 16 880 7.26728 0.103065 55672

113 1 5467 4 Integer 20,20 10 [109360 16 880 7.32825 0.164017 110353
114 1 5467 4 Integer 30,30 10 164040 16 880 7.3888 0.22457 165034
115 1 5467 B Integer 40,40 10 218720 16 880 7.44697 0.28274 219715
116 1 5467 4 Integer 50,50 10 273400 16 880 7.50637 0.342146 274396
117 1 5467 4 Integer 60,60 10 |328080 16 880 7.56625 0.402023 329077
118 1 5467 4 Integer 70,70 10 |382760 16 880 7.62726 0.463027 383758
119 1 5467 - Integer 80,80 10 437440 16 880 7.68655 0.522323 438439
120 1 5467 4 Integer 190,90 10 [452120 16 880 7.74958 0.585352 493120
121 1 5467 4 Integer  ]100,100 10  |546800 16 880 7.80981 0.645578 547801
122 1 349957 |6 Integer 10,0 10 |0 16 880 7.88761 0.0420718 1002

123 1 349957 |6 Integer 10,10 10 |3459580 16 880 7.94682 0.10128 3500583
124 1 349957 |6 Integer 20,20 10 |6999160 16 880 8.00719 0.161648 7000164
125 1 349957 |6 Integer 30,30 10 |10458740 16 880 8.06657 0.221028 10499745
126 1 349957 |6 Integer 40,40 10 |13998320 16 880 8.12841 0.28287 13999326
127 1 349957 |6 Integer 50,50 10 |17497500 16 880 8.19031 (.344763 17458907
128 1 349957 |6 Integer 60,60 10 |20997480 16 880 8.25035 0.404812 20998488
129 1 349957 |6 Integer 70,70 10 |24457060 16 880 8.30927 0.463729 24498069
130 1 349957 |6 Integer 80,80 10 |27996640 16 880 8.36911 0.523564 27997650
131 1 348957 |6 Integer 190,90 10 |31496220 16 880 8.43002 0.584481 31497231
132 1 349957 |6 Integer  ]100,100 10 |34995800 16 880 8.51307 0.66753 34996812
133 1 3355 4 Integer 10,0 10 |0 16 880 8.59222 0.0421666  |1013

134 1 3355 4 Integer 10,10 10 |33560 16 880 8.65274 0.102689 34574
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135 1 3355 4 Integer 120,20 10 |67120 16 |880 8.71225 0.162194 68135

136 1 3355 4 Integer 130,30 10 100680 16 |880 8.77154 0.221485 101696

137 1 3355 4 Integer 140,40 10 134240 16 |880 8.8317 0.28165 135257

138 1 3355 - Integer 150,50 10 1167800 16 |880 8.89132 0.341271 168818

139 1 3355 4 Integer 160,60 10 |201360 16 1880 8.95097 0.400919 202379

140 1 3355 4 Integer 170,70 10 234920 16 880 9.01072 0.460663 235940

141 1 3355 4 Integer 180,80 10 |268480 16 |880 9.07167 0.52162 269501

142 1 3355 4 Integer 190,90 10 1302040 16 |380 9.13225 0.582194 303062

143 1 3355 4 Integer  1100,100 10 1335600 16 |380 9.19222 0.642163 336623

144 1 5176 4 Integer 10,0 10 10 16 |880 9.27175 00430217 |1024

145 1 5176 4 Integer 110,10 10 [51770 16 |880 9.33211 0.103383 52795

146 1 5176 4 Integer 120,20 10 1103540 16 |880 9.39189 0.163165 104566

147 1 5176 4 Integer 130,30 10 155310 16 |880 9.45294 0.224214 156337

148 1 5176 4 Integer 140,40 10 [207080 16 |880 9.51673 0.288002 208108

149 1 5176 4 Integer 150,50 10 1258850 16 880 957818 0.349457 259879

150 1 5176 - Integer 160,60 10 |310620 16 880 9.63898 0.41025 311650

151 1 5176 4 Integer 170,70 10 |362390 16 880 9.69981 0.471088 363421

152 1 5176 4 Integer 180,80 10 414160 16 880 9.75968 0.530951 415192

153 1 5176 4 Integer 190,90 10 |465930 16 880 9.82094 0.592218 466963

154 1 5176 4 Integer  1100,100 10 |517700 16 |880 9.88018 0.651459 518734

155 2 428789 |6 Integer 10,00 10 |0 16 880 0.0441076 0.0441076  |1035

156 2 428789 |6 Integer  110,10,10 10 [1838604353110 16 880 0.105054 0.043103 1838604354146
157 2 428789 |6 Integer  120,20,20 10 [3677208706220 16 |880 0.166519 00419876 3677208707257
158 2 428789 |6 Integer  130,30,30 10 5515813059330 16 |3880 0.227901 00435533 5515813060368
159 2 428789 |6 Integer  140,40,40 10 7354417412440 16 |880 0.289236 00430312 7354417413479
160 2 428789 |6 Integer  150,50,50 10 [9193021765550 16 880 0.354612 0.0475848  19193021766590
161 2 428789 |6 Integer  160,60,60 10 |11031626118660 |16 880 0.415803 00426913 |11031626119701
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162 2 428789 |6 Integer  170,70,70 10 |12870230471770 |16 880 0.476033 0.0424318  |12870230472812
163 2 428789 |6 Integer  180,80,80 10 |14708834824880 |16 880 0.539915 00446285  |14708834825923
164 2 428789 |6 Integer  190,90,90 10 |16547439177990 |16 880 0.598797 0.0420065  |16547439179034
165 2 428789 |6 Integer  ]100,100,100 10 [18386043531100 |16 880 0.661031 00429154  |18386043532145
166 2 46559 |5 Integer  10,0,0 10 |0 16 880 0.740338 0.0425661 1046

167 2 46559 |5 Integer  110,10,10 10 |21677870410 16 880 0.800817 00420545  |21677871457
168 2 46558 |5 Integer  120,20,20 10 43355740820 16 880 0.861121 00417229 43355741368
169 2 46559 |5 Integer  130,30,30 10 65033611230 16 880 0.523402 00438333 165033612279
170 2 46559 |5 Integer  140,40,40 10 |86711481640 16 880 0.984989 00434577  |86711482690
171 2 46559 |5 Integer  150,50,50 10 108389352050 16 880 1.04575 00421009 108389353101
172 2 46558 |5 Integer  160,60,60 10 130067222460 16 880 110715 00429367 130067223512
173 2 46559 |5 Integer  170,70,70 10 151745092870 16 880 11678 00428161  |151745093923
174 2 46559 |5 Integer  180,80,80 10 173422963280 16 880 1.22875 00423033  |173422964334
175 2 46559 |5 Integer  190,90,90 10 195100833690 16 880 1.29122 0.0440004 195100834745
176 2 46559 |5 Integer  ]100,100,100 10 |216778704100 16 880 135451 00452726  |216778705156
177 2 465 3 Integer  10,0,0 10 |0 16 880 14363 0.0459135 1057

178 2 465 3 Integer  110,10,10 10 ]2166910 16 880 149797 00437164 12167968

179 2 465 3 Integer  120,20,20 10 [4333820 16 880 155858 00431428 14334879

180 2 465 3 Integer  130,30,30 10 |6500730 16 880 162017 00431166 6501790

181 2 465 3 Integer  140,40,40 10 |8667640 16 880 168039 00429154 18668701

182 2 465 3 Integer  150,50,50 10 10834550 16 880 174334 0.0434506 10835612

183 2 465 3 Integer  160,60,60 10 13001460 16 880 1.80406 0.042504 13002523

184 2 465 3 Integer  170,70,70 10 15168370 16 880 1.86656 00430919 15169434

185 2 465 3 Integer  180,80,80 10 17335280 16 880 19279 0.0430677 17336345

186 2 465 3 Integer  190,90,90 10 19502190 16 880 198912 0.0423267 19503256

187 2 465 3 Integer  1100,100,100 10 21669100 16 880 2.04958 00426929 21670167

188 2 2344 4 Integer 10,00 10 |0 16 880 2.12973 0.0430529 1068

189 2 2344 4 Integer  ]10,10,10 10 [54966810 16 880 2.19429 0.0457189  |54967879
190 2 2344 4 Integer  ]20,20,20 10 |109933620 16 880 2.25771 0.0450321  |109934690
191 2 2344 4 Integer  ]30,30,30 10 |164500430 16 880 2.31875 0.0440309 164901501
192 2 2344 - Integer  |40,40,40 10 [219867240 16 880 2.38517 0.0464074 1219868312
193 2 2344 4 Integer  |50,50,50 10 |274834050 16 880 2.44586 0.0423808  |274835123
194 2 2344 4 Integer  |60,60,60 10  |329800860 16 880 2.50716 0.0426342 1329801934
195 2 2344 4 Integer  |70,70,70 10 [384767670 16 880 2.56812 0.0426227  |384768745
196 2 2344 - Integer  |80,80,80 10 |439734480 16 880 2.62916 0.0430267  |439735556
197 2 2344 4 Integer  ]90,90,90 10 |494701290 16 880 2.69086 0.0437434 494702367
198 2 2344 4 Integer  ]100,100,100 10 |549668100 16 880 2.75222 0.0435817  |549669178
199 2 452 3 Integer 10,00 10 |0 16 880 2.83211 0.0429639 1079

200 2 452 3 Integer  ]10,10,10 10 2047570 16 880 2.89289 0.043128 2048650

201 2 452 3 Integer  ]20,20,20 10 [4095140 16 880 2.95303 0.0424084 14096221

202 2 452 3 Integer  130,30,30 10 [6142710 16 880 3.01407 0.0440304 16143792

203 2 452 3 Integer  |40,40,40 10 [8190280 16 880 3.07554 0.0436273 8191363

204 2 452 3 Integer  |50,50,50 10 10237850 16 880 3.13663 0.0436876  |10238934
205 2 452 3 Integer  |60,60,60 10 12285420 16 880 3.19853 0.0432258  |12286505
206 2 452 3 Integer  |70,70,70 10 [14332990 16 880 3.25901 0.0423452  |14334076
207 2 452 3 Integer  |80,80,80 10 |16380560 16 880 3.32035 0.043213 16381647
208 2 452 3 Integer  |90,90,90 10 [18428130 16 880 3.38022 0.0422503  |18429218
209 2 452 3 Integer  ]100,100,100 10 20475700 16 880 3.44208 0.0430983  |20476788
210 2 3453 4 Integer 10,00 10 |0 16 880 3.51887 0.0420291  |1090

211 2 3453 4 Integer  ]10,10,10 10 [119266630 16 880 3.57924 0.0420316  |119267721
212 2 3453 - Integer  120,20,20 10 |238533260 16 880 3.65315 0.0440111 238534352
213 2 3453 4 Integer  |30,30,30 10 [357799830 16 880 3.71481 0.0430008  |357800983
214 2 3453 4 Integer  ]40,40,40 10 |477066520 16 880 3.77867 0.0439007  [477067614
215 2 3453 4 Integer  |50,50,50 10 |596333150 16 880 3.83923 0.0427734 1596334245
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216 2 3453 4 Integer  [60,60,60 10 |715559780 16 |880 3.90062 0.043766 715600876
217 2 3453 4 Integer  170,70,70 10 1834866410 16 |880 3.96219 00441261  |B34867507
218 2 3453 - Integer  180,80,80 10 1954133040 16 |880 4.02594 0.0461676 954134138
219 2 3453 4 Integer  90,90,90 10 ]1073399670 16 |880 4.08848 0.0436872  |1073400769
220 2 3453 4 Integer 100,100,100 10 [1192666300 16 |880 4.14599 00434179 1192667400
221 2 15864 |5 Integer 10,00 10 10 16 |880 4.22844 00420311  [1101

222 2 15964 |5 Integer  ]10,10,10 10 2548652610 16 |880 4.28839 0.0420311  |2548653712
223 2 15964 |5 Integer  {20,20,20 10 15097305220 16 |880 4.35082 0.0433744  |5097306323
224 2 15964 |5 Integer  {30,30,30 10 [7645557830 16 |880 44122 00430091  |7645958934
225 2 15864 |5 Integer  140,40,40 10 |10194610440 16 |880 4.47604 0.0446096  [10194611545
226 2 15964 |5 Integer  150,50,50 10 ]12743263050 16 |880 453694 00431272 [12743264156
227 2 15964 |5 Integer  {60,60,60 10 15291915660 16 |880 4.59925 00440276  |15291916767
228 2 15964 |5 Integer  {70,70,70 10 |17840568270 16 |880 4.66044 00426551  |17840569378
229 2 15864 |5 Integer  180,80,80 10 120389220880 16 |880 477113 0.0456927  |20389221989
230 2 15964 |5 Integer  190,90,90 10 ]22937873490 16 |880 4.83357 0.0439417  |22937874600
231 2 15964 |5 Integer 100,100,100 10 25486526100 16 |880 4.89543 00439515  |25486527211
232 2 465 3 Integer  {0,00 10 |0 16 |880 497549 00437119  |1112

233 2 465 3 Integer  110,10,10 10 2166910 16 |880 5.03822 0.0444253  |2168023

234 2 465 3 Integer  120,20,20 10 14333820 16 880 5.10065 0.0442053  [4334934

235 2 465 3 Integer  {30,30,30 10 6500730 16 |880 5.16352 0.0447183  |6501845

236 2 465 3 Integer  [40,40,40 10 [8667640 16 |880 5.22472 00432243  |8668756

237 2 465 3 Integer  150,50,50 10 110834550 16 |880 5.28602 0.0430714  |10835667
238 2 465 2 Integer  |60,60,60 10 ]13001460 16 |880 5.34753 0.0439766  |13002578
239 2 465 3 Integer  [70,70,70 10  |15168370 16 |880 5.40833 0.0439766  [15169489
240 2 465 3 Integer  [80,80,80 10 |17335280 16 |880 547374 00448991 17336400
241 2 465 3 Integer  190,90,90 10 119502180 16 |880 5.53561 0.0438563  |19503311
242 2 465 3 Integer  ]100,100,100 10 21669100 16 880 5.59959 0.0450744  |21670222
243 2 2344 4 Integer 10,00 10 |0 16 880 5.68061 0.0450337  |1123

244 2 2344 4 Integer  110,10,10 10 |54966810 16 880 5.74206 0.0420307  |54967934
245 2 2344 4 Integer  ]20,20,20 10 |109933620 16 1880 5.86834 0.0436346 109934745
246 2 2344 4 Integer  130,30,30 10 |164500430 16 |880 5.92872 0.0431239  |164901556
247 2 2344 - Integer  140,40,40 10 |219867240 16 |880 5.99052 0.044032 219868367
248 2 2344 4 Integer  |50,50,50 10 |274834050 16 |880 6.05142 0.0428132  |274835178
249 2 2344 4 Integer  |60,60,60 10  |329800860 16 |880 6.11349 0.0451294  |329801989
250 2 2344 4 Integer  170,70,70 10 |384767670 16 880 6.17303 0.0417335  [384768800
251 2 2344 - Integer  |80,80,80 10  |439734480 16 880 6.23503 0.0437521 439735611
252 2 2344 4 Integer  190,90,90 10 |494701290 16 880 6.29521 0.0428686  [494702422
253 2 2344 4 Integer  |100,100,100 10  |549668100 16 880 6.35589 0.0427843  |549665233
254 2 452 3 Integer 10,00 10 |0 16 880 65.43766 0.0460239  |1134

255 2 452 3 Integer  |10,10,10 10 |2047570 16 880 6.50139 0.0454911  |2048705

256 2 452 3 Integer  120,20,20 10 [4095140 16 880 65.56288 0.0438765 4096276

257 2 452 3 Integer  |30,30,30 10 6142710 16 |880 6.62436 0.0436732  |6143847

258 2 452 3 Integer  ]40,40,40 10 |8190280 16 880 65.68476 0.0427475 8191418

259 2 452 3 Integer  150,50,50 10 10237850 16 880 65.74685 0.0440041 10238989
260 2 452 3 Integer  |60,60,60 10 |12285420 16 |880 6.80763 0.0430251  |12286560
261 2 452 3 Integer  |70,70,70 10 |14332990 16 |880 6.87017 0.0445563  [14334131
262 2 452 3 Integer  180,80,80 10 |16380560 16 880 7.00947 0.0613768 16381702
263 2 452 3 Integer  ]90,90,90 10 18428130 16 880 7.07496 0.0471611  |18429273
264 2 452 3 Integer  |100,100,100 10 |20475700 16 880 7.13615 0.042713 20476844
265 2 5467 4 Integer 10,00 10 |0 16 880 7.21518 0.0437906  [1145

266 2 5467 - Integer  |10,10,10 10 ]298935570 16 |880 7.27791 0.0446052  |298936716
267 2 5467 4 Integer  120,20,20 10 |597871140 16 |880 7.34395 0.0470294 1597872287
268 2 5467 4 Integer  130,30,30 10 |896806710 16 880 7.40299 0.0420275  [896807858
269 2 5467 4 Integer  |40,40,40 10 |1195742280 16 |880 7.46426 0.0430316  |1195743428
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270 2 5467 4 Integer  |50,50,50 10 |1494677850 16 880 7.52686 0.0440304  [1454675000
271 2 5467 - Integer  |60,60,60 10 |1793613420 16 880 7.58769 00428031  [1793614571
272 2 5467 4 Integer  |70,70,70 10 ]2092548990 16 880 7.64853 0.0434466  ]2092550142
273 2 5467 B Integer  |80,80,80 10 |2391484560 16 880 7.71036 0.0429589  [2391485713
274 2 5467 4 Integer  ]90,90,80 10 ]2690420130 16 880 7.77241 0.0440127  [2650421284
275 2 5467 4 Integer  1100,100,100 10 ]2989355700 16 880 7.83596 0.04545 2989356855
276 2 349957 |6 Integer 10,00 10 |0 16 880 7.91687 0.0438371  |1156

277 2 349957 |6 Integer  ]10,10,10 10 |1224702518070 16 880 7.97908 0.0441293  [1224702519227
278 2 349957 |6 Integer  ]20,20,20 10 |2445405036140 16 880 8.0578 0.0604015 2449405037298
279 2 349857 |6 Integer  130,30,30 10 |3674107554210 16 880 8.15587 0.0530349  [3674107555368
280 2 349957 |6 Integer  |40,40,40 10 |4898810072280 16 880 8.21948 0.0450312  |4898810073440
281 2 349957 |6 Integer  |50,50,50 10 6123512590350 16 880 8.27725 0.0424593  [6123512591511
282 2 349957 |6 Integer  |60,60,60 10 7348215108420 16 880 8.34025 0.0434413  [7348215109582
283 2 349957 |6 Integer  |70,70,70 10 8572917626490 16 880 8.40192 0.0434758  [8572917627653
284 2 349957 |6 Integer  |80,80,80 10 9797620144560 16 880 8.46558 0.0440907 5797620145724
285 2 349957 |6 Integer  ]90,90,90 10 |11022322662630 |16 880 8.52972 0.0460309  |11022322663795
286 2 349957 |6 Integer  ]100,100,100 10 |12247025180700 |16 880 8.59335 0.0466238  [12247025181866
287 2 3355 4 Integer 10,00 10 |0 16 880 8.71884 0.0596613  ]1167

288 2 3355 4 Integer  ]10,10,10 10 [112593810 16 880 8.78157 0.0447579  |112594978

289 2 3355 - Integer  ]20,20,20 10 |225187620 16 880 8.84291 0.0434712  [225188789

290 2 3355 4 Integer  |30,30,30 10 |337781430 16 880 8.90549 0.0442985  [337782600

291 2 3355 - Integer  ]40,40,40 10 ]450375240 16 880 8.96752 0.0438415  [450376411

292 2 3355 4 Integer  |50,50,50 10 |562969050 16 880 9.03031 0.0441733  |562970222

293 2 3355 4 Integer  |60,60,60 10 ]675562860 16 880 9.0925 0.0433366  |675564033

294 2 3355 4 Integer  170,70,70 10 |788156670 16 880 9.15405 0.0436396  [788157844

295 2 3355 4 Integer  |80,80,80 10 ]900750480 16 880 9.29877 0.0849473 900751655

296 2 3355 - Integer  ]90,90,90 10 |1013344290 16 880 9.36982 0.0520345  |1013345466
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297 2 3355 4 Integer 100,100,100 10 |1125938100 16 880 9.43767 0.0470314  |1125939277

298 2 5176 4 Integer 0,00 10 |0 16 880 9.51902 0.044218 1178

299 2 5176 4 Integer  {10,10,10 10 [267961530 16 |880 9.58164 0.0440243  ]267962708

300 2 5176 4 Integer  {20,20,20 10 [535923060 16 880 9.64542 0.0436104  [535524240

301 2 5176 4 Integer  |30,30,30 10 1803884590 16 880 9.70731 0.0435135  |803885771

302 2 5176 4 Integer  [40,40,40 10 |1071846120 16 880 9.77003 0.0437118  |1071847302

303 2 5176 4 Integer  |50,50,50 10 |1339807650 16 |880 9.8321 0.0435841  |1335808833

304 2 5176 4 Integer  |60,60,60 10 [1607769180 16 880 9.89626 0.0447899  |1607770364

305 2 5176 4 Integer  {70,70,70 10 [1875730710 16 |880 9.95832 00448317 1875731895

306 2 5176 4 Integer  {80,80,80 10 [2143692240 16 |880 10.0218 0.0439754 12143693426

307 2 5176 4 Integer  |90,90,90 10 |2411653770 16 |880 10.086 0.046019 2411654957

308 2 5176 4 Integer 100,100,100 10 ]2679615300 16 880 10.149 0.0440345 2679616488

309 3 428789 |6 Integer {0,000 10 |0 16 880 0.0452131 0.0452131  |1188

310 3 428789 |6 Integer  {10,10,10,10 10 |788373321965684 [16  |8B0 0.108059 0.108059 119788373321965
311 3 428789 |6 Integer  {20,20,20,20 10 [157674664393137 |16  |880 0.235609 0.235609 119257674664393
312 3 428789 |6 Integer  [30,30,30,30 10 [236511996589705 |16 880 0.312248 0.312248 119436511596589
313 3 428789 |6 Integer  [40,40,40,40 10 |315349328786273 |16  |8B0 0.383295 0.383295 119615349328786
314 3 428789 |6 Integer  {50,50,50,50 10 |394186660982842 [16  |880 045134 0.452341 119794186660982
315 3 428789 |6 Integer  |60,60,60,60 10 |47302399317941 |16  |880 0.515674 0.515674 119973023993179
316 3 428789 |6 Integer  {70,70,70,70 10 |551861325375979 |16 880 0.587722 0.587722 120151861325375
317 3 428789 |6 Integer  [80,80,80,80 10 [630698657572547 |16  |880 0.657768 0.657768 120330698657572
318 3 428789 |6 Integer  90,90,90,90 10 [709535989769116 |16  |880 0.723763 0.723763 120509535989769
319 3 428789 |6 Integer  {100,100,100,100 10 |788373321965684 |16  |8B0 0.792504 0.792504 120688373321965
320 3 46559 |5 Integer {0,000 10 |0 16 880 0.887566 0.0520341 1200

321 3 46559 |5 Integer  {10,10,10,10 10 |10092999684192 |16  |8B0 0.951608 0.116076 120200929996841
322 3 46559 |5 Integer  {20,20,20,20 10 ]20185999368384 |16  |8B0 101497 0.179435 120401858993683
323 3 46559 |5 Integer  [30,30,30,30 10 [30278999052576 |16  |880 1.08002 0.254485 120602789990525
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Original Index|EquationiD |InputDataX (DataSize|DataType |Range of Coefficent |Step |FunctionValue [KeySize |KeyValue |PerformanceTime |TimePerRange [Relndex
1 1 428789 ] Integer  [0,0 10 |0 16 656 0.109072 0.109072 657

2 1 428789 ] Integer  {10,10 10 [4287900 16 656 0.202134 0.202134 4288558
3 1 428789 ] Integer 120,20 10 [8575800 16 656 0.260172 0.260172 8576459
4 1 428789 6 Integer  [30,30 10 12863700 16 656 0.31721 0.31721 12864360,
5 1 428789 6 Integer 140,40 10 17151600 16 656 0.37725 0.37725 17152261
] 1 428789 b Integer  [50,50 10 121439500 16 656 0438291 0.438291 21440162
7 1 428789 6 Integer 160,60 10 25727400 16 656 0.531353 0.531353 25728063
8 1 428789 ] Integer  {70,70 10 130015300 16 656 0.604401 0.604401 30015964
9 1 428789 ] Integer  {80,80 10 34303200 16 656 0.679451 0.679451 34303865
10 1 428789 ] Integer  {90,90 10 138591100 16 656 0751499 0.751499 38591766,
1 1 428789 ] Integer  |100,100 10 42879000 16 656 0.821545 0.821545 42879667
12 1 46559 5 Integer  [0,0 10 |0 16 656 0.957636 0.0410278 668

13 1 46559 5 Integer  [10,10 10 [465600 16 656 1.01868 0.102068 466269
14 1 46559 5 Integer  {20,20 10 1931200 16 656 108072 0.16411 931870
15 1 46559 5 Integer  [30,30 10 [1396800 16 656 113976 0.223148 1397471
16 1 46559 5 Integer 140,40 10 [1862400 16 656 1.2038 0.28719 1863072
17 1 46559 5 Integer  {50,50 10 |2328000 16 656 1.26284 0.34623 2328673
18 1 46559 5 Integer  {60,60 10 |2793600 16 656 132088 0.404268 2794274
19 1 46559 5 Integer  {70,70 10 {3259200 16 656 138592 0.469312 3259875
20 1 46559 5 Integer 180,80 10 [3724800 16 656 1.448%6 0.532354 3725476
21 1 46559 5 Integer  {90,90 10 (4190400 16 656 151601 0.599399 4191077
2 i 46559 5 Integer 100,100 10 [4656000 16 656 158905 0.673447 4656678
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23 1 465 3 Integer  [0,0 10 [0 16 656 168912 0.0560372 679

24 1 465 3 Integer 10,10 10 14660 16 656 176217 0.129085 5340
25 1 465 3 Integer 120,20 10 19320 16 656 1.83021 0.197131 10001
26 1 465 3 Integer 130,30 10 113980 16 656 189426 0.261173 14662
2] it 465 3 Integer 140,40 10 18640 16 656 1.9543 0.321213 19323
28 1 465 3 Integer (50,50 10 {23300 16 656 201234 0.379252 23984
29 1 465 3 Integer (60,60 10 [27960 16 656 207137 0438291 28645
30 1 465 3 Integer  [70,70 10 [32620 16 656 213241 0499331 33306
31 1 465 3 Integer (80,80 10 [37280 16 656 219145 0558371 37967
32 1 465 3 Integer (90,90 10 [41940 16 656 2.27651 0.643427 42628
3 1 465 3 Integer {100,100 10 146600 16 656 2.34656 0.713474 47289
34 1 2344 4 Integer  [0,0 10 10 16 656 243261 0.0450297 690

35 1 2344 4 Integer 110,10 10 123450 16 656 249365 0.10607 24141
36 1 2344 4 Integer 120,20 10 146900 16 656 2.5617 0.174116 47592
37 1 2344 4 Integer (30,30 10 [70350 16 656 263675 0.249166 71043
38 1 2344 4 Integer (40,40 10 {93800 16 656 27098 0.322214 94494
39 1 2344 4 Integer  [50,50 10 [117250 16 656 271884 0391259 117945
40 1 2344 4 Integer (60,60 10 140700 16 656 285389 046631 141396
41 1 2344 4 Integer  [70,70 10 1164150 16 656 291594 0.528351 164847
42 1 2344 4 Integer 180,80 10 1187600 16 656 2.97598 0.588391 188298
43 1 2344 4 Integer 190,90 10 211050 16 656 3.03301 0.645428 211749
4 1 2344 4 Integer {100,100 10 1234500 16 656 3.08905 0.701466 235200
45 1 452 3 Integer  [0,0 10 10 16 656 3.1661 0.0420283 701

46 1 452 3 Integer 110,10 10 4530 16 656 3.22514 0.101067 5232
47 1 452 3 Integer 120,20 10 19060 16 656 3.29319 0.169113 9763
43 1 452 3 Integer 130,30 10 13590 16 656 3.35323 0.229153 14294
49 1 452 3 Integer 140,40 10 18120 16 656 3.41427 0.290193 18825
50 1 452 3 Integer 150,50 10 122650 16 656 3.47631 0352234 23356
51 1 452 3 Integer 160,60 10 27180 16 656 3.53935 0415275 27887
52 1 452 3 Integer 170,70 10 31710 16 656 3.6104 0486323 32418
53 1 452 3 Integer 180,80 10 136240 16 656 3.68445 0.560372 36949
54 1 452 3 Integer 190,90 10 140770 16 656 3.75749 0.633421 41480
55 1 452 3 Integer  |100,100 10 145300 16 656 3.82554 0.701466 46011
56 1 3453 4 Integer 10,0 10 |0 16 656 3.90959 0.0450297 712

57 1 3453 4 Integer 110,10 10 134540 16 656 3.97164 0.107071 35253
58 1 3453 4 Integer 120,20 10 169080 16 656 4.03568 0.171114 69794
59 1 3453 4 Integer 130,30 10 103620 16 656 4.09672 0.232156 104335
60 1 3453 4 Integer 140,40 10 |138160 16 656 4.15476 0.290193 138876
61 1 3453 4 Integer 150,50 10 [172700 16 656 4.2118 0347231 173417
62 1 3453 4 Integer 60,60 10 [207240 16 656 4.26983 0.405269 207958
63 1 3453 4 Integer 170,70 10 [241780 16 656 4.34689 0482321 242499
64 1 3453 4 Integer 180,80 10 276320 16 656 4.40893 0.544361 277040
65 1 3453 4 Integer 190,90 10 [310860 16 656 4.47297 0.608405 311581
66 1 3453 4 Integer  [100,100 10 [345400 16 656 4.53601 0.671446 346122
67 1 15964 5 Integer 10,0 10 |0 16 656 4.63608 0.0540355 723

68 1 15964 5 Integer 110,10 10 [159650 16 656 4.71313 0.131087 160374
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69 1 15964 5 Integer 120,20 10 (319300 16 656 478818 0.206136 320025
0 1 15964 5 Integer 130,30 10 [478950 16 656 485822 0.276183 479676
1 1 15964 5 Integer 40,40 10 638600 16 656 4.92227 0.340226 639327
n 1 15964 5 Integer  [50,50 10 798250 16 656 4.98031 0398264 798978
73 1 15964 5 Integer  [60,60 10 1957900 16 656 5.04035 0458304 958629
74 1 15964 5 Integer  |70,70 10 [1117550 16 656 5.09738 0515342 1118280
75 1 15964 5 Integer |80,80 10 [1277200 16 656 5.15842 0.576382 1277931
76 1 15964 5 Integer {90,950 10 |1436850 16 656 5.21746 0.635421 1437582
71 1 15964 5 Integer [100,100 10 1596500 16 656 5.2715 0.695461 1597233
78 1 465 3 Integer  [0,0 10 |0 16 656 5.35936 00450301 734

79 1 465 3 Integer ]10,10 10 [4660 16 656 54276 0.113075 5395
80 1 465 3 Integer 20,20 10 [9320 16 656 549164 0.177117 10056
81 1 465 3 Integer  [30,30 10 13980 16 636 5.56169 0.247164 14717
82 1 465 3 Integer (40,40 10 13640 16 656 5.63174 0317211 19378
83 1 465 3 Integer 150,50 10 (23300 16 656 5.70679 0.393261 24039
84 1 465 3 Integer 160,60 10 [27960 16 656 5.78784 0473314 28700
85 1 465 3 Integer |70,70 10 (32620 16 656 585889 0.544362 33361
86 1 465 3 Integer  [80,80 10 37280 16 656 5.92693 0.612407 38022
87 1 465 3 Integer  [90,90 10 41940 16 656 5.98697 0.672447 42683
38 1 465 3 Integer {100,100 10 [46600 16 656 6.05202 0.73749 47344
89 1 2344 4 Integer 10,0 10 |0 16 656 6.13207 0.0450301 745

90 1 2344 4 Integer 10,10 10 (23450 16 636 619411 0.107071 24196
91 1 2344 4 Integer  {20,20 10 46900 16 656 6,25915 0.172114 47647
92 1 2344 4 Integer 130,30 10 [70350 16 656 6.31919 0.232154 71098
93 1 2344 4 Integer 140,40 10 (93800 16 656 6.38424 0.297198 94549
94 1 2344 4 Integer 150,50 10 117250 16 656 6.45328 0.366243 118000
95 1 2344 4 Integer 160,60 10 140700 16 656 6.51432 0.427284 141451
96 1 2344 4 Integer 170,70 10 |164150 16 656 6.58437 0.49733 164902
97 1 2344 4 Integer 180,80 10 [187600 16 656 6.66042 0.573381 188353
98 1 2344 4 Integer 190,90 10 [211050 16 656 6.73747 0.650432 211804
99 1 2344 4 Integer 100,100 10 [234500 16 656 6.81052 0.72348 235255
100 1 452 3 Integer 10,0 10 o 16 656 6.89458 0.0450305 756

101 1 452 3 Integer 110,10 10 [4530 16 656 6.95362 0.104069 5287
102 1 452 3 Integer 120,20 10 [9060 16 656 7.01165 0.162108 9818
103 1 452 3 Integer 130,30 10 [13590 16 656 7.06969 0.220146 14349
104 1 452 3 Integer 140,40 10 18120 16 656 7.12973 0.280186 18830
105 1 452 3 Integer 150,50 10 22650 16 656 7.19077 0.341226 23411
106 1 452 3 Integer 60,60 10 127180 16 656 7.24981 0.400265 27942
107 1 452 3 Integer 170,70 10 [31710 16 656 7.30885 0.459305 32473
108 1 452 3 Integer 180,80 10 [36240 16 656 7.3789 0.529351 37004
109 1 452 3 Integer 190,90 10 [40770 16 656 749798 0.64843 41535
110 1 452 3 Integer 100,100 10 [45300 16 656 7.57002 0.720478 46066
111 1 5467 4 Integer 10,0 10 o 16 656 7.66209 0.0520349 767

112 1 5467 4 Integer 110,10 10 [54680 16 656 7.73814 0.128085 55448
113 1 5467 4 Integer 120,20 10 [109360 16 656 7.81118 0.201134 110129
114 1 5467 4 Integer 130,30 10 [164040 16 656 7.87923 0.269179 164810
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115 1 3467 4 Integer 140,40 10 218720 16 656 794127 0.33122 219491
116 1 5467 4 Integer 150,50 10 1273400 16 656 8.00031 0.390259 278172
17 1 5467 4 Integer 160,60 10 1328080 16 656 8.06335 0.453301 328853
118 1 5467 4 Integer 170,70 10 1382760 16 656 8.12139 0.51134 383534
119 1 5467 4 Integer 180,80 10 1437440 16 656 8.18043 0.570379 438215
120 1 5467 4 Integer 190,90 10 1492120 16 656 8.24047 0.630418 492896
121 1 5467 4 Integer 100,100 10 1546800 16 656 8.30051 0.690459 5475771
12 1 349957 |6 Integer 10,0 10 10 16 656 8.39938 0.0580385  |778

123 1 349957 |6 Integer 110,10 10 13499380 16 656 8.46162 0.12008 3500359
14 1 349957 |6 Integer 120,20 10 16999160 16 656 8.53467 0.193128 6999940
125 1 349957 |6 Integer 130,30 10 [10498740 16 656 8.60871 0.267177 10499521
126 1 349957 |6 Integer 140,40 10 [13998320 16 656 8.68476 0.343228 13999102
17 1 349957 |6 Integer 150,50 10 [17497900 16 656 8.76081 0.419278 17498683
128 1 349957 |6 Integer 60,60 10 [20997480 16 656 8.83286 0.491326 20998264
129 1 349957 |6 Integer  [70,70 10 124497060 16 656 8.89891 0.557371 24497845
130 1 349957 |6 Integer 180,80 10 [27996640 16 656 8.95895 0.617411 27997426
131 1 349957 |6 Integer 190,90 10 [31496220 16 656 9.01899 0.67745 31497007
132 1 349957 |6 Integer 110,100 10 134995800 16 656 9.08203 0.740491 34996588
133 1 3355 4 Integer 10,0 10 10 16 656 9.16308 0.043028 789

134 1 3355 4 Integer 10,10 10 133560 16 656 9.22412 0.104069 34350
135 1 3335 4 Integer 120,20 10 67120 16 656 9.28817 0.168112 67911
136 1 3355 4 Integer 130,30 10 |100680 16 656 9.3482 0.228151 101472
137 1 3355 4 Integer 140,40 10 134240 16 656 9.40925 0.289192 135033
138 1 3353 4 Integer 150,50 10 (167800 16 656 946829 0.348232 1685%
139 1 3353 4 Integer 160,60 10 [201360 16 656 9.53933 0.419278 202155
140 1 3353 4 Integer 170,70 10 (234920 16 656 9,61638 0496329 235716
141 1 3353 4 Integer 180,80 10 (265480 16 656 969143 0.571379 269277
14 1 3355 4 Integer 190,90 10 302040 16 636 9.76148 0.641426 (302838
143 1 335 4 Integer 100,100 10 |335600 16 656 9.83253 0.712473 336399
14 1 3176 4 Integer {00 1010 16 636 9.91658 0.0440288 (800

145 1 5176 4 Integer 110,10 10 51770 16 656 9.97662 0.10407 52571
14 1 3176 4 Integer 120,20 10 (103540 16 636 10.0347 0.162108 104342
147 1 3176 4 Integer 130,30 10 (155310 16 656 10.0937 0.221147 156113
148 1 5176 4 Integer 140,40 10 [207080 16 656 10.1547 0.282187 207884
149 1 3176 4 Integer 150,50 10 (258850 16 656 10.2148 0.342228 259655
150 1 5176 4 Integer 160,60 10 (310620 16 656 10.2743 0.402267 311426
151 1 5176 4 Integer 170,70 10 (36239 16 656 10.3369 0464309 363197
152 1 5176 4 Integer 130,80 10 (414160 16 656 10.3989 0.52633 414968
153 1 5176 4 Integer 190,90 10 (465930 16 656 10.4669 0.594394 466739
154 1 5176 4 Integer 100,100 10 [517700 16 656 10.542 0669444 518510
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Original Index|EquationID |InputDataX|DataSize|DataType|Range of Coefficient |Step FunctionValue |KeySize [KeyValue |PerformanceTime|TimePerRange (Relndex
1 1 428789 6 Integer 10,0 10 0 16 1136 0.0929376 0.0929376 1137

2 1 428789 6 Integer [10,10 10 4287900 16 1136 0.2283 0.2283 4289038
3 1 428789 6 Integer {20,20 10 8575800 16 1136 0.282679 0.282679 8576939
4 1 428789 6 Integer {30,30 10 12863700 16 1136 0.335354 0.335354 12864840
5 1 428789 6 Integer (40,40 10 17151600 16 1136 0.388017 0.388017 17152741
6 1 428789 6 Integer [50,50 10 21439500 16 1136 0.442535 0.442535 21440642
7 1 428789 6 Integer {60,60 10 25727400 16 1136 0.495873 0.495873 25728543
8 1 428789 6 Integer [70,70 10 30015300 16 1136 0.55058 0.55058 30016444
9 1 428789 6 Integer {80,80 10 34303200 16 1136 0.604901 0.604901 34304345
10 1 428789 6 Integer [90,90 10 38591100 16 1136 0.657781 0.657781 38592246
‘ 11 1 428789 6 Integer [100,100 10 42879000 16 1136 0.712144 0.712144 42880147
12 1 46559 5 Integer [0,0 10 0 16 1136 0.784443 0.0363917 1148

13 1 46559 5 Integer [10,10 10 465600 16 1136 0.837903 0.0898515 466749
14 1 46559 5 Integer 20,20 10 931200 16 1136 0.891004 0.142952 932350
15 1 46559 5 Integer {30,30 10 1396800 16 1136 0.94434 0.196288 1397951
16 1 46559 5 Integer (40,40 10 1862400 16 1136 0.997326 0.249275 1863552
17 1 46559 5 Integer [50,50 10 2328000 16 1136 1.05245 0.304395 2329153
18 1 46559 5 Integer  [60,60 10 2793600 16 1136 1.1057 0.357648 2794754
19 1 46559 5 Integer [70,70 10 3259200 16 1136 1.15865 0.410598 3260355
20 1 46559 5 Integer [80,80 10 3724800 16 1136 1.21295 0.464902 3725956
21 1 46559 5 Integer 90,90 10 4190400 16 1136 1.26635 0.5183 4191557
22 1 46559 5 Integer 1100,100 10 4656000 16 1136 1.31931 0.571256 4657158
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23 1 465 3 Integer 10,0 10 0 16 1136 1.38937 0.037723 1159
24 1 465 3 Integer 110,10 10 4660 16 1136 1.44255 0.0909058 5820
25 1 465 3 Integer 120,20 10 9320 16 1136 1.50243 0.15078 10481
26 1 465 3 Integer 130,30 10 13980 16 1136 1.56441 0.212766 15142
21 1 465 3 Integer 140,40 10 18640 16 1136 1.62652 0.274872 19803
28 1 465 3 Integer 150,50 10 23300 16 1136 1.67955 0327903 24464
29 1 465 3 Integer 60,60 10 27960 16 1136 1.73567 0.384029 29125
30 1 465 3 Integer 170,70 10 32620 16 1136 1.78951 0437864 33786
31 1 465 3 Integer {80,80 10 37280 16 1136 1.84346 0.491815 38447
32 1 465 3 Integer 190,90 10 41940 16 1136 1.89904 0.547399 43108
33 1 465 3 Integer 100,100 10 46600 16 1136 1.95216 0.600512 47769
34 1 2344 4 Integer {0,0 10 0 16 1136 2.02241 0.0379147 1170
35 1 2344 4 Integer |10,10 10 23450 16 1136 2.07595 0.0914477 24621
36 1 2344 4 Integer {20,20 10 46900 16 1136 213189 0.147396 43072
37 1 2344 4 Integer {30,30 10 70350 16 1136 2.18593 0.201432 71523
38 1 2344 4 Integer |40,40 10 93800 16 1136 2.23896 0.254458 94974
39 1 2344 4 Integer {50,50 10 117250 16 1136 2.29369 0.30919 118425
40 1 2344 4 Integer {60,60 10 140700 16 1136 2.34735 0.36285 141876
41 1 2344 4 Integer |70,70 10 164150 16 1136 240126 0416757 165327
42 1 2344 4 Integer {80,80 10 187600 16 1136 24555 0.471007 188778
Y] 1 2344 4 Integer {90,90 10 211050 16 1136 2.50875 0.524247 212229
44 1 2344 4 Integer 100,100 10 234500 16 1136 2.56239 0.5778%4 235680
45 1 452 3 Integer {0,0 10 0 16 1136 263251 0.0379349 1181
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46 1 452 3 Integer {10,10 10 4530 16 1136 2.68943 0.0948559 5712
47 1 452 3 Integer {20,20 10 9060 16 1136 27423 0.147732 10243
48 1 452 3 Integer {30,30 10 13590 16 1136 2.79585 0.201282 14774
49 1 452 3 Integer 40,40 10 18120 16 1136 2.84995 0.255375 19305
50 1 452 3 Integer {50,50 10 22650 16 1136 2.90383 0.309262 23836
51 1 452 3 Integer {60,60 10 27130 16 1136 2.95734 0.362768 28367
52 1 452 3 Integer {70,70 10 31710 16 1136 3.01005 0415474 32898
53 1 452 3 Integer (80,80 10 36240 16 1136 3.06364 0.469068 37429
54 1 452 3 Integer 190,90 10 40770 16 1136 3.11843 0523861 41960
55 1 452 3 Integer {100,100 10 45300 16 1136 3.17389 0.579319 46491
56 1 3453 4 Integer 10,0 10 0 16 1136 3.24482 0.0379994 1192
57 1 3453 4 Integer 110,10 10 34540 16 1136 3.29858 0.0917622 35733
58 1 3453 4 Integer {20,20 10 69080 16 1136 3.35182 (.144995 70274
59 1 3453 4 Integer {30,30 10 103620 16 1136 3.40679 0.199967 104815
60 1 3453 4 Integer 40,40 10 138160 16 1136 3.45996 0.253134 139356
b1 1 3453 4 Integer {50,50 10 172700 16 1136 3.51444 0.307618 173897
62 1 3453 4 Integer  {60,60 10 207240 16 1136 3.56804 0.361223 208438
63 1 3453 4 Integer {70,70 10 241780 16 1136 3.62289 0.416066 242979
o4 1 3453 4 Integer {80,80 10 276320 16 1136 3.67652 0.469699 277520
65 1 3453 4 Integer (90,90 10 310860 16 1136 3.73018 0.523355 312061
66 1 3453 4 Integer 100,100 10 345400 16 1136 3.78336 0.576544 346602
67 1 1594 |5 Integer (0,0 10 0 16 1136 3.85447 0.0374545 1203
63 1 1594 |5 Integer {10,10 10 159650 16 1136 3.90819 0.0911817 160854
69 1 15964 5 Integer |20,20 10 319300 16 1136 3.96217 0.145155 320505
70 I 15964 5 Integer {30,30 10 478950 16 1136 4.0166 0.199589 480156
71 1 15964 D Integer |40,40 10 638600 16 1136 4.0695 0.252492 639807
7 1 15964 5 Integer |50,50 10 798250 16 1136 4.12496 0.307948 799458
73 1 15964 5 Integer |60,60 10 957900 16 1136 4.20314 0.386126 959109
74 1 15964 5 Integer |70,70 10 1117550 16 1136 4.25761 0.440599 1118760
75 1 15964 5 Integer |80,80 10 1277200 16 1136 4.31282 0.495807 1278411
76 1 15964 5 Integer 90,90 10 1436850 16 1136 4.36659 0.549579 1438062
77 1 15964 5 Integer 100,100 10 1596500 16 1136 4.42073 0.603769 1597713
78 1 465 3 Integer {0,0 10 0 16 1136 4.49169 0.0381546 1214
7 1 465 3 Integer |10,10 10 4660 16 1136 4.54698 0.0934454 5875
80 1 465 3 Integer [20,20 10 9320 16 1136 4.6004 0.146861 10536
81 1 465 3 Integer {30,30 10 13980 16 1136 4.65555 0.202008 15197
82 1 465 3 Integer (40,40 10 18640 16 1136 4.7084 0.254867 19858
83 1 465 3 Integer {50,50 10 23300 16 1136 4.76433 0.310793 24519
34 1 465 3 Integer |60,60 10 27960 16 1136 4.81742 0.363882 29180
85 1 465 3 Integer |70,70 10 32620 16 1136 4.87126 0417724 33841
86 J 465 3 Integer [80,80 10 37280 16 1136 4.92595 0.472413 38502
87 1 465 3 Integer 90,90 10 41940 16 1136 4.93 0.526459 43163
88 1 465 3 Integer 100,100 10 46600 16 1136 5.03401 0.580469 47824
89 1 2344 4 Integer {0,0 10 0 16 1136 5.10421 0.0378348 1225
90 1 2344 4 Integer |10,10 10 23450 16 1136 5.15837 0.0929913 24676
91 1 2344 4 Integer |20,20 10 46900 16 1136 5.21302 0.146642 43127
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92 1 2344 4 Integer 130,30 10 70350 16 1136 5.26866 0.202284 71578
93 1 2344 4 Integer 40,40 10 93800 16 1136 5.32409 0.257714 95029
94 1 2344 4 Integer 150,50 10 117250 16 1136 5.3783 0.311925 118480
95 1 2344 4 Integer |60,60 10 140700 16 1136 543379 036741 141931
96 1 2344 4 Integer 170,70 10 164150 16 1136 548774 0.421369 165382
97 1 2344 4 Integer 180,80 10 187600 16 1136 5.54206 0.475685 188833
98 1 2344 4 Integer 190,90 10 211050 16 1136 5.59596 0.529583 212284
99 1 2344 4 Integer 100,100 10 234500 16 1136 5.64984 0.583467 25735
100 1 452 3 Integer 10,0 10 0 16 1136 5.72033 0.0375818 1236
101 1 452 3 Integer 110,10 10 4530 16 1136 577458 0.091827 5767
102 1 452 3 Integer 120,20 10 9060 16 1136 5.82977 0.14702 10298
103 1 452 3 Integer 130,30 10 13590 16 1136 5.88392 0.201171 14829
104 1 452 3 Integer 40,40 10 18120 16 1136 5.93947 0.256723 19360
105 1 452 3 Integer 150,50 10 22650 16 1136 5.99391 0.31116 23891
106 1 452 3 Integer 60,60 10 27180 16 1136 6.04803 0.36528 28422
107 1 452 3 Integer 170,70 10 31710 16 1136 6.10225 (.419495 32953
108 1 452 3 Integer 180,80 10 36240 16 1136 6.15631 0473562 37484
109 1 452 3 Integer 190,90 10 40770 16 1136 6.21052 0.52777 42015
110 1 452 3 Integer 100,100 10 45300 16 1136 6.2668 (.584046 46546
1 1 5467 4 Integer 10,0 10 0 16 1136 6.3374 0.0383844 1247
112 1 5467 4 Integer 110,10 10 54680 16 1136 6.39349 (.0944802 55928
113 1 5467 4 Integer 120,20 10 109360 16 1136 6.44795 0.148931 110609
114 1 5467 4 Integer 130,30 10 164040 16 1136 6.50244 0.203429 165290
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115 1 5467 4 Integer 140,40 10 218720 16 1136 6.55602 0.257009 219971
116 1 5467 4 Integer 150,50 10 273400 16 1136 6.61287 0.313855 274652
117 1 5467 4 Integer 160,60 10 328080 16 1136 6.67571 0.3767 329333
118 1 5467 4 Integer 170,70 10 382760 16 1136 6.73568 0.43667 384014
119 1 5467 4 Integer 180,80 10 437440 16 1136 6.79188 0.492869 438695
120 1 5467 4 Integer {90,90 10 492120 16 1136 6.84568 0.546663 493376
121 1 5467 4 Integer 100,100 10 546800 16 1136 6.90084 0.601828 548057
122 1 349957 |6 Integer 0,0 10 0 16 1136 6.97326 0.039983 1258

123 1 349957 |6 Integer 110,10 10 3499580 16 1136 7.02695 0.0936773 3500839
124 1 349957 |6 Integer 120,20 10 6999160 16 1136 7.08162 0.14835 7000420
125 4 349957 |6 Integer 130,30 10 10498740 16 1136 7.13607 0.202791 10500001
126 1 349957 |6 Integer 140,40 10 13998320 16 1136 7.19092 0.257647 13999582
127 1 349957 |6 Integer 150,50 10 17497500 16 1136 7.24452 0311244 17499163
128 1 349957 |6 Integer [60,60 10 20997480 16 1136 7.30007 0.366793 20998744
129 1 349957 |6 Integer 170,70 10 24497060 16 1136 7.35573 0422457 24498325
130 1 349957 |6 Integer 180,80 10 27996640 16 1136 741211 0.47883 27997906
131 1 343957 |6 Integer 190,90 10 31496220 16 1136 746747 0534198 31497487
132 1 349957 |6 Integer |100,100 10 34995800 16 1136 7.52096 0.587687 34997068
133 1 3355 4 Integer 10,0 10 0 16 1136 7.59194 0.0384119 1269

134 1 3355 4 Integer 110,10 10 33560 16 1136 7.64655 0.0930233 34830
135 1 3355 4 Integer 120,20 10 67120 16 1136 7.70136 0.147831 68391
136 I 3355 4 Integer [30,30 10 100680 16 1136 7.75583 0.202302 101952
137 i 3355 4 Integer [40,40 10 134240 16 1136 7.80998 0.25645 135513
138 1 3355 4 Integer {50,50 10 167800 16 1136 7.86561 0.312087 169074
139 1 3355 4 Integer {60,60 10 201360 16 1136 791896 0.365433 202635
140 1 3355 4 Integer 170,70 10 234920 16 1136 1.97476 0421233 236196
141 1 3355 4 Integer 180,80 10 268430 16 1136 8.02891 0475381 269757
142 1 3355 4 Integer {90,90 10 302040 16 1136 8.0841 0.53057 303318
143 1 3355 4 Integer |100,100 10 335600 16 1136 8.13884 0.585317 336879
144 1 5176 4 Integer 10,0 10 0 16 1136 8.20944 0.0384562 1280

145 1 5176 4 Integer {10,10 10 51770 16 1136 8.2654 0.0944133 53051
146 1 5176 4 Integer {20,20 10 103540 16 1136 8.32023 (.149246 104822
147 1 5176 4 Integer 130,30 10 155310 16 1136 8.37793 0.206942 156593
148 1 5176 4 Integer 140,40 10 207080 16 1136 843212 0.261141 203364
149 1 5176 4 Integer {50,50 10 258850 16 1136 8.48669 0.315708 260135
150 1 5176 4 Integer {60,60 10 310620 16 1136 8.54226 037128 311906
151 1 5176 4 Integer 170,70 10 362390 16 1136 8.59598 0424992 363677
152 1 5176 4 Integer 180,80 10 414160 16 1136 8.6525 048152 415448
153 1 5176 4 Integer {90,90 10 465930 16 1136 8.70709 0.536106 467219
154 1 5176 4 Integer {100,100 10 517700 16 1136 8.76274 0.59176 518990
155 1 428789 |6 Integer 10,0 10 0 32 1184 0.0394268 0.0394268 1339

156 1 428789 |6 Integer 110,10 10 4287900 32 1184 0.0936084 0.0936084 4289240
157 1 428789 |6 Integer {20,20 10 8575800 32 1184 0.149158 0.149158 8577141
158 1 428789 |6 Integer {30,30 10 12863700 32 1184 0.203856 0.203856 12865042
159 1 428789 |6 Integer 140,40 10 17151600 32 1134 0.258395 0.258395 17152943
160 1 428789 |6 Integer 150,50 10 21439500 32 1184 0.313449 0313449 21440344
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161 1 428789 |6 Integer 160,60 10 25727400 32 1184 0.37081 0.37081 25728745
162 1 428783 |6 Integer 170,70 10 30015300 32 1184 0426767 0.426767 30016646
163 1 428783 |6 Integer 180,30 10 34303200 32 1184 0.481376 0.481376 34304547
164 1 428789 |6 Integer 190,90 10 38591100 32 1184 0.537284 0.537284 38592448
165 1 428789 |6 Integer 100,100 10 42879000 32 1184 0.59214 0.59214 42880349
166 1 46559 5 Integer 10,0 10 0 32 1184 0.663236 0.0387329 1350

167 1 46559 5 Integer 110,10 10 465600 32 1184 0.830162 0.205659 466951
168 1 46559 5 Integer 120,20 10 931200 32 1184 0.981305 0.356803 932552
169 1 46559 5 Integer 130,30 10 1396800 32 1184 1.03709 0.412587 1398153
170 1 46559 5 Integer 140,40 10 1862400 32 1184 1.09228 0.467781 1863754
171 1 46559 5 Integer 150,50 10 2328000 32 1184 1.14608 0.521582 2329355
172 1 46359 5 Integer 60,60 10 2793600 32 1184 1.20123 0.576729 2794956
173 1 46559 5 Integer 170,70 10 3259200 32 1184 1.25735 0.632846 3260557
174 1 46559 5 Integer 180,80 10 3724800 32 1184 1.31188 0.687373 3726158
175 1 46359 5 Integer 190,90 10 4190400 32 1184 13694 0.744301 4191759
176 il 46559 5 Integer 100,100 10 4656000 32 1184 142477 0.800267 4657360
177 1 465 3 Integer 10,0 10 0 32 1184 1.49641 0.0393701 1361

178 1 465 3 Integer 10,10 10 4660 32 1134 1.55103 0.0944881 6022

179 1 465 3 Integer 120,20 10 9320 32 1184 1.60736 0.150822 10683
180 1 465 3 Integer 130,30 10 13930 32 1184 1.66279 0.206252 15344
181 1 465 3 Integer 140,40 10 18640 32 1184 1.72228 0.265742 20005
182 1 465 3 Integer 150,50 10 23300 32 1184 1.77818 0.321646 24666
183 1 465 3 Integer 60,60 10 27960 32 1184 1.83327 0.376735 29327
184 1 465 3 Integer 70,70 10 32620 32 1184 1.88914 0.432606 33988
185 ! 465 3 Integer 180,80 10 37280 32 1134 1.94358 0.487045 38649
186 1 465 3 Integer 190,90 10 41940 32 1184 199936 0.542824 43310
187 1 465 3 Integer {100,100 10 46600 32 1184 205327 0.596729 47971
188 1 2344 4 Integer (0,0 10 0 32 1134 21251 0.0350022 1372
189 1 2344 4 Integer 10,10 10 23450 32 1184 2.17876 0.0926595 24823
190 1 2344 4 Integer 120,20 10 46900 32 1134 2.23652 0.150417 43274
191 1 2344 4 Integer 130,30 10 70350 32 1184 2.29117 0.205068 71725
192 1 2344 4 Integer 140,40 10 93800 32 1134 2.34676 0.260659 95176
193 i 2344 4 Integer 150,50 10 117250 32 1184 240226 0.316154 118627
194 1 2344 4 Integer 160,60 10 140700 32 1184 245762 0.37152 142078
195 1 2344 4 Integer |70,70 10 164150 32 1134 251358 0427472 165529
196 1 2344 4 Integer 180,80 10 187600 32 1184 2.56902 0.482916 188980
197 1 2344 4 Integer 190,90 10 211050 32 1134 262504 0.538935 212431
198 1 2344 4 Integer {100,100 10 234500 32 1134 268176 0.595661 235882
199 1 452 3 Integer 10,0 10 0 32 1184 275309 0.0387872 1383
200 1 452 3 Integer 10,10 10 4530 32 1134 2.80834 00940361 5914
201 1 452 3 Integer 120,20 10 9060 32 1184 2.86628 0.151978 10445
202 1 452 3 Integer 130,30 10 13590 32 1134 292212 0.207818 14976
203 1 452 3 Integer 40,40 10 18120 32 1134 293543 0.271122 19507
204 1 452 3 Integer 150,50 10 22650 32 1184 3.04647 0.332165 24038
205 1 452 3 Integer 160,60 10 27180 32 1134 3.105 0.390696 28569
206 1 452 3 Integer [70,70 10 31710 32 1184 3.16038 0.446073 33100
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207 1 452 3 Integer (80,80 10 36240 32 1184 3.21507 0.500761 37631
208 1 452 3 Integer 90,90 10 40770 3 1184 3.27099 0.556685 42162
29 1 452 3 Integer 100,100 10 45300 3 1184 3.32601 0.6117 46693
pall) 1 3453 4 Integer 10,0 10 0 3 1184 [3.39726 0.0396115 1394
pall 1 3453 4 Integer 10,10 10 34540 3 1184 34503 0.0945767 35935
22 1 3453 4 Integer (20,20 10 69080 32 1184 3.50798 0.150334 0476
213 1 3453 4 Integer (30,30 10 103620 3 1184 3.56235 0.204699 105017
24 1 3453 4 Integer (40,40 10 138160 3 1184 3.61877 0.261113 139558
25 1 3453 4 Integer 50,50 10 172700 3 1184 3.674%9 0.317342 174099
216 1 3453 4 Integer  |60,60 10 207240 3 1184 3.72982 0.372174 208640
a7 1 3453 4 Integer (70,70 10 21780 3 1184 3.78769 0.430036 243181
28 1 3453 4 Integer (80,80 10 276320 32 1184 3.84437 0.486724 2712
29 1 3453 4 Integer (90,90 10 310860 3 1184 3.90068 0.54303 312263
20 1 3453 4 Integer {100,100 10 345400 3 1184 3.95641 (,598765 346304
21 1 1594  [5 Integer {0,0 10 0 3 1184 4.0276 0.0391579 1405
2 1 1594 |5 Integer 10,10 10 159650 32 1184 4.08315 0.0947147 161056
23 1 15964 |5 Integer (20,20 10 319300 2 1184 4.14078 0.152343 320707
24 1 1594 |5 Integer (30,30 10 478950 32 1184 419737 0.208933 480358
25 1 1594 [5 Integer (40,40 10 638600 3 1184 4.2521 0.264257 640009
26 1 1594 [5 Integer {50,50 10 798250 3 1184 4.30906 0.320618 799660
27 1 1594 [5 Integer 160,60 10 957900 3 1184 4.36584 0377399 959311
28 1 1594 [5 Integer |70,70 10 1117550 3 1184 442155 0.433107 1118962
29 1 15964 |5 Integer {80,80 10 12771200 3 1184 448139 0.492935 1278613
D. Results of using Different Key Sizes
Original Index|EquationID |InputDataX|DataSize | DataType|Range of Coefficient [Step |FunctionValue |KeySize |KeyValue|PerformanceTime |TimePerRange [Reindex
1 1 428789 6 Integer |0,0 10 0 16 544 0.0933243 0.0933243 545
2 1 428789 6 Integer [10,10 10 4287500 16 544 0.216607 0.216607 4288446
3 1 428789 6 Integer (20,20 10 8575800 16 544 0.270636 0.270636 8576347
4 1 428789 6 Integer 30,30 10 12863700 16 544 0.324524 0.324524 12864248
5 1 428789 6 Integer [40,40 10 17151600 16 544 0.377232 0.377232 17152149
6 1 428789 6 Integer [50,50 10 21439500 16 544 0.428988 0.428988 21440050
7 1 428789 6 Integer 60,60 10 25727400 16 544 0.480707 0.480707 25727951
8 1 428789 6 Integer 70,70 10 30015300 16 544 0.536841 0.536841 30015852
9 1 428789 6 Integer [80,80 10 34303200 16 544 0.588856 0.588856 34303753
‘ 10 1 428789 6 Integer [90,90 10 38591100 16 544 0.640894 0.640894 38591654
11 1 428789 6 Integer 100,100 10 42879000 16 544 0.693511 0.693511 42879555
12 1 46559 5 Integer 10,0 10 0 16 544 0.76465 0.0358124 556
13 1 46559 5 Integer (10,10 10 465600 16 544 0.818709 0.0898717 466157
14 b 46559 5 Integer 20,20 10 931200 16 544 0.870895 0.142057 931758
15 1 46559 5 Integer [30,30 10 1396800 16 544 0.923928 0.195091 1397359
16 1 46559 5 Integer [40,40 10 1862400 16 544 0.975389 0.246552 1862960
17 1 46559 5 Integer 50,50 10 2328000 16 544 1.02842 0.299586 2328561
18 1 46559 5 Integer [60,60 10 2793600 16 544 1.0795 0.350665 2794162
19 ¥ 46559 5 Integer [70,70 10 3259200 16 544 1.12754 0.398698 3259763
20 1 46559 9 Integer 80,80 10 3724800 16 544 1.17827 0.449434 3725364
21 1 46559 5 Integer 190,90 10 4190400 16 544 1.2294 0.500564 4190965
22 1 46559 5 Integer 100,100 10 4656000 16 544 1.27985 0.551017 4656566
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23 1 465 3 Integer 10,0 10 |0 16 544 1.34542 00350218 |67

% 1 465 3 Integer |10,10 10 [4660 16 54 1.39746 0.0870579  |5228
25 1 465 3 Integer {20,20 10 (9320 16 544 1.44949 0.139093 9889
26 1 465 3 Integer 130,30 10 [13980 16 544 1.49968 0.189278 14550
2] 1 465 3 Integer 40,40 10 [18640 16 544 1.55071 0.240312 19211
28 1 465 3 Integer {50,590 10 [23300 16 54 1.60274 0.292346 2872
29 1 465 3 Integer 60,60 10 127960 16 544 1.6538 (.343398 28533
30 1 465 3 Integer 70,70 10 132620 16 544 170472 (.394326 33194
31 1 465 3 Integer 180,80 10 37280 16 544 175776 0.447361 37855
32 1 465 3 Integer 190,90 10 [41940 16 54 180779 0.497394 42516
3 1 465 3 Integer {100,100 10 [46600 16 54 1.85883 (.548428 47177
34 1 2344 4 Integer 10,0 10 |0 16 544 1.92686 00360468  |578

35 1 2344 4 Integer |10,10 10 [23450 16 544 1.97928 0.0884718 124029
36 1 2344 4 Integer {20,20 10 [46900 16 54 2.03163 (.141821 47480
37 1 2344 4 Integer |30,30 10 [70350 16 544 2.08469 0.193873 70931
38 1 2344 4 Integer 40,40 10 (93800 16 544 213747 (.246654 94382
39 1 2344 4 Integer 150,50 10 [117250 16 544 2.18985 0.299038 117833
40 1 2344 4 Integer {60,60 10 [140700 16 54 220233 0.35152 141284
4 1 2344 4 Integer {70,70 10 [164150 16 54 2.2946 0.403783 164735
(Y] 1 2344 4 Integer {80,80 10 [187600 16 54 2.34784 0.457029 188186
4 1 2344 4 Integer 190,90 10 211050 16 54 2.39978 0.508968 211637
4 1 2344 4 Integer 100,100 10 (234500 16 54 24538 0.562986 235088
45 1 452 3 Integer 10,0 10 |0 16 544 2.52636 00392441 |589
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46 1 452 3 Integer [10,10 10 4530 16 5_44— 257916 0.0920397  |5120

47 1 452 3 Integer  {20,20 10 9060 16 544 263521 0.148097 9651

43 1 452 3 Integer [30,30 10 13590 16 544 268336 0.196243 14182
49 1 452 3 Integer 140,40 10 18120 16 544 2.7356 0.243485 18713
50 1 452 3 Integer 150,50 10 22650 16 544 2.7843 0.297187 23244
51 1 452 3 Integer (60,60 10 27180 16 544 283233 0.345217 207715
52 1 452 3 Integer {7070 10 31710 16 544 288112 0.394007 32306
53 1 452 3 Integer 180,80 10 36240 16 544 295248 0465358 36837
54 1 452 3 Integer 190,90 10 40770 16 544 3.00495 0.517837 41368
55 1 452 3 Integer 1100,100 10 45300 16 544 3.07452 0.5874 45899
56 1 3453 4 Integer 10,0 10 10 16 544 3.14405 0.0380581 600

57 1 3453 4 Integer [10,10 10 34540 16 544 3.19633 0.0903405 35141
58 1 3453 4 Integer 120,20 10 69080 16 544 3.24948 0.143434 69682
59 1 3453 4 Integer 130,30 10 103620 16 544 3.30205 0.196063 104223
60 1 3453 4 Integer 140,40 10 138160 16 544 3.35576 0.249766 138764
61 1 3453 4 Integer [50,50 10 172700 16 544 3.40871 0.302718 173305
62 1 3453 4 Integer [60,60 10 207240 16 544 3.46506 0.359068 207846
63 1 3453 4 Integer 170,70 10 241780 16 544 3.52052 041453 242387
64 1 3453 4 Integer 180,80 10 276320 16 544 3.57422 0.46823 276928
65 1 3453 4 Integer 190,90 10 310860 16 544 3.62757 0.521578 311469
66 1 3453 4 Integer {100,100 10 1345400 16 544 3.68195 0.575961 346010
67 1 15964 5 Integer 10,0 10 |0 16 544 3.80971 00369127  |611

68 1 15964 5 Integer 110,10 10 159650 16 544 3.86271 0.089907 160262
69 1 15964 5 Integer [20,20 10 319300 16 54 291459 0.14179 319913
70 1 15964 5 Integer {30,30 10 478950 16 544 3.96806 0.195257 479564
71 1 15964 5 Integer [40,40 10 638600 16 544 4.02025 0.247447 639215
72 1 15964 5 Integer [50,50 10 798250 16 544 407351 0.300712 798866
73 1 15964 5 Integer [60,60 10 957900 16 544 4.12707 0.354269 958517
74 1 15964 5 Integer [70,70 10 1117550 16 544 4.18145 0.408652 1118168
75 1 15964 5 Integer [80,80 10 1277200 16 544 4.2356 0.462797 1277819
76 1 15964 5 Integer 90,90 10 1436850 16 544 4.28915 0.516347 1437470
77 1 15964 5 Integer 100,100 10 1596500 16 544 4.34118 0.568381 1597121
78 1 465 3 Integer [0,0 10 0 16 544 441131 0.0390289 622

79 i 465 3 Integer [10,10 10 4660 16 544 4.46269 0.0904107 5283
80 1 465 3 Integer 20,20 10 9320 16 544 4.5144 0.142123 9944
81 1 465 3 Integer [30,30 10 13980 16 544 4.56506 0.196782 14605
82 1 465 3 Integer [40,40 10 18640 16 544 46281 0.255821 19266
83 1 465 3 Integer [50,50 10 23300 16 544 4.67917 0.306891 23927
84 1 465 3 Integer |60,60 10 27960 16 544 4.7282 0.355921 28588
85 1 465 3 Integer [70,70 10 32620 16 544 4.77779 0.405518 33249
86 1 465 3 Integer [80,80 10 37280 16 544 4.82872 0.456445 37910
87 1 465 3 Integer 90,90 10 41940 16 544 4.88076 0.50848 42571
88 1 465 3 Integer 100,100 10 46600 16 544 4.9323 0.560028 47232
89 1 2344 4 Integer {0,0 10 0 16 544 4.99835 0.0350238 633

90 1 2344 4 Integer [10,10 10 23450 16 544 5.05031 0.0869852 24084
91 1 2344 4 Integer 20,20 10 46900 16 544 5.10157 0.138248 47535
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92 1 B4 4 Integer |30,30 10 [70350 16 544 5.15298 0.189654 70986
9 1 234 4 Integer  |40,40 10 93800 16 544 5.20401 0.240687 94437
% 1 B4 4 Integer |50,50 10 (117250 16 544 5.2563 0.293172 117888
95 1 234 4 Integer  |60,60 10 (140700 16 54 5.30853 0.345206 141339
9 1 B4 4 Integer |70,70 10 [164150 16 544 5.36092 0.397551 164790
97 1 234 4 Integer {80,80 10 (187600 16 544 5.41295 0449625 188241
% 1 234 4 Integer 90,90 10 [211050 16 544 5.46443 0.501103 211692
99 1 B4 4 Integer 100,100 10 (234500 16 544 5.51646 0.553138 235143
100 1 452 3 Integer 0,0 10 |0 16 544 5.58651 0.0390244 (644
101 1 452 3 Integer |10,10 10 [4530 16 544 5.63831 0.0908249  [5175
102 1 452 3 Integer |20,20 10 [9060 16 544 5.69008 0.142595 9706
103 1 452 3 Integer |30,30 10 [13590 16 54 5.74412 0.196633 14237
104 1 452 3 Integer (40,40 10 |18120 16 544 5.79515 0.247665 18768
105 1 452 3 Integer  {50,50 10 |22650 16 544 5.84593 0.298451 23299
106 1 452 3 Integer (60,60 10 |27180 16 544 5.89453 0.347048 27830
107 1 452 3 Integer (70,70 10 [31710 16 544 3.94348 0.396001 32361
108 1 452 3 Integer  |80,80 10 36240 16 4 5.39239 0.44491 36892
109 1 452 3 Integer 90,90 10 40770 16 4 6.04113 0.493651 41423
110 1 452 3 Integer {100,100 10 45300 16 544 6.09017 0.542684 (45954
111 1 3467 4 Integer 0,0 10 |0 16 M 6.15714 0.037028 655
12 1 3467 4 Integer |10,10 10 54680 16 544 6.20917 0.0890629  [55336
113 1 3467 4 Integer |20,20 10 (109360 16 544 6.26184 0.14173 110017
114 1 5467 4 Integer  |30,30 10 (164040 16 54 6.31387 0.193764 164698
115 1 5467 4 Integer _ [40,40 10 [218720 16 544 6.36591 0.245799 219379
116 1 5467 4 Integer 50,50 10 273400 16 544 6.41794 0.297834 274060
117 1 5467 4 Integer |60,60 10 (328080 16 544 6.46939 0.349281 328741
118 1 5467 4 Integer 70,70 10 (382760 16 544 6.52143 0.401316 383422
119 1 5467 4 Integer 80,80 10 (437440 16 544 6.57336 0.453249 438103
120 1 5467 4 Integer 90,90 10 432120 16 544 6.6294 0.509287  [492784
121 1 5467 4 Integer {100,100 10 [546800 16 544 6.68343 0.563322 547465
122 1 349957 |6 Integer {0,0 10 o 16 544 6.75148 0.0370255 |66
123 1 349957 |6 Integer |10,10 10 [3499580 16 544 6.80437 0.0899164  [3500247
124 1 349957 [6 Integer {20,20 10 [6999160 16 544 6.85582 0.141364 6999828
125 1 349957 |6 Integer {30,30 10 (10498740 |16 544 6.90738 0.19293 10499409
126 1 349957 |6 Integer 40,40 10 [13998320 |16 544 6.9599 0.245446 13998990
127 1 349957 [6 Integer  [50,50 10 [17497900 |16 544 7.01351 0.299059 17498571
128 1 349957 |6 Integer |60,60 10 20997480 |16 544 7.06783 0.353375 20998152
129 1 349957 |6 Integer 70,70 10 [24497060 |16 544 7.12178 0.407324 24497733
130 1 349957 [6 Integer (80,80 10 [27996640 |16 544 7.17509 0.460642 27997314
131 1 349957 |6 Integer 90,90 10 (31496220 |16 54 7.22832 0.513865 31496895
132 1 349957 |6 Integer 100,100 10 34995800  [16 544 7.2849 0.57045 34996476
133 1 3355 4 Integer (0,0 10 o 16 544 7.35252 0.0360276 677
134 1 3355 4 Integer 10,10 10 [33560 16 544 7.40433 0.08784 34238
135 1 3355 4 Integer 20,20 10 [67120 16 544 745537 0.138873 67799
136 1 3355 4 Integer 30,30 10 [100680 16 544 7.50758 0.191087 101360
137 1 3355 4 Integer 40,40 10 (134240 16 544 7.56162 0.245124 134921
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138 1 3355 4 Integer  [50,50 10 1167800 16 544 7.61465 0.298159 168482
139 1 3355 4 Integer (60,60 10 201360 16 544 7.67669 0.360198 202043
140 1 3355 4 Integer  [70,70 10 234920 16 544 1.1917 0.412673 235604
141 1 3355 4 Integer (80,80 10 |268480 16 544 1.7842 0.467109 269165
142 1 3355 4 Integer 90,90 10 |302040 16 544 7.83748 0.520988 302726
143 1 3355 4 Integer {100,100 10 335600 16 544 7.8891 0.572607 336287
144 1 5176 4 Integer (0,0 0 10 16 544 7.95665 0.0366676 688
145 1 5176 4 Integer [10,10 10 |51770 16 544 8.00968 0.0897022 (52459
146 1 5176 4 Integer {20,20 10 103540 16 544 8.06265 0.142671 104230
147 1 5176 4 Integer [30,30 10 155310 16 544 8.11493 0.195002 156001
148 1 5176 4 Integer (40,40 10 1207080 16 544 8.16737 0.247393 07772
149 1 5176 4 Integer 150,50 10 |258850 16 544 8.21941 0.299428 259543
150 1 5176 4 Integer (60,60 10 310620 16 544 8.27344 0.353462 311314
151 1 5176 4 Integer [70,70 10 1362390 16 544 8.32548 0.405498 363085
152 1 5176 4 Integer (80,80 10 414160 16 544 8.37983 0.45985 414856
153 1 5176 4 Integer [90,90 10 1465930 16 544 8.43286 0.512884 466627
154 1 5176 4 Integer 100,100 10 517700 16 544 §.48519 0.565208 518398
155 1 301 3 String (0,0 10 10 16 352 00377822 00377822 507
156 1 301 3 String  [10,10 10 [3020 16 352 0.092715 0.092715 3528
157 1 301 3 String 120,20 10 |6040 16 352 (.146068 0.146068 6549
158 1 301 3 String ~ {30,30 10 9060 16 352 0.198442 0.198442 9570
159 1 301 3 String 40,40 10 12080 16 352 0.256502 0.256502 12591
160 1 301 3 String 150,50 10 15100 16 352 0.31454 0.31454 15612
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161 1 301 3 String 160,60 10 18120 16 352 0.369575 0.369575 18633
162 1 301 3 String  [70,70 10 [21140 16 352 0425613 0425613 21654
163 1 301 3 String 80,80 10 [24160 16 352 0.475891 0475891 24675
164 1 301 3 String 190,90 10 27180 16 352 0.529392 0.529392 27696
165 1 301 3 String {100,100 10 [30200 16 352 0.586429 0.586429 30717
166 1 233 3 String 10,0 10 |0 16 352 0.662479 0.0410274 518
167 1 233 3 String 10,10 10 2340 16 352 0.713514 0.0920619 2859
168 1 233 3 String  {20,20 10 [4680 16 352 0.766548 0.145097 5200
169 1 233 3 String 130,30 10 7020 16 352 0.828589 0.207138 7541
170 1 233 3 String  [40,40 10 9360 16 352 0.885627 0.264175 9882
171 1 233 3 String  [50,50 10 [11700 16 352 0.939664 0.318213 12223
172 1 233 3 String  [60,60 10 [14040 16 352 0.990697 0.369245 14564
173 1 233 3 String  |70,70 10 16380 16 352 1.05174 0.430285 16905
174 1 233 3 String 80,80 10 18720 16 352 1.11378 0.492326 19246
175 1 233 3 String 190,90 10 21060 16 352 1.17582 0.554369 21587
176 1 233 3 String ~ |100,100 10 23400 16 352 1.22485 0.603402 23928
177 1 160 3 String 10,0 10 |0 16 352 1.28966 0.0350254 529
178 1 160 3 String {1010 10 [1610 16 352 1.34832 0.0936883 2140
179 1 160 3 String 120,20 10 |3220 16 352 1.40836 0.153728 3751
180 1 160 3 String 30,30 10 4830 16 352 1.4684 0.213769 5362
181 1 160 3 String (40,40 10 [6440 16 352 1.52344 0.268805 6973
182 1 160 3 String 50,50 10 8050 16 352 1.57347 0.318839 8584
183 1 160 3 String 60,60 10 9660 16 352 1.63752 0.382882 10195
184 1 160 3 String 170,70 10 11270 16 352 1.69655 0441919 11806
185 1 160 3 String (80,80 10 [12880 16 352 1.75359 0498958 13417
186 1 160 3 String 190,90 10 14490 16 352 1.8032 0.548572 15028
187 1 160 3 String {100,100 10 16100 16 352 1.86125 0.606612 16639
188 1 458 3 String 10,0 0 10 16 352 193829 0.0430271 540
189 1 458 3 String  {10,10 10 [4590 16 352 199533 0.100065 5131
190 1 458 3 String 20,20 10 9180 16 352 2.04669 0.151428 9722
191 1 458 3 String 130,30 10 13770 16 352 210341 0.208143 14313
192 1 458 3 String 140,40 10 18360 16 352 216245 0.26718 18904
193 1 458 3 String  {50,50 10 (22950 16 352 2.22149 0.32622 23495
194 1 458 3 String 160,60 10 27540 16 352 2.27452 0.379256 28086
195 1 458 3 String 170,70 10 32130 16 352 2.32656 0431291 32677
196 1 458 3 String 180,80 10 36720 16 352 240461 0.509341 37268
197 1 458 3 String 190,90 10 41310 16 352 246765 0573383 41859
198 1 458 3 String 100,100 10 45500 16 352 2.52369 0.628421 46450
199 1 160 3 String 0,0 0 10 16 352 259215 0.0384948 551
200 1 160 3 String 10,10 10 ]1610 16 352 265419 0.100536 2162
201 1 160 3 String  {20,20 10 [3220 16 352 271623 0.162577 3773
202 1 160 3 String ~ [30,30 10 4830 16 352 2.77126 0.217613 5384
203 1 160 3 String (40,40 10 6440 16 352 2.82182 0.268165 6995
204 1 160 3 String 150,50 10 8050 16 352 2.87201 0.318362 8606
205 1 160 3 String 160,60 10 9660 16 352 292171 0.368059 10217
206 1 160 3 String 70,70 10 [11270 16 352 2.973%4 0420293 11828
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207 1 160 3 String 80,80 10 12880 16 352 3.03065 0.477001 13439
208 1 160 3 String 190,90 10 14490 16 352 3.09069 0.53704 15050
209 1 160 3 String  1100,100 10 16100 16 352 3.15073 0.597081 16661
210 1 160 3 String 10,0 10 0 16 352 3.21643 0.0360227 562
211 ! 160 3 String 110,10 10 1610 16 352 3.27347 0.0930607 2173
212 1 160 3 String  [20,20 10 3220 16 352 3.33351 0.153101 3784
213 1 160 3 String  [30,30 10 4830 16 352 3.39455 0.214141 5395
214 1 160 3 String 140,40 10 6440 16 352 3.44859 0.268178 7006
215 1 160 3 String  [50,50 10 8050 16 352 3.50362 0.323213 8617
216 1 160 3 String 160,60 10 9660 16 352 3.56366 0.383253 10228
217 1 160 3 String 170,70 10 11270 16 352 3.6237 0.443293 11839
218 1 160 3 String 180,80 10 12830 16 352 3.67974 0.499331 13450
219 1 160 3 String 190,90 10 14450 16 352 3.73336 0.552952 15061
220 1 160 3 String 100,100 10 16100 16 352 3.7974 0.616993 16672
21 1 233 3 String  [0,0 10 0 16 352 3.87545 0.0430291 573
22 1 233 3 String 10,10 10 2340 16 352 3.93149 0.0990655 2914
223 1 233 3 String 120,20 10 [4680 16 352 3.98252 0.1501 5255
24 1 233 3 String 130,30 10 7020 16 352 4.04256 0.210139 7596
225 1 233 3 String 140,40 10 9360 16 352 4.1016 0.269179 9937
226 1 233 3 String 150,50 10 11700 16 352 4.16264 0.330219 12278
227 1 233 3 String 160,60 10 14040 16 352 4.21468 0.382255 14619
228 1 233 3 String 170,70 10 16380 16 352 4.26793 0.435503 16960
229 1 233 3 String  [80,80 10 18720 16 352 4.32496 0.492539 19301
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20 1 233 3 String 190,90 10 [21060 16 352 4.385 0.552578 21642
21 1 233 3 String 100,100 10 123400 16 352 4.44404 0.611617 23983
232 1 160 3 String  [0,0 0 10 16 352 4.52109 0.0390261  |584
233 1 160 3 String (10,10 10 1610 16 352 4.57245 0.0903783  |2195
234 1 160 3 String 120,20 10 3220 16 352 4.63349 0.151419 3806
235 1 160 3 String 130,30 10 4830 16 352 4.69453 0.212459 5417
236 1 160 3 String (40,40 10 6440 16 352 4.74956 0.2674%6 7028
37 1 160 3 String 150,50 10 [8050 16 352 4.80081 0.318744 8639
238 1 160 3 String 60,60 10 9660 16 352 4.85885 0.37678 10250
239 1 160 3 String (70,70 10 1270 16 352 4.91989 0437821 11861
240 1 160 3 String (80,80 10 12880 16 352 4.98193 0.499862 13472
241 1 160 3 String (90,90 10 [14490 16 352 5.03334 0.551275 15083
242 1 160 3 String {100,100 10 16100 16 352 5.08864 0.606573 16694
13 1 233 3 String 10,0 0 10 16 352 5.15965 0.0388553  |595
244 1 233 3 String 110,10 10 (2340 16 352 5.21672 0.0959221 2936
245 1 233 3 String (20,20 10 [4680 16 352 5.27602 0.155232 5271
26 1 233 3 String (30,30 107020 16 352 5.33073 0.209932 7618
17 1 233 3 String (40,40 10 19360 16 352 5.3852 0.264405 9959
243 1 233 3 String 150,50 10 [11700 16 352 543779 0.316993 12300
249 1 233 3 String 60,60 10 [14040 16 352 549161 0.370821 14641
250 1 233 3 String (70,70 10 16380 16 352 5.61927 0.498475 16982
251 1 233 3 String 180,80 10 18720 16 352 5.67402 0.553225 19323
25 1 233 3 String 190,90 10 [21060 16 352 5.72917 0.608379 21664
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252 1 233 3 String 190,90 10 [21060 16 352 5.72917 0.608379 21664
253 1 233 3 String 100,100 10 (23400 16 352 5.78703 0.666237 24005
254 1 362 3 String  [0,0 10 |0 16 352 5.91489 0.0395696 606
255 1 362 3 String  [10,10 10 (3630 16 352 5.97178 0.0964639 14237
256 1 362 3 String 120,20 10 [7260 16 352 6.02817 0.152853 7868
257 1 362 3 String 130,30 10 [10890 16 352 6.08696 0.211639 11499
258 1 362 3 String (40,40 10 [14520 16 352 6.24974 0.374427 15130
259 1 362 3 String 150,50 10 [18150 16 352 6.3088 0433478 18761
260 1 362 3 String  |60,60 10 [21780 16 352 6.36366 0488341 22392
261 1 362 3 String  |70,70 10 [25410 16 352 6.41867 0.543353 26023
262 1 362 3 String 180,80 10 [29040 16 352 6.5447 0.669386 29654
263 1 362 3 String 190,90 10 [32670 16 352 6.60318 0.727862 33285
264 1 362 3 String {100,100 10 [36300 16 352 6.6614 0.786088 36916
265 1 408 3 String 10,0 10 |0 16 352 6.87927 0.0754087 617
266 1 408 3 String  [10,10 10 (4090 16 352 6.93425 0.130385 4708
267 1 408 3 String 120,20 10 |[8180 16 352 6.98723 0.183367 8799
268 i 408 3 String 130,30 10 1270 16 352 7.04063 0.236764 12890
269 1 408 3 String 40,40 10 [16360 16 352 716735 0363491 16981
210 1 408 3 String 150,50 10 20450 16 352 7.22286 0.418997 21072
271 1 408 3 String  [60,60 10 (24540 16 352 7.27841 0474546 25163
272 1 408 3 String  |70,70 10 28630 16 352 7.33474 0.53088 29254
213 1 408 3 String 180,80 10 [32720 16 352 749374 0.689879 33345
1274 1 408 3 String 90,90 10 |36810 16 352 7.54965 0.745789 37436
275 1 408 3 String {100,100 10 40900 16 352 7.60456 0.800696 41527
276 1 233 3 String {00 10 10 16 352 7.79001 0.0641829 628
277 1 233 3 String 10,10 10 2340 16 352 7.88031 0.154484 2969
28 1 233 3 String 20,20 10 4680 16 352 193724 0.211417 5310
279 1 233 3 String 130,30 10 |7020 16 352 8.08079 0.354961 7651
280 1 233 3 String 140,40 10 19360 16 352 8.24224 0516418 9992
281 1 233 3 String 150,50 10 11700 16 352 836324 0.637417 12333
282 1 233 3 String 160,60 10 14040 16 352 8.42185 0.696023 14674
283 1 233 3 String 70,70 10 16380 16 352 8.47634 0.750513 17015
284 1 233 3 String 180,80 10 |18720 16 352 8.53223 0.806403 19336
285 1 233 3 String 90,90 10 21060 16 352 8.66727 0.941443 21697
286 1 233 3 String 100,100 1023400 16 352 8.72405 0.99822 24038
287 1 233 3 String  {0,0 10 |0 16 352 8.79595 0.0390257 639
283 1 233 3 String 10,10 10 2340 16 352 8.85056 0.0936289 2980
289 1 233 3 String 20,20 10 4680 16 352 9.01841 0.261482 532
290 1 233 3 String 130,30 10 7020 16 352 9.08138 0.324449 7662
291 1 233 3 String 40,40 10 19360 16 352 9.13828 0.38135 10003
292 1 233 3 String 150,50 10 |11700 16 352 9.26932 0512389 12344
293 1 233 3 String ~ |60,60 10 14040 16 352 9.33036 0.57343 14685
294 1 233 3 String 70,70 10 16380 16 352 9.38878 0.63185 17026
295 1 233 3 String 180,80 10 18720 16 352 9.44624 0.689306 19367
296 1 233 3 String 190,90 10 21060 16 352 9.60392 0.846988 21708
297 1 233 3 String {100,100 10 |23400 16 352 9.65918 0.902256 24049
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293 1 233 3 String  {0,0 10 |0 16 352 9.73107 0.0393031 650
299 1 233 3 String 10,10 10 |2340 16 352 9.84405 0.152282 2991
300 1 233 3 String 20,20 10 4680 16 352 9.90013 0.208357 5332
301 1 233 3 String 130,30 10 7020 16 352 9.95867 0.266896 7673
302 1 233 3 String 40,40 10 19360 16 352 10.0143 0.323013 10014
303 1 233 3 String 150,50 10 11700 16 352 10.1858 0494073 12355
304 1 233 3 String  {60,60 10 14040 16 352 10.2565 0.564692 14696
305 1 233 3 String 70,70 10 16380 16 352 10.3122 0620413 17037
306 1 233 3 String 180,80 10 18720 16 352 10.4429 0.751115 19378
307 1 233 3 String 90,90 10 21060 16 352 10.5017 0.809912 21719
308 1 233 3 String {100,100 100 23400 16 352 10.5577 0.86592 24060
309 1 262 3 Both 0,0 10 |0 16 1568 00393056 0.0393056 1877
310 1 262 3 Both  ]10,10 10 ]2630 16 1568 00964253 0.0964253 4508
311 1 262 3 Both 20,20 10 5260 16 1568 0.154114 0.154114 7139
312 1 262 3 Both 130,30 10 7890 16 1568 0.210685 0.210685 9710
313 1 262 3 Both 40,40 10 10520 16 1568 0.382386 0.382386 12401
314 1 262 3 Both 150,50 10 |13150 16 1568 0.44139 044139 15032
315 1 262 3 Both 160,60 10 |15780 16 1568 0.500106 0.500106 17663
316 1 262 3 Both  |70,70 10 |18410 16 1568 0.558943 0.558943 20294
317 1 262 3 Both 180,30 10 21040 16 1568 0.61503 0.61503 22925
318 1 262 3 Both 190,90 10 23670 16 1568 0.763017 0763017 25556
319 1 262 3 Both 100,100 10 26300 16 1568 0.819044 0.819044 28187
320 1 263 3 Both 0,0 10 |0 16 1568 0.893281 0.0402445 1888
321 1 263 3 Both 10,10 10 2640 16 1568 0.949688 0.0966515 4529
322 1 263 3 Both 20,20 10 |5280 16 1568 1.12096 0.267923 7170
323 1 263 3 Both (30,30 10 7920 16 1568 1.18826 0.335222 9811
324 1 263 3 Both 40,40 10 10560 16 1568 1.24457 0.391535 12452
325 1 263 3 Both (50,50 10 13200 16 1568 1.30177 0.448738 15093
326 1 263 3 Both 60,60 10 15840 16 1568 1.45364 0.600599 17734
327 1 263 3 Both (70,70 10 18430 16 1568 1.51025 0.657214 20375
328 1 263 3 Both (80,80 10 (21120 16 1568 1.56669 0.71365 23016
329 1 263 3 Both 90,90 10 23760 16 1568 172197 0.874935 25657
330 1 263 3 Both {100,100 10 [26400 16 1568 1.7847 0.93166 28298
31 1 264 3 Both 0,0 10 10 16 1568 1.85716 0.0398665 1899
332 1 264 3 Both (10,10 10 2650 16 1568 1.91793 0.100637 4550
333 1 264 3 Both 20,20 10 ]5300 16 1568 1.97362 0.156324 7201
334 1 264 3 Both (30,30 10 7950 16 1568 203405 0.21676 9852
335 1 264 3 Both (4040 10 |10600 16 1568 209231 0.275021 12503
336 i 264 3 Both 150,50 10 13250 16 1568 214897 0.331683 15154
37 1 264 3 Both (60,60 10 [15900 16 1568 2.20501 0.38772 17805
338 1 264 3 Both 70,70 10 18550 16 1568 225763 0.440336 20456
339 1 264 3 Both (80,80 10 21200 16 1568 23121 0.494307 23107
340 1 264 3 Both 90,90 10 23850 16 1568 2.36908 0.55179 25758
341 1 264 3 Both {100,100 10 26500 16 1568 251184 0.694552 28409
342 1 431 3 Both  [0,0 0 10 16 1568 258714 0.0421198 1910
343 1 431 3 Both 10,10 10 4320 16 1568 2.64659 0.10157 6231
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344 1 431 3 Both  |20,20 10 [8640 16 1568 270831 0.163296 10552
345 il 431 3 Both  [30,30 10 12960 16 1568 2.84819 0.303176 14873
346 1 431 3 Both  [40,40 10 17280 16 1568 2.92398 0.378966 19194
347 1 431 3 Both 150,50 10 |21600 16 1568 3.01543 0.470409 23515
343 1 431 3 Both  [60,60 10 25920 16 1568 3.07021 0.525194 27836
349 1 431 3 Both  [70,70 10 30240 16 1568 3.24707 0.702052 32157
350 1 431 3 Both  [30,80 10 |34560 16 1568 3.32689 0.781868 36478
351 1 431 3 Both  [90,90 10 38880 16 1568 3.39162 0.846602 40799
352 1 431 3 Both  [100,100 10 43200 16 1568 3.65825 111323 45120
353 1 429 3 Both  [0,0 10 |0 16 1568 3.997 0.0642382 1921

354 1 429 3 Both  [10,10 10 4300 16 1568 4.06452 0.131751 6222

355 1 429 3 Both  |20,20 10 |8600 16 1568 4.23315 0.300381 10523
356 1 429 3 Both  |30,30 10 12900 16 1568 4.31445 0.381689 14824
357 1 429 3 Both  [40,40 10 17200 16 1568 4.37279 0.440026 19125
358 1 429 3 Both 150,50 10 21500 16 1568 4.50417 0.571399 23426
359 1 429 3 Both  [60,60 10 25800 16 1568 4.56696 0.634198 27727
360 1 429 3 Both  [70,70 10 30100 16 1568 4.62938 0.696614 32028
361 1 429 3 Both 180,80 10 34400 16 1568 4.69306 0.760296 36329
362 1 429 3 Both 190,90 10 38700 16 1568 4.83827 0.905499 40630
363 1 429 3 Both  [100,100 10 43000 16 1568 4.90154 0.968778 44931
364 1 422 3 Both  [0,0 10 |0 16 1568 4.98128 0.0452341 1932

365 1 422 3 Both  [10,20 10 4230 16 1568 5.03639 0.100337 6163

366 1 422 3 Both (20,20 10 8460 16 1568 5.17949 0.243443 10394
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367 1 422 3 Both 30,30 10 12690 16 1568 5.23652 0.300476 14625
368 1 422 3 Both 40,40 10 16920 16 1568 5.29432 0.358268 18856
369 1 422 3 Both 50,50 10 21150 16 1568 5.35071 0414665 23087
370 1 422 3 Both 60,60 10 25380 16 1568 5.50931 0573263 27318
371 i 422 3 Both 70,70 10 29610 16 1568 5.56744 0.631388 31549
3N 1 422 3 Both 80,80 10 33840 16 1568 5.62776 0691712 35780
3N 1 422 3 Both 90,90 10 38070 16 1568 5.80669 0.870647 40011
374 1 422 3 Both 100,100 10 [42300 16 1568 5.8721 0.936053 a4
375 1 260 3 Both 0,0 0 |0 16 1568 5.97063 0.0422183 1943
376 1 260 3 Both 10,10 10 2610 16 1568 6.0287 0.10029 4554
377 1 260 3 Both 20,20 10 [5220 16 1568 6.08572 0.157308 7165
378 1 260 3 Both 30,30 10 7830 16 1568 6.14269 0.214272 9776
379 i 260 3 Both 40,40 10 10440 16 1568 6.19872 0.270308 12387
380 1 260 3 Both 50,50 10 13050 16 1568 6.2551 0.326685 14998
381 1 260 3 Both 60,60 10 15660 16 1568 6.31152 0.383104 17609
382 1 260 3 Both 70,70 10 18270 16 1568 6.36778 0439362 20220
383 1 260 3 Both 80,80 10 20880 16 1568 6.42591 0497495 22831
384 1 260 3 Both 90,90 10 23490 16 1568 6.48549 0.55707 25442
385 1 260 3 Both 100,100 10 26100 16 1568 6.54266 0.614247 28053
386 1 423 3 Both 0,0 0 10 16 1568 6.61762 0.0413813 1954
387 i} 423 3 Both 10,10 10 4240 16 1568 6.67443 0.0981939 6195
388 1 423 3 Both 20,20 10 [8480 16 1568 6.7317 0.155462 10436
389 1 423 3 Both 30,30 10 12720 16 1568 6.78907 0.212839 14677
390 1 423 3 Both 40,40 10 16960 16 1568 6.84571 0.269471 18918
391 1 423 3 Both 50,50 10 21200 16 1568 6.90424 0.328 23159
392 1 423 3 Both 60,60 10 25440 16 1568 6.96179 0.38555 27400
393 1 423 3 Both 70,70 10 29680 16 1568 7.01866 0.442428 31641
394 1 423 3 Both 80,80 10 33920 16 1568 7.07729 0.501054 35882
395 1 423 3 Both 90,90 10 38160 16 1568 7.13419 0.557956 40123
396 1 423 3 Both 100,100 10 42400 16 1568 7.19255 0.616317 44364
397 1 423 3 Both 0,0 10 0 16 1568 7.26552 0.0409293 1965
398 1 423 3 Both 10,10 10 4240 16 1568 7.32306 0.0984686 6206
399 1 423 3 Both 20,20 10 8480 16 1568 7.38054 0.155953 10447
400 1 423 3 Both 30,30 10 12720 16 1568 7.43865 0.21406 14688
401 1 423 3 Both 40,40 10 16960 16 1568 7.49701 0.272425 18929
402 1 423 3 Both 50,50 10 21200 16 1568 7.55374 0.329155 23170
403 1 423 3 Both 60,60 10 25440 16 1568 7.61197 0.387383 27411
404 1 423 3 Both 70,70 10 29680 16 1568 7.69497 0.470388 31652
405 1 423 3 Both 80,80 10 33920 16 1568 7.7523 0.527713 35893
406 1 423 3 Both 90,90 10 38160 16 1568 7.80867 0.584081 40134
407 1 423 3 Both 100,100 10 42400 16 1568 7.86668 0.642095 44375
408 1 262 3 Both 0,0 10 0 16 1568 7.93899 0.0402717 1976
409 1 262 3 Both 10,10 10 2630 16 1568 7.99538 0.0966627 4607
410 1 262 3 Both 20,20 10 5260 16 1568 8.0528 0.154078 7238
411 1 262 3 Both 30,30 10 7890 16 1568 8.11163 0.21291 9869
412 1 262 3 Both 40,40 10 10520 16 1568 8.16918 0.27046 12500
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413 1 262 3 Both  [50,50 10 [13150 16 1568 [8.22744 0328718 15131
414 1 262 3 Both  [60,60 10 [15780 16 1568 [8.28776 0.389041 17762
415 1 262 3 Both  [70,70 10 [18410 16 1568 [8.34515 0.446428 20393
416 1 262 3 Both (80,80 10 [21040 16 1568 [8.40297 0.504256 23024
417 1 262 3 Both  [90,90 10 23670 16 1568 [8.46031 0.561588 25655
418 1 262 3 Both 100,100 10 26300 16 1568 [8.51807 0.619352 28286
419 1 262 3 Both 0,0 0 10 16 1568 [8.59204 00422926 [1987
420 1 262 3 Both  [10,20 10 2630 16 1568 [3.64836 0.0986126 4618
421 1 262 3 Both (20,20 10 15260 16 1568 [8.71119 0.161446 7249
422 1 262 3 Both  [30,30 10 |78%0 16 1568 [8.77724 0.227438 9880
423 1 262 3 Both  [40,40 10 10520 16 1568 [8.83537 0.28562 12511
424 1 262 3 Both  [50,50 10 13150 16 1568 [8.89795 0.348203 15142
425 1 262 3 Both  [60,60 10 [15780 16 1568 [8.95505 0.405302 17773
426 1 262 3 Both  |70,70 10 [18410 16 1568 ]9.0151 0465353 20404
427 1 262 3 Both  [80,80 10 [21040 16 1568 [9.07353 0.523782 23035
428 1 262 3 Both  [90,90 10 [23670 16 1568 [9.12964 0.579888 25666
429 1 262 3 Both {100,100 10 {26300 16 1568 [9.18826 0.638517 28297
430 1 263 3 Both 0,0 10 |0 16 1568 9.2604 0.0400495 1998
431 1 263 3 Both  [10,10 10 [2640 16 1568 [9.31709 0.0967431  [4639
432 1 263 3 Both  [20,20 10 [5280 16 1568 (937313 0.152777 7280
433 1 263 3 Both  [30,30 10 (7920 16 1568 [9.43313 0.212783 9921
434 1 263 3 Both  [4040 10 [10560 16 1568 [9.48896 0.268609 12562
435 1 263 3 Both  [50,50 10 [13200 16 1568 [9.54538 0325027 15203
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436 1 263 3 Both (60,60 10 15840 16 1568 [9.60381 0.383459 17844
437 1 263 3 Both (70,70 10 18480 16 1568 [9.66349 0.443134 20485
438 1 263 3 Both (80,80 10 10 16 1568 [9.72213 0.50178 23126
439 1 263 3 Both  [90,90 10 23760 16 1568 [9.78386 0.563512 25767
440 1 263 3 Both  [100,100 10 26400 16 1568 [9.84246 0.622104 28408
441 1 264 3 Both  [0,0 0 10 16 1568 [9.91543 0.0402946 (2009

442 1 264 3 Both (10,10 10 2650 16 1568  [9.97213 0.0969919 (4660

443 1 264 3 Both  [20,20 10 5300 16 1568  [10.0323 0.157155 Bl

<Ll 1 264 3 Both  [30,30 10 7950 16 1568  [10.0873 0.212192 9962

445 1 264 3 Both (40,40 10 10600 16 1568 [10.1431 0.267946 12613
446 1 264 3 Both  [50,50 10 13250 16 1568  [10.1981 0.322981 15264
447 1 264 3 Both (60,60 10 15900 16 1568 [10.2557 0.380594 17915
443 1 264 3 Both  [70,70 10 18550 16 1568 [10.3118 0.43663 20566
449 1 264 3 Both (80,80 10 21200 16 1568 [10.3685 0.49337 23217
450 1 264 3 Both  [90,90 10 23850 16 1568 [10.4247 0.549541 25868
451 1 264 3 Both  [100,100 10 26500 16 1568  [10.4865 0.611362 28519
452 1 431 3 Both  [0,0 0 10 16 1568 [10.5661 0.0470043 (2020

453 1 431 3 Both  [10,10 10 4320 16 1568 [10.6245 0.105432 6341

454 1 431 3 Both (20,20 10 8640 16 1568 [10.6813 0.162169 10662
455 1 431 3 Both  [30,30 10 12960 16 1568 [10.74 0.220893 14983
456 1 431 3 Both (40,40 10 17280 16 1568 [10.7969 0.277817 19304
457 1 431 3 Both  [50,50 10 21600 16 1568 [10.8558 0.336709 23625
458 1 431 3 Both (60,60 10 25920 16 1568  [10.9127 0.393653 27946
459 1 431 3 Both  [70,70 10 (30040 16 1568 10,9693 0450208 32267
460 1 431 3 Both (80,80 10 34560 16 1568 [10.0249 0505845 36588
41 1 431 3 Both  [90,%0 10 (38880 16 1568 |11.0853 0.566199 40909
462 1 431 3 Both (100,100 10 43200 16 1568 [11.1418 0622717 45230
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E. Sample of the implementation code

The researcher divided the implementation code into four sections depending on the
proposed solution. For full implementation code, you can contact the author via the

email.

B Private Sub Button3_Click(sender As System.Object, e As System.EventArgs) Handles Button3.Click
Dim arriList As Arraylist
"oyukis 4dolradiy plidaldl 3 ddsuaaldl OLSLaudl pa5 uals
' casel
If CheckBoxl.Checked = False And CheckBox2.Checked = True And CheckBox3.Checked = True Then
If ListDataType.SelectedIndex = @ And Optl16.Checked = True Then
LenghtKey = 16
DataType = "Integer"
VX = 13
ElseIf ListDataType.SelectedIndex = @ And Opt32.Checked
LenghtKey = 32
DataType = "Integer"
VX = 13
ElseIf ListDataType.SelectedIndex = @ And Opt64.Checked = True Then
LenghtKey = 64
DataType = "Integer"
VX = 13
ElseIf ListDataType.SelectedIndex = 1 And Optl6.Checked
LenghtKey = 16
DataType = "String"
VX = 11
ElseIf ListDataType.SelectedIndex = 1 And Opt32.Checked = True Then
LenghtKey = 32
DataType = "String"
VX = 11
ElseIf ListDataType.SelectedIndex = 1 And Opt64.Checked = True Then
LenghtKey = 64
DataType = "String"
VX = 11
ElseIf ListDataType.SelectedIndex = 2 And Optl6.Checked = True Then
LenghtKey = 16
DataType = "Both"
VX = 1¢|

True Then

True Then
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Dim cont As Integer = @
Dim DataTypeValue As Integer = @
arrlist = New Arraylist
For i = 1 To LenghtKey
Dim Rand As Integer = New Random().Next(1l, 1)
cont = CInt(cont) + CInt(Rand)
Next

If CheckBox4.Checked = True Then
"select * from EquationPerTime order by ID"
New SqlDataAdapter(sql, cn)
ds = New DataSet
adp.Fill(ds, sql)
dtb = ds.Tables(8)
Dim maxID As Integer
Try

maxID = Val(dtb.Rows(dtb.Rows.Count - 1)("IDPerEquation™)) + 1
Catch ex As Exception

maxID = 1
End Try
arr = New Arraylist
ToolStripProgressBarl.Maximum = txtTol.Text
ToolStripProgressBarl.Step = jumberl.Text
ToolStripProgressBarl.Visible = True
ToolStripProgressBarl.Style = ProgressBarStyle.Continuous
ToolStripProgressBarl.MarqueeAnimationSpeed = 100
ToolStripLabel7.Text = "Please wait..."
startTime = DateTime.Now
For k = @ To Me.DataGridViewl.Rows.Count - 1

If DataType = "Both" Or DataType = "String" Then

Dim v As Integer = @

For z = @ To DataGridViewl.Item(VX, k).Value.ToString.Length - 1

v = Val(v) + Asc(Me.DataGridViewl.Item(VX, k).Value.ToString.Substring(z).ToString.ToUpper)
Next
Vint = v

Else
VInt = Me.DataGridViewl.Item(VX, k).Value
End IF
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If CheckBoxl.Checked = True And CheckBox2.Checked = True And CheckBox3.Checked =

Dim EquationType As Integer

If ListDataType.SelectedIndex = @ And Comboboxl.SelectedIndex = @ Then

EquationType = 1
DataType = "Integer"™
VX = 13

Elself ListDataType.SelectedIndex
EquationType = 2
DataType = “"Integer"
VX = 13

ElseIf ListDataType.SelectedIndex
EquationType = 5
DataType = “"Integer"
VX = 13

Elself ListDataType.SelectedIndex
EquationType = 8
DataType = “"Integer"
VX = 13

Elself ListDataType.SelectedIndex
EquationType = 12
DataType = "Integer"
VX = 13

Elself ListDataType.SelectedIndex
EquationType = 1
DataType = "String"
VX = 11

Elself ListDataType.SelectedIndex
EquationType = 2
DataType = "String"
VX = 11

Elself ListDataType.SelectedIndex
EquationType = 5
DataType = "String"
VX = 11

Elself ListDataType.SelectedIndex
EquationType = 8
DataType = "String"
VX = 11

Elself ListDataType.SelectedIndex
EquationType = 12
DataType = "String"
VX = 11

Elself ListDataType.SelectedIndex
EquationType = 1
DataType = "Both"
VX = 18

And

And

And

And

And

And

And

And

And

And

Combobox1.SelectedIndex

Comboboxl.SelectedIndex

Combobox1.SelectedIndex

Combobox1.SelectedIndex

Combobox1.SelectedIndex

Combobox1.SelectedIndex

Combobox1.SelectedIndex

Combobox1.SelectedIndex

Combobox1.SelectedIndex

Combobox1.SelectedIndex

Then

Then

Then

Then

Then

Then

Then

Then

Then

Then

False Then
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" e Sl £ dolmalls Zliell Sl
If CheckBoxl.Checked = True And CheckBox2.Checked = False And CheckBox3.Checked = True Then

Dim EquationType As Integer

If Comboboxl.SelectedIndex = 8 And Optl6.Checked = True Then
EquationType = 1
LenghtKey = 16
VX = 13

Elself Comboboxl.SelectedIndex = 8 And Opt32.Checked = True Then
EquationType = 1
LenghtKey = 32
! VX = 13

Elself Comboboxl.SelectedIndex = 8 And Opt64.Checked = True Then
EquationType = 1
LenghtKey = 64
: VX = 11

Elself Comboboxl.SelectedIndex = 1 And Optl6.Checked = True Then
EquationType = 2
LenghtKey = 16
: VX = 11

Elself Comboboxl.SelectedIndex = 1 And Opt32.Checked = True Then
EquationType = 2
LenghtKey = 32

Elself Comboboxl.SelectedIndex = 1 And Opté4.Checked = True Then
EquationType = 2
LenghtKey = 64

Elself Comboboxl.SelectedIndex = 2 And Optl6.Checked = True Then
EquationType = 5
LenghtKey = 16
3 VX = 11

ElseIlf Comboboxl.SelectedIndex = 2 And Opt32.Checked = True Then
EquationType = 5
LenghtKey = 32

Elself Comboboxl.SelectedIndex = 2 And Optb4.Checked = True Then
EquationType = 5
LenghtKey = 64

Elself Comboboxl.SelectedIndex = 3 And Optl6.Checked = True Then
EquationType = 8
LenghtKey = 16
! VX = 11

Elself Comboboxl.SelectedIndex = 3 And Opt32.Checked = True Then
EquationType = 8
LenghtKey = 32

Elself Comboboxl.SelectedIndex = 3 And Opt64.Checked = True Then
EquationType = 8
LenghtKey = 64

Elself Comboboxl.SelectedIndex = 4 And Optl6.Checked = True Then



