hougill §n Jldie gl o
MIDDLE EAST UNIVERSITY

Analytical Study for Measuring the Effects of Database
Segregation Multi-tenancy Approaches on Cost and
Performance in Cloud Computing

clibl) a0 g8 & cp palicall daad Auald salia il Gl 4tlas 4)
Llad) L gall A o aY) g Al te diladdy)

By

Ala K. |. Dawoud

Supervisor

Prof. Ahmed Kayed

This thesis is submitted to the Department of Computer Information
Systems, Faculty of Information Technology, Middle East University in
partial fulfillment of the Requirements for Master Degree in Computer
Information Systems.

Department of Computer Information Systems
Faculty of Information Technology
Middle East University
December, 2015

Authorization Statement

I, Ala Kamal Ibrahim Dawoud, authorize the Middle East University to
supply a copy of my thesis to libraries, establishments or individuals upon
their request.

Name : Ala Kamal Ibrahim Dawoud
Date +2015/12/7

Sionature: w0 oo i

TR
Oe geasd g 5 Llel) il jall Jass g1 (550 dasls G gil caggla aml il JLS eDe Ul

Ll e Apadall il all

.J_,J‘Jﬁ.}b‘)g‘ d\AS&)‘D s eﬁl‘i‘
2015/12/7 + gl

Acknowledgment

| would like to express my sincere appreciation to Prof. Ahmad Kayed for
his guidance, support and motivation throughout my Master’s Thesis.

Dedication

e To my parents for their support.
e To my brothers for support and patience me.
e To my wife and children in my family.

Vi

Vi

Analytical Study for Measuring the Effects of Database Segregation
Multi-tenancy Approaches on Cost, Security, and Performance in
Cloud Computing

Prepared By:
Ala K. I. Dawoud
Supervised By:
Prof. Ahmad Kayed

ABSTRACT

Software as a Service (SaaS) service model reduces software costs and provides
efficient use of applications in the internet environments. Multitenancy is one of the
most important features in cloud computing that is responsible to provide software
applications for tenants in cloud computing environment. Thus, several database
segregations techniques (approaches) are available to be used in multitenant
environment. Each approach of database segregation has its own effect on the
performance, cost, and security depending on the types of query that is executed.

The main aim of this thesis is to study the performance, cost, and security of the
database segregation depending on the utilized database segregation approach. To be
able to meet this aim it had been outlined different types of database segregations,
database sizes, and queries. The findings of literature review have been deployed to
design several experiments for this research. Three experiments have been conducted
to evaluate the response time database transaction in term of performance, evaluate the
CPUr's statistics and disk storage statistics in term of cost, and evaluate the effects of
increasing and decreasing the security by manipulating the number of encryption over
a database tables in term of cost and performance (transaction time).

The empirical findings in this study showed that selecting shared database shared
schema approach give the system the chance to gain 42 % compared with selecting
isolated database approach, and 71% compared with selecting shared database with
separate schema from performance (transaction time) perspective. However, selecting
isolated database approach was given the system a chance to gain 33% compared with
selecting B, and 69% compared with selecting shared database shared schema approach
from CPU cost perspective. Furthermore, selecting shared database with separate
schema approach was given the system chance to gain 37% compared with selecting
isolated database approach, and 57% compared with selecting shared database with
shared schema approach from security perspective.

Keywords: Cloud Computing, DB segregation techniques, Isolated DB, Shared
Schema Shared DB, Separate Schema Shared DB.

Vil

A& Aalladiy) cilibyl) a0 b & o alical) duad duald salia il (bl 4abtas 4)
o) A gal) B 211 5 oyl g 4B

25903 maal) JWS £3le ; alac)

S aaal 3l L)

oaidlall
(o bl aladind US55 9 el all ST (e I3y (S8AS) Sl) dedd 73 540 ()
(e Anlad) L sall 8 e aal (e Baal 5 o Cn paliia) sasd dpala | yuy) iy
L 8 13y Al A sal) A 3 G alieall dpma ol cliplaill 55 e AL g asal)
ze OS5 alion) aned Ay 8 alaail D 3 48 gle AdliadiV) Clilull ae) 8l saantie (z4d)
& 55 e Badina (1Y) 5 A ¢ caY) e (alall o il 4l Adlai) clibull ac) 8 Aoy b
o2 ATy Lﬁﬂ\ POLEROY

llads¥) iyl 3acld & (a¥) g Z8IK 5 o la¥) Al j0 g Canl) 138 G il gl
&5 Caagll 1 Baiat e a8 & Sl Aeadia) i) saclE Jiad zes o 3adina
3y ledlainy) s bl ac) @ alaal dialisg Zllasil cilily ael 8 aladiul e el
Clad &y el) 1] laill (e yal) el Al Sl il 5 o
O oAl laa 5 4y 38 yall Aalleall Bas g ansi g ¢ o laY) alagY ULy 3ac 8 dlacial dia) ayil
Ge Sl dpa gl (i gl 335 e A il UV apiy AdlSH) Slagy e Al e

1o 5 Zalall alag bl saclE 6 Jglaall 5l <l e dae JWli ol 534) (B ka

(Shared DB Shared Schema) fase Jlsial of 4l jall eda & da jiaall oo jlaill ¢ jekil
z0 s «(Isolated DB) lase JLial ae &5 jlaa %42 iyl doa i alaill 238 UL 2ol 8
ol e o)) Hlaidea 5 e (Shared DB Separate Schema) JLid) as 43)i %71
sl aUaill =55 (Isolated DB) fase sl of Liagl da yiall oo jlaill il < jedal Glld (4
e 48 %69 Ll 5 (Shared DB Separate Schema) alaaiul ae 45 5130 %33
Jial gl el e 30le Al ki deas (e (Shared DB Shared Schema)
D) ae 45180 9437 Gl allail) e syl ils 4l (Shared DB Separate Schema)
(Shared DB Shared Schema) ksl ae &5 j3e %57 e 5 (Isolated DB) faw

Al bl dglealdl 5 () 48T plaidga g

Alaiiall UL ael @ Ll sel @ Joad L dilad) G all daliia) clall|
Jeamdiall laladall 5 48 jiiiall cililad)) 8 (AS jiiiall bl se | 548 5 Jaladall

Table of Contents

Examination Committee DECISIONcciiiiriiiiiiiiiiiie e I
G288)1 Error! Bookmark not defined.
Authorization Statement............ccocoveieieieicie s Error! Bookmark not defined.
ACKNOWIEBAGIMENT ...t e e e e e te e e s beeseesresreenee e \Y/
ABSTRACT Lttt ettt bt e a bbb e bbb b bbb e \1
URALAL ettt ettt b e bt R ettt enr et VI
LIST OF FIQUIES ...ttt eneene s XI
LIST OF TADIES. ...t X1
LiSt Of ADDIEVIALIONS ..o XV
CHAPTER ONE ...ttt ettt b e bbb e e sb e sbe e sneesnne e 1
INEFOAUCTION ..ottt sttt ne et 1
1.1 OVEIVIBW ...ttt 1
I O [1W T J @] 141 01U 1] o [P SO SPSR 1
1.3, IMIUITIAEENANCY ..ttt bbbttt b eneene s 3
1.4. Database Segregation APPrOACNEScocvcviiiiieiiie e 3
1.5. ProbIem STAtEMENToviiieicc e 6
1.6. RESEAICH QUESTIONS ...veiviiitiiceie ettt sttt ettt e e e e sbe e sbe e sbeesnbesnbesnbeebaesrees 6
1.7, ODJECTIVES ...ttt 7
1.8 IMIOLIVALION ...ttt 8
1.9, CONITDULION. ...ttt ettt 10
1.10. MENOTOIOQY ...t 10
Study and ANAIYSIS PRASEccviiiiicicce ettt 10
Design and Implementation PRASE..........cccooiiiiiiiiiiice e 11
EVAIUALION PRASE ... 11
CHAPTER TWO ...ttt s st sttt be e bt snbeenbeebe e 12
Literature Review and Related WOIKccoiiiiiiiiniinceesesee e 12
2.1, OVEIVIBW ...tttk bbbttt b bbbt ne s 12
2.2. LITErature REVIBWc.viuiiiiiiiiiieie it 12
2.3. Related research Works t0 this reSEarch..........ccocoiviiiieieiiice e 16
CHAPTER THREE ...ttt sttt st naeene e 19
The Proposed Model and EXpPeriments DeSIONcccuoiiiieriniiie e 19
K T0 I @ 1 TV 1= SRR 19

3.2. The Proposed Model ArChiteCtUre.cviiiiiiiee e s 19

3.3. The proposed scenario in the proposed eXPeriments...........ccoocvvvererieeeenenieene e 21
3.4. Workbench MySQL Database Implementationc.ccccevviveve s 27
3.5. Software IMPIEMENTALIONcciiiiiriiiiee e 31
3.6. MySQL queries were used in the eXPerimentS........ccccveieiieieseeneseeie e 36
3.7. Encryption and decryption response time for multitenant databases.ccccoeee.. 37
CHAPTER FOUR ...ttt sttt bbb sib e b b 40
EXPErimental RESUILScooiiiiiie ettt sttt et ne e 40
A1 OVEIVIBW ..ottt e et b bbbt b e bbbt b n e e e ene s 40
4.2. Performance evaluation 18VElccciiiiiiiiiiicc e 40
4.3 CoSt eValUALION TBVELc..oiiiicc e 48
4.4, Security evaluation [EVEc.coiiiiiiii s 53
4.5. The proposed experimental results diSCUSSIONccccveverveieriiiiiereseene e see e 57
CHAPTER FIVE ...ttt bbb re e 63
Conclusions and Future ReSEarch WOrKS...........ccoouiiiiriniieieieeecse e 63
5.1 OVEIVIBW ...tttk bbbttt b bbb n e neere s 63
5.2, CONCIUSIONS ...ttt bbbttt 63
5.3. FULUIE FESEAICH WOTKS.......cuiitiiiiiiiiiiiteie et e 64

L L] A (=TT 65

Xl
List of Figures

FIGURE 1. 1 THE GENERAL LAYERED ARCHITECTURE OF CLOUD COMPUTING

PARADIGM (RIMAL, B. ET AL., 2009)cceiteiiiiinierinieriesieeeese s 2
FIGURE 1. 2 ISOLATED DATABASE APPROACH (KUN, M. ET AL., 2012).........cccoc..... 4
FIGURE 1. 3 SHARED DATABASE WITH SEPARATE SCHEMA APPROACH (KUN, M.

ET AL, 2012). oot 5
FIGURE 1. 4 SHARED DATABASE WITH SHARED SCHEMA APPROACH (KUN, M.

ET AL, 2012). oot 6

FIGURE 3. 1 ISOLATED DB :THE GENERAL FRAMEWORK OF THE PROPOSED

EXPERIMENT ..ot 19
FIGURE 3. 2 SHARED DB WITH SEPARATE SCHEMA : THE GENERAL
FRAMEWORK OF THE PROPOSED EXPERIMENTcccooiiiiiinieee e 20
FIGURE 3. 3 SHARED DB WITH SHARED SCHEMA :THE GENERAL FRAMEWORK
OF THE PROPOSED EXPERIMENTSooiiiiiiiiee e s 21
FIGURE 3. 4.1 FLOW CHART FOR THE WHOLE WORK.........cccooiiiiiiiciiiiee 22
FIGURE 3.5 MYSQL CREATE DATABASE COMMAND........ccccoitiiinirienieee e 24
FIGURE 3. 6 MYSQL CREATE MULTITENANT TABLE IN THE SECOND
EXPERIMENT ..ottt e 24
FIGURE 3. 7 MYSQL COMMAND FOR CREATING TENANTS TABLEccccoennee 25
FIGURE 3. 8 FLOW CHART FOR SHARED TABLE WITH SEPARATE SCHEMA
APPROACH. ... e 25
FIGURE 3. 9 CREATE SCHEMAS IN MYSQL COMMAND AND IMPLEMENTING
WORKLOAD TABLE. ...t 26
FIGURE 3. 10 FLOW CHART FOR SHARING SCHEMA WITH SHARED TABLE........ 27
FIGURE 3 .11 WORKBENCH MYSQL DATABASE IMPLEMENTATION(EMPLOYEES)
... 28
FIGURE 3. 12 MYSQL COMMAND FOR CREATING TRANSACTION_TENANTS
TABLE .o 29
FIGURE 3. 13 LIST OF DATABASES (ISOLATED APPROACH)cccoovviieriieicieiee 29
FIGURE 3. 14 CREATING TRANSACTION_TENANTS TABLE (SHARED DATABASE
SEPARATE SCHEMA APPROACH) ..ottt 30
FIGURE 3. 15 LIST OF SCHEMA/TABLES (SHARED DATABASE SEPARATE
SCHEMA APPROACH) ...ttt 30
FIGURE 3. 16 ISOLATED DATABASE APPROACH GUI COST AND PERFORMANCE
... 32
FIGURE 3. 17 THE MATHEMATICAL EQUATIONS WAS USED TO FIND THE COST
OF CPU AND RAM ...ttt 33
FIGURE 3. 18 THE MATHEMATICAL EQUATIONS WAS USED TO FIND THE
DATABASES SIZE ... bbb 33
FIGURE 3. 19 TABLE SHOWING LIST OF SQL OPERATIONScccocoiiiiiiiieiie, 34
FIGURE 3. 20 TABLE FOR READING CPU,RESPONSE TIME MEMORY AND
STORAGE DISK ..ot ERROR! BOOKMARK NOT DEFINED.

FIGURE 3. 21 THE SECOND EXPERIMENT OF SHARED DATABASE WITH
SEPARATE SCHEMA GUI ..o 35

Xl

FIGURE 3. 22 THE THIRD EXPERIMENT OF SHARED DATABASE WITH SHARED

SCHEMA GUI ..o e e 36
FIGURE 3. 23 INSERT STATEMENT IN EXPERIMENTccccooiiiiiiiiiiiicce 36
FIGURE 3. 24 UPDATE STATEMENT IN EXPERIMENTcoooiiiiiiiiicce 37
FIGURE 3. 25 DELETE STATEMENT IN EXPERIMENTccoeiiiiiiiiiee e 37

FIGURE 3. 26 VB.NET CODE SHOWING ENCRYPTION BY AES ALGORITHM 39

FIGURE 4. 1 TRANSACTION TIME FOR LIGHT, BALANCED, AND HARD

INSERTION GRAPH ..ot 41
FIGURE 4. 2 TRANSACTION TIME RESULTS CHART OF DATABASE
SEGREGATION APPROACHES IN INSERTION QUERIES.ccocoviiiiiiiii 42
FIGURE 4. 3 STANDARD SELECT QUERY RESULTS FOR DATABASE
SEGREGATION APPROACHEScoiiiii e 44
FIGURE 4. 4 THE AVERAGES GRAPH IN SEGREGATION DATABASE APPROACHES
USING SELECT WITH INDEX QUERYc.ooiiiiiiii s 45
FIGURE 4. 5 CONTROL PARAMETER GRAPH FOR DELETE TRANSACTION IN THE
PROPOSED EXPERIMENT ..ottt 46
FIGURE 4. 6 THE RESULTS OF DELETE TRANSACTION'S TIME FOR EACH
DATABASE SEGREGATION APPROACH. ..o 47
FIGURE 4. 7 THE AVERAGE OF CPU COST FOR INSERT SQL QUERY.........ccccoevnne 50
FIGURE 4. 8 THE AVERAGE OF CPU COST FOR SELECT SQL QUERY.ccccveninn. 51
FIGURE 4. 9 THE STORAGE COST AFTER EXECUTING INSERT QUERY BASED IN
DATABASE SEGREGATION APPROACHES. ..o 52
FIGURE 4. 10 THE AVERAGE TRANSACTION TIME RESULTS OF SYSTEM WITH
SEVERAL ENCRYPTION TIME NUMBERS.........cccooiiiii e 55

FIGURE 4. 11 AES ALGORITHM'S ENCRYPTION PERFORMANCE GRAPH FOR
SYSTEMS THAT WAS DESIGNED BASED ON DATABASE SEGREGATION
APPROACHES ... e 56

FIGURE 4. 12 SHOWS THE PERFORMANCE ANALYSIS GRAPH OF MULTI-
ENCRYPTION BASED ON DATABASE SEGREGATION APPROACHES............. o7

Xl

List of Tables

TABLE 4. 1 THE AVERAGE OF TRANSACTION TIME USING INSERT QUERY EXECUTED

BY L TENANTS....-veeoeeeeeoeeseeeeeeeeeeeeeeeeee e eee e seeeeee e s e eee e e e e s s ee s eeese e eses s seseseonn 41
TABLE 4.2 THE AVERAGE OF TRANSACTION TIME USING STANDARD SELECT QUERY
OVER DATABASE SEGREGATION APPROACHES. ... vveeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeseseesseeeen 43
TABLE 4. 3 THE RESULTS OF INTENSIVE COMPUTATION USING CONDITIONAL SQL
SELECT STATEMENT IN DATABASE SEGREGATION TECHNIQUES.vvcveeveeeenree. 44
TABLE 4. 4 THE AVERAGE RESULTS TRANSACTION'S TIME OF SQL DELETE QUERY FOR
EACH DB SEGREGATION APPROACHoveeeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeseeseeeeeseeeeseeeseeseseseseens 46
TABLE 4. 5 THE PERFORMANCE EVALUATION ANALYSIS IN THE PROPOSED
EXPERIMENT w.cocooeeee e eee e e e ee e s eeeseeeeees e eeeeeseeeseenn 48
TABLE 4. 6 THE RESULTS OF CPU COST AFTER EXECUTING INSERT AND SELECT
QUERIES ..ot s e st e et ee s e es e es e eeee s 49
TABLE 4. 7 THE AVERAGE RESULTS OF INSERT QUERY ON DISK COST BASED ON
DATABASE SEGREGATION APPROACHESvveereeeeeseeeeeeseeeeeesseesssseesesesseessssesesesenns 51
TABLE 4. 8 TRADEOFFS TABLE FOR INSERTION QUERIES TO IDENTIFY THE
APPROPRIATE SEGREGATION APPROACHccotveeeeeeeeeeeeeeeeeeeeeeeeseseeeeesseesesseeeseeesee s 53

TABLE 4. 9 SELECT TRANSACTION TIME IN SEVERAL SYSTEMS THAT WERE DESIGNED
AND EMPLOYED BASED ON DATABASE SEGREGATION APPROACHES AND WAS
ENCRYPTED SEVERAL TIMEScocoiiiii e 54

TABLE 4. 10 THE TRADEOFFS POSSIBILITIES EXTRACTED FROM THIS STUDY 58

X1V

List of Abbreviations

Abbreviation Meaning
CPU Central Processing Unit
CPUS CPU Speed
Data Amount of Data on Ram
laas Infrastructure as s Service
Paas Platform as a Service
Saas Software as a Service
Ram Random Access Memory
Rams Ram Size
VM Virtual Machine
S Seconds
NIST National Institute of Standards and Technology
CSP Cloud Service Provider
APls Access Point Interfaces
Haas Hardware as a Service
(OR] Operating System
ITSI between Isolated Table Shared Instance
STSI Shared Table Shared Instance
EET Elastic Extension Table
RDBMS Relational Data Management System
SQL Structured Query Language
AES Advanced Encryption Standard
RSA Rivest, Shamir and Adelman
XML Extended Markup Language
1/0 Input Output
ITSI Isolated Table Shared Instance
STSI Shared Table Shared Instance
SQLVM SQL Virtual Machine
GUI Graphical User Interface
ACL Access Control List
DES Data Encryption Standard

Ccv

Coefficient Variation

CHAPTER ONE

Introduction

1.1. Overview

This chapter explains background about cloud computing, multitenancy, and database
segregation techniques. This chapter shows the problem statement of this research,

author's contribution, and the outline of thesis chapters.

1.2. Cloud Computing

The use of cloud computing is increasing rapidly. Therefore, many researches showed
this technology as a driving force for small, medium, and large sized companies. The
most widely used definition of cloud computing is found according to the National
Institute of Standards and Technology (NIST) as "Cloud computing is a model for
enabling convenient, on demand network access to a shared pool of configurable
computing resources (e.g. network, servers, storage, applications, and services). That
can be rapidly provisioned and released with a minimal management efforts or service

provider interaction " (Mell, P., and Grance, T., 2011).

Cloud computing technology follows general layered architecture. Figure 1.1 shows the

service models used in cloud computing architecture.

Software-as-a-Service (SaaS)

Platform-as-a-Service (PaaS)
Developers implementing cloud applications

Infrastructure-as-a-Service (Iaa%s)
[(Virtualization, Storage Network) as-a-Service]

Hardware-as-a-Service

Figure 1. 1. The general layered architecture of cloud computing paradigm (Rimal, B. et al., 2009)

The architecture of cloud computing paradigm consisted into four service models

(Abualkibash, M. and Elliethey, K., 2014):

- Infrastructure as a Service (laaS), this service model is able to provide a low
level service such as Virtual Machines (VMs) that uses customers Operating
System (OS) images. As well as, the ability to access storage devices from

several VMs is another example on this service model.

- Platformas a Service (PaaS), the Cloud Service Provider (CSP) using this model
offers Access Point Interfaces (APIs) that are used by customers to develop

applications.

- Software as a Service (SaaS), which is used by end users to interact with

complete software products as a web based service.

- Hardware as a Service (HaaS), this service model provides the needed hardware to
build data centers for any organization. Hence, it offers a reducing in the cost of setting

up IT resources.

1.3. Multi-tenancy

In cloud computing, SaaS is represented as a software delivery model. Thus, users can
access the available software remotely. In this context, the multi-tenancy feature is one
of the most important features that are provided by cloud computing (Sarasathi, M. and
Bhuvaneswari, T., 2013). Multi-tenancy feature brings many advantages such as
reducing the operational costs by splitting hardware and software resources via sharing
them among different tenants, and simplifying maintenance and management efforts.
Hence, multi-tenancy brings many benefits for end users such as reducing applications
costs, and give the chance to use it from small and medium business enterprises

(Sarasathi, M. and Bhuvaneswari, T., 2013).

The architecture of multi-tenancy provide multiple types of models such as shared
nothing model, shared hardware model, shared Operating System (OS) model, shared
database model, shared everything model, and custom multi-tenancy model (Youssef,

E., 2012).

1.4. Database Segregation Approaches

Banvile, R. pointed out the common three different types of database multi-tenancy.
Hence, these types are isolated database, separate schema with shared application, and

shared schema with shared application (Banville, R., 2014).

Isolated Database (Separate Database)
In isolated database, each tenant has its own application instance, database, and
infrastructure. In Infrastructure tenancy, each tenant has its own application, and

database instance that have the same underlying infrastructure.

o e e e e e

Figure 1. 2. Isolated Database approach (Kun, M. et al., 2012).

Shared database with separate schema
In shared database with separate schema approach, it involves multiple tenants that are
working in the same database instance. Hence, each tenant has its own tables that are

grouped into schemes. Each database scheme is designed specifically for each tenant

(Kun, M. et al., 2012). Figure 1.3 shows illustration of shared database with separate

schema approach.

08 08 08

tenant tenant tenant
application
— I

schemal | | schema? | schema
‘-—-_____ ___._.-‘

Figure 1. 3. Shared database with separate schema approach (Kun, M. et al., 2012).

Kun, M. et al. explained the weaknesses of shared database with separate schema
suffers from different weak points such as the cost of maintaining equipment's, backing
up tenant's data, restoring data in the event of failure, and the total number of tenants
that can be housed on a given database server is limited by the number of schemes that

server can create (Kun, M. et al., 2012).

Shared database with shared schema.

In shared database with shared schema approach, it uses the same database instance and
the same set of tables to host multiple tenant's data. Furthermore, a new attribute will
be added in each table which represent the tenant's ID in order to connect tenant with
its particular records. In this context, this approach has reduced hardware and backup
costs (Kun, M. et al., 2012). Figure 1.4 shows an illustration for shared database with

shared schema approach.

03 O3 8

tenInt ten Int teﬁIﬂt

application

database

Figure 1. 4. Shared database with shared schema approach (Kun, M. et al., 2012).

1.5. Problem Statement

Implementing multi-tenancy over database is one of the challenges that face CSP for
many reasons such as performance, security, isolation and more. Furthermore, finding
the suitable approach is another challenge for tenants beside their diversity of
requirements that are needed in their enterprises. This research concentrated on finding
the impacts of database segregation approaches on the performance, cost, and security
of tenants in the cloud. This research revealed a possibility to compare the database
segregation approaches based on the performance of tenant's systems, the security of
tenant's data, and the cost. Furthermore, finding the critical point of database

segregation approach which depends on the number of tenants is another challenge.

1.6. Research Questions

Problem will be accomplished by answering the following questions:
1. What is the suitable database segregation approach according to performance,

security, and cost?

2. How do database multi-tenancy approaches affect the performance of tenant's
VM?

3. What are the major effects of database segregation techniques on the cost of
storage, the size of memory, and number of CPUs?

4. What are the major effects of database segregation techniques on the security?

1.7. Objectives

This research aims at findings to show the impacts of database segregation approaches
on tenant's performance, cost, and security. To achieve these goals, this research
proposed to run various experiments that cover all database segregation approaches that
are available in cloud computing technology. Consequently, the proposed experiments
in this research was working in one cloud using the same cloud manager. Performance
testing captured in term of response time for CPU, memory, and disk. The security in
each approach measured in term of common encryption algorithms (i.e. using RSA

algorithm) that preserve data confidentiality.

Many issues will be addressed in this research such as:
- Comparing database segregation approaches based on performance and cost.
- Comparing database segregation approaches based on performance and
security.

- Comparing database segregation approaches based on cost and security.

1.8. Motivation

Recently, research studies in cloud computing focused on explaining and
recommending the services are provided by cloud computing such as multi-tenancy
service. Thus, the literature showed many challenges and obstacles that were classified
as a starting point for researchers around the world. One of these obstacles is to find the
suitable environment that accomplishes the best performance, the lower cost, and the
best security. This research took into consideration the implementation of database
segregation approaches that is available for tenants in cloud computing platforms. This
motivates the author to find a way to help CSP to define the number of tenants for cloud
computing environment based on their needs. Hence, the decision for selecting the
appropriate database segregation approach based on the expected scientific
recommendations from this research. Furthermore, saving time and money is the

common factors that affect tenant's selection.

Schiller O., et al. studied multi-tenancy in RDBMS for SaaS service model. Hence,
their research concentrated on using features of RDBM to support tenant area data
management cost. Hence, they pointed out to use schema inheritance concept in order
to isolate each tenant from others in the cloud, and they shared schema between cloud
tenants. Furthermore, their results showed that virtual schemas that were inherited
intended to describe application core schemas. As well as, the virtual schemas that were
inherited from other virtual schemas enable to specialize the application core schema
for specific domain (Schiller O., et al., 2014). In this context, this research will focus
on the effects of database segregation approaches on the cost CPUs, and memory, and

storage needed.

Ru J., et al. (2014) pointed out multi-tenancy challenges and implications. Thus, data
management, security, performance, maintenance, scalability and resource
provisioning were presented as the most important challenges faces cloud computing
multi-tenancy feature. Actually, they built a cloud system and used software and tools
in order to extract the performance of the whole system from different types of
architecture (i.e. isolated, semi shared, and shared database). For that purpose, they used
stress testing using STRESSCLOUD software. Hence, they compared the results after
applying the same cloud in cloud simulator called CLOUDSIM (Ru J., et al., 2014).
This research will use the database segregation approaches in order to extract the
performance after applying the addition, deletion, and updating SQL queries on

database instant.

Sun Y. et al. (2014) showed the most important security issues that represented as a
security challenges for multi-tenant environments in cloud computing. Hence, data
availability, data confidentiality, data integrity, and privacy in cloud computing were
addressed as security challenges affect tenant's security (Sun Y. et al., 2014). This
research will take into consideration data confidentiality issue. Hence, this research will
extract the data confidentiality by applying a common encryption algorithm (e.g. RSA

algorithm) to capture the effects of database segregation approaches on security.

10

1.9. Contribution

In this research, we made an investigation on the effects of database segregations
approaches on the performance, cost, and security. Performance measured from CPU,
RAM, and disk point of views. The evaluation of cost found from the number of running
CPUs, the consumed memory size, and the needed storage size. The security was

considered from data confidentiality using a common encryption algorithm.

Our contribution in this research is to find the suitable database segregation approach
that meets multiple parameters concurrently (e.g. decreasing the performance versus
increasing the cost of cloud application using a specific database segregation approach).
Hence, finding the suitable environment that can handle variable number of cloud
tenants that are working concurrently will be represented as critical point. Recently,

many studies found in the field of security, cost, and performance.

1.10. Methodology

The methodology that was used to develop our model contains the following phases:
= Study and Analysis Phase.
= Design and Implementation Phase

= Evaluation Phase

Study and Analysis Phase

In this phase the work stared based on the problem statement which was for addressing
the common database segregation approaches used in the database multi-tenancy

environments. Thus, point out the effects of database segregation approaches on cost,

11

performance, and security. The acquired information and knowledge from this phase
was as follows:

= Studying the specifications for each database segregation approach.

= Studying database segregation performance tools and algorithms.

= Studying the commonly used tools for measuring database segregation cost.

Design and Implementation Phase

This research was carried out a case study which covers building one cloud
environment; we was OpenStack as cloud managers. The experiments used to make fair
comparison using the following steps:

= |nstances specifications and its performance in the real world.

= Measuring CPU and memory response times for each segregation approach.

= Measuring the number of CPUs, memory size, and storage size to extract the

cost for each segregation type.

Analytical Phase

We designed three experiments to evaluate the performance, cost, and security database
segregation approaches. The results was used to fill the comparison tables. Hence, the

result aggregated to find the average of mixing research parameters together.

12

CHAPTER TWO

Literature Review and Related Work

2.1. Overview

This chapter shows collection of the most relevant work in the literature that relate to
the scope of this research. This literature review covers concepts that have been
addressed in this research, namely, cloud computing multi-tenancy, database
segregation techniques, encryption techniques for cloud databases, and performance

testing.

2.2. Literature Review

- Soofi, A., et al. discussed the security issues and their existing solutions in SaaS
delivery model of cloud computing. Hence, they described some of security
issues in SaaS like Data security, availability, authentication and authorization,
network security ,backup, data breaches, data integrity and web application
security. Then, they discussed some of existing security solutions in term of
advantages and disadvantages. (Soofi A., et al., 2014). In this research, we
concentrated on the data security which they flag it as one of the important
issues for cloud computing environment. Therefore, we assigned data security
as a parameter in this research in order to measure its effects on performance as
well as finding the suitable security methods based on the DB segregation

approaches.

13

Sun Y..et al. reviewed some of security techniques and challenge. The authors
started in talking about cloud computing and its characteristics, then they talked
about privacy and data security. Their way in researching was to give some
studies and researches that talked about organization of data security and
privacy in cloud computing. The authors studied Data Integrity, data
confidentially, data availability and data privacy. Their paper was giving
definition of each one then talked about some of studies that talked about their
types (if exist) and its advantages and disadvantages (Sun,Y..et al.,2014).
Hence, we took into consideration the commonly used security algorithms that
are used in cloud computing environments in order to measure its implications

on database segregations.

Schiller, O. et al. studied Multi-tenancy in RDBMS for software as a service.
Hence, the authors used feature RDBM to support tenant area data management
natively. The authors talked about relational database approaches (shared
machine, shared process and shared table).Then they gave idea about mapping
schema techniques. The authors introduced tenant as first class database object,
on the other hand they used schema inheritance concept which is avoid
redundancy. According to their study and measurements they found that the
sharing in application core schema will decrease main memory consumption
(Schiller, O. et al.,, 2014). Consequently, in this research we took into
consideration the cost parameter in order to measure the effects of DB

segregation approaches on the memory cost.

14

Saxena, V. et al. Studied metadata and data storage with encryption. The
authors tried to give more idea about how to increase the privacy preserving
approaches in cloud computing. Hence, the authors divided data into three
types: Normal, sensitive and critical. In sensitive and critical data, they build
application that can defrag data to multi tables, then they used many phases to
retrieve it. For that purpose, they used hash solution to avoid data storage to
know the result. So the authors used fragment and encryption technique to
increase the strength of privacy data (Saxena, V. et al., 2014). Consequently, we
used their fragmentation techniques in shared schema shared database approach

in order to find its implications on the privacy of tenant's data in this approach.

Bardiya, P., et al. analyzed basic problem of cloud computing data security.
Hence, they gave definition of data security and cloud computing, after that they
tried to apply data security using Hadoop model with its security goals and
architecture (Bardiya, P. et al, 2014). Therefore, in this research we used their
metrics to evaluate the cost of adding security feature on a cloud computing

environments among several database segregation approaches.

Aulbach, S. et al. described Chunk Folding as a new schema mapping
techniques which logical tables are vertically portioned into chunks that folded
together into application-specific conventional tables a fixed set of generic
Chunk Tables. Hence, underscore the importance of application extensibility,
outlines on some common schema mapping techniques, then they introduced
chunk folding with explain on some of experiments with managing many tables

(Aulbach, S. et al., 2008). Hence, in this research we took their empirical

15

findings to define the number of records as well as the number of tenants that
can interact in cloud environment as a light and hard states for each DB

segregation approach.

Ru, J., et al. discussed the multi-tenancy challenges and its implications. The
authors started in talking about cloud computing architecture, multi-tenancy
implications, and then the challenges of multi-tenancy which are data
management, security, performance, maintenance, scalability and resource
provisioning. They use many experiment to measure the challenge that facing
multi-tenancy. They use software and tools like Cloudsim (simulate multi-
tenancy), Hadoop (security) and stress cloud for measuring performance (Ru,
J.etal., 2014). In this research, we took their threshold findings that was used to
define the highest applicable number of tenants in an private cloud and public
cloud in order to obtain the suitable number of tenants in our experiments to be
as less faults as possible to realize the proposed methods and experiments in this

study.

Al-Alwan, M. and Zaghloul, S. made an analytical study of Multi-Tenant
database in a Cloud Environment. The authors started in talking about
multitenant database architecture(separate database, shared database with
separate schema and shared database with shared schema) after that talked about
schema mapping techniques which are : Private table, Universal Table
,Extension table, pivot table, chunk table, chunk folding table and XML data
type. Then started to analyze each one with giving advantage and disadvantages

(Al-Alwan, M. and Zaghloul, S., 2013). From their empirical findings we

16

decided to choose the private and pivot table to work in separate shared schema

and shared database shared schema approaches.

2.3. Related research works to this research

Yaish, H. and Goyal, M. proposed an architecture design to build an
intermediate database layer to be used between software application and
Relational Database Management System (RDBMS) to store and access
multiple tenant's data in the Elastic Extension Table (EET). Multitenant
database layer combines multitenant relational table and virtual relational table
and make them work together to act as one database for each tenant. Thus, based
on shared database shared schema data isolation approach, EET, and level 3 of
SaaS; they built multitenant database architecture to simplify and speed up the
development of multitenant database solutions which permit database service
provider to create single database application that support multiple tenants on
the same hardware, software, and infrastructure. They found that the future
work should focus on evaluating the performance of retrieving and storing

tenant's data over multiple server instances (Yaish, H. and Goyal, M., 2013).

Ni, J. et al. proposed an adaptive database schema design method for multitenant
application. They made tradeoff between Isolated Table Shared Instance (ITSI)
and Shared Table Shared Instance (STSI) by finding the balance between them
to achieve good scalability and high performance with low requirement.
Therefore, their core idea based on identifying the important attributes and uses

them to generate an appropriate number of base tables. Hence, selecting these

17

attributes based on a well-known page ranking algorithm. Consequently, their
findings showed that by generating adaptive schema design based on their
experimental results and synthetic datasets it can yield high performance for the

whole environment (Ni, J. et al., 2014).

Chauhan, R. and Kaur, S. studied the technologies to build a cost effective,
protected, and scalable multitenant infrastructure, and how to improve the
security and enhance its performance. For this purpose, they explored isolation,
security, customization, and scalability. Hence, they evaluated the performance
of those patterns using multiple experiments. Their findings showed that it is
important to work on a protocol that evaluate performance and find the best

performance with cost and make tradeoffs (Chauhan, R. and Kaur, S., 2014).

Kerb, R. and Loesch, M. made a classification of methods to ensure the
performance isolation based on request admission control. As well as, they
studied informational requirements. They found out that sharing operations
between different tenants is to decrease the operational costs. In contrast, their
findings showed that it is complicated to ensure the isolation of the performance
observed by different tenants. Thus, they discussed five conceptual approaches
with increasing the capabilities to control performance in order to determine the
complexity and the need for detailed information about the system at run time.
They found out the simplest approach based on a static admission control like a
round robin, which had a successful result in selecting tenants requests from

tenant specific queries (Kerb, R. and Loesch, M., 2012).

18

Narasayya, V. et al. presented SQL Virtual Machine (SQLVM) which represent
a light weight abstraction of a VM running within database server that provide
resource reservations. Hence, they proposed low overhead techniques to
objectively meter resource allocation to establish accountability. Hence, they
implemented a prototype of SQLVM in Microsoft SQL Azure to evaluate the
performance isolation. In their experiment, four tenants concurrently execute
one instance of each work load. Therefore, they ran different workload
combinations. Experiment reported in the sections that are focused on scenarios
where the server had sufficient resources to meet the promised reservations, the
results showed that the sum of all the reservations did not exceed the available
resources at the server. In this context, they showed that one of the important
future works is the focus on overbooking operation performance and polices
that are used to let the system the ability to make tradeoffs (Narasayya, V. et al,

2013).

Schaffner, J. et al. developed a model for predicting the response time for an in-
memory column database running a scan intensive query workload. Hence, they
showed how to use this model to predict whether a database instance will be
able to meet response time goal for a particular assignment of tenants to the
server. They took multiple parameters for the prediction model such as the size
and request rates of tenants placed on a server that is responsible to extract how
many byte in the memory database instance need to scan in a given interval.
Therefore, their results showed that 99% of the values can be obtained for a set
of tenants containing less data but high request rates and a setup with more data

but lower request rates (Schaffner, J. et al., 2011).

19

CHAPTER THREE

The Proposed Model and Experiments Design

3.1. Overview

In this chapter, we present a detailed description of the proposed model, as well as,
discuss the proposed experiment's design, experiments flow charts, and finally define

the evaluation process of research parameters through.

3.2. The Proposed Model Architecture

In this section, we describe the proposed work for this research. Therefore, we made
multiple experiments to cover all parameter in this research. Thus, private cloud was
built using OpenStack cloud manager. The first experiment took into consideration the

isolated database approach. Figure 3.1 shows the general framework of the first

experiment.
i R i
1 The First Experiment Isolated Database :
i i
' i
: Tenant_ID={1} Tenant_ID={2} Tenant_ID={3}y
1]
1]
1 Pees
1]
1 .8
: : :Extract the performance
1 : for each Tenant
r
i | R TTYT T
: """ tpu/rRAM/Disk
I
Measuring
Data Confidentiality
Using Encryption
Algorithm

(E.g. RSA Algorithm)

Extract The Cost of Using
Multiple DB instance

#CPUs, Size of Storage,
and Memory Size

Figure 3. 1. Isolated DB :The general framework of the proposed experiment

20

In the second experiment, separate schema with shared database approach had been
applied in a private cloud that was built using Openstack cloud manager using Xen
virtualization hypervisor. Thus, three table's schemas were created in the same
database. Hence, each schema was assigned for each tenant in the cloud system. Figure

3.2 shows the general framework of the second experiment.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
L

Measuring
Data Confidentiality A E‘ﬂ‘:ﬁt the IPEf*O:MME
Using Asymmetric Shared y Virtual Machines
i pool of v | g Q g ‘. s CPU/RAM/Disk
RSA Algorithm * I
Iaas I
1

Extract The Cost of Using
One DB instance

Maintenance/Backup/
Developing

Figure 3. 2. Shared DB with Separate Schema: The general framework of the proposed experiment

In the third experiment, shared schema with shared database approach had been applied

in cloud system. Therefore, one database instance with one schema was assigned for

multiple tenants in the cloud. Thus, this experiment was capable to satisfy research

21

objectives. Figure 3.3 shows the illustration of the general framework the third

experiment.

Measuring
Data Confidentiality
Using Encryption
Algorithm

(E.g. RSA Algorithm)

The Third Experiment
Shared Schema with Shared DB

Tenant_ID={1}
Tenant_ID={2}
Tenant_ID={3}

Extract The Cost of Using
Multiple DB instance

#CPUs, Size of Storage,
and Memory Size

Extract the performance
of Virtual Machines

CPU/RAM/Disk

Figure 3. 3. Shared DB with Shared Schema : The general framework of the proposed experiments

3.3. The proposed scenario in the proposed experiments

In this section, we explained the proposed scenario in order to measure the comparative

variables in this research (i.e. performance, cost, and security). In this context,

performance was extracted based on measuring CPU response time for tenant, as well

as, the cost was measured for CPU, RAM, and storage size for tenant's database. As

well as, the encryption cost of database segregation approaches using AES algorithm.

Thus, performance extraction scenario took into consideration finding the response

time for computational components after querying four basic operations (i.e. addition,

22

retrieving, updating and deletion). The extracted response time was measured in

Millisecond (ms) unit. Figure 3.4 shows the flow chart for the whole experiment.

START

v

/ INPUT: #tenants, tenant_ID, SQL_Query /

f#Records in INSERT}

l

False True
IsDB

¢ Shared?

E te Exp. 1
xecute Exp False

Execute Exp. 3

“

END

Figure 3. 4. Flow Chart for the whole work.

Basically, the first experiment is denoted as Exp.1 that represents the isolated database,
the second experiment is denoted by Exp.2 that represents Shared database with

separate schema, and the third experiment is denoted by Exp. 3 that represents the

23

shared database with shared schema. The first experiment flow chart is illustrated in

figure 3.4.2 that shows the procedures were used to implement the experiment.

C == #tenanis

Execute SQL (INSERT 124 Bard) Create DB (C)

For AT enanis l

1
Create Metadata Schema
Test Trus
Paramsters 'll’
Check Response Time Create Tables indexed with
¢ False (CPU, RAM) (temant_ID}
Execute SQL (SELE CTraze Bars) 'l' 'L
Check EAM' Buffer pool B
INCREMENT C

Before, After, Compute

Cost |
Test 4"
Parameters
Compute DB Size Before,
After, Find Cost

Execute SQL (UPDATE 1oe 8ard)
Check CPTU Consump tion
Before, After, Find Cost

y

Test
Parameters

Figure 3.5. Flow Chart for first experiment with testing procedures.

The core idea in the isolated database is that each tenant has its own database. Thus, the
components shared in this approach are database server (i.e. Linux, UNIX, or
Windows), and database instance. In this experiment tenant_ID will be a postfix for

database name. Figure 3.6 shows the database creation command.

24

ax=xn SOL m=a SOL2 poea SOQL 3
MYSQL Command - Alaa Dawoud®*/
Creating Database for each tenant in the 1st Experiment */

CREATE DATABASE EMPLOYEES+({tenant_ID);

Figure 3. 6. MySQL Create Database Command

Accordingly, sharing the table with separate schema was implemented by adding an
attribute to every table in order to segment records, to indicate the owner of the data,
this attribute called tenant_ID. Hence, this approach shares database server (i.e. Linux,
UNIX, or Windows), database instance, and source table. In this experiment we create
a table called transactions to be connected with another table called employee. Figure
3.7 shows MySQL command for creating both tables and adding multitenancy feature

on them.

2= SOL = SOQL 2 e SOQL 3

WSQL Command - Alaa Dawoud®/
/* Creating Tables for sharing Transactien one in the 2nd Exp.
CREATE Table Transactions
(
Trans_ID Int Auto_Increment Mot Mull Primary Key
,» Tenant_ID Inmt Mot Null
,» Description Varchar{52) Not Null
y Trans_Date Timestamp Default () Mot Null
|JEcmpletE_Date DateTime Mull
)3

Figure 3. 7. MySQL create multitenant table in the second experiment.

Consequently, the tenant's table was created in the same way using MySQL in order to
connect the two tables for segmenting transactions table. Figure 3.8 shows MySQL

command for creating Tenants table.

aa=n SOQL e SQL2

MYSQL Command - Alaa

/* Creating Tenant Table
CREATE Table Tenants

(

e SQL3

Tenant_ID Int Mot Null Primary Key

o m w

Figure 3. 8. MySQL command for creating Tenants Table

Username Varchar({22) Not Null
Fname Varc
Lname Varc
Pass_word Varchar(

A,
) Mot Mull
A
B
-

) Mot Mull

25

Figure 3.9 shows the flow chart of the shared table with separate schema approach

experiment's design.

Figure 3.9. Flow chart for shared table with separate schema approach.

ey
i

Create DB

v

Create Metadata Schema

y

Create Tables indexed with
(tenant_ID)

!

Execute SQL (INSERT riske. Hard)
For All Tenants

Test
Parameters

d

Execute SQL (SELE CT rigec. Hard)

Test
Parameters

Execute SQL (UPDATE e, Hers)

[

Check Response Time
(CPU, RAM)

v

Check RAM/ Buffer pool
Before, After, Compute
Cost

¥

Compute DB Size Before,
After, Find Cost

¥

Check CPU Consumption
Before, After, Find Cost

Test
Parameters

v
!

26

In the third experiment of shared database with shared schema approach, we tried to
logically group two tables (i.e. objects) in order to provide a unique namespace for
Transactions table and Tenants table. Thus, Transactions table may contain different
attributes depending on users in the tenants. Therefore, we created a schema called

Tenancy that provides both tables as shown in figure 3.10.

2= SOL pc=a SOL 2 peen SOL3
‘SQL Command - Alaa Dawoud
Creating Schema i rder to group multiple cbjects
/*Create Schema to group Transaction and Tenants in a related Table
CREATE HEMA Tenancy;

E

f*Crea

CREATE Tenancy.Workload (
Tenant_ID int Mot Mull

Trans_ID int Mot Null

emp_nc Int Not MNULL

Trans_date DateTime Null

Complete_date DateTime Null

, Trans_Type Varchar{l) Null

;Trans_Mote Varchar |) Mull

COMSTRAINT Trans_Ten_PK

PRIMARY KEY (Tenant_ID, Trans_ID, emp_nc));

¥
¥
¥
¥

Figure 3. 10. Create schemas in MySQL command and implementing Workload table.

Indeed, multitenant database requires achieving high performance, to serve large
number of tenants. Thus, the multitenant database needs to have excellent scalability
and low space of requirements. For that purpose, big challenge was put forward is to
design high quality schema that merge different core objects to manage data in an
effective way. Thus, the result table after sharing and creating that schema named
physical table (i.e. in our experiment it is Workload table). Figure 3.11 illustrates the

flow chart for implementing the third experiment with testing parameters.

27

{2

+

Create Schoma T enaney and
sharing Table Worldoad
{Group Transaction with

T enamt}

I

Execute SQL (INSERT 12 5axd)

For AllT enants
Test
Parametas W
Check Response Time
'L (CPU, RAM)

Execute SQL (SELE CT Loz Hars)
Check EAM Buffer pool

Before, After, Compute

Cost
Test 3
Paramestas
Compute DB Size Befora,
After, Find Cost
Execute SQL (UPDATE 1w &)
Check CPT Consumption

Beafore, After, Find Cost

Teast

Paramet .L
"l

Figure 3.11. Flow chart for sharing schema with shared table

3.4. Workbench MySQL Database Implementation
The Employees sample database was developed by Patrick Crews and Giuseppe Maxia
and provides a combination of a large base of data (approximately 160MB) spread over

six separate tables and consisting of 4 million records in total. The structure is

28

compatible with a wide range of storage engine types. Through an included data file,

support for partitioned tables is also provided.

In addition to the base data, the Employees database also includes a suite of tests that
can be executed across the test data to ensure the integrity of the data that you have
loaded. This should help ensure the quality of the data during initial load, and can be
used after usage to ensure that no changes have been made to the database during

testing. Figure 3.12 shows the Workbench Employees database implementation.

" | salaries ¥

—| dept_ emp ¥ ! emp_no INT(11)
! emp_no INT(11) salary INT(11)
! dept_no CHAR(4) from_date DATE
» from_date DATE to_date DATE
< to_date DATE J v
v PRIMARY
PRIMARY emp_no
emp_no
dept_no ~| employees v
emp_no INT{11)
1 » birth_date DATE
. , first_name VARCHAR(14)
:] S v L4 = last_name VARCHAR(16) -4

» gender ENUM('M','F')

» dept_name VARCHAR(40) hire date DATE

‘ dept_no CHAR(4)

v v
PRIVARY ‘ PRIMARY |
dept_name
"] dept_manager v _| titles v
! dept_no CHAR(4) ! emp_no INT(11)
! emp_no INT(11) title VARCHAR(50)
from_date DATE from_date DATE
} to_date DATE } to_date DATE
v v
PRIMARY PRIMARY
emp_no emp_no
dept_no

Figure 3.12. Workbench MySQL Database Implementation(Employees)

29

We modified in employees database according to approach. In First approach (Isolated

Database) we created new table called transaction_tenants as the following:

[CREATE TABLE “transaction_tenants”™ (

*Trans_no” int(11) NOT NULL AUTO INCREMENT,

“emp_no” int(11) DEFAULT NULL,

“trans_date” date DEFAULT NULL,

“trans_type” wvarchar{l) DEFAULT MULL,

“trans_description® wvarchar(} DEFAULT NULL,

“trans_notes” wvarchar()} DEFAULT MNULL,

PRIMARY KEY (" Trans_nc’),

KEY “emp_no” (emp_no’},

CONSTRAINT “transaction_tenants_ibfk_1" FOREIGN KEY (emp_no™)} REFERENCES °
—) ENGINE=InnoDB AUTO INCREMENT= DEFAULT CHARSET=utfg;

Figure 3.13. MySQL command for creating transaction_tenants Table

Therefore, we exported and imported the database as number of tenants that we will

use. Figure 3.14 shows the list of databases in isolated approach.

Filter objects

Q
> employeesl
» employees10
> employees100
» employeesil
» employees12
» employees13
» employeesi4
» employees15
» employees 16
» employees17?
» employees18
» employees19
> employees2
> employees20
» employees2l
> employees22
> employees23
» employees24
> employees2s
> employees26
» employees2?
» employees2s
» employees2g
» employees3
» employees30
» employees31
» employees32
» employees33
» employees34
» employees3s
> emnlnvess3f

Figure 3. 14. List of databases (Isolated Approach)

30

In shared database separate schema, we use one database, but each tenant has it is own
schema/table in the database, so we created tables depending on numbers of tenants that
we used. Figure 3.15 shows the code of creating the transaction table for shared

database shared schema approach.

= CREATE TABLE “transaction_tenantslee” (
“Trans_no” int(11) MOT NULL AUTO_INCREMENT,
“emp _no” int(11) DEFAULT MULL,
“trans_date” date DEFAULT MNULL,
“trans_type” warchar(l) DEFAULT NULL,
“trans_description® wvarchar(} DEFAULT NULL,
“trans_notes® wvarchar() DEFAULT NULL,
PRIMARY KEY ("Trans _no’},
KEY “emp_no™ (emp_no’),
FOREIGM KEY (" emp no”) REFERENCES ~employees”™ (Temp no™)
—) ENGINE=InnoDE AUTO INCREMENT= DEFAULT CHARSET=utfd;

Figure 3. 15. Creating transaction_tenants Table (Shared database Separate Schema approach)

For instance, if we will deal with 100 tenants so we must have at least one hundred
tables plus the other tables. Figure 3.16 shows the list of schema tables in shared

database with separate schema approach.

P = transaction_tenants1

» = transaction_tenants10
> transaction_tenants100
> transaction_tenants11
» = transaction_tenants12
» transaction_tenants13
> transaction_tenants14
P = transaction_tenants1is
> transaction_tenants16
> transaction_tenants17
P = transaction_tenants18
» = transaction_tenants19
> transaction_tenants2

> transaction_tenants20
» = transaction_tenants21
» transaction_tenants22
> transaction_tenants23
P = transaction_tenants24
> transaction_tenants25
> transaction_tenants26
» = transaction_tenants27
» = transaction_tenants23
> transaction_tenants29
> transaction_tenants3

Figure 3. 16. List of Schema/Tables (Shared Database Separate Schema Approach)

31

In Shared database shared schema, we created one database with shared schema/tables

for all tenants by adding filed tenant_id.

3.5. Software Implementation

Extracting performance and cost for this research was conducted using a VB.NET
program that simulates the cloud environment as a distributed system after applying
database segregation approaches. Hence, we are using this software in system has the

as shown in table 3.1.

Table 3.1. The experimental system's specifications

CPU ; Intel Core 13 1.9 GHZ
RAM Size ; 2 G.B.

Hard Disk : 50 G.B.

Operating System : Windows 7 64 bit
Database : Mysql database

Hence, this software was capable to find the response time of CPU, the cost of CPU,
the cost of RAM, and the cost of storage. Figure 3.17 shows the first Graphical User

Interface (GUI) that represents the simulation of isolated database approach.

32

o Isolated Databases - o IEN|
Databases
Number of Tenants : 2
Query n
[] select Statement [¥] Insert/Update Delete Statement Start
SQL Query znggzll’\fTN% ::F;ét,“\'?lgftceg;?)s, ("emp_no”, trans_type’, " trans_description”, " trans_notes ")VALUES SQL Query
Help
Number of records : | 1000
Sl . Close
Avaiable Ram before : [1750106224 Avaiable Ram after : 1751265280 [o0e. ||
Ram Cost : 1069056
CPU Percentage
Avaiable CPU. before : Avalable CPU after :
Timer
Time Process 0:1:10:818
File Size
Databases size before : | 316096512 Databases size after : 316129280
Databases differences | 32768

Figure 3. 17. Isolated database approach GUI cost and performance

Consequently, the results after compiling the target software shows that for two tenants
the system have to create two separate databases and creating initial tables (e.g.
Transactions, and Tenants). Hence, for the purpose of computing the cost of CPU, we
measured the available percent of CPU (i.e. 0% without 1/0 and Graphics) before, and
the availability after (i.e. 5% without I/0O and Graphics) in order to find the cost of CPU
(i.e. the difference between the availability after and before) which was 5%. Therefore,
the cost of RAM was computed in the same way through measuring the availability of
RAM before (i.e. 1750196224 MB) and the availability of RAM after (i.e. 1751265280
MB). Figure 3.18 shows the mathematical equation that was used to compute the cost

of CPU and Disk.

33

CPU Cost = CPU Availability After — CPU Availability Before

RAM Cost = RAM Availability Before — RAM Availiability After

Figure 3. 18. The mathematical equations was used to find the cost of CPU and RAM

On the other hand, to find the storage disk was done by getting the differences in
databases size before and after querying. Figure 3.19 shows the way how can we get

the database size in VB.net for SQL.

SELECT sum(data_length + index_léngth) totalsize FROM
information_schema.TABLES where table schema=" & db1 & ";"

Figure 3. 19. The mathematical equations was used to find the databases size

In Isolated database, we apply our experiment into 100 tenants with 100 databases, we
use SQL statements (Insert, Update, delete and select) in our experiment. We do three
experiment for each sql statement, then we get the average (Response Time, consumed
CPU, consumed Ram and Database difference) for each SQL statement to get best

result. Table 3.2 shows the list of SQL queries were executed in the experiments.

34

Table 3.2. Shows the list of SQL queries that were executed in the experiments

Operation 1000 10000 30000
Records Records Records
Insert (Without Encryption) Y Y Y
Insert (with Encryption) Y Y Y
Update (without Encryption) Y Y Y
Update (with Encryption) Y Y Y
Select with Index key(without Encryption) Y Y Y
Select with index key (with Encryption) Y Y Y
Select without Index Key (without Encryption) Y Y Y
Select without index key(with Encryption) Y Y Y
Delete (without encryption) Y Y Y
Delete(with Encryption) Y Y Y

Correspondingly, we measure the performance and cost for CPU, RAM, and storage
disk. Figure 3.20 shows the GUI of Shared database with separate schema. Hence, there
were two tenants that share the same database instance, and both of them were working
on the same table. After executing INSERT query for 1000 records the performance of
CPU was 1 minute, 2 seconds, and 828 milliseconds. The cost of CPU was 4%, the cost

of disk was 98304 MB and the cost of RAM was 11608064 MB.

35

Databases
Number of Tenants : |2

Query

O seect (@ INSERT

() DELETE

Number of records : :moo

RAM
Avaiable Ram before : [{795637248

Ram Cost : 11608064

CPU Percentage

Avakbe U beore:
o fferences:

Timer

Time Process 0:1:2:828

File Size
Databases size before : | 158269440
Databases differences | 98304

SQL Query : (“emp_no", trans_type", " trans_description", " trans_notes ')VALUES(10001,'T,'NOTHING','WELCOME);

Avaiable Ram after : [1807245312

ok U e

Databases size after : 158367744

SQL Query

Close

i,
:
‘ Help
5
[

Figure 3. 20. The second experiment of shared database with separate schema GUI

Figure 3.21 shows the GUI of the third experiment. Thus, by reserving three tenants in

the system with sharing database instance, table, and the schema the result will be

physical table have a unique namespace of objects. Therefore, the INSERT query will

take place in the physical table called transaction_ tenants. The performance of CPU

was 52 seconds, and 768 milliseconds. The cost of CPU in this approach achieved 5%,

the cost of RAM was 7786496 MB, and the cost of disk was 98304 MB.

36

x
Databases
Number of Tenants : |3
Ay O seLecT @® INSERT O UPDATE O paETE
SQL Query : INSERT INTO transaction_tenants ("emp_no","trans_type ", trans_description”, " trans_notes ", "tenant_id")VALUES
(10001, T, NOTHING', WELCOME', SQL Query
Number of records : |500 Help
il Close
Avaiable Ram before : 1612087296 Avaiable Ram after : | 1604300800 ooze |
Ram Cost : 7786496
CPU Percentage
Avaiable CPU_before : Avabable CEllalter
P Dferences:
Timer
Time Process 0:0:52:768
File Size
Databases size before : | 154992640 Databases size after : [155000944
Databases differences |98304

Figure 3. 21. The third experiment of shared database with shared schema GUI

3.6. MySQL queries were used in the experiments

In this context, we are going to discuss the used queries in this experiments. Thus, in
this research we used INSERT, UPDATE, and DELETE as a primary queries.
Consequently, we applied these queries on all database segregation approaches in order
to evaluate the performance of data for each one. Figure 3.22 shows the INSERT

Statement to insert 1000 record for each experiment.

'INSERT INTO transactlon _tenants

(‘femp_no’,’trans_type’, trans_description’, trans_notes)VALUES(10001
| 'L, 'NOTHING' 'WELCOME);

Figure 3. 22. INSERT Statement in experiment

We measure response time, CPU, Ram and disk storage for each INSERT command by
adding 1000 record in each database in each experiment, then we take the average

depending on number of tenants each time.

37

On the other hand, by using UPDATE command, we use the following statement as in

figure 3.23

UPDATE transaction_tenants SET ‘trans type ='U', ‘trans_description’
= 'Transaction description is welcome', ‘trans_notes™ = 'Transactions
Notes is nothing' WHERE ‘emp_no" = '10001";

Figure 3. 23. Update Statement in experiment

The Third SQL command we use is Delete, it is showed in figure 3.24

| DELETE FROM transaction_tenants where ‘'emp no’='10001'

Figure 3. 24. Delete Statement in experiment

3.7. Encryption and decryption response time for multitenant
databases.

Building security for multitenant database must be adequate to cover every aspect of
cloud application. Thus, security could be achieved through three core operations which
are filtering, permission, and encryption. Filtering operation can be achieved via using
an intermediary layer between a tenant and data source that act like a controller where
the tenant can see its data as the only data in the database. Permission operation can be
achieved through designing Access Control List (ACL); to determine who can access
data in the application and what they can do. As well as, using encryption techniques
to hide every tenant's critical data; so that it will be inaccessible to unauthorized parties
even if they get an access to it. In this research, we made an experiment to evaluate the

response time of encrypting data sources after applying data segregation approaches.

38

Cryptography is the science of using mathematics to encrypt and decrypt data.
Cryptography enables you to store sensitive information or transmit it across in secure
networks. There is many algorithms for encrypting data, the tow famous algorithms
which are RSA and AES. Consequently, RSA is an asymmetric cryptographic
algorithm, it has two keys, public and private key. The public key can be known to
everyone, we use it to encrypt data, on the other hand, private key we are use it to

decrypt data. To encrypt data we used equation 1.

c=m" modn Equation (1)

Where:
. is result of multiplication two random numbers n=p*q
nt. is number less than n

On the other hand to decrypt data we used equation (2).

d .
m=¢ modn ... Equation (2)

Where:

. is result of multiplication two random numbers n=p*q
nt. is number less than n

c . is the ciphered text

The Advanced Encryption Standard (AES) is formal encryption method adopted by the
National Institute of Standards and Technology of the US Government, and is accepted
worldwide. In 1997 the National Institute of Standards and Technology (NIST), a
branch of the US government, started a process to identify a replacement for the Data
Encryption Standard (DES). The AES encryption algorithm is a block cipher that uses
an encryption key and a several rounds of encryption. AES is based on the principle
Known as Substitution-permutation. AES encryption uses a single key as a part of the
encryption process. The key can be 128 bits (16 bytes), 192 bits (24 bytes), or 256 bits

(32 bytes) in length. In our experiment we use AES algorithm as a type of encrypting

39

data. For this purpose, we stored the encrypted data into employee's database.
Therefore, security effects could be measured easily on databases approaches. Figure

3.25 shows VB.Net code of encryption procedures using AES algorithm.

Imports System.IO
Imports System.Text
Imports System.Security.Cryptography
Public Class Forml
Private Function Encrypt (ByVal clearText As String) As String
Dim EncryptionKey As String = "MAKV2SPBNIS99212"
Dim clearBytes As Byte() =
Encoding.Unicode.GetBytes (clearText)
Using encryptor As Aes = Aes.Create()
Dim pdb As New Rfc2898DeriveBytes (EncryptionKey, New
Byte() {&H49, &H76, &H61l, &H6E, &H20, &H4D,
&H65, &H64, &H76, &H65, &H64, &HG65,
&H761})
encryptor.Key = pdb.GetBytes (32)
encryptor.IV = pdb.GetBytes (16)
Using ms As New MemoryStream/()
Using cs As New CryptoStream (ms,
encryptor.CreateEncryptor (), CryptoStreamMode.Write)
cs.Write(clearBytes, 0, clearBytes.Length)
cs.Close ()
End Using
clearText = Convert.ToBase64String(ms.ToArray())
End Using
End Using
Return clearText
End Function
Private Sub Forml Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load

End Sub
Private Sub Buttonl Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles Buttonl.Click

TextBox2.Text = Encrypt (TextBoxl.Text)

End Sub
End Class

Figure 3. 25. VVB.Net code showing Encryption by AES algorithm

40

CHAPTER FOUR

Experimental Results

4.1. Overview

In this chapter we discussed the results of the proposed experiments, as well as,
calculating the statistical measures (e.g. averages, variance, and Coefficient Variation
(CV)) for each experiment in the proposed model. Hence, all comparison criteria in this
research covered the research questions and hypothesis. This chapter is consisted into

performance evaluation level, cost evaluation level, and security evaluation level.

4.2. Performance evaluation level

The main goal of this level is to discuss the results of performance evaluation based on
transaction time in term of the used database segregation approach. Consequently, this
level was implemented by employing three experiments to evaluate inserting n number
of records, retrieving n number of records, and deleting n number of records.
Furthermore, the reliability of each experiment's results in this level was tested by
taking the number of records r as a control parameter. Hence, each experiment was
tested over three phases which were the light phase with a 1000 records, the balanced

phase with a 10000 records, and the hard phase with a 30000 records in each database.

41

Insertion transaction's time evaluation

Basically, we discussed the results of INSERT SQL query in the proposed experiments.

Thus, we applied a control parameter (i.e. number of records n) in order to test the effect

of increasing number of records that were inserted into database. Table 4.1 shows the

results of transaction time after executing INSERT query in the experiment.

Table 4. 1. The average of transaction time using INSERT query executed by 91 tenants

Target # Isolated DB Shared DB Separate Shared DB Shared
Records (ms) Schema (ms) Schema (ms)
1000 95708.5 98455.5 101203
10000 898861.1 787644.2 1051671.2
30000 2597380.7 3118136.4 5258356.1

In this context, the results showed that by increasing the number of records the

transaction time was increased for each database segregation approach. Hence, the

control parameter showed that the results of this experiment were reliable due to the

increasing in transaction time. Figure 4.1 illustrates the control parameter effects on

transaction time.

6000000

5000000

4000000

3000000

2000000

1000000

Transaction Time

0

—¢—|solated DB

== Shared DB Separate
Schema

Shared DB Shared
) Schema

Light Insert Balanced Hard Insert

Insert

Number of Records

Figure 4. 1. Transaction time for light, balanced, and hard insertion graph

42

Furthermore, the results of insertion queries showed that the light insertion (i.e. a small
number of records) did not affected by the database segregation approach. In contrast,
the results showed that the balanced insertion varied in transaction time depending on
the database segregation approach. In balanced insertion, we found out that shared
database with separate schema had a positive effect on the transaction time compared
with shared database with shared schema approach. In hard insertion, the used approach
of database segregation had a direct effect on the transaction time as well as a drastic
performance gap was existed which showed a negative effect of using shared database
with shared schema approach. On the other hand, a positive performance effect had
been achieved by using isolated database approach. The expectable results occurred
between the isolated DB approach and shared database with shared schema approach
because of its results that were equal in all insertion stages. The reason behind this
behavior refers to the use of index for all stages in shared DB with shared schema.

Figure 4.2 shows the results of database segregation approaches over several weighted

insertion.
6000000
5000000
o 4000000
& M |solated DB
=
g 3000000 —
s Shared DB Shared
2 2000000 — Schema
E Shared DB Separate
1000000 — Schema
0 -4_—7—I T 1 INSERT Query
1000 10000 30000
Records Records Records
Number of Records

Figure 4. 2. Transaction time results chart of database segregation approaches in insertion queries.

43

Retrieving transaction's time evaluation

Basically, the retrieving process in the proposed experiments was represented in two
cases which were conditional retrieving and non-conditional retrieving. Both
conditional and non-conditional retrieving was implemented using SQL SELECT
query that was executed in tables from several database segregation approaches. Hence,
we assigned the use of condition to identify the suitable database segregation approach
in high computational cases. The non-conditional retrieving was used with number of
records as a control parameter in this experiment to check result's reliabilities. Table
4.2 shows the average of transaction time using standard SELECT query over database

segregation approaches.

Table 4. 2. The average of transaction time using standard SELECT query over database segregation

approaches.
Shared DB
Target # Shared DB Shared
Records Isolated DB (ms) ?rﬁgflrate Schema Schema (ms)
1000 89 98 105.1
10000 253.4 301.9 359.1
30000 524.2 483.1 416.5

Actually, transaction time for retrieving the whole table from database using the
standard SQL SELECT query was increasing due to the increase in table's size. Hence,
the results showed that the increasing in transaction time was for all segregation
approaches which mean that the proposed experiment's results were reliable based on
the control parameter. Figure 4.3 illustrates the graph of the transaction time results in

database segregation approaches for retrieving n number of records.

44

600

500

400

300

200

Transaction Time (ms)

100

/

== |solated DB

== Shared DB Separate

74
V4

Schema

Shared DB Shared Schema

1000 Records 10000
Record

Number of Retrieve

30000 Record
S

d Records

Figure 4. 3. Standard SELECT query results for database segregation approaches

Consequently, we tested the retrieving transaction time using a conditional SQL

SELECT query in order to find the suitable database segregation approach in term of

intensive computation. Therefore, we added a conditional expression to the retrieving

transaction to measure its impacts on transaction time for each database segregation

approach, as well as, extract the best and worst cases. Table 4.3 shows the results of

intensive computation using conditional SQL SELECT statement in database

segregation techniques.

Table 4. 3. The results of intensive computation using conditional SQL SELECT statement in database
segregation techniques.

Target # Isolated DB Shared DB Separate Shared DB Shared
Records (ms) Schema (ms) Schema (ms)
1000 1560 3133 907
10000 4743 10531 2988
30000 16549 34304 13452

45

By comparing the results of retrieve transactions using conditional SELECT query, we
can find that the shortest transaction time was achieved by employing queries on shared
database with shared schema approach. On the other hand, the longest transaction time
was achieved by shared database with separate schema approach. Furthermore, from
the retrieved number of records point of view a drastic gap in transaction time between
segregation approaches was existed due to the increased number of retrieved records.
Figure 4.4 shows the graph of the average transaction time for the segregation

approaches in the proposed experiment.

40000

35000

30000

25000

20000

M |solated DB

15000 M Shared DB Separate Schema

Transaction Time (ms)

10000 | Shared DB Shared Schema

5000 —

o | mil

1000 10000 30000
Retrieved Retrieved Retrieved

Number of Records

Figure 4. 4. The averages graph in segregation database approaches using select with index query

Delete transaction's time evaluation

In this section, we discussed the results of transaction time needed to delete transaction
for n number of records from database's tables. In this experiment we chose standard

SQL DELETE query. However, it is axiomatic to know that the transaction time

46

increases while there is an increasing in the number of deleted records. Hence, we chose
the number of attribute as a control parameter to check results reliability. On the other
hand, we cannot capable to detect the best database segregation approach in term of
delete transaction's point of view. Table 4.4 shows the results of SQL DELETE query

in the proposed experiment.

Table 4. 4. The average results transaction's time of SQL DELETE query for each DB segregation

approach
Target # Isolated DB Shared DB Separate Shared DB Shared
Records (ms) Schema (ms) Schema (ms)
1000 5542.6 8638.6 2647
10000 40179 35192 31652
30000 197160 168139.7 151317.6

Basically, the control parameter in this case identified an increasing of transaction's
time through the increasing number of attributes. Thus, these results were reliable and
could be taken into consideration to find the complexity between database segregation
approaches. Figure 4.5 show the results of SQL DELETE transaction time was

consumed to handle deleting n number of attribute.

250000

200000
A —4—|solated DB
i—=150000

o
£
'_
S
B == Shared Db Separate
2100000 Schema
E Shared DB Shared

50000 ScHEMA

4
0 T T 1

1000 Deleted 10000 Deleted 30 Deleted

Number of Deleted Records

Figure 4. 5. Control parameter graph for delete transaction in the proposed experiment

47

Furthermore, the results showed that delete transaction’s time had been affected by the
type of database segregation approach. Thus, by comparing these results we found out
that isolated database approach had a negative effect on the delete transaction.
However, shared database with shared schema achieved the best case in delete

transaction time. Figure 4.6 shows a graph that illustrates these results.

250000
200000
m
£
GEJ 150000 —
iz M Isolated DB
c
.g 100000 Shared DB Separate Schema
[S)
©
% 50000 | Shared DB Shared Schema
- i
0 +— - T T 1
1000 Records 10000 30000
Records Records
Number of Records

Figure 4. 6. The results of delete transaction's time for each database segregation approach

Conclusions

Actually, performance in the proposed experiments was successfully evaluated in term
of transaction time for inserting, retrieving, and deleting transactions. Therefore, the
results showed that each type of database segregation approach has its own effects on
performance based on type of the tested transaction. Furthermore, we found out that the
number of tenants in some cases had its own effects on transaction's time. Table 4.5

shows the analysis of performance evaluation in the proposed experiment.

48

Table 4. 5. The performance evaluation analysis in the proposed experiment

Transaction Type High Performance Balanced Low Performance
Performance
Insertion Isolated database | Shared database with | Shared database with
approach separate schema | shared schema
approach approach
Number of tenants Not Sensitive Sensitive Dramatically Sensitive
Case Evaluation Best Case Active with small | Worst Case

number of tenants

Retrieving Shared database with | Isolated database | Shared database with
shared schema approach separate schema
Number of tenants Sensitive Sensitive Dramatically Sensitive
Case Evaluation Best case Active with small | Decreases the
number of tenants —not | performance drastically
recommended for large | medium number of
number of tenants. tenants
Deletion Shared database with | Shared database with | Isolated database
shared schema separate schema approach
Number of tenants Not Sensitive Not Sensitive Sensitive
Case Evaluation Best Case Normal Case Large number of
tenants decrease

performance in tangible
manner

Consequently, the proposed experiments provide cloud users the ability to choose the

suitable database segregation approach. Hence, from performance evaluation point of

view we can give cloud users the ability to make their own tradeoffs in term of database

segregation approach in order to select the appropriate environment based on their

system's performance requirements.

4.3 Cost evaluation level

The main goal of this level is to evaluate the database segregation approach from the

cost of computing resources point of view. Thus, in this experiment the evaluation

criteria took into consideration the cost of CPU, memory, and disk storage. Therefore,

the evaluation process focused on measuring the consumed percentage in CPU, the

consumed space in memory, and the consumed disk size. Hence, each experiment was

49

tested over three phases which were the light phase with a 1000 records, the balanced
phase with a 10000 records, and the hard phase with a 30000 records in each database

after employing insertion and retrieving queries.

CPU cost evaluation level

In this section, we discussed the results of CPU cost based on the insertion and
retrieving queries. Hence, CPU consumption was evaluated by measuring the query
statistics using DBCC FREEPROCCACHE SQL statistics which is responsible to
measure the cost of CPU while executing SQL queries. Table 4.6 shows the results of

CPU cost after executing INSERT and SELECT queries.

Table 4. 6. The results of CPU cost after executing INSERT and SELECT queries

Isolated DB Shared DB Shared DB
(100%) Separate Schema | Shared Schema

of Records Query Type (100%) (100%)
1000 INSERT 25.45 9.17 19.32
RETRIVE 14.9 22.3 47.9

10000 INSERT 40.3 25.1 28.11
RETRIVE 23.39 39.8 62.79

30000 INSERT 64.9 54.9 55.47
RETRIVE 31.97 37.98 79.8

The results showed that the CPU consumption had been affected due to the type of
database segregation approach. Therefore, a CPU consumption gaps had been detected
after applying the insertion query. The main theme of these gaps had been repeated for
all experiment's phases. Thus, we found out that the isolated database segregation
approach affected the consumption of CPU dramatically compared with other

segregation approaches. On the other hand, with a small number of inserted records the

50

shared database with separate schema performed well in term of CPU consumption.
From shared database with shared schema the consumption of CPU was increasing in
regular manner, as well as, its effects on the CPU consumption for the large number of
inserted records was approximately synchronized in results with shared database with
separate schema. Figure 4.7 shows the results distribution of database segregation

approaches in insertion queries for a variable number of records.

70

60
R 50 —
c
o
= 40 -
o
E |
g 30 [M [solated DB
8 B Shared DB Separate Schema

20 - —
E Shared DB Shared Schema
Q

10 - —

0 1 T T 1
1000 Records 10000 Records 30000 Records
The Number of Inserted Records

Figure 4. 7. The average of CPU cost for INSERT SQL query.

From retrieving point of view, an inverse case existed based on the results of SELECT
query. Hence, we found out that the isolated database segregation approach had a
positive effect on the consumption of CPU. A drastic gaps in CPU consumption was
existed in all experiment's phases due to the use of shared database with shared schema
segregation approach which showed a negative effect. In contrast, the use of shared

database with separate schema approach achieved stable results after increasing the

51

number of retrieved records. Figure 4.8 shows the average results of CPU consumptions

for SELECT query in the proposed experiment.

90

80

70

60

50

CPU Consumption (%)

1000 Records 10000 Records 30000 Records

The number of retrieved records

M |solated DB
B Shared DB Separate Schema

Shared DB Shared Schema

Figure 4. 8. The average of CPU cost for SELECT SQL query.

Disk cost evaluation

In this section, we discussed the effects of database segregation on the cost of disk (i.e.

storage size) based on the insertion query over a variable number of records in the

experiment. Table 4.7 shows the average results for each segregation approach for

INSERT query.

Table 4. 7. The average results of INSERT query on disk cost based on database segregation

approaches

Target # Shared DB Separate Shared DB Shared

Recgords kol I3 () Schema (KB) i Schema (KB)
1000 2214.4 1579.6 996
10000 30806.4 2889.4 2468
30000 89980.8 7594.2 7169.8

52

Basically, the results of disk cost show a gap existence between isolated database
approach and the other segregation approaches. Hence, in isolated database approach
we found out a huge number of record's replication to cover each tenant's database.
Furthermore, a normalized difference between shared databases with shared schema
approach and shared database with separate schema approach. Figure 4.9 shows the

storage cost after executing INSERT query based on database segregation approaches.

100000

90000

80000

70000

60000

50000 M [solated DB
40000 H Shared DB Separet Schema

Disk Size (KB)

30000 2 Shared DB Shared Scehma

20000

10000

0 - INSERT Query
1000 Inserted 10000 30000
Inserted Inserted

Number of Records

Figure 4. 9. The storage cost after executing INSERT query based in database segregation approaches

Conclusions

Basically, the cost evaluation in this level was concentrated on evaluating the
consumption of CPU and disk storage using insertion and retrieving queries. Therefore,
the proposed experiments were capable to provide the differences of using database

segregation approaches in term of cost. Therefore, the CPU cost was measured using

53

query cost statistics functions provided MYSQL server DBMS, as well as, the cost of
storage was measured using the normalized difference between the size of the system
after and before executing the SQL queries. However, in some cases the number of
records which were inserted or extracted did not have a direct effect based on the used
segregation approach especially in large number of records cases (i.e. more than 30000
records). In contrast, in some cases the number of records were inserted or retrieved
had a direct effect especially in small number of records (e.g. 1000 records). Table 4.8
shows the tradeoffs between database segregation approaches in term of CPU

consumption and disk storage cost.

Table 4. 8. Tradeoffs table for insertion queries to identify the appropriate segregation approach

Criteria Light Insertion Balanced Insertion Hard Insertion
Light CPU Consumption SDBSPS SDBSPS SDBSPS + SDBSS
Balanced CPU Consumption | SDBSS SDBSPS + SDBSS SDBSPS + SDBSS
Hard CPU Consumption IDB IDB 1DB

Light Disk Storage Cost SDBSPS/SDBSS/IDB | SDBSPS + SDBSS | SDBSPS + SDBSS
Balanced Disk Storage Cost | SDBSPS SDBSS SDBSPS

Hard Disk Storage Cost IDB 1DB 1DB

Table Key:

(IDB : Isolated DB) (SDBSS: Shared DB Shared Schema) (SDBSPS: Shared DB Separate Schema)
** Note: Underlined Approach - Worst Case

4.4. Security evaluation level
Actually, several security metrics were found in literature to evaluate the security

feature in computer systems. Thus, in this research security evaluation was based on

54

the number of attributes were encrypted using AES algorithm in the proposed system.
Furthermore, by evaluating the number of encryption times for each database
segregation approach, we can measure the security in term of protecting tenant's data
from internal and external attacks. In this context, control parameter was assigned to
detect the accuracy of system's results. Hence, we evaluated the performance of a
system that was encrypted one, two and three times using AES algorithm. Transactions
were used in the proposed experiment were about retrieving the same contents from
three systems contains the same data and differ in the used database segregation
approach. Table 4.9 shows the average results of retrieving the contents transaction's

time of the proposed systems that were encrypted several times.

Table 4. 9. SELECT transaction time in several systems that were designed and employed based on
database segregation approaches and was encrypted several times

Shared DB
of Encryption | Isolated DB (ms) Separate Schema SWEEE (2 Slhneiet
. Schema (ms)
Times (ms)
One Time 38283.4 24299.8 56947.2
Two Times 121537.6 131458.6 295366.6
Three Times 392786.8 691234.5 835215.1

The control parameter in the proposed experiment showed that the increasing number
of encryption time number was reflected as increasing in transaction time for retrieving
information in all systems that applied all segregation techniques. Thus, the control
parameter proved that the experiment's results were reliable. Figure 4.10 shows the
results of transaction time in systems that were encrypted using AES algorithm several

times number.

55

900000
¢ 800000 f
=
g 700000 /
5 600000 /
®© 500000 ¢—Isolated DB
: /
© 400000 /
|_
I 300000 /é /7
=} 200000
o / /
¥ 100000 ——
0 T T 1
One Time Two Times Three Time
The number of

Figure 4. 10. The average transaction time results of system with several encryption time numbers

From security point of view, the more secure environment is the more times encrypted
because of several key generation processes. The proposed experiments showed that
the database segregation approaches affect the cost of security in term of encryption
response time, and it effects was reflected when it extracted by measuring the
performance of retrieving transactions. Therefore, the results showed that if we use the
shared database with shared schema segregation approach the encryption performance
would be the best compared with the other segregation approaches. However, using the
shared database with shared schema segregation approach affected the encryption
performance in a negative manner. A drastic encryption performance gaps existed in
term of database segregation. Figure 3.11 shows the AES algorithm's encryption

performance graph based system's database segregation approach.

56

60000

50000
m
E
) 40000
c M Isolated DB (ms)
=
b
S 30000 - Shared DB Separate Schema
o (ms)
[}
°é 20000 - m Shared DB Shared Schema
Kol (ms)
)
S
5 10000 -
c
w

o .
AES Encryption

Figure 4. 11. AES algorithm's encryption performance graph for systems that was designed based on
database segregation approaches

Consequently, we measured the decryption performance by applying a retrieving
queries for systems that were encrypted for one time, two times, and three times in order
to extract the suitable database segregation approach in multi-encryption systems.
Therefore, the results showed that the isolated database segregation approach is the
suitable approach for multi-encryption systems (i.e. in the more secured systems). The
shared database with separate schema was performing well with one encryption
systems. However, by increasing the number of encryption times shared database with
shared schema and shared database with separate schema had a negative effect in term
of retrieving point of view. Figure 4.12 shows the performance analysis graph of multi-

encryption based on database segregation approaches.

57

900000

800000
— 700000
£
() 600000
c M Isolated DB (ms)
‘> 500000
g Shared DB Separate Schema
3 400000 (ms)2
]
< 300000 m Shared DB Shared Schema
= (ms)
o 200000
-
(&}
S 100000

o .
One Time Two Times Three Times

Figure 4. 12. Shows the performance analysis graph of multi-encryption based on database segregation
approaches.

4.5. The proposed experimental results discussion
In this section, we discussed the experimental results from all proposed level were

mentioned in this chapter, in order to define the benefits of this study and design a
tradeoffs table that covers all cases in the study. Thus, CSP server side and cloud
customers may benefit from this study in term of choosing the appropriate cloud

specification in term of database segregation approaches.

Consequently, the experimental results showed that the tradeoffs take place from
different point of views which are performance, cost, or security perspectives.
Therefore, in this study the vertical integration was represented by transaction time in
insertion, CPU consumption, and the encryption operation insecurity. On the other
hand, the horizontal integration was represented by transaction time for retrieving, disk
consumption, and security decryption operation. Table 4.10 shows the possible trade

offs in this study.

Table 4. 10. The tradeoffs possibilities extracted from this study

Transaction Time

(Retrieving)

58

Vertical Integration in this study

Transaction CPU Disk Security
Time Consumption Consumption | (Encryption)
(Insertion) (Insertion) (Insertion)
Isolated DB Shared DB Separate
Vs. Schema
Shared DB Shared Vs. Shared DB shared Shared DB

Schema Shared DB Shared Schema shared Schema
Schema
CPU Consumption Shared DB Separate Shared DB
. Schema Shared DB Shared Shared Schema
2 (Retrieving)
é Isolated DB Vs. Vs. Vs.
(%)
.F: Isolated DB Isolated DB Isolated DB
c
= Disk Consumption Shared DB Separate | Shared DB Shared Shared DB
o
= . Schema Schema Shared Schema
g (Retrieving)
g Isolated DB Vs. Vs. Vs.
= Isolated DB Isolated DB Shared DB
c
N Separate
=
E Schema
Security Isolated DB Shared DB Shared Shared DB
. Vs. Schema Vs. Shared Schema
(Decryption)
Shared DB Shared | Shared DB Separate Isolated DB Vs.
Schema Schema Vs. Shared DB
Shared DB Separate
Separate Schema Schema

Notes: Colored boxes means the tradeoffs is possible based on customer requirements.

4.6. Empirical Findings and Discussion:

In this section, we discussed the empirical findings of this study that summarizes the

comparisons between database segregation approaches. Thus, in order to ease reading

59

the results we assigned A, B, and C to represent the isolated database approach, shared
database with separate schema approach, and shared database with shared schema
approach respectively. The discussion of the results was considered based on the gain
and loss approach among database segregation approaches. Table 4.11 shows the
percentage of each database segregation approach in term of query type for
performance with regard to transaction time, cost with regard to CPU and disk storage,

and security with regard to decryption.

Table 4.11. The database segregation approaches comparison table for research parameters

No Records

Isolated DB

Shared DB
Separate Sc

Shared DB
Shared Sc

97%
100%
80%
29%
28%
39%
30%
90%
90%
100%
100%
100%
67%
59%
84%
63%
31%
94%
100%
92%

57%

95%
75%
49%
100%
100%
100%
100%
100%
100%
48%
89%
99%
31%
38%
40%
100%
100%

100%
43%
41%
47%

100.00%
85%
100%
58%
63%
81%
48%
79%
77%
36.00%
62%
85%
100%
100%
100%
45.00%
8%
8%
63.00%
100%

100%

Light
Balanced
Hard
Light
Balanced
Hard
Light
Balanced
Hard
Light
Balanced
Hard
Light
Balanced
Hard
Light
Balanced
Hard
Light
Balanced
Hard

Inserting

Retrieving

Deletion

Performance(Transactio

Inserting

Retrieving

Inserting

Retriving

Security] (Storag |Cost (CPU)

The analysis of the empirical findings was outlined as trade off cases in order to find

the optimal case for user's environment requirements. Hence, in case 1, 2, and 3 the

60

analysis was concentrated on finding the optimal case in term of query type. However,
in case 4 — case 16 the tradeoffs discussion was investigated with regard to performance

transaction, cost of CPU, cost of disk storage, and security decryption.

CASE 1: The analysis of performance with regard to transaction time.

Selecting A in the light insertion give the system a chance to gain 5% than choosing C.
In contrast, choosing A in the light retrieving let the system to loss 42%, as well as,
losing 52% in deletion than choosing C. Therefore, we found out that choosing A for
insertion based systems was represented the optimal solution. On the other hand,
choosing C was represented the optimal solution for a system that implements the
combination of insertion, retrieving, and deletion queries due to 42% gaining in

retrieving and 52% gaining in deletion.

CASE 2: The analysis of cost in term of CPU

Selecting B in the light insertion give the system a chance to gain 64% than choosing
A. In contrast, choosing B in the light retrieving let the system to loss 33% than choosing
A. On the other hand, choosing A in the light retrieving let the system to gain 33% than
choosing B that lose 33%. Therefore, we found out that choosing B was represented
the optimal solution for a system that concerned with CPU cost in insertion and

retrieving queries.

CASE 3: The analysis of cost in term of CPU and the cost of disk storage

Selecting B in the light insertion of CPU cost give the system a chance to gain 52%
than choosing C. In contrast, choosing B in the light insertion of Storage cost let the
system to loss 37% than choosing C. On the other hand, choosing C in the light

insertion let the system to loss 52% in CPU cost and gain 37% in storage cost.

61

Therefore, we found out that choosing B was represented the optimal solution for a

system that concerned with CPU and storage costs in insertion queries.

CASE 4: The analysis of Security and performance (transaction time)

Selecting C in the light retrieving of performance (transaction time) give the system a
chance to gain 71% than choosing B. In contrast, choosing C in the light retrieving of
security (retrieving) let the system to loss 57% than choosing B. On the other hand,
choosing B in the light retrieving let the system to loss 71% in performance (transaction
time) and gain 57% in security (retrieving). Therefore, we found out that choosing C
was represented the optimal solution for a system that concerned with performance

(transaction time) with security (retrieving) queries.

CASE 5: The analysis of storage cost with performance transaction time

Selecting A in the light insertion of performance (transaction time) give the system a
chance to gain 5% than choosing C. In contrast, choosing A in the light insertion of
storage cost let the system to loss 55% than choosing C. On the other hand, choosing
C in the light insertion of performance transaction time let the system to loss 5% in
performance (transaction time) and gain 55% in storage cost. Therefore, we found out
that choosing C was represented the optimal solution for a system that concerned with

performance (transaction time) with storage cost for insertion queries.

CASE 6: The analysis of performance (transaction time), CPU cost, and security in

term of light retrieving queries.

Selecting C give the system the chance to gain 42 % compared with selecting A, and
71% compared with selecting B in term of performance (transaction time). By selecting

A in term of CPU cost gives the system a chance to gain 33% compared with selecting

62

B, and 69% compared with selecting C. From security point of view, selecting B give
the system chance to gain 37% compared with selecting A, and 57% compared with
selecting C. Therefore, the suitable DB segregation approach between performance,

cost, and security features is found in selecting C approach.

63

CHAPTER FIVE

Conclusions

5.1. Overview

This chapter summaries the conclusions of our work and suggested recommendations
for using the suitable database segregation approach based with regard to performance,
cost, and encryption / decryption security algorithm using insertion, deletion, and

retrieving SQL queries.

5.2. Conclusions

According to the goals and experimental results, we can find that the used approach of
database segregation influenced the performance in term of transaction time, the cost
in term of consumption of CPU and consumption of disk storage, and the encryption /
decryption operations in security. Therefore, two parameters were employed for the
evaluation. Hence, the first parameter was used as a control parameter to check whether
the proposed experimental results were in the right manner or not. The control
parameter was the number of inserted or retrieved records. The second parameter was
used is the primary one based on our study hypothesis which was the type of queries
that were used on a running DB in cloud system. Therefore, we used INSERT,
DELETE, and SELECT SQL queries.

Furthermore, the evaluation of transaction time, CPU consumption, disk consumption,
and security encryption / decryption performance was successfully realized. In
transaction time we chose to use the 1/O statistics in SQL server DBMS. In CPU

consumption evaluation we chose to use query cost statistics. In disk consumption we

64

chose to compute the normalized difference between the size of DB before and the size
of DB after. In security we chose to evaluate the security through the number of
encrypting database since the more secure is the less flexible and vice versa. In contrast,
our evaluation criteria failed to measure the cost of memory for many reasons such as
the total number of programs were cached in the environment as well as the graphics
resources such as monitor card and other on start programs which were assigned to the
memory and we cannot eliminate their effects in our calculations.

Furthermore, this study provide a tradeoffs table that let cloud users (i.e. server side or
client side) to benefit from results in the decision making process of choosing the

suitable database segregation approach that suits user's requirements and expectations.

5.3. Future research works

This research opens the door for finding the suitable database segregation approach to
achieve the best results. Thus, the results of this study can be used to design an
automatic cloud broker that has an intelligence features in order to assign the suitable
database segregation approaches for cloud users. This research work open the door to
make stress testing technique to evaluate the performance of such multitenant systems
as well as evaluating memory performance using load testing approaches. Covering
more domains using the proposed test experiment will enable more and more domain
to be evaluated. Also, achieving more accurate results is still topic of continuous and

constant research.

65

References

Al-Jahdali, H., Albatli, A., Garraghan, P., Townend, P., Lau, L.and Xu, J. (2014).
Multi-Tenancy in Cloud Computing. 2014 IEEE 8th International Symposium on
Service Oriented System Engineering. PP. (344-351), Vol. 1, Issue. 2

doi:10.1109/s0se.2014.50. ISBN: 978-1-4799-3616-8.

Almorsy, M., Grunday, J. and Ibrahim, A. (2012). SMURF: Supporting Multi-tenancy
Using Re-Aspects Framework. The 17th IEEE International conference on Engineering

of Complex Computer Systems Swinburne. (ICECCS 2012), Paris, France.

Bardiya, P., Gulhane, R., and Karade, P. (2014). Data Security using Hadoop on Cloud
Computing. International Journal of Computer Science and Mobile Computing. VVol.3

Issue.4.

Jacob, D. and Allbuch, S. (2007). Ruminations on Multi-Tenant Databases.

Datenbanksysteme in Business, Technologie. Vol. 1, Issue. 1, PP. (514-521).

Kun, M., Bo, Y and Ajith, A. (2012). A Template-based Model Transformation
Approach for Deriving Multi-Tenant SaaS Applications. Acta Polytechnica Hungarica.
Vol. 9, Issue. 2, 2012.

Mell, P. and Grance, T. (2012). The NIST of Cloud Computing. NIST Special

Publication. PP. (145-148).

66

Pallavi B. and Jayarekha, P. (2014). Multitenancy in SaaS: A comprehensive Survey.
International Journal of Scientific & Engineering Research. Vol. 5, Issue. 7, ISSN:

2229-5518.

Ru, J., Grundy, J., & Keung, J. (2014). Software engineering for multi-tenancy
computing challenges and implications. Proceedings of the International Workshop on
Innovative Software Development Methodologies and Practices - InnoSWDev 2014.

PP. (1-10). doi:10.1145/2666581.2666585.

Saxena, V. and Pushkar, S. (2014). State-of-art in Storage Model using Encryption
Technique for privacy preserving in Cloud Computing. International Journal of

Computer Science and Information Technologies (IJCSIT). Vol. 5, Issue. 1.

Schiller, O., Schiller, B., Brodt, A. and Mitschang, B. (2011). Native Support of Multi-
tenancy in RDBMS for Software as a Service. Applications of Parallel and Distributed

Systems,IPVS ACM. PP. (214-220). ISBN: 978-1-4503-0528-0/11/0003.

Seema, R. (2015). A Compound Algorithm Using Neural and AES for Encryption and
Compare it with RSA and existing AES. Journal of Network Communications and

Emerging Technologies (JNCET). Vol. 3, Issue. 1. ISSN: 2395-5317

67

Soofi, A., Khan, M., Talib, R. and Sarwar, U. (2014). Security Issues in Saas Delivery
Model of Cloud Computing. International Journal of computer science and mobile

computing (IJCSMC). Vol. 3, Issue. 3. ISSN: 2320-088X.

Sun, Y., Zhang, J., Xiong, Y. and Zhu G. (2014). Data Security and Privacy in Cloud
Computing. International Journal of Distributed sensor Networks. Vol. 1, Article ID:

190908.

68

