

Performance Analysis for Fully and Partially

Homomorphic Encryption Techniques

 تحليل الاداء لتقنيات التشفير المتماثلة الكاملة والجزئية

Prepared by

Raya A. Al-Shibib

Supervisor

Prof. Ahmad Kayed

A Thesis submitted in Partial Fulfillment of the Requirements for the

Master Degree in Computer Science

Department of Computer Science

Faculty of Information Technology

Middle East University

Amman, Jordan

May, 2016

II

III

IV

V

ACKNOWLEDGMENT

Thanks to God I have completed this thesis praise and thanks for his blessings.

I would like to thank Prof. Ahmed Kayed for support and assistance and gave me

valuable information for the completion of this thesis.

I would like to thank my friends, they always standing with me through the good

Times and hard times.

VI

Dedication

I dedicate this thesis to my mother who standing beside me and my Father God's

mercy. I hope to reach my research into the world to benefit from it and be ongoing

charity to dear my father.

VII

TABLE OF CONTENTS

Subject Page

Title …………………………………………………………………………….. I

Authorization Statement…………………………………………………………… II

Examination Committee Decision ………………………………………………… IV

Acknowledgment ………………………………………………………………… V

Dedication ………………………………………………………………………….. VI

Table of Contents ………………………………………………………………… VII

List of Table …………………………………………………………………….. XI

List of Figures ……………………………………………………………..…… XIV

List Abbreviations…………………………………………………………..….. XVI

Abstract………………………………………………………………………….. XVIII

CHAPTER ONE

INTRODUCTION

1.1 Introduction………………………………………………………………………….. 2

1.2 Problem Statement………………………………………………………………… 4

1.3 Research Questions………………………………………………………………… 4

1.4 Limitations and Scope……………………………………………………………… 4

1.5 Objective………………………………………………………………………….. 5

VIII

1.6 Contribution…………………………………………………………………………..

1.7 Motivation…………………………………………………………………………..

1.8 Methodology…………………………………………………………………………..

1.9 Thesis Outline…………………………………………………………………………

5

6

6

7

CHAPTER TWO

BACKGROUND

2.1 Background…………………………………………………………………………. 9

2.1.1 Deployment Cloud Computing……………………………………………………

2.1.2 Services Cloud Computing………………………………………………………

2.1.3 Properties of Cloud Computing Services…………………………………………

2.1.4 Cloud Security……………………………………………………………………

2.1.5 Homomorphic Encryption Technique……………………………………………

2.1.6 Partial Homomorphic Encryption (PHE) …………………………………………

2.1.6.1 Paillier Cryptosystem……………………………………………………………

2.1.6.2 RSA Cryptosystem………………………………………………………………

2.1.7 NTRU………………………………………………………………………..…..

2.2 Literature Review……………………………………………………………………

2.3 Summary

10

12

14

15

16

17

18

18

19

20

28

IX

CHAPTER THREE

Performance analysis for fully and partially homomorphic encryption

techniques

3.1 Introduction…………………………………………………………………………..

3.2 Description Methodology……………………………………………………………

3.2.1 Operation…………………………………………………………………………..

3.3 Scenario of Algorithm…………………………………………………………………

3.3.1 Fixed Data Size with Multi-Key Size Procedure…………………………………

3.3.1.1 Calculated Time of Multi-Key by Using Paillier Formula………………………

3.3.1.2 Calculated Time of Multi-Key by Using RSA Formula…………………………

3.3.1.3 Calculated Time of Multi-Key by Using Additive NTRU Formula……………

3.3.1.4 Calculated Time of Multi-Key by Using Multiplication NTRU Formula………

3.3.1.5 Calculated Time of Multi-Key by Using Both NTRU Formula…………………

3.3.2 Fixed Key and Multi-Data Size Procedure………………………………………

3.3.2.1 Calculated Time of Multi-Data Size by Using Paillier Formula…………………

3.3.2.2 Calculated Time of Multi-Data Size by Using RSA Formula……………………

3.3.2.3 Calculated Time of Multi-Data Size by Using Additive NTRU Formula………

3.3.2.4 Calculated Time of Multi-Data Size by Using Multiplication NTRU Formula…

3.3.2.5 Calculated Time of Multi-Data Size by Using Both NTRU Formula……………

30

32

32

37

37

37

40

43

46

49

52

52

55

58

61

64

X

CHAPTER FOUR

Experimental & Result

4.1 Introduction…………………………………………………………………………..

4.2 Tools for Experimental……………………………………………………………

4.3 Evaluation Measures………………………………………………………………..

4.4 Proposed Methodology………………………………………………………………

4.4.1 Execution Fixed Data Size with Multi-Key Size Procedure……………………

4.4.1.1 Execution Time of Multi-Key by Using Paillier Formula………………………

4.4.1.2 Execution Time of Multi-Key by Using RSA Formula…………………………

4.4.1.3 Execution Time of Multi-Key by Using Additive NTRU Formula……………

4.4.1.4 Execution Time of Multi-Key by Using Multiplication NTRU Formula………

4.4.1.5 Execution Time of Multi-Key by Using Both NTRU Formula…………………

4.4.2 Execution Fixed Key size with Multi-Data Size Procedure……………………

4.4.2.1 Execution Time of Multi-Data Size by Using Paillier Formula…………………

4.4.2.2 Execution Time of Multi-Data Size by Using RSA Formula……………………

4.4.2.3 Execution Time of Multi-Data Size by Using Additive NTRU Formula………

4.4.2.4 Execution Time of Multi-Data Size by Using Multiplication NTRU Formula…

4.4.2.5 Execution Time of Multi-Data Size by Using Both NTRU Formula……………

4.5 Summary………………………………………………………………………………

69

70

70

71

72

72

76

80

84

88

92

92

97

102

107

112

116

CHAPTER FIVE

Conclusion & Future work

5.1 Conclusion………………………………………………………………………….. 121

5.2 Future Work……………………………………………………………………….. 124

XI

LIST OF TABLES

Table Number Table Name

 Chapter Two

Page

Table (2-1) Some of Partially Homomorphic Encryption Schemes 17

 Chapter Four

Table (4-1) Result Execute Additive PHE (Multi Key Size) 73

Table (4-2) Calculate Security and Performance Ratio for Additive PHE

(Multi Key Size)

75

Table (4-3) Result Execute Multiplication PHE (Multi Key Size) 77

Table (4-4) Calculate Security and Performance Ratio for Multiplication

PHE (Multi Key Size)

79

Table (4-5) Result Execute Additive NTRU (Multi Key Size) 81

Table (4-6) Calculate Security and Performance Ratio for Additive

NTRU (Multi Key Size)

83

Table (4-7) Result Execute Multiplication NTRU (Multi Key Size) 85

Table (4-8) Calculate Security and Performance Ratio for Multiplication

NTRU (Multi Key Size)

87

Table (4-9) Result Execute Both NTRU (Multi Key Size) 89

Table (4-10) Calculate Security and Performance Ratio for Both NTRU

(Multi Key Size)

91

Table (4-11) Result Execute Additive PHE (Multi Data Size) 93

XII

Table (4-12) Calculate Data Flexibility and Performance Ratio for

Additive PHE (Multi Data Size)

95

Table (4-13) Result Execute Multiplication PHE (Multi Data Size) 98

Table (4-14) Calculate Data Flexibility and Performance Ratio for

Multiplication PHE (Multi Data Size)

99

Table (4-15) Result Execute Additive NTRU (Multi Data Size) 103

Table (4-16) Calculate Data Flexibility and Performance Ratio for

Additive NTRU (Multi Data Size)

104

Table (4-17) Result Execute Multiplication NTRU (Multi Data Size) 108

Table (4-18) Calculate Data Flexibility and Performance Ratio for

Multiplication NTRU (Multi Data Size)

109

Table (4-19) Result Execute Both NTRU (Multi Data Size) 113

Table (4-20) Calculate Data Flexibility and Performance Ratio for Both

NTRU (Multi Data Size)

114

Table (4-21) Compare Time between Paillier and Additive NTRU with

Different Key Size

116

Table (4-22)

Table (4-23)

Compare Time between RSA and Multiplication NTRU

with Different Key Size

Compare Time between Both PHE and Both NTRU with

Different Key Size

117

 117

Table (4-24) Compare Time between Paillier and Additive NTRU with

Different Data Size

118

XIII

Table (4-25) Compare Time between RSA and Multiplication NTRU

with Different Data Size

118

Table (4-26) Compare Time between Both PHE and Both NTRU with

Different Data Size

119

XIV

LIST OF FIGURES

Figure Number Figure Name

 Chapter Two

Page

Figure (2-1) Cloud Computing Deployment Model 10

 Chapter Three

Figure (3-1) Major algorithm 31

Figure (3-2) Paillier Flowchart for Fixed Data Size 38

Figure (3-3) RSA Flowchart for Fixed Data Size 41

Figure (3-4) Additive NTRU Flowchart for Fixed Data Size 44

Figure (3-5) Multiplication NTRU Flowchart for Fixed Data Size 47

Figure (3-6) Both-NTRU Flowchart for Fixed Data Size 50

Figure (3-7) Paillier Flowchart for Fixed Key Size 53

Figure (3-8) RSA Flowchart for Fixed Key Size 56

Figure (3-9) Additive NTRU Flowchart for Fixed Key Size 59

Figure (3-10) Multiplication NTRU Flowchart for Fixed Key Size 62

Figure (3-11) Both NTRU Flowcharts for Fixed Key Size 65

Chapter Four

Figure (4-1) Proposed Model 69

Figure (4-2) Main Interface 72

Figure (4-3) Execute Additive PHE (Multi Key Size) 73

Figure (4-4) Timing for Additive PHE (Multi Key Size) 74

XV

Figure (4-5) Execute Multiplication RSA (Multi Key Size) 77

Figure (4-6) Timing Execute Multiplication PHE (Multi Key Size) 78

Figure (4-7) Execute Additive NTRU (Multi Key Size) 81

Figure (4-8) Timing Execute Additive NTRU (Multi Key Size) 82

Figure (4-9) Execute Multiplication NTRU (Multi Key Size) 85

Figure (4-10) Timing Execute Multiplication NTRU (Multi Key Size) 86

Figure (4-11) Execute Both NTRU (Multi Key Size) 89

Figure (4-12) Timing Execute Both NTRU (Multi Key Size) 90

Figure (4-13) Execute Additive PHE (Multi Data Size) 93

Figure (4-14) Timing Execute Additive PHE (Multi Data Size) 94

Figure (4-15) Execute Multiplication PHE (Multi Data Size) 97

Figure (4-16) Timing Execute Multiplication PHE (Multi Data Size) 98

Figure (4-17) Execute Additive NTRU (Multi Data Size) 102

Figure (4-18) Timing Execute Additive NTRU (Multi Data Size) 103

Figure (4-19) Execute Multiplication NTRU (Multi Data Size) 107

Figure (4-20) Timing Execute Multiplication NTRU (Multi Data Size) 108

Figure (4-21) Execute Both NTRU (Multi Data Size) 112

Figure (4-22) Timing Execute Both NTRU (Multi Data Size) 113

XVI

LIST OF ABBREVIATIONS

Abbreviations Meaning

 AES

ATV

CPU

CCA1

DES

DRM

ECC

FHE

HE

IT

IaaS

IP Sec

LFSR

LTV

MB

NTRU

OPE

PHE

PDA

PaaS

Advanced Encryption Standard

Alt-Lopez, Tromer and Vaikuntanathan

Central Processing Unit

Circadian Clock Associated 1

Data Encryption Standard

Digital Rights Management

Elliptic Curve Cryptography

Fully Homomorphic Encryption

Homomorphic Encryption

Information Technology

Infrastructure as a Service

Internet Protocol Security

Linear Feedback Shift Register

Lopez-Alt, Tromer and Vaikuntanathan

Megabyte

Nth Degree Truncated polynomial Ring Unit

Ordering Preserving Encryption

Partially Homomorphic Encryption

Patent Ductus Arteriosus

 Platform as a Service

XVII

RSA

SDS

SHA

SMC

SSL

SaaS

SHES

TB

TLS

Rivest, Shamir, and Adleman

Secure Data Sharing

Secure Hash Algorithm

Secure Multiparty Computation

Secure Sockets Layer

Software as a Service

Somewhat Homomorphic Encryption Scheme

Terabytes

Transport Layer Security

XVIII

Performance Analysis for Fully and Partially Homomorphic

Encryption Techniques

By: Raya A. AL-Shibib

Supervisor: prof. Ahmed Kayed

Abstract

Recently, the use of cloud computing for the storage of business and personal data has shown a

great increase, due to many factors such as ease of access anywhere anytime, reduced storage cost,

hardware independence, and the availability of reliable network infrastructure. However, the cloud

computing approach faces serious security challenges and threats that need to be investigated and

discussed. One of the main methods to keep the data safe from attacks by adversaries is the

encryption technique, which is considered a practical and an appropriate method for protecting data

in the cloud.

This thesis investigates the main encryption techniques that deal with allowing mathematical

operations to be performed on data in the cloud without the need for decryption. It has investigated

two types of Partial Homomorphic Encryption techniques (Paillier and RSA) and Fully

Homomorphic Encryption (Nth Degree Truncated Polynomial Ring Unit) with two operations of

NTRU technique (Additive NTRU and Multiplication NTRU, and the combination between them.

The research work studied several parameters that affect cloud security based on these techniques.

The selected parameters are investigated with the aim of distinguishing the impact of these

parameters on the performance of the Homomorphic and NTRU techniques in terms of security and

execution time. This thesis has identified two parameters that have an effect on encryption security

XIX

level and execution performance; these are key size and data size. It has tested four key sizes (32

bits, 64 bits, 128 bits and 256 bits) and data sizes ranging from one to nine digits.

The research results show that the optimal key size is 256 bits for RSA and NTRU (additive,

multiplication) which give a high security level and minimal performance loss. Also, the research

results show that the optimal key size is 128 bits for Paillier and NTRU (combined) which give a

high security level and minimal performance loss. For the optimal data size, the results show that

for the RSA method, the optimal data size is five digits, which gives minimal performance-loss

(4%).

Based on the execution time factor, the research finds out that the Additive PHE (Paillier) performs

better than the Additive NTRU, the Multiplication PHE (RSA) performs better than the

Multiplication NTRU, and finally the two PHEs together perform better than the two NTRUs.

Keywords: Cloud Computing, Cloud Security, Fully Homomorphic Encryption, Partially

Homomorphic Encryption

XX

تشفير المتماثلة الكاملة والجزئيةتحليل الاداء لتقنيات ال

 اعداد

ريا عادل الشبيب

 إشراف

حمد الكايدأ الأستاذ الدكتور

 الملخص

 عالجتهامالاخيرة، تعتبر مفاهيم امن الحوسبة السحابية من المواضيع الهامة التي لابد من الآونةفي

ديم ستخدام الحوسبة السحابية هو تقومناقشتها في مجال تكنولوجيا المعلومات. ان السبب الرئيسي لزيادة ا

الخدمات للمنظمات والافراد من قبل اطراف خارجية وعلى خوادم بعيدة عنها. وبأمكان اي زبون الوصول الى

 هذه الخدمات من اي مكان وفي اي وقت.

 على للحفاظ هناك العديد من الطرق .مفهوم الأمن هو السحابية الحوسبة بيئة في التحديات أهم حدأ

 .البيانات لهذه مناسب الأمن لتوفير المناسبة الطريقة تعتبر التشفير تقنيات الهامة، المستخدم اناتبي

والتحقيق فيها نوعين .تقنيات التشفير الرئيسية التي تحافظ على العمليات الحسابية في هذه الاطروحة تتحقق

 Nth Degree)ر التماثلي الكامل (والتشفي Paillier and RSAمن تقنيات التشفير التماثلي الجزئي)

Truncated polynomial Ring Unit) مع اثنين من عمليات تقنية (NTRU()NTRU and

Multiplication NTRU Additive قام الباحث بدراسة العديد من المعايير التي تؤثر على (والدمج مابينهما .

 أمن السحابة استنادا على هذه التقنيات.

XXI

 Homomorphic and)اداء تقنيات على المعايير هذهاسة معايير لتحديد تأثير قام الباحث بدر

NTRU ن اربع انواع م وقد اختبرت حددت المعايير من خلال حجم المفتاح وحجم البيانات. الاطروحة(. هذه

بين ما البياناتوتسعة ارقام من حجم (bits, 64 bits, 128 bits and 256 bits 32احجام المفاتيح وهي)

(1-9.)

 NTRU (additive, Multiplication)وRSA (بت ل256الى ان حجم المفتاح الامثل هو) وجد
ايضا, الاطروحة وجدت ان حجم المفتاح الامثل هو والذي يعطي مستوى أمان عالي مع خسارة اداء قليله.

وحجم البيانات .يلةالذي يعطي مستوى أمان عالي مع خسارة اداء قل NTRU (both)و Paillierبت ل 121
 . (%4مع خسارة اداء قليله) ارقام(5هو) RSAالامثل هو ل

هي افضل Additive PHE (Paillier)الباحث الى ان حساب الوقت في اعتماداَ على وقت التنفيذ، توصل
، Multiplication NTRUهي افضل من Multiplication PHE (RSA)، الوقت في Additive NTRUمن

 . Both NTRUهو افضل من Both PHEا فأن الوقت في واخير

 ةالجزئي لمتماثالتشفير ال الكاملة، متماثلالتشفير ال السحابة،أمن السحابية،الحوسبة الكلمات المفتاحية:

1

2

1.1 Introduction

Cloud computing is a new concept in technology field; it utilizes the internet and the remote servers

in order to provide services and resources to the individual and organizations. The cloud concept

enables consumers to access services and resources online through the internet, from anywhere at

any time. Thus, the consumers are able to decrease the cost of hardware deployment, software

licenses system maintenance and so on.

Cloud computing is gaining more popularity due to its architectural design and characteristics. The

cloud computing is a new business model which lacks security issue, although many users

selecting to use it. So, they being reconsidered of effectiveness and efficiency of traditional

protection mechanisms which includes centralization of security, data and process segmentation,

redundancy and high availability (Zissis & Lekkas, 2012).

The relying on digital technologies is increasing in cloud computing world, thus, the customers

are concerned about the security of sensitive data and feel the deprivation of control over their

data. All these points lead researchers to select a major challenge in cloud computing which

represent in security issue, the security issue is utilizing to prevent unauthorized accesses and

eliminate possibilities of data corruption through finding appropriate security methods before

moving any data to the cloud (Sarwar, & Khan, 2013).

The enterprises and organizations mostly concerned about the security, privacy, confidentiality

and availability of their data. This is reflected through great attention from different researchers

for using method anonymity in modern encryption technique fields. Therefore, the problem is that

a user would be unable to leverage the characteristic of the cloud to carry out computation on data

without decrypting it, or loading it entirely back to the user for computation (Sarwar, & Khan,

2013).

3

The encryption efficiency is very important to data safety. There are many techniques, which

would allow operation on data without knowing the actual content, can important to different areas

such as technique Homomorphic encryption. The homomorphic technique is allowing any party

to publicly transform a collection of cipher-texts which resulted from some plain-texts, without

the party knowing the plain-texts themselves (Stehlé & Steinfeld, 2010).

The Homomorphic encryption provides the ability for encrypting data; it is classified into two

types: Fully Homomorphic Encryption (FHE) and Partially Homomorphic Encryption (PHE)

based on the characteristics them. the partially techniques is implemented in different forms such

as additive form, for example paillier homomorphic cryptosystem, and Multiplication form, for

example RSA homomorphic cryptosystem (Rohloff & Cousins, 2014 and Tebaa, et al, 2012).

In another hand, The Nth Degree Truncated polynomial Ring Unit (NTRU) technique can improve

communication efficiency with enhancing data security; it provides substantially better

performance. NTRU encryption requires fewer servers while still protecting (encrypting) all data.

The secure encryption is reducing chances of costly data breaches, improves privacy and

compliance and saves money by reducing the need for some intrusion detection systems and other

security solutions.

There are some studies on how to use NTRU technique with homomorphic encryption, but there

still a need to do more research on implementing NTRU with PHE; The NTRU scheme was

demand different parameters to support homomorphic evaluation. Thus, the researchers attempt to

focus of the impact of the new parameter setting to access the security level (Doröz, et al, 2014).

4

1.2 Problem Statement

Today, cloud computing is considered a business model to provide services. Therefore, it must be

secure by strong methods. The security defined as one of the important problems for cloud

database. The encryption technique is presented as a solution to solve the security problem. At the

same time, applying encryption techniques on database creates new problems where many

mathematical operations can’t be done over encrypted data. Homomorphic (Partially or Fully)

Encryption (PHE or FHE) techniques solve this problem but decrease the database performance

as well as the security level. This research will compare the effect of several parameters on the Nth

Degree Truncated Polynomial Ring Unit (NTRU) and PHEs, it will choose two types of PHEs

(paillier, RSA) and choose NTRU.

1.3 Research Questions

This research will answer the following questions:

1- How to apply NTRU and PHE?

2- How to compare of NTRU with several Homomorphic Encryptions?

3- What are the parameters that will affect the performance of PHEs as well as NTRU?

1.4 Limitations and Scope

This thesis aimed to compare NTRU technique and PHEs technique on the cloud data. It studies

two parameters (Data size and Key size). It limit the encryption into three techniques, these are

NTRU, RSA and Paillier. The proposed model is attempt proofing the effect of each parameter via

PHE and NTRU operations on the performance.

5

1.5 Objective

The goal of this research is to study the maintaining confidentiality of the existing data in the cloud

network through utilizing homomorphic technique, and identify the role of the NTRU, then

comparing it with the performance of PHEs.

The objective of this research is to identify the following:

• The effect of several parameters on NTRU and PHE through comparison between them.

• Explain the impact of these parameters on NTRU and PHEs.

• Study how to improve the operations of NTRU and PHE with all parameters.

• Find the optimal performance with maintaining the security level and data flexibility for using

encryption techniques in a practical way in cloud computing environment.

1.6 Contribution

The contribution is summarized to help the data owner inside cloud for encrypting data through

realizing different parameters, as the following:

- The security assessment on the cloud computing is determined by the security parameters that

effect on the cloud security.

- The homomorphic encryption is an important idea in cloud computing. Therefore, analyzing

the performance of the homomorphic encryption and NTRU on cloud data is considered a very

important.

- Many cases studied the efficiency for several parameters as details for security level and data

flexibility on the performance.

6

- The efficiency is selected as optimal to increment the performance with a high gain of security

and data flexibility.

1.7 Motivation

The cloud computing is a technology which has demonstrated its prosperity by decreasing the

expense, ease of use, adaptability to add and partner new services in work, the likelihood of

changing the way of work inside of a couple of hours and minimal effort contrasted with

conventional innovation. There is still an issue with the execution and security, encrypted data is

required in cloud to protect sensitive information, in this research our motivation is to find some

solutions to increase the performance and maintain the security level and data flexibility.

1.8 Methodology

The proposed methodology based on descriptive approach and quantitative approach. It

implemented to find optimal performance of NTRU and PHE through many experiments. This

methodology is describing their experiments to study the effect of NTRU and PHE which

considered as descriptive approach. Then compares the results, it will work on several experiments

to determine what the parameters that affect the PHE and NTRU.

7

1.9 Thesis Outline

This thesis includes five chapters:-

Chapter one declares the main problem in cloud computing from the researcher perspective which

is representing in security.

Chapter two explains the main concepts of the cloud computing and presented some of the

literature reviews that related with this thesis.

Chapter three presents the proposed methodology that has been followed in practical part of this

thesis and represents it in algorithm and flowcharts.

Chapter four presents a number of experiments through interfaces and evaluates each experiment

by results.

Chapter five summarizes the main conclusions of this thesis and presented some recommendations

for future.

8

9

2.1 Background

Recently, many organizations and individuals users are increasingly realizing the benefits of

putting their applications and data into the cloud. Thus, they depending on the cloud as a new

technology may lead to gains in efficiency and effectiveness in developing and deployment, saving

the cost of purchasing and maintaining the infrastructure.

There are various definitions of cloud computing, but the important definition is made by NIST

which declared “Cloud computing is a model for enabling convenient, on-demand network access

to a shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal management

effort or service provider interaction. This cloud model promotes the availability and is composed

of five essential characteristics, three service models, and four deployment models.”)Chen, &

Zhao, 2012(.

Cloud computing represents the popular computing paradigm. it is a new paradigm for hosting and

delivering services over the Internet, now proving a necessity for utility computing services. Cloud

computing services can be provided by cloud vendors through data centers. These vendors provide

the cloud computing as solutions available, where a pool of virtualized and dynamically scalable

computing power, storage, platforms, and services are delivered on demand to clients over the

Internet in a pay as you go manner)Abu Sharkh, et al, 2013(.

One of the biggest problems in adoption of cloud computing is security issue like any new

technology. The security measures, taken by the cloud vendor, are usually transparent to the

organizations and individual users. The presence of large numbers of users that use the cloud

computing is further aggravating from concerns, thus, there are various studies in the literature

discussing the security issues of the cloud computing)Ali, et al., 2015(.

10

2.1.1 Deployment Cloud Computing

The customer should be choosing one of the deployment cloud types, depending on their

characteristics, to provide a suitable adopting in cloud computing environment. Four cloud

deployment models have been defined in the Cloud models offered, namely, a public, private,

community and hybrid cloud, as show in Figure (2-1),)Dillon, et al 2010, and Chang, et al., 2013(:-

Figure (2-1): Cloud Computing Deployment Model (Youssef, 2012).

 Public Cloud

Public cloud considered as a form of popular cloud deployment model, it is a model which allows

users’ access to the cloud data by using mainstream web browsers. The organizations and

individual users are using this type to save costs and time without obligations of deployment and

maintenance. It is typically based on a pay-per-use model, similar to a prepaid electricity metering

system which is flexible enough to cater for spikes in demand for cloud optimization.

Public clouds are less secure than the other cloud models, it is including data loss and conflicts

concerning legal and ethical issues because the general cloud users can access to the resource

11

cloud. Many popular cloud services are public clouds such as Amazon, Google App Engine, and

Force.com.

 Private Cloud

Private cloud considered as a specific to the single organization and managed by the organization

or a third party. The private cloud resources are provided by the cloud vendor, it pooled together

and available for cloud users to share or uses, thus only internal users can accessibility to these

resources.

The private cloud is different than the public cloud in that all cloud resources and applications are

managed by the organization itself, similar to intranet functionality. This type is more suitable for

organizations because it characterized security, compliance, and regulatory requirements, and

provides more enterprise control over deployment and use.

 Community cloud

Community cloud considered as a private cloud, but it offers more alternative architecture. The

community cloud arises for replacing vendor clouds by developing the underutilized resources

from the user. These resources are shared by many organizations that have the same task such as

security requirement, policy, values and concerns. An example of a community cloud is the

educational cloud that used by universities and institutes around the world to provide education

and research services.

12

 Hybrid Cloud

Hybrid cloud considered as a private cloud linked to one or more external cloud services through

use part public cloud and part private, centrally managed, provisioned as a single unit. This cloud

infrastructure is a combination of more than one clouds deployment types that remain unique

entities but are bound together by standardized or proprietary technology that enables data and

application portability.

The hybrid cloud is suitable for organizations wishing to reduce costs, whilst maintaining privacy

and data security. It provides more secure control other than types of the data and applications.

The organizations use this type model in order to optimize their resources for increasing their core

competencies. They make that by margining out peripheral business functions onto the cloud,

while controlling core activities on-premise through private cloud.

2.1.2 Services Cloud Computing

The architecture of cloud computing has extensively used the following three service models

according to the delivery models, namely Infrastructure as a Service (IaaS), Software as a Service

(SaaS) and Platform as a Service (PaaS))Ramgovind, et al, 2010, and Youssef, 2012(:-

 Infrastructure as a Service (IaaS)

Cloud consumers directly use IT infrastructures such as processing, storage, networks, and other

fundamental computing resources that provided in the IaaS cloud. IaaS uses virtualization

technology to convert physical resources into logical resources, it can be dynamically provisioned

and released by customers as needed.

In the Infrastructure as a Service type, it is a single tenant cloud layer where the cloud customers

used resources at a pay-per-use fee, and the cloud vendor’s dedicated these resources are only

13

shared with contracted clients. In this case, the IaaS type has minimized the need for huge initial

investment in computing hardware such as servers, networking devices and processing power. The

IaaS completely abstracted the hardware beneath it and allowed users to consume infrastructure as

a service without any complexities. The examples of IaaS are Amazon's EC2 and Drop Box.

 Platform-as-a-Service (PaaS)

Platform-as-a-Service (PaaS) is one layer above IaaS on the stack and abstracts away everything

up to OS, middleware, etc. It is defined as a set of software and development tools hosted on the

provider's servers, and development platform supporting the full software lifecycle which allows

cloud customers to develop cloud services and applications directly on the PaaS cloud.

The PaaS customers are using PaaS services transfer even more costs from capital investment to

operational expenses, thus it is considered as a supports collaborative work between members of

a project team. In the same time, the additional constraints and possibly some degree of lock-in

posed by the additional functionality layers. The examples of PaaS are Google AppEngine and

windows Azure.

 Software-as-a-Service (SaaS)

Software-as-a-Service is defined as a software distribution model in which applications are hosted

by a vendor or service provider and made available to customers over a network from various

clients such as web browser, PDA, etc. by application users.

SaaS operates on the virtualized and associated with pay-per-use costing model when software

applications are leased out to contracted organizations by specialized SaaS vendors It is most often

implemented to provide business software functionality to enterprise customers at a low cost

SaaS providers may host the software in their own data centers or with co-location providers, or

may themselves be outsourced to IaaS providers. The architecture of SaaS-based applications is

14

specifically designed to support many concurrent users at the same time. Examples of SaaS include

SalesForce.com, Google Mail, Google Docs, and so forth.

2.1.3 Properties of Cloud Computing Services

Cloud computing consist of all the IT components (hardware, software, networking, and services)

that necessary to enable development and transmission of cloud services via the internet or a

private network. So, it has many properties as shown below: (Tebaa, & ELhaj, 2014):

Flexibility: it is considered one of an essential cloud property. The cloud is ability defined of a

given infrastructure dynamically adapt for scale.

Ability to adapt: It must allow the cloud self-service administration to reduce human intervention

in the administration.

Quality of Service: It allows using several measures such as the number of operations per second

and response time.

The guarantee: it provided a guarantee for user and service to specify what the resources are rather

than identified stations to meet of service.

High availability: The replicated data in different centers reliable is being a process in virtual

infrastructure, and in the second data center is connecting two at essence the formation of the

cloud.

15

Cost reduction: Pay per use is meaning that every process utilized only the basis of which payment.

Environmental orientation: recourses description the strict necessity to reduce the energy

consumption of IT, beyond the economically, these reductions allow the ecological energy

reduction footprint of the company.

2.1.4 Cloud Security

The security concept is considered the biggest problem in any new technology. Especially in the

cloud computing, it is utilizing storage service on a remote location, the consumers are generally

unaware of what happens to their data. Thus, the organizations and customers need to evaluate the

cloud security before migrating to any type of the cloud)Sarwar, et al., 2013(.

Security concepts in cloud environment are similar to any security issue in traditional IT

environment. The cloud computing includes groups of technologies, operating systems, storage,

networking and virtualization. Thus, the security issue in the cloud has played the most important

role in hindering cloud computing acceptance to the cloud customers (Chen & Zhao, 2012 and SO,

2011).

There are different features of cloud computing such as multitenant characteristic, service delivery

and deploy models, pooled computing resources and so on. All these features when compared with

the traditional IT environment, it seems the cloud may face different risks and introduced new

security challenges that require novel techniques (Chen & Zhao, 2012 and SO, 2011).

The main challenges in the cloud are representing that the users are concerned about the security

of sensitive data, because the users have less control and limited access rights over their data. In

16

this case, the most attention of users cloud is to preventing unauthorized accesses and eliminates

possibilities of data corruption (Sarwar, et al., 2013).

Any customers before adoption the cloud must trust the cloud security environment, in order to

have confidence that their data will be protected and its integrity maintained, and looking for some

level of assurance that appropriate security measures are indeed been properly implemented in the

daily operations of the cloud infrastructure (Chen & Zhao, 2012. and SO, 2011).

There are many encryption techniques such as:

Ordering Preserving Encryption (OPE) encryption scheme which maintain the order of data,

Homomorphic Encryption (HE) is encryption scheme which maintain the mathematical operations

.This research will focus of Homomorphic Encryption (Liu, et al., 2014).

2.1.5 Homomorphic Encryption Technique

Homomorphic Encryption used to perform operations on encrypted data without knowing the

private key, through computations to be carried out on cipher-text and obtain an encrypted result

which decrypted gives the result of operations performed on the plaintext Homomorphic

encryption is two shapes: "fully" or "partially" depend on size of data. Where is 1- 256 Byte in

partially, it is 4 MB- 73TB in fully. (Li, et al., 2015 and Stehlé & Steinfeld, 2010).

17

2.1.6 Partial Homomorphic Encryption (PHE)

Partial homomorphic encryption is the most important type of homomorphic technique, it performs

the computation on some of mathematical operations and has high efficiency for practical

applications such as the Paillier scheme can perform evaluations in milliseconds level, but still has

some of defects.

Most of PHE schemes support one type of operation. On the other hand, the PHE supports more

than one operation, but still there exist constrain (Hu, 2013).

This research is choosing some of PHE technique, as shown Table (2-1).

Table (2-1): Some of Partially Homomorphic Encryption Schemes (Hu, 2013)

Scheme Homomorphism Computation

Textbook RSA Multiplicative Mod. Exp. in 𝒁𝒑𝒒

Paillier Scheme Additive Mod. Exp. in 𝒁(𝒑𝒒)𝟐

Benaloh Additive Mod. Exp. in 𝒁𝒑𝒒

Paillier ECC variations Additive Scalar-point mult. in elliptic

curves

Naccache-Stern Additive Mod. Exp. in 𝒁𝒑𝒒

Okamoto-Uchiyama Additive Mod. Exp. in 𝒁(𝒑)𝟐𝒒

Kawachi-Tanaka-

Xagawa

Additive Lattice Algebra

18

Paillier Cryptosystem

In 1999, the French researcher which invented Paillier Cryptosystem; it is considered one type of

public key cryptography (Paillier, 1999).

This technique of public key is used asymmetric key algorithm, which means the key to encryption

is a different key to decryption. Any user has two keys for cryptography, the first key is called a

public key used distributed user to receive message, and the second is called a private key for each

user to open secret message. The Paillier Cryptosystem has two keys to be corresponding and

related by mathematically but the private key cannot be feasibly because it is a private of user, as

shown details of Paillier formula in chapter three (Paillier, 1999).

2.6.1.2 RSA Cryptosystem

RSA algorithm (represented the first char from names authors - Rivest, Shamir and Adleman) is

helping to save data communication security because it used the most popular asymmetric

cryptographic algorithm (Rahman, et al., 2012).

The algorithm is based on two main encryption processes. The first is using a public key, which

works on received the encrypted data without recovery to original. The second is using a private

key, where it is recovered data to original by it. Today, RSA is used in web browsers, email

programs and mobile phones, as shown details of RSA formula in chapter three (Rahman, et al.,

2012).

19

2.1.7 NTRU

Nth Degree Truncated Polynomial Ring Units (NTRU) is considered very efficient for encryption

and decryption, where it is a faster and cheap key generation for creating. Additional, it used low

memory for applying program in device.

NTRU Cryptography is the smallest, fastest and strongest available. It is well suited to all types

of systems including full scale servers down to the smallest of embedded systems. NTRU is the

public key cryptosystem not based on factorization or discrete logarithmic problems, as shown

details of NTRU formula in chapter three (Mol, & Yung, 2008).

NTRU is a lattice-based alternative to RSA and Elliptic Curve Cryptography (ECC) and is based

on the shortest vector problem in a lattice. NTRU is represented as following: (R=Z[X]/(X^N-1)).

As well as being able to protect systems from today’s attacks, the NTRU algorithm is future-proof

and will resist attacks by quantum computers when they come available. NTRU should be

implemented anywhere that requires public key encryption including SSL, TLS, IPSec and others

(Mol, & Yung, 2008).

This thesis discussed how represented cipher-texts in model implementation, defined NTRU and

PHE scheme. Proposed parameters will discuss by selecting the NTRU and PHE to provide a

practical secure framework on cloud computing, and then discussing the experimental results from

PHE scheme implemented and NTRU.

20

2.2 Literature review

 Tebaa, et al., 2012 focused on cloud computing security challenges and declared it’s also an

issue to many researchers; first priority was to focus on security which is the biggest concern

of organizations that are considering a move to the cloud. The cloud computing security based

on fully Homomorphic Encryption is a new concept of security which enables providing results

of calculations on encrypted data without knowing the raw data on which the calculation was

carried out, with respect of the data confidentiality (Tebaa, et al, 2012).

They stated that, the application of FHE is an important stone in Cloud Computing security; the

authors could outsource the calculations on confidential data to the cloud server, keeping the

secret key that can decrypt the result of calculation. The implementation of this paper analyzing

the performance of the existing HE cryptosystems, the authors working on a virtual platform

through focusing on the size of the public key and its impact on the size of the encrypted

message, the server delay of the request treatment according to the size of the encrypted

message, the result decrypting time of the request according to the cipher-text size sent by the

server.

 Samanthula, et al., 2012 presented encrypting the data by the data owner and then outsourcing

it to the cloud seems to be a reasonable approach. This paper proposed an efficient and Secure

Data Sharing (SDS) framework that prevents information leakage from a previously revoked

user rejoining the system. This framework is implemented by using HE and proxy re-encryption

schemes that prevents the leakage of unauthorized data when a revoked user rejoins the system

(Samanthula, et al., 2012).

They stated that, the proposed framework is secure under the security definition of Secure

Multiparty Computation (SMC) and also is a generic approach - any additive Homomorphic

21

Encryption and proxy re-encryption schemes can be used as the underlying sub-routines. The

SDS framework is presented to prevent the information leakage in the case of collusion between

a user and the cloud; it is based upon distributing the encrypted data and authorization tokens

corresponding to each data recorded between two clouds.

 Huang, et al., 2013 presented a secure and privacy-preserving digital rights management

(DRM) scheme using HE in cloud computing, which allows content provider to outsource

encrypt contents to centralized content server and allows user to consume contents with the

license issued by license server. Further, we provide a secure content key distribution scheme

based on additive Homomorphic probabilistic public key encryption and proxy re-encryption,

which prevents the malicious employees of license server from issuing license to unauthorized

user without letting other parties know. In addition, it achieves privacy-preserving by allowing

users to stay anonymous towards the key server and service provider. The analysis and

comparison results indicate that the proposed scheme has high efficiency and security (Huang,

et al., 2013).

 Majithia, & Singh, 2013 tried to providing the security to the cloud network and data, various

algorithms are used to secure data send by a mobile phone using an android platform on a Cloud

Network. These algorithms represented in encryption and decryption methods in such a way

that eavesdroppers or hackers cannot read it, but that authorized parties can (Majithia, & Singh,

2013).

In this paper, NTRU algorithm is implemented on cloud network using an android platform.

Data input is the data or message send by an android user in bytes. Encryption time has been

22

measured in milliseconds. The whole time is taken by NTRU algorithm to encrypt the message

or time taken to change plaintext into ciphertext to send over cloud network.

This paper shows results of parameters like Encryption Time, Decryption Time and throughput

when NTRU, a public key encryption algorithm is implemented on cloud network for an

android platform. From these results, the performance of NTRU algorithm has been analyzed

and providing stronger security level than other algorithms. NTRU provided better result so it

will improve the current security level, speed and provide reliable message at receiver end with

respect to key generation, encryption and decryption.

 Majithia, & Singh, 2013 declared the cloud computing as emerging computing paradigm and

many of the organizations are moving toward the cloud but lacking due to security reasons. To

provide suitable security to the cloud network and data, numbers of algorithms are used for

encryption and decryption for cloud network. Encryption is the process of encoding messages

in such a way that eavesdroppers or hackers cannot read it, but that authorized parties can

(Majithia, & Singh, 2013).

Various algorithms are used to secure data send by a mobile phone using an android platform

on a Cloud Network. this paper implemented NTRU algorithm on cloud network by using an

android platform, also, it analyzes the comparison between NTRU public key based algorithms,

RSA public key based algorithm, DES secret key based algorithm.

The results produced by this comparison between algorithms explain that NTRU algorithm is

faster and providing stronger security level than other algorithms. NTRU provided better result

so it will improve the current security level, speed and provide reliable message at receiver end

with respect to key generation, encryption and decryption.

23

 Ma, 2013 presented a study the Multi-key Fully Homomorphic Encryption (FHE) scheme

developed by Lopez-Alt, Tromer and Vaikuntanathan, it is abbreviated as the LTV scheme that

is more accessible to non-experts. The LTV scheme is based on NTRU, a public-key

cryptosystem using lattice-based cryptography, and it encrypts each single bit of data into one

corresponding polynomial. This paper provides serious mathematical proofs and detailed

explanations on some implicit mathematical steps that were not addressed by the authors of the

original scheme. And it includes the background research on NTRU encryption scheme, the

presentation of the FHE scheme in a single-key version (Ma, 2013).

In addition to, it analyzed the security of the LTV scheme, and it includes an implementation

of proposed scheme in a lower-level language such as Java or C/C++. As the results of this

paper, the experiments work are a more accessible version of the original scheme with serious

mathematical proofs and a Sage package that implements the basic scheme and some real-world

applications such as an n-bit Adder. The Sage package is posted in Sage Interact Community

website.

 Doröz, et al., 2014 explain variant of NTRU proposed by Stehle and Steinfeld was recently

extended into a full-edged multi-key Fully Homomorphic Encryption scheme by Alt-Lopez,

Tromer and Vaikuntanathan (ATV). It is presented a customized leveled implementation of the

NTRU based ATV Homomorphic Encryption scheme and developed a customized

implementation of the ATV scheme. This paper analyzed noise growth for increasing circuit

depths and developed a simple formula that allows one to determine parameter sizes to support

arbitrary depth circuits efficiently. Furthermore, it specialized the modulus in a way that allows

us to drastically reduce the public key size while retaining the ability to apply modulus reduction

and switching through the levels of evaluation. The reduced public key size makes it possible

24

to evaluate deep circuits such as the AES block cipher on common (non-server) computing

platforms with a reasonable amount of memory (Doröz, et al., 2014).

This paper presents a generic bit-sliced implementation of the ATV scheme that embodies a

number of optimizations. To assess the performance of the scheme, the Homomorphically of

this paper evaluates the full 10 round AES circuit in 31 hours with 2048 message slots resulting

in 55 sec per AES block evaluation time.

 Rohloff & Cousins, 2014 worked to design, implement and evaluate a Fully Homomorphic

Encryption (FHE) scheme; the FHE scheme is an NTRU-like cryptosystem, with additional

support for efficient key switching and modulus reduction operations to reduce the frequency

of operations. Cipher-texts in proposed scheme are represented as matrices of 64-bit integers

(Rohloff and Cousins, 2014).

They stated that, the basis of this design is a layered software services stack to provide high-

level FHE operations supported by lower-level lattice-based primitive implementations running

on a computing substrate. This paper implemented and evaluated the FHE scheme to run on a

commodity CPU-based computing environment. the experimental results is showing the FHE

implementation that provides at least an order of magnitude improvement in runtime as

compared to recent publicly known evaluation results of other FHE software implementations.

25

 Dahab, et al., 2015 described adaptive key recovery attacks on NTRU-based SHE schemes

which considered as somewhat homomorphic encryption schemes. ciphertexts produced by an

FHE scheme can be operated on in such a way that we obtain a ciphertext that corresponds to

the addition or multiplication of the respective plaintexts (Dahab, et al, 2015).

Adaptive key recovery attacks on homomorphic encryption seem to be realistic in certain

scenarios, so they are potentially a serious problem in practice. Given access to a decryption

oracle, the attack allows us to compute the private key for all parameter choices; such attacks

show that one must be very careful about the use of homomorphic encryption in practice.

Many FHE schemes have as public value an encryption of the private key bits, which can be

sent to the decryption oracle before the challenge, which makes such schemes insecure against

CCA1 adversaries. Indeed, almost every somewhat homomorphic construction proposed till

now in the literature is vulnerable to an attack of this type. Hence, our result adds to a body of

literature that shows that building CCA1-secure homomorphic schemes is not trivial.

 Steinfeld, 2014 Presented the general concepts about The NTRU public-key cryptosystem, and

surveyed recent developments in both the security analysis and applications of the NTRU

cryptosystem and its variants. the author is focusing on recent exciting developments in both

the security analysis and applications of NTRU, that believe should make the NTRU system

even more attractive for study and development in future than the traditional reasons, and

suggest new motivation and directions for studying NTRU’s mathematical underpinnings

(Steinfeld, 2014).

26

Some of these developments motivate the study of new computational problems on polynomial

rings, whereas others help to unify the field of lattice-based cryptography, by showing that the

security of the NTRU system can be based on the same foundations as more recent lattice-based

schemes. This paper reviews two recent novel variants of the NTRU system, which allow

powerful new functionality to be added to the basic cryptosystem. The first application is an

NTRU-based Fully Homomorphic Encryption (FHE) scheme, which allows useful computation

on encrypted messages, and the second is a construction for NTRU-based multi-linear maps,

which open the door to another class of applications including non-interactive multiparty key

agreement.

 Çetin, et al., 2015 introduced survey a number of classical sorting algorithms which are capable

of efficiently sorting encrypted data without the secret key, then show that some are more

suitable than others. These algorithms are obtained by focusing on the multiplicative depth of

the sorting circuit alongside the more traditional metrics such as number of comparisons and

number of iterations. The reduced depth allows much reduced noise growth and thereby makes

it possible to select smaller parameter sizes in somewhat homomorphic encryption

instantiations resulting in greater efficiency savings (Çetin, et al, 2015).

The authors proposed two depth optimized sorting algorithms for efficient homomorphic

evaluation. Circuit depth is intimately related to the parameter sizes in leveled homomorphic

encryption implementations and therefore directly affects the overall performance of the

homomorphic circuit evaluation. Existing sorting algorithms are not optimized for

homomorphic evaluation. The authors instantiate a Somewhat Homomorphic Encryption

Scheme (SWHE) based on NTRU, and present an implementation of the proposed sorting

27

algorithm using this SWHE scheme. The results of this paper confirm theoretical analysis, i.e.

that the performance of the proposed sorting algorithm scales favorably as N increases.

 Liu, 2015 proposed several efficient algorithms and architectures for NTRUEncrypt and NTRU

based homomorphic encryption system. For NTRUEncrypt system, a new Linear Feedback

Shift Register (LFSR) based architecture is firstly presented. Then two new architectures are

proposed for computation of NTRU based fully homomorphic encryption system. One

architecture uses LFSR with a novel design of the modular multiplication unit, and the other

proposed architecture is systolic array based which uses two types of PEs (Liu, 2015).

The new architecture takes advantage of large number of zero coefficients of the input; a

parameter selection optimization for hardware is also introduced. A novel design of the modular

arithmetic unit is proposed to reduce the critical path delay. The implementation results have

shown that the proposed design outperforms all the existing works in terms of area-delay

product. Further enhancement on the efficiency of the LFSR based architecture is proposed by

using extended LFSR architecture. The implementation result shows that the proposed design

uses slightly larger resource but has much faster speed.

28

2.3 Summary

There are many types of research presented in the cloud computing area, this thesis focused on the

research that presented in the field of cloud security by implementing Partial Homomorphic and

NTRU techniques.

In this thesis, chapter two explains different methods for implementing Partial Homomorphic and

NTRU techniques for protection the database cloud and effects each of these techniques on the

performance and security. Then, it focuses on the most important points in this research for using

it. Based on the notes extracted from this research, the researcher suggested the proposed model

that implemented in chapter three and extracting results in chapter four.

29

30

3.1 Introduction

Cloud computing presents many advantages to the organizations and individual users, these

advantages presents in organizing and provisioning computational resources. At the same time,

the security issue has emerged as a significant problem to increased deployment and adoption of

cloud computing.

The security issue considered as one of the challenges that facing the user. This thesis investigates

the compare between two encryption methods in the database cloud by studying the different ratio

of some encryption technologies. The researcher attempted to show that the methodology have

highly efficient performance and provably secure.

This thesis studied the compared between encryption techniques which represent in Homomorphic

and NTRU techniques. In addition to, it studied the impact of parameters on the performance based

on descriptive approach and quantitative approach.

In this research, the design of model is applying for improvement different type of PHE techniques,

each technique is depending on different parameters for calculating time. Where is evaluated

difference between using NTRU and PHE through comparing all results.

the researcher implements several steps through using many experiments to provide appropriate

security level and data flexibility with performance, it using two types of PHE algorithm, additive

(paillier) and Multiplication (RSA), and using NTRU technique. all the steps studied the difference

between NTRU and PHE through using several parameters and what proportion of the different

between parameters, as shown in Figure (3-1).

31

Start

Record (Data Size, Key Size)

Encryption By PHE

(Additive & Multiplicative)

and NTRU

Calculate Time

Compare Results

If all parameters have

been tested

Change the Parameter

Yes

END

No

Finished

Figure (3-1): Main Algorithm

32

3.2 Description Methodology

The researcher investigates the encryption techniques that perform to obtain encrypted results

without knowing the raw data. This technique is homomorphic encryption considered very

important for database to keep the data encrypted for this reason. The aim of this study is to reach

the best performance while maintaining the level of security and data flexibility by using different

parameters which change standards in every process implemented where is extracted and

compared the results with each other through the recording time.

Each operation is conducted and then determines each the parameter to achieve best performance

for homomorphic encryption (PHE) and using NTRU technique to calculate time of the operation,

and the extent of the impact this technique(NTRU) and (PHE) in terms of performance, the

proposed parameters are shown below:-

3.2.1 Operation

The researcher attempted to expand the work of Homomorphic technique on the cloud database

by utilizing two types algorithms of PHE (Additive and Multiplication Encryption) and NTRU

technique to demonstrate its impact on them:-

A. Homomorphic Algorithm

There are many types of PHE techniques depending on the properties of several standard public

key encryption schemes, such as Multiplication, Additive and XOR and so on.

33

1- Paillier Encryption Technique:

The proposed model is facilitating confidential data aggregation through additive homomorphic

encryption. The additive homomorphic property of public-key cryptosystems is applied by

utilizing Paillier Encryption technique. The formula Paillier Cryptosystem is as following, (Tebaa,

et al, 2012):-

Mathematical Expressions

- Choose two large prime numbers p and q randomly and independently of each other,

- Compute

- .

-

- Select random integer g where g=n+1.

- The public (encryption) key is .

- The private (decryption) key is

 Encryption Equation

-

Where select random where

Decryption Equation

-

https://en.wikipedia.org/wiki/Prime_number

34

2- RSA Encryption Technique:

The proposed model is exploiting Multiplication homomorphic property of RSA algorithm; it is

public-key cryptosystems that support the homomorphic operation of Multiplication modulo. The

formula RSA Cryptosystem is as following, (Tebaa, et al, 2012):-

Mathematical Expressions

- Compute n = p* q

- Compute φ (n) = (p − 1) (q − 1)

- Choose an integer e such that 1 < e< φ(n) and gcd(e, φ(n)) = 1;

i.e., d and φ (n) are co-prime.

- Determine d as d.e ≡ 1 (mod φ (n))

- The public (encryption) key is (e,n).

- The private (decryption) key is (d).

Encryption Equation

-

Decryption Equation

- m= 𝒄𝒅 mod n.

https://en.wikipedia.org/wiki/Greatest_common_divisor
https://en.wikipedia.org/wiki/Coprime

35

B. NTRU Algorithm

The NTRU technique is a practical lattice-based cryptosystem. The proposed model present NTRU

technique with somewhat homomorphic encryption schemes (Paillier and RSA), then compare the

time for each of them. The formula NTRU Cryptosystem is as following, (Majithia, & Singh,

2013):-

Mathematical Expressions

- Choose random parameter (n, p ,q, d ,r), chose q larger than p

- Compute f(x), g(x) as two small polynomials function

- Compute fq(x) = f(x)-1 mod (q)

- Compute fp(x) = f(x)-1 mod (p)

- Compute h(x) = p * (fq) * g (mod q)

Encryption Equation

- E= r*h + m (mod q)

Decryption Equation

- a = f * e (mod q)

- b = a (mod p)

- c= fp * b (mod p)

36

C. Key Size

Key size is considered a measured bits used for cryptography. Each method in cryptography is

dependent on used key size that is represented the security of an algorithm, because it is measured

for cryptographic strong and faster method.

Most key algorithms in common use are designed to have security equal to their key length. For

instance, Triple DES has a key size of 168 bits yet gives at most 112 bits of security, since an

assault of multifaceted nature 112 is known. This property of Triple DES is not a weakness

provided 112 bits of security is adequate for an application (Barker, et al., 2012).

Several different types of keys are defined. The keys are identified according to their classification

as public or symmetric keys, and as to their use. For public and private key-agreement keys, their

status as static or ephemeral keys is also specified. Asymmetric-key algorithms with this property

are known; elliptic curve cryptography come the closest with an effective security of roughly half

its key length.

The researcher studies the effect of different key sizes to compare the performance of using NTRU

and PHE. Therefore, each process used different key size with fixed data size.it has determined

which key size can achieve the best performance of NTRU and PHE, these key sizes are (32 bits,

64 bits, 128 bits and 256 bits).

D. Data Type & Size.

The researcher studies the effect of different data size to compare the performance of using NTRU

and PHE. Therefore, each process used different key size with fixed key size.it has been

determined which data size can achieve the best performance of NTRU and PHE; the researcher

used (1-9) digits of data size from type integer.

37

3.3 Scenario of Algorithm

The proposed algorithm is used to compare the performance of partial homomorphic technique

and NTRU by using two procedures, as explained below:

3.3.1 Fixed Data Size with Multi-Key Size Procedure

In this scenario, the algorithm is used to study the effect performance of NTRU with two types of

PHE technique by using fixed data size with different key size. It was used four different key sizes

with fixed data size. These key sizes are: 32 bits, 64 bits, 128 bits and 256 bits.

3.3.1.1 Calculated Time of Multi-Key by Using Paillier Formula

The proposed model is importing fixed data size and choosing one of the different key sizes. It is

implemented these parameters through paillier algorithm and calculated time, then saving time to

be used for comparison later. This algorithm records the time from each experiment and compare

between them, as shown in Figure (3-2).

38

Start

Import data

Determine (x)as desired key size

Enter (y) as number of input data

number of input data =< y

No

Finish

End

Generate (p,q) randomly

n= p*2

g=n+1

(ʎ) = LCM (p-1, q-1)

Generate (r) randomly

Enter (Z) as number of digit input

data

sum-encrypt = sum-encrypt +c

recorded of input data =

recorded of input data +1

Encrypt (sum-encrypt) by key x

Compute and save time

Digit input data =< x

No

Yes

Yes

Generate (Key x) depending

on desired key size

Figure (3-2): Paillier Flowchart for Fixed Data Size

39

Algorithm:

Step1: Start

Step2: Import data

Step3: Enter variable (x) as size of key used

Step4: Determine (y) as number of input data

Step5: Generate variable (p & q) randomly as large prime number

Step6: Compute (n) where n = p*q

Step7: Compute (g) where g=n+1.

Step8: Generate variable (r) randomly.

Step9: Compute (ʎ) where ʎ = LCM (p-1, q-1)

Step10: Compute (µ) =(𝐿 (𝑔⋋ 𝑚𝑜𝑑𝑛2))−1 𝑚𝑜𝑑𝑛

Step11: Generate (Key x) depending on desired key size

Step12: Encrypt (M) as plain text where c= 𝑔𝑚. 𝑟𝑛 𝑚𝑜𝑑𝑛2

Step13: Compute sum-encrypt where sum-encrypt = sum-encrypt +c

Step14: Incremental record of input data by one.

Step15: Until number of input data is less than (y) then go to step (12)

Else Go to step (16)

Step16: Encrypt (sum-encrypt) by (Key x)

Step17: Compute time

Step18: Saving time

Step19: Until number of key size is less than (x) Then Go to step (11)

 Else Go to step (20)

Step20: Finish

40

3.3.1.2 Calculated Time of Multi-Key by Using RSA Formula

The proposed model is importing fixed data size and choosing one of the different key sizes. It is

implemented these parameters through RSA algorithm and calculated time, then saving time to be

used for comparison later. This algorithm records the time from each experiment and compare

between them, as shown in Figure (3-3).

41

Start

Import data

Determine (x) as desired key size

number of input data =< y

No

Finish

End

Ø (n) = (p-1) * (q-1)

Generate (d, e)

Multiplicative-encrypt = Multiplicative-encrypt *c

record of input data =

record of input data +1

Encrypt (Multiplicative-encrypt) by key x

Compute and save time

number of input data =< Z

No

Yes

Yes

Enter (Z) as number of digit input data

Generate (p,q) randomly

Enter (Y) as number of input data

Generate (Key X) depending on desired

key size

Figure (3-3): RSA Flowchart for Fixed Data Size

42

Algorithm:

Step1: Start

Step2: Import data

Step3: Enter variable (x) as size of key used

Step4: Determine (y) as number of input data

Step5: Generate variable (p & q) randomly as large prime number

Step6: Compute Ø (n) = (p-1) (q-1).

Step7: Generate variable (e) as ((1<e< Ø (n) and gcd (e, Ø (n)) =1).

Step8: Generate variable (d) as (d.e=1 mod (Ø (n))).

Step9: Generate (Key x) depending on desired key size

Step10: Encrypt (M) as plain text where c= 𝑔𝑚. 𝑟𝑛 𝑚𝑜𝑑𝑛2

Step11: Compute multiplicative-encrypt where multiplicative-encrypt = multiplicative-encrypt*c

Step12: Incremental record of input data by one

Step13: Until number of input data is less than (y) then go to step (10)

 Else Go to step (14)

Step14: Encrypt (multiplicative-encrypt) by (Key x)

Step15: Compute time

Step16: Saving time

43

Step17: Until number of key size is less than (x) go to step (9)

 Else Go to step (18)

Step18: Finish

3.3.1.3 Calculated Time of Multi-Key by Using Additive NTRU Formula

The proposed model is importing fixed data size and choosing one of the different key sizes. It is

implemented these parameters through Additive-NTRU algorithm and calculated time, then saving

time to be used for comparison later. This algorithm records the time from each experiment and

compare between them, as shown in Figure (3-4).

44

Start

Import data

Enter (x)as desired key size

Enter (y) as number of input data

number of input data =< y

No

Finish

End

Generate (n, p ,q, d ,r)

randomly

Compute g(x), f(x) as polynomials

function

Fq(x) = f(x)
-1

 mod (q)

fp(x) = f(x)
-1

 mod (p)

 h(x) = p * (f) * g (mod q)

 Add -NTRU = Add -NTRU + C

record of input data =

record of input data +1

Encrypt (Add-NTRU) by key x

Compute and save time

Number of Key size =< x

Yes

Yes

C= r*h + m (mod q)

No

Generate (Key x) depending

on desired key size

Figure (3-4): Additive NTRU Flowchart for Fixed Data Size

45

Algorithm:

Step 1: Start

Step 2: Import data

Step3: Enter variable (x) as size of key used

Step4: Determine (y) as number of input data

Step5: Generate variables (n, p ,q, d ,r) randomly

Step6: Compute g(x) as polynomials function

Step7: Compute f(x) as polynomials function

Step8: Compute fq(x) = f(x)-1 mod (q)

Step9: Compute fp(x) = f(x)-1 mod (p)

Step10: Compute h(x) = p * (fq) * g (mod q)

Step11: Generate (Key x) depending on desired key size

Step12: Encryption (M) as plain text where C= r*h + m (mod q)

Step13: Compute Add-NTRU where Add-NTRU = Add-NTRU + c

Step14: Incremental record of input data by one

Step15: Until number of input data is less than (y) then Go to Step(12)

 Else Go to Step (16)

Step16: Encrypt (Add-NTRU) by (Key x)

Step17: Compute time

Step18: Saving time

Step19: until number of key size is less than (x) then Go to Step(11)

46

 Else Go to Step(20)

Step20: Finish

3.3.1.4 Calculated Time of Multi-Key by Using Multiplication NTRU Formula

The proposed model is importing fixed data size and choosing one of the different key sizes. It is

implemented these parameters through Multiplication -NTRU algorithm and calculated time, then

saving time to be used for comparison later. This algorithm records the time from each experiment

and compare between them, as shown in Figure (3-5).

47

Start

Import data

Enter (x)as desired key size

Enter (y) as number of input data

number of input data =< y

No

Finish

End

Generate (n, p ,q, d ,r)

randomly

Compute g(x), f(x) as

polynomials function

Fq(x) = f(x)
-1

 mod (q)

fp(x) = f(x)
-1

 mod (p)

 h(x) = p * (f) * g (mod q)

 Multi-NTRU = Multi -NTRU * C

record of input data =

record of input data +1

Number of key-size =< x

No

Yes

Yes

Generate (Key x) depending

on desired key size

C= r*h + m (mod q)

Encrypt (Multi-NTRU) by key x

Compute and save time

48

Figure (3-5): Multiplication NTRU Flowchart for Fixed Data Size

Algorithm:

Step 1: Start

Step 2: Import data

Step3: Enter variable (x) as size of key used

Step4: Determine (y) as number of input data

Step5: Generate variables (n, p ,q, d ,r) randomly

Step6: Compute g(x) as polynomials function

Step7: Compute f(x) as polynomials function

Step8: Compute fq(x) = f(x)-1 mod (q)

Step9: Compute fp(x) = f(x)-1 mod (p)

Step10: Compute h(x) = p * (fq) * g (mod q)

Step11: Generate (Key x) depending on desired key size

Step12: Encryption (M) as plain text where C= r*h + m (mod q)

Step13: Compute Multiplicative-NTRU where Multiplicative-NTRU = Multi-NTRU * c

Step14: Incremental record of input data by one

Step15: Until number of input data is less than (y) then Go to Step(12)

Else Go to Step (16)

Step16: Encrypt (Multiplicative -NTRU) by (Key x)

Step17: Compute time

Step18: Saving time

Step19: until number of key size is less than (x) then Go to Step(11)

49

Else Go to Step(20)

Step20: Finish

3.3.1.5 Calculated Time of Multi-Key by Using Both NTRU Formula

The proposed model is importing fixed data size and choosing one of the different key sizes. It is

implemented these parameters through both NTRU formula in the same time (Additive &

Multiplication) and calculated total time, then saving time to be used for comparison later. This

algorithm records the time from each experiment and compare between them, as shown in Figure

(3-6).

Start

Import data

Enter (x)as desired key size

Enter (y) as number of input data

Generate (n, p ,q, d ,r)

randomly

Compute g(x), f(x) as

polynomials function

Fq(x) = f(x)
-1

 mod (q)

fp(x) = f(x)
-1

 mod (p)

 h(x) = p * (f) * g (mod q)

50

number of input data =< y

No

Finish

End

 Add-NTRU = Add -NTRU + C

record of input data =

record of input data +1

Encrypt (Add-NTRU) by key x

Compute and save time1

Number of key-size =< x

No

Yes

Yes

Generate (Key x) depending

on desired key size

C= r*h + m (mod q)

number of input data =< y

No

 Multiplicative-NTRU =
Multiplicative-NTRU + C

record of input data =

record of input data +1

Encrypt (Multiplicative-NTRU) by key x

Compute and save

time2

Yes

C= r*h + m (mod q)

Total-Time= Time1 + Time2

Figure (3-6): Both-NTRU Flowchart for Fixed Data Size

51

Algorithm:

Step 1: Start

Step 2: Import data

Step3: Enter variable (x) as size of key used

Step4: Determine (y) as number of input data

Step5: Generate variables (n, p, q, d, r) randomly

Step6: Compute g(x) as polynomials function

Step7: Compute f(x) as polynomials function

Step8: Compute fq(x) = f(x)-1 mod (q)

Step9: Compute fp(x) = f(x)-1 mod (p)

Step10: Compute h(x) = p * (fq) * g (mod q)

Step11: Generate (Key x) depending on desired key size

Step12: Encryption (M) as plain text where C= r*h + m (mod q)

Step13: Compute Add-NTRU where Add-NTRU = Add-NTRU + c

Step14: Incremental record of input data by one

Step15: Until number of input data is less than (y) then Go to Step(12)

 Else Go to Step (16)

Step16: Encrypt (Add-NTRU) by (Key x)

Step17: Compute time1

Step18: Saving time1

Step19: Encryption (M) as plain text where C= r*h + m (mod q)

Step20: Compute Multi -NTRU where Multiplicative-NTRU = Multiplicative-NTRU * c

Step21: Incremental record of input data by one

Step22: Until number of input data is less than (y) then Go to Step(19)

 Else Go to Step (23)

Step23: Encrypt (Multiplicative-NTRU) by (Key x)

Step24: Compute time2

Step25: Saving time2

Step26: Total-Time = Time1 + Time2.

52

Step27: until number of key size is less than (x) then Go to Step(11)

 Else Go to Step (28)

Step28: Finish

3.3.2 Fixed Key and Multi-Data Size Procedure

In this scenario, the algorithm is used to study the effect the performance of NTRU with two types

of PHE technique by using different data size with fixed key size. It was used nine different data

sizes with fixed key size. The ranges of data sizes are (1-9) digits.

3.3.2.1 Calculated Time of Multi-Data Size by Using Paillier Formula

The proposed model is importing fixed key size and choosing one of the different data sizes. It is

implemented these parameters through paillier algorithm and calculated time, then saving time to

be used for comparison later. This algorithm records the time from each experiment and compare

between them, as shown in Figure (3-7).

53

Start

Import data

Determine (x)as desired key size

Enter (y) as number of input data

number of input data =< y

No

Finish

End

Generate (p,q) randomly

n= p*2

g=n+1

(ʎ) = LCM (p-1, q-1)

µ=

Generate (r) randomly

Enter (Z) as number of digit input

data

sum-encrypt = sum-encrypt +c

recorded of input data =

recorded of input data +1

Encrypt (sum-encrypt) by key x

Compute and save time

Digit input data =< Z

No

Yes

Yes

Generate (Key x) depending

on desired key size

Figure (3-7): Paillier Flowchart for Fixed Key Size

54

Algorithm:

Step1: Start

Step2: Import data

Step3: Determine (x) as key size

Step4: Generate (Key x) depending on desired key size

Step5: Determine (y) as number of input data

Step6: Generate variable (p & q) randomly as large prime number

Step7: Compute (n) where n = p*q

Step8: Compute (g) where g=n+1.

Step9: Generate variable (r) randomly.

Step10: Compute (ʎ) where ʎ = LCM (p-1, q-1)

Step11: Compute (µ) =

Step12: Enter (z) as number of digit input data.

Step13: Encrypt (M) as plain text where

Step14: Compute sum-encrypt where sum-encrypt = sum-encrypt +c

Step15: Incremental record of input data by one

Step16: Until number of input data is less than (y) then go to step (13)

Else Go to step (17)

Step17: Encrypt (sum-encrypt) by (Key x)

Step18: Compute time

55

Step19: Saving time

Step20: Until number of digit input data is less than (z) Then go to step (12)

 Else Go to step (21)

Step21: Finish

3.3.2.2 Calculated Time of Multi-Data Size by Using RSA Formula

The proposed model is importing fixed key size and choosing one of the different data sizes. It is

implemented these parameters through RSA algorithm and calculated time, then saving time to be

used for comparison later. This algorithm records the time from each experiment and compare

between them, as shown in Figure (3-8).

56

Start

Import data

Determine (x) as desired key size

number of input data =< y

No

Finish

End

Ø (n) = (p-1) * (q-1)

Generate (d, e)

Multiplicative-encrypt = Multiplicative-encrypt *c

record of input data =

record of input data +1

Encrypt (Multiplicative-encrypt) by key x

Compute and save time

number of input data =< Z

No

Yes

Yes

Enter (Z) as number of digit input data

Generate (p,q) randomly

Enter (Y) as number of input data

Generate (Key X) depending on desired

key size

Figure (3-8): RSA Flowchart for Fixed Key Size

57

Algorithm:

Step1: Start

Step2: Import data

Step3: Determine (x) as key size

Step4: Generate (Key x) depending on desired key size

Step5: Enter (y) as number of input data

Step6: Generate variable (p & q) randomly as large prime number

Step7: Compute Ø (n) = (p-1) (q-1).

Step8: determine variable (e) as ((1<e< Ø (n) and gcd (e, Ø (n)) =1).

Step9: determine variable (d) as (d.e=1 mod (Ø (n))).

Step10: Enter (z) as number of digit input data

Step11: Encrypt (m) as plain text where

Step12: Compute Multiplicative-encrypt where Multiplicative-encrypt =

Multiplicative-encrypt*c

Step13: Incremental record of input data by one

Step14: Until number of input data is less than (y) then go to step (11)

 Else Go to step (15)

Step15: Encrypt (Multiplicative-encrypt) by (Key x)

Step16: Compute time

Step17: Saving time

58

Step18: Until number of digit input data is less than (Z) go to step (10)

 Else Go to step (19)

Step19: Finish

3.3.2.3 Calculated Time of Multi-Data Size by Using Additive NTRU Formula

The proposed model is importing fixed key size and choosing one of the different data sizes. It is

implemented these parameters through Additive-NTRU algorithm and calculated time, then saving

time to be used for comparison later. This algorithm records the time from each experiment and

compare between them, as shown in Figure (3-9).

59

Start

Import data

Enter (x)as desired key size

Enter (y) as number of input data

number of input data =< y

No

Finish

End

Generate (n, p ,q, d ,r)

randomly

Compute g(x), f(x) as polynomials

function

Fq(x) = f(x)
-1

 mod (q)

fp(x) = f(x)
-1

 mod (p)

 h(x) = p * (f) * g (mod q)

 Add -NTRU = Add -NTRU + C

record of input data =

record of input data +1

Encrypt (Add-NTRU) by key x

Compute and save time

Digit input data =< Z

Yes

Yes

C= r*h + m (mod q)

No

Enter (Z) as number of digit input

data

Generate (Key x) depending

on desired key size

Figure (3-9): Additive NTRU Flowchart for Fixed Key Size

60

Algorithm:

Step 1: Start

Step 2: Import data

Step3: Determine variable (x) as size of key used

Step4: Generate (Key x) depending on desired key size

Step5: Determine (y) as number of input data

Step6: Generate variables (n, p ,q, d ,r) randomly

Step7: Compute g(x) as polynomials function

Step8: Compute f(x) as polynomials function

Step9: Compute fq(x) = f(x)-1 mod (q)

Step10: Compute fp(x) = f(x)-1 mod (p)

Step11: Compute h(x) = p * (f) * g (mod q)

Step12: Enter (z) as number of digit input data

Step13: Encryption (M) as plain text where C= r*h + m (mod q)

Step14: Compute Add-NTRU where Add-NTRU = Add-NTRU + c

Step15: Incremental record of input data by one

Step16: Until number of input data is less than (y) then Go to Step(13)

Else Go to Step (17)

Step17: Encrypt (Add-NTRU) by (Key x)

Step18: Compute time

61

Step19: Saving time

Step20: until number of key size is less than (z) then Go to Step(12)

Else Go to Step (21)

Step21: Finish

3.3.2.4 Calculated Time of Multi-Data Size by Using Multiplication NTRU Formula

The proposed model is importing fixed key size and choosing one of the different data sizes. It is

implemented these parameters through Multiplication -NTRU algorithm and calculated time, then

saving time to be used for comparison later. This algorithm records the time from each experiment

and compare between them, as shown in Figure (3-10).

62

Start

Import data

Enter (x)as desired key size

Enter (y) as number of input data

number of input data =< y

No

Finish

End

Generate (n, p ,q, d ,r)

randomly

Compute g(x), f(x) as polynomials

function

Fq(x) = f(x)
-1

 mod (q)

fp(x) = f(x)
-1

 mod (p)

 h(x) = p * (f) * g (mod q)

 Multiplicative-NTRU = Multiplicative-NTRU * C

record of input data =

record of input data +1

Digit input data <= Z

No

Yes

Yes

Enter (Z) as number of digit input

data

C= r*h + m (mod q)

Encrypt (Multiplicative-NTRU) by key x

Compute and save time

Generate (Key x) depending

on desired key size

Figure (3-10): Multiplication NTRU Flowchart for Fixed Key Size

63

Algorithm:

Step 1: Start

Step 2: Import data

Step3: Determine variable (x) as size of key used

Step4: Generate (Key x) depending on desired key size

Step5: Determine (y) as number of input data

Step6: Generate variables (n, p ,q, d ,r) randomly

Step7: Compute g(x) as polynomials function

Step8: Compute f(x) as polynomials function

Step9: Compute fq(x) = f(x)-1 mod (q)

Step10: Compute fp(x) = f(x)-1 mod (p)

Step11: Compute h(x) = p * (f) * g (mod q)

Step12: Enter (z) as number of digit input data

Step13: Encryption (m) as plain text where C= r*h + m (mod q)

Step14: Compute Multiplicative-NTRU where

Multiplicative-NTRU = Multiplicative -NTRU * c

Step15: Incremental record of input data by one

Step16: Until number of input data is less than (y) then Go to Step(13)

Else Go to Step (17)

Step17: Encrypt (Multiplicative-NTRU) by (Key x)

Step18: Compute time

Step19: Saving time

64

Step20: until number of key size is less than (Z) then Go to Step (12)

Else Go to Step (21)

Step21: Finish.

3.3.2.5 Calculated Time of Multi-Data Size by Using Both NTRU Formula

The proposed model is importing fixed key size and choosing one of the different data sizes. It is

implemented these parameters through both NTRU formula in the same time (Additive &

Multiplicative) and calculated total time, then saving time to be used for comparison later. This

algorithm records the time from each experiment and compare between them, as shown in Figure

(3-11).

Start

Import data

Enter (x)as desired key size

Enter (y) as number of input data

Generate (n, p ,q, d ,r)

randomly

Compute g(x), f(x) as polynomials

function

Fq(x) = f(x)
-1

 mod (q)

fp(x) = f(x)
-1

 mod (p)

 h(x) = p * (f) * g (mod q)

Generate (Key x) depending

on desired key size

65

number of input data =< y

No

Finish

End

 Add-NTRU = Add -NTRU + C

record of input data =

record of input data +1

Encrypt (Add-NTRU) by key x

Compute and save time1

Digit input data =< Z

No

Yes

Yes

Enter (Z) as number of digit in[put

data

C= r*h + m (mod q)

number of input data =< y

No

 Multiplicative-NTRU = Multiplicative-
NTRU + C

record of input data =

record of input data +1

Encrypt (Multiplicative-NTRU) by key x

Compute and save time2

Yes

C= r*h + m (mod q)

Total-Time= Time1 + Time2

Figure (3-11): Both NTRU Flowcharts for Fixed Key Size

66

Algorithm:

Step 1: Start

Step 2: Import data

Step3: Enter variable (x) as size of key used

Step4: Generate (Key x) depending on desired key size

Step5: Determine (y) as number of input data

Step6: Generate variables (n, p ,q, d ,r) randomly

Step7: Compute g(x) as polynomials function

Step8: Compute f(x) as polynomials function

Step9: Compute fq(x) = f(x)-1 mod (q)

Step10: Compute fp(x) = f(x)-1 mod (p)

Step11: Compute h(x) = p * (f) * g (mod q)

Step12: Enter (z) as number of digit input data

Step13: Encryption (m) as plain text where C= r*h + m (mod q)

Step14: Compute Add-NTRU where Add-NTRU = Add-NTRU + c

Step15: Incremental record of input data by one

Step16: Until number of input data is less than (y) then Go to Step(13)

 Else Go to Step (17)

Step17: Encrypt (Add-NTRU) by (Key x)

Step18: Compute time1

Step19: Saving time1

Step20: Encryption (m) as plain text where C= r*h + m (mod q)

67

Step21: Compute Multiplicative-NTRU where Multiplicative-NTRU = Multi -NTRU * c

Step22: Incremental record of input data by one

Step23: Until number of input data is less than (y) then Go to Step(20)

 Else Go to Step (24)

Step24: Encrypt (Multiplicative-NTRU) by (Key x)

Step25: Compute time2.

Step26: Saving time2.

Step27: Total-Time = Time1 + Time2.

Step28: until number of key size is less than (z) then Go to Step(12)

 Else Go to Step (29)

Step29: Finish

68

69

4.1 Introduction

Cloud computing is one of the attractive concepts in the technology field. It is providing more

services depending on users demand. These services making computing resources are available to

all users anytime and from anywhere. However, all the advantages that offered by the cloud

computing, but there are many concerns about the migrating to the cloud.

The security issue aimed to protect the cloud database to each user by using various encryption

methods. This thesis focused on the implemented of Homomorphic Encryption method on the

Cloud Computing security.

The researcher builds a model to utilize two types of PHE (Paillier and RSA) and the NTRU

encryption scheme, this model is evaluation primitives including additive, Multiplication of partial

homomorphic encryption and two types of operations over NTRU (additive NTRU &

Multiplication NTRU) computation, as shown in Figure (4-1).

Proposed Model

Homomorphic Technique NTRU Technique

Key Generation

Applied Paillier

Algorithm

Compute Time

Key Generation

Applied RSA
Algorithm

Compute Time

Key Generation

Applied Additive

NTRU Algorithms

Compute Time

Import Data

from DB

Key Generation

Applied

Multiplicative

NTRU Algorithms

Compute Time

Import Data

from DB
Import Data

from DB

Import Data

from DB

Figure (4-1): Proposed Model

70

4.2 Tools For Experimental

This thesis has designed and implemented software to compare the performance of PHE & NTRU

using VB.net version 2010 as language programming. The software imported the data from

Microsoft Access 2010 with the size of (500) records.

In this thesis, it has been used the database to run several experiments and to find the outcomes of

these experiments. The researcher implemented fixed data type which represent in Integer type,

different size of keys which represent in (32, 64, 128 and 256) bits and different data sizes which

represent in (from 1 digit to 9 digits).

The experiments have taken long time because the combinations of the parameters were enormous.

Where has used the 500 records of the database to facilitate studying the effect of several

parameters on the performance of PHE and NTRU.

4.3 Evaluation Measures

The researcher evaluates the proposed model by using two measures; these measures evaluate the

homomorphic and NTRU by calculating percentage of gaining security level to the Performance

loss.

1- Security gain measure:

The researcher used the security gain measure to determine which one of the proposed parameters

(key size, or data size) is optimal to investigate the best security and data flexibility with

performance of the proposed experimental.

The measure is calculated through divided by the large value of desired parameter on the small

value of desired parameter as a percentage

Security gain =
large value of parameter

small value of parameter
∗ 100 ……. (4.1)

71

2- Performance loss measure:

The researcher used the performance loss measure to determine which one of the proposed

parameters (key size, or data size) is optimal to investigate the best security and data flexibility

with performance of the proposed experimental.

The measure is calculated through difference between the maximum time of desired parameter and

the minimum time of desired parameter divided by the maximum time of desired parameter as a

percentage

Performance loss =
The max 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑒𝑟𝑓𝑜𝑚𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 – The min 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑒𝑟𝑓𝑜𝑚𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒

The max 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑒𝑟𝑓𝑜𝑚𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒
∗ 100% ... (4.2)

4.4 Performance Evaluation

The researcher designed and implemented a model for presenting alternatives to provide

authentication in the cloud environment. This model used to compare the performance between

two types of encryption algorithms (Partially Homomorphic Encryption and NTRU techniques).

The researcher is importing record of database and run different parameters on these data. The

model implemented through two types on PHE (RSA and paillier) and three types of NTRU

(Additive NTRU, Multiplication NTRU and Combine between them). The following Figure (4-2)

declared the main parameters of implementation model when it is divided in two procedures:-

- Fixed Data Size with Multi-Key Size Procedure

- Fixed Key size with Multi-Data Size Procedure

72

Figure (4-2): Main Interface

4.4.1 Execution Fixed Data Size with Multi-Key Size Procedure

The first procedure implementing different key size on fixed data. These key sizes are: 32 bits, 64

bits, 128 bits and 256 bits. It is divided in five Phases (RSA, Paillier, Additive NTRU,

Multiplication NTRU and Both NTRU).

4.4.1.1 Execution Time of Multi-Key size by Using Paillier Formula

Figure (4-3) shows the use of Paillier equation on all types of key size (32, 64, 128 and 256) with

selected fixed data size (length three).

73

Figure (4-3): Execute Paillier (Multi Key Size)

The result of previous experiment has shown in Table (4-1) and Figure (4-4). The aim of this

experiment is to find the optimal key size when importing (500) records as the number of input

data, then testing each key size on the length three through Paillier equations. The difference

between each time of each key is determined the best key size to give appropriate security level

with minimum Performance loss.

Table (4-1): Result Execute Paillier (Multi Key size)

Key

Size

Data

Size

Execution

Time

Total

Numbers
Total Enc Total Dec

32 bit 3 digit 0.80 ms 193658 8507529649 193658

64 bit 3 digit 0.81 ms 387316 2841349071 387316

128 bit 3 digit 0.83 ms 580974 4840229665 580974

256 bit 3 digit 0.95 ms 774632 5190901140 774632

74

Figure (4-4): Timing Execute Paillier (Multi Key size)

1- Compute security gain for Paillier

From the Table (4-1), the researcher has implemented equation (4-1) that is used to compute the

ratio of security gain. It has been used this equation for each key size on fixed data size through

Paillier algorithm to find optimal outcomes. For example:-

(64/32) *100% = 200%

2- Compute performance loss for Add PHE (paillier)

From the Table (4-1), the researcher has implemented equation (4-2) that is used to compute the

ratio of performance loss. It has been used this equation for each key size on fixed data size through

Paillier algorithm to find optimal outcomes. For example:-

32-46 = 81-80/8 *100% = 1%

75

Table (4-2): Calculate security and Performance Ratio for Paillier (Multi Key size)

Key size Security gain Performance loss

32-64 200% 1%

32-128 400% 4%

64-128 200% 2%

32-256 800% 16%

64-256 400% 15%

128-256 200% 13%

In this experiment, the key size (256 bits) has the maximum security gain, while the key size (32

bits) has the minimum security gain. The increasing security level depending on the increasing

key size in each experiment, are illustrated in result Table (4-2) and as shown below:-

- The increasing key size (from 32 bits to 256 bits), the ratio resulted in security gain is

(800%) which considered the maximum security gain.

- The increasing key size (from 32 bits to 128 bits) or (from 64 bits to 256 bits), the ratio

resulted in security gain is (400%).

- The increasing key size (from 32 bits to 64 bits) or (from 64 bits to 128 bits) or (from 128

bits to 256 bits), the ratio resulted in security gain is (200%) which considered the

minimum security level.

76

In addition, the key size used is affected directly on the performance through effects on the time.

The key size (256 bits) has the maximum Performance loss while the key size (32 bits) has the

minimum Performance loss. The increasing Performance loss depending on the increasing key size

in each experiment, as shown below:-

- The increasing key size (from 32 bits to 64 bits), the ratio resulted in the performance loss

is (1%) which considered the minimum Performance loss.

- The increasing key size (from 32 bits to 128 bits), the ratio resulted in the performance loss

is (4%).

- The increasing key size (from 64 bits to 128 bits), the ratio resulted in the performance loss

is (2%).

- The increasing key size (from 32 bits to 256 bits), the ratio resulted in the performance loss

is (16%) which considered the maximum Performance loss.

- The increasing key size (from 64 bits to 256 bits), the ratio resulted in the performance loss

is (15%).

- The increasing key size (from 128 bits to 256 bits), the ratio resulted in the performance

loss is (13%).

4.4.1.2 Execution Time of Multi-Key size by Using RSA Formula

Figure (4-5) shows the use of RSA equation on all types of key size (32, 64, 128 and 256 bits) with

selected fixed data size (length three).

77

Figure (4-5): Execute Multiplication RSA (Multi Key size)

The result of previous experiment has shown in Table (4-3) and Figure (4-6). The aim of this

experiment is to find the optimal key size when importing (500) records as the number of input

data, then testing each key size on the length three through RSA equations. The difference between

each time of each key is determined the best key size to give appropriate security level with

minimum Performance loss.

Table (4-3): Result Execute Multiplication PHE (Multi key size)

Key Size
Data

Size

Execution

Time

Total

Numbers

Total

Enc

Total

Dec

32 bit 3 digit 1.65 ms ∞ ∞ ∞

64 bit 3 digit 1.88ms ∞ ∞ ∞

128 bit 3 digit 1.90ms ∞ ∞ ∞

256 bit 3 digit 2.64ms ∞ ∞ ∞
Note: The (∞) is representing the large number in Tables

78

Figure (4-6): Timing Execute Multiplication PHE (Multi Key size)

1- Compute security level for Multiplication (RSA)

 From the Table (4-3), the researcher has implemented equation (4-1) that is used to compute the

ratio of security level. It has been used this equation for each key size on fixed data size through

RSA algorithm to find optimal outcomes. For example:-

(128/32) *100% =400%

2- Compute performance for Multiplication PHE (RSA)

From the Table (4-3), the researcher has implemented equation (4-2) that is used to compute the

ratio of performance loss. It has been used this equation for each key size on fixed data size through

RSA algorithm to find optimal outcomes. For example:-

32→ 128= 190-165/190 *100% = 13%

79

Table (4-4): Calculate Security and Performance Ratio for Multiplication PHE (Multi Key size)

Key Size Security gain Performance loss

32→ 64 200% 12%

32→ 128 400% 13%

32→ 256 800% 1%

64→ 128 200% 37%

64→ 256 400% 29%

128→ 256 200% 28%

In this experiment, the key size (256 bits) has the maximum security level, while the key size (32

bits) has the minimum security level. The increasing security level depending on the increasing

key size in each experiment, are illustrated in result Table (4-4) and as shown below:-

- The increasing key size (from 32 to 256) bits, the ratio resulted in the security level is

(800%) which considered the maximum security level.

- The increasing key size (from 32 to 128) bits or (from 64 to 256) bits, the ratio resulted in

the security level is (400%).

- The increasing key size (from 32 to 64) bits or (from 64 to 128) bits or (from 128 to 256)

bits, the ratio resulted in the security level is (200%) which considered the minimum

security level.

The key size used is affected directly on the performance through effects on the time. The key size

(256 bits) has the maximum Performance loss while the key size (32 bits) has the minimum

Performance loss. The increasing Performance loss depending on the increasing key size in each

experiment, as shown below:-

80

- The increasing key size (from 32 to 64) bits, the ratio resulted in the performance loss is

(12%).

- The increasing key size (from 32 to 128) bits, the ratio resulted in the performance loss is

(13%).

- The increasing key size (from 32 to 256) bits, the ratio resulted in the performance loss is

(1%) which considered the minimum Performance loss.

- The increasing key size (from 64 to 128) bits, the ratio resulted in the performance loss is

(37%) which considered the maximum Performance loss.

- The increasing key size (from 64 to 256) bits, the ratio resulted in the performance loss is

(29%).

- The increasing key size (from 128 to 256) bits, the ratio resulted in the performance loss is

(28%).

4.4.1.3 Execution Time of Multi-Key size by Using Additive NTRU Formula

Figure (4-7) shows the use of Additive NTRU equation on all types of key size (32, 64, 128 and

256) bits with selected fixed data size (length three).

81

Figure (4-7): Execute Additive NTRU (Multi Key size)

The result of previous experiment has shown in Table (4-5) and Figure (4-8). The aim of this

experiment is to find the optimal key size when importing (500) records as the number of input

data, then testing each key size on the length three through Additive NTRU equations. The

difference between each time of each key is determined the best key size to give appropriate

security level with minimum Performance loss.

Table (4-5): Result Execute Additive NTRU (Multi Key size)

Key Size
Data

Size

Execution

Time

Total

Numbers
Total Enc

Total

Dec

32 bit 3 digit 0.80 ms 193658 618757524 193658

64 bit 3 digit 1.55ms 387316 795863326 387316

128 bit 3 digit 2.39ms 580974 1626654517 580974

256 bit 3 digit 3.20ms 774632 2463566562 774632

82

Figure (4-8): Timing Execute Additive NTRU (Multi Key size)

1- Compute security level for Add (NTRU)

From the Table (4-5), the researcher has implemented equation (4-1) that is used to compute the

ratio of security level. It has been used this equation for each key size on fixed data size through

Additive NTRU algorithm to find optimal outcomes. For example:-

 (64/32) *100% = 200%

2- Compute performance for Add (NTRU)

From the Table (4-5), the researcher has implemented equation (4-2) that is used to compute the

ratio of performance loss. It has been used this equation for each key size on fixed data size

through Additive NTRU algorithm to find optimal outcomes. For example:-

32→ 64= 155-80/155 *100% = 48%

83

Table (4-6): Calculate Security and Performance Ratio for Additive NTRU (Multi Key size)

Key Size Security gain Performance loss

32→ 64 200% 48%

32→ 128 400% 66%

32→ 256 800% 75%

64→ 128 200% 35%

64→ 256 400% 52%

128→ 256 200% 25%

In this experiment, the key size (256 bits) has the maximum security level, while the key size (32

bits) has the minimum security level. The increasing security level depending on the increasing

key size in each experiment, are illustrated in result Table (4-6) and as shown below:-

- The increasing key size (from 32 to 256) bits, the ratio resulted in the security level is

(800%) which considered the maximum security level.

- The increasing key size (from 32 to 128) bits or (from 64 to 256) bits, the ratio resulted in

the security level is (400%).

- The increasing key size (from 32 to 64) bits or (from 64 to 128) bits or (from 128 to 256)

bits, the ratio resulted in the security level is (200%) which considered the minimum

security level.

The key size used is affected directly on the performance through effects on the time. The key size

(256 bits) has the maximum performance loss while the key size (32 bits) has the minimum

performance loss. The increasing Performance loss depending on the increasing key size in each

experiment, as shown below:-

84

- The increasing key size (from 32 to 64) bits, the ratio resulted in the performance loss is

(48%).

- The increasing key size (from 32 to 128) bits, the ratio resulted in the performance loss is

(66%).

- The increasing key size (from 32 to 256) bits, the ratio resulted in the performance loss is

(75%) which considered the maximum Performance loss.

- The increasing key size (from 64 to 128) bits, the ratio resulted in the performance loss is

(35%).

- The increasing key size (from 64 to 256) bits, the ratio resulted in the performance loss is

(52%).

- The increasing key size (from 128 to 256) bits, the ratio resulted in the performance loss is

(25%) which considered the minimum performance loss.

4.4.1.4 Execution Time of Multi-Key size by Using Multiplication NTRU Formula

Figure (4-9) shows the use of Multiplication NTRU equation on all types of key size (32, 64, 128

and 256) bits with selected fixed data size (length three).

85

Figure (4-9): Execute Multiplication NTRU (Multi Key size)

The result of previous experiment has shown in Table (4-7) and Figure (4-10). The aim of this

experiment is to find the optimal key size when importing (500) records as the number of input

data, then testing each key size on the length three through Multiplication NTRU equations. The

difference between each time of each key is determined the best key size to give appropriate

security level with minimum Performance loss.

Table (4-7): Result Execute Multiplication NTRU (Multi Key size)

Key

Size

Data

Size

Execution

Time
Total Numbers Total Enc

Total

Dec

32 bit 3 digit 1.48 ms 21679168 418126187 21679168

64 bit 3 digit 2.51ms 21679168 1385405542 21679168

128 bit 3 digit 3.64ms 21679168 1385405542 21679168

256 bit 3 digit 5.04ms 21679168 2384293196 21679168

86

Figure (4-10): Timing Execute Multiplication NTRU (Multi Key size)

1- Compute security level for Multiplication (NTRU)

From the Table (4-7), the researcher has implemented equation (4-1) that is used to compute the

ratio of security level. It has been used this equation for each key size on fixed data size through

Multiplication NTRU algorithm to find optimal outcomes. For example:-

 (64/32) *100% = 200%

2- Compute performance for Multiplication (NTRU)

From the Table (4-7), the researcher has implemented equation (4-2) that is used to compute the

ratio of performance loss. It has been used this equation for each key size on fixed data size through

Multiplication NTRU algorithm to find optimal outcomes. For example:-

32→ 64= 251-148/251*100% = 41%

87

Table (4-8): Calculate Security and Performance Ratio for Multiplication NTR (Multi Key

size)

Key Size Security gain Performance loss

32→ 64 200% 41%

32→ 128 400% 59%

32→ 256 800% 71%

64→ 128 200% 31%

64→ 256 400% 50%

128→ 256 200% 28%

In this experiment, the key size (256 bits) has the maximum security level, while the key size (32

bits) has the minimum security level. The increasing security level depending on the increasing

key size in each experiment, are illustrated in result Table (4-8) and as shown below:-

- The increasing key size (from 32 to 256) bits, the ratio resulted in the security level is

(800%) which considered the maximum security level.

- The increasing key size (from 32 to 128) bits or (from 64 to 256) bits, the ratio resulted in

the security level is (400%).

- The increasing key size (from 32 to 64) bits or (from 64 to 128) bits or (from 128 to 256)

bits, the ratio resulted in the security level is (200%) which considered the minimum

security level.

88

The key size used is affected directly on the performance through effects on the time. The key size

(256 bits) has the maximum Performance loss while the key size (32 bits) has the minimum

Performance loss. The increasing Performance loss depending on the increasing key size in each

experiment, as shown below:-

- The increasing key size (from 32 to 64) bits, the ratio resulted in the performance loss is

(41%).

- The increasing key size (from 32 to 128) bits, the ratio resulted in the performance loss is

(59%).

- The increasing key size (from 32 to 256) bits, the ratio resulted in the performance loss is

(71%) which considered the maximum performance loss.

- The increasing key size (from 64 to 128) bits, the ratio resulted in the performance loss is

(31%).

- The increasing key size (from 64 to 256) bits, the ratio resulted in the performance loss is

(50%).

- The increasing key size (from 128 to 256) bits, the ratio resulted in the performance loss is

(28%) which considered the minimum performance loss.

4.4.1.5 Execution Time of Multi-Key size by Using Both NTRU Formula

Figure (4-11) shows the use of Both NTRU (Additive & Multiplication) equation on all types of

key size (32, 64, 128 and 256) bits with selected fixed data size (length three).

89

Figure (4-11): Execute Both NTRU (Multi Key size)

The aim of this experiment is to find the optimal key size when importing (500) records as the

number of input data, then testing each key size on the length three through Both NTRU equations.

The difference between each time of each key is determined the best key size to give appropriate

security level with minimum Performance loss.

Table (4-9): Result Execute Both NTRU (Multi Key size)

Key

Size

Data

Size

Execution

Time

Total

Numbers
Total Enc

Total

Dec

32 bit 3 digit 2.55ms 387317 1.188809 387317

64 bit 3 digit 2.71ms 774633 4.855508 774633

128 bit 3 digit 3.01ms 1161949 6.49908 1161949

256 bit 3 digit 4.74ms 1549265 1.355509 1549265

90

Figure (4-12): Timing Execute Both NTRU (Multi Key size)

1- Compute security level for both(NTRU)

From the Table (4-9), the researcher has implemented equation (4-1) that is used to compute the

ratio of security level. It has been used this equation for each key size on fixed data size through

Both NTRU algorithm to find optimal outcomes. For example:-

 (64/32) *100% = 200%

2- Compute performance for both(NTRU)

From the Table (4-9), the researcher has implemented equation (4-2) that is used to compute the

ratio of performance loss. It has been used this equation for each key size on fixed data size through

Both NTRU algorithm to find optimal outcomes. For example:-

32→ 64 = 271-255/271*100% = 59%

91

Table (4-10): Calculate Security and Performance Ratio for Both NTRU (Multi Key size)

Key Size Security gain Performance loss

32→ 64 200% 6%

32→ 128 400% 15%

32→ 256 800% 46%

64→ 128 200% 10%

64→ 256 400% 43%

128→ 256 200% 36%

In this experiment, the key size (256 bits) has the maximum security level, while the key size (32

bits) has the minimum security level. The increasing security level depending on the increasing

key size in each experiment, are illustrated in result Table (4-10) and as shown below:-

- The increasing key size (from 32 to 256) bits, the ratio resulted in the security level is

(800%) which considered the maximum security level.

- The increasing key size (from 32 to 128) bits or (from 64 to 256) bits, the ratio resulted in

the security level is (400%).

- The increasing key size (from 32 to 64) bits or (from 64 to 128) bits or (from 128 to 256)

bits, the ratio resulted in the security level is (200%) which considered the minimum

security level.

The key size used is affected directly on the performance through effects on the time. The key size

(256 bits) has the maximum Performance loss while the key size (32 bits) has the minimum

Performance loss. The increasing Performance loss depending on the increasing key size in each

experiment, as shown below:-

92

- The increasing key size (from 32 to 64) bits, the ratio resulted in the performance loss is

(6%) which considered the minimum Performance loss.

- The increasing key size (from 32 to 128) bits, the ratio resulted in the performance loss is

(15%).

- The increasing key size (from 32 to 256) bits, the ratio resulted in the performance loss is

(46%) which considered the maximum Performance loss.

- The increasing key size (from 64 to 128) bits, the ratio resulted in the performance loss is

(10%).

- The increasing key size (from 64 to 256) bits, the ratio resulted in the performance loss is

(43%).

- The increasing key size (from 128 to 256) bits, the ratio resulted in the performance loss is

(36%).

4.4.2 Execution Fixed Key size with Multi-Data Size Procedure

The second procedure is implementing different data size on fixed key. The ranges of data sizes

are used nine digits (1-9).

4.4.2.1 Execution Time of Multi-Data Size by Using Paillier Formula

Figure (4-13) shows the use of Paillier equation on different sizes of data (from one to nine digits)

with selected fixed key size (128 bits).

93

Figure (4-13): Execute Additive PHE (Multi Data size)

The result of previous experiment has shown in Table (4-11) and Figure (4-14). The aim of this

experiment is to find the optimal data size on the key size (128 bits) through Paillier equation,

when importing (500) records as the number of input data. The difference between each time of

each data is determined the best data size to gives data flexibility with minimum Performance loss.

Table (4-11): Result Execute Additive PHE (Multi Data size)

Key

Size

Data

Size

Execution

Time

Total

Numbers
Total Enc Total Dec

128 bit 1 digit 0.81ms 2585 1711917246 2585

128 bit 3 digit 0.83ms 196243 3304279607 196243

128 bit 5 digit 0.84ms 21673962 4001266315 21673962

128 bit 7 digit 0.85ms 2060636052 4087837316 2060636052

128 bit 9 digit 0.87ms 211922818947 5027054591 211922818947

94

Figure (4-14): Timing Execute Additive PHE (Multi Data size)

1- Compute data flexibility for Add PHE (paillier)

From the Table (4-11), the researcher has implemented equation (4-1) that is used to compute the

ratio of data flexibility. It has been used this equation for each Data size on fixed Key size through

Paillier algorithm to find optimal outcomes. For example:-

(3/1)*100% =300%

2- Compute performance for Add PHE (paillier)

From the Table (4-11), the researcher has implemented equation (4-2) that is used to compute the

ratio of performance loss. It has been used this equation for each Data size on fixed Key size

through Paillier algorithm to find optimal outcomes. For example:-

1→ 3 = 83-81/83*100% = 2%

95

Table (4-12): Calculate Data Flexibility and Performance Ratio for Additive PHE (Multi Data

size)

Data Size Data Flexibility Performance loss

1→ 3 300% 2%

1→ 5 500% 5%

1→ 7 700% 5%

1→ 9 900% 7%

3→ 5 166% 1%

3→ 7 233% 2%

3→ 9 300% 5%

5→ 7 140% 1%

5→ 9 180% 3%

7→ 9 128% 2%

In this experiment, the length (9 digits) of the data size has the maximum data flexibility, while

the length (1 digit) of the data size has the minimum data flexibility. The increasing data flexibility

depending on the increasing data size in each experiment, are illustrated in result Table (4-12) and

as shown below:-

- The increasing data size (from 1 to 3) digits, the ratio resulted in the data flexibility is

(300%).

- The increasing data size (from 1 to 5) digits, the ratio resulted in the data flexibility is

(500%).

- The increasing data size (from 1 to 7) digits, the ratio resulted in the data flexibility is

(700%).

96

- The increasing data size (from 1 to 9) digits, the ratio resulted in the data flexibility is

(900%) which considered the maximum data flexibility.

- The increasing data size (from 3to 5) digits, the ratio resulted in the data flexibility is

(166%).

- The increasing data size (from 3 to 7) digits, the ratio resulted in the data flexibility is

(233%).

- The increasing data size (from 3 to 9) digits, the ratio resulted in the data flexibility is

(300%).

- The increasing data size (from 5 to 7) digits, the ratio resulted in the data flexibility is

(140%).

- The increasing data size (from 5 to 9) digits, the ratio resulted in the data flexibility is

(180%).

- The increasing data size (from 7to 9) digits, the ratio resulted in the data flexibility is

(128%) which considered the minimum data flexibility.

The data size used is affected directly on the performance through effects on the time. The length

(9 digits) of the data size has the maximum Performance loss while the length (1 digit) of the data

size has the minimum Performance loss. The increasing Performance loss depending on the

increasing data size in each experiment, as shown below:-

- The increasing data size (from 1 to 3) digits and (from 3 to 7) digits and (from 7 to 9) digits,

the ratio resulted in the performance loss is (2%).

- The increasing data size (from 1 to 5) digits and (from 1 to 7) digits and (from 3 to 9) digits,

the ratio resulted in the performance loss is (5%).

97

- The increasing data size (from 1 to 9) digits, the ratio resulted in the performance loss is

(7%) which considered the maximum performance loss.

- The increasing data size (from 3to 5) digits and (from 5 to 7) digits, the ratio resulted in

the performance loss is (1%) which considered the minimum performance loss.

- The increasing data size (from 5 to 9) digits, the ratio resulted in the performance loss is

(3%).

4.4.2.2 Execution Time of Multi-Data Size by Using RSA Formula

Figure (4-15) shows the use of RSA equation on different sizes of data (from one to nine digits)

with selected fixed key size (128 bits).

Figure (4-15): Execute Multiplication PHE (Multi Data size)

98

The result of previous experiment has shown in Table (4-13) and Figure (4-16). The aim of this

experiment is to find the optimal data size on the key size (128 bits) through RSA equation, when

importing (500) records as the number of input data. The difference between each time of each

data is determined the best data size to gives data flexibility with minimum Performance loss.

Table (4-13): Result Execute Multiplication PHE (Multi Data size)

Key

Size

Data

Size

Execution

Time

Total

Numbers

Total

Enc

Total

Dec

128 bit 1 digit 0.88ms ∞ ∞ ∞

128 bit 3 digit 0.89ms ∞ ∞ ∞

128 bit 5 digit 0.92ms ∞ ∞ ∞

128 bit 7 digit 0.94ms ∞ ∞ ∞

128 bit 9 digit 0.99ms ∞ ∞ ∞
Note: The (∞) is representing the large number in Tables

Figure (4-16): Timing Execute Multiplication PHE (Multi Data size)

1- Compute data flexibility Multiplication PHE (RSA)

99

From the Table (4-13), the researcher has implemented equation (4-1) that is used to compute the

ratio of data flexibility. It has been used this equation for each Data size on fixed Key size through

RSA algorithm to find optimal outcomes. For example:-

(3/1)*100% =300%

2- Compute performance Multiplication PHE (RSA)

From the Table (4-13), the researcher has implemented equation (4-2) that is used to compute the

ratio of performance loss. It has been used this equation for each Data size on fixed Key size

through RSA algorithm to find optimal outcomes. For example:-

1→ 3 =89-88/89*100% = 1%

Table (4-14): Calculate Data Flexibility and Performance Ratio for Multiplication PHE (Multi

Data size)

Data Size Data Flexibility Performance loss

1→ 3 300 1%

1→ 5 500 4%

1→ 7 700 6%

1→ 9 900 11%

3→ 5 166 3%

3→ 7 233 5%

3→ 9 300 10%

5→ 7 140 2%

5→ 9 180 7%

7→ 9 128 5%

100

In this experiment, the length (9 digits) of the data size has the maximum data flexibility, while

the length (1 digit) of the data size has the minimum data flexibility. The increasing data flexibility

depending on the increasing data size in each experiment, are illustrated in result Table (4-14) and

as shown below:-

- The increasing data size (from 1 to 3) digits, the ratio resulted in the data flexibility is

(300%).

- The increasing data size (from 1 to 5) digits, the ratio resulted in the data flexibility is

(500%).

- The increasing data size (from 1 to 7) digits, the ratio resulted in the data flexibility is

(700%).

- The increasing data size (from 1 to 9) digits, the ratio resulted in the data flexibility is

(900%) which considered the maximum data flexibility.

- The increasing data size (from 3to 5) digits, the ratio resulted in the data flexibility is

(166%).

- The increasing data size (from 3 to 7) digits, the ratio resulted in the data flexibility is

(233%).

- The increasing data size (from 3 to 9) digits, the ratio resulted in the data flexibility is

(300%).

- The increasing data size (from 5 to 7) digits, the ratio resulted in the data flexibility is

(140%).

- The increasing data size (from 5 to 9) digits, the ratio resulted in the data flexibility is

(180%).

101

- The increasing data size (from 7to 9) digits, the ratio resulted in the data flexibility is

(128%) which considered the minimum data flexibility.

The data size used is affected directly on the performance through effects on the time. The length

(9 digits) of the data size has the maximum Performance loss while the length (1 digit) of the data

size has the minimum Performance loss. The increasing Performance loss depending on the

increasing data size in each experiment, as shown below:-

- The increasing data size (from 1 to 3) digits, the ratio resulted in the performance loss is

(1%) which considered the minimum performance loss.

- The increasing data size (from 1 to 5) digits, the ratio resulted in the performance loss is

(4%).

- The increasing data size (from 1 to 7) digits, the ratio resulted in the performance loss is

(6%).

- The increasing data size (from 1 to 9) digits, the ratio resulted in the performance loss is

(11%) which considered the maximum performance loss.

- The increasing data size (from 3to 5) digits, the ratio resulted in the performance loss is

(3%).

- The increasing data size (from 3 to 7) digits and (from 7 to 9) digits, the ratio resulted in

the performance loss is (5%).

- The increasing data size (from 3 to 9) digits, the ratio resulted in the performance loss is

(10%).

- The increasing data size (from 5 to 7) digits, the ratio resulted in the performance loss is

(2%).

102

- The increasing data size (from 5 to 9) digits, the ratio resulted in the performance loss is

(7%).

4.4.2.3 Execution Time of Multi-Data Size by Using Additive NTRU Formula

Figure (4-17) shows the use of Additive NTRU equation on different sizes of data (from one to

nine digits) with selected fixed key size (128bits).

Figure (4-17): Execute Additive NTRU (Multi Data size)

The result of previous experiment has shown in Table (4-15) and Figure (4-18). The aim of this

experiment is to find the optimal data size on the key size (128 bits) through Additive NTRU

equation, when importing (500) records as the number of input data. The difference between each

time of each data is determined the best data size to gives data flexibility with minimum

Performance loss.

103

Table (4-15): Result Execute Additive NTRU (Multi Data size)

Figure (4-18): Timing Execute Additive NTRU (Multi Data size)

1- Compute data flexibility for add (NTRU)

From the Table (4-15), the researcher has implemented equation (4-1) that is used to compute the

ratio of data flexibility. It has been used this equation for each Data size on fixed Key size through

Additive NTRU algorithm to find optimal outcomes. For example:-

(3/1)*100% =300%

Key

Size

Data

Size

Execution

Time

Total

Numbers
Total Enc Total Dec

128 bit 1 digit 1.20ms 2585 1770680748 2585

128 bit 3 digit 1.01ms 193658 504252597 193658

128 bit 5 digit 1.98ms 21477719 1403795769 21477719

128 bit 7 digit 1.90ms 2038962090 1494163018 2038962090

128 bit 9 digit 1.95ms 211922818947 2341332154 211922818947

104

2- Compute performance for add (NTRU)

From the Table (4-15), the researcher has implemented equation (4-2) that is used to compute the

ratio of performance loss. It has been used this equation for each Data size on fixed Key size

through Additive NTRU algorithm to find optimal outcomes. For example:-

1→ 3 = 120-101/120*100% = 15%

Table (4-16): Calculate Data Flexibility and Performance Ratio for Additive NTRU (Multi Data

size)

In this experiment, the length (9 digits) of the data size has the maximum data flexibility, while

the length (1 digit) of the data size has the minimum data flexibility. The increasing data flexibility

depending on the increasing data size in each experiment, are illustrated in result Table (4-16) and

as shown below:-

Data Size Data Flexibility Performance loss

1→ 3 300% 15%

1→ 5 500% 39%

1→ 7 700% 37%

1→ 9 900% 38%

3→ 5 166% 49%

3→ 7 233% 47%

3→ 9 300% 48%

5→ 7 140% 4%

5→ 9 180% 2%

7→ 9 128% 3%

105

- The increasing data size (from 1 to 3) digits, the ratio resulted in the data flexibility is

(300%).

- The increasing data size (from 1 to 5) digits, the ratio resulted in the data flexibility is

(500%).

- The increasing data size (from 1 to 7) digits, the ratio resulted in the data flexibility is

(700%).

- The increasing data size (from 1 to 9) digits, the ratio resulted in the data flexibility is

(900%) which considered the maximum data flexibility.

- The increasing data size (from 3to 5) digits, the ratio resulted in the data flexibility is

(166%).

- The increasing data size (from 3 to 7) digits, the ratio resulted in the data flexibility is

(233%).

- The increasing data size (from 3 to 9) digits, the ratio resulted in the data flexibility is

(300%).

- The increasing data size (from 5 to 7) digits, the ratio resulted in the data flexibility is

(140%).

- The increasing data size (from 5 to 9) digits, the ratio resulted in the data flexibility is

(180%).

- The increasing data size (from 7to 9) digits, the ratio resulted in the data flexibility is

(128%) which considered the minimum data flexibility.

The data size used is affected directly on the performance through effects on the time. The length

(9 digits) of the data size has the maximum Performance loss while the length (1 digit) of the data

106

size has the minimum Performance loss. The increasing Performance loss depending on the

increasing data size in each experiment, as shown below:-

- The increasing data size (from 1 to 3) digits, the ratio resulted in the performance loss is

(15%).

- The increasing data size (from 1 to 5) digits, the ratio resulted in the performance loss is

(39%).

- The increasing data size (from 1 to 7) digits, the ratio resulted in the performance loss is

(37%).

- The increasing data size (from 1 to 9) digits, the ratio resulted in the performance loss is

(38%).

- The increasing data size (from 3 to 5) digits, the ratio resulted in the performance loss is

(49%) which considered the maximum performance loss.

- The increasing data size (from 3 to 7) digits, the ratio resulted in the performance loss is

(47%).

- The increasing data size (from 3 to 9) digits, the ratio resulted in the performance loss is

(48%).

- The increasing data size (from 5 to 7) digits, the ratio resulted in the performance loss is

(4%).

- The increasing data size (from 5 to 9) digits, the ratio resulted in the performance loss is

(2%) which considered the minimum performance loss.

- The increasing data size (from 7 to 9) digits, the ratio resulted in the performance loss is

(3%).

107

4.4.2.4 Execution Time of Multi-Data Size by Using Multiplication NTRU Formula

Figure (4-19) shows the use of Multiplication NTRU equation on different sizes of data (from one

to nine digits) with selected fixed key size (128 bits).

Figure (4-19): Execute Multiplication NTRU (Multi Data size)

The result of previous experiment has shown in Table (4-17) and Figure (4-20). The aim of this

experiment is to find the optimal data size on the key size (128 bits) through Multiplication NTRU

equation, when importing (500) records as the number of input data. The difference between each

time of each data is determined the best data size to gives data flexibility with minimum

Performance loss.

108

Table (4-17): Result Execute Multiplication NTRU (Multi Data)

Note: The (∞) is representing the large number in Tables

Figure (4-20): Timing Execute Multiplication NTRU (Multi Data size)

1- Compute data flexibility for multiplication (NTRU)

From the Table (4-17), the researcher has implemented equation (4-1) that is used to compute the

ratio of data flexibility. It has been used this equation for each Data size on fixed Key size through

Multiplication NTRU algorithm to find optimal outcomes. For example:-

(3/1)*100% =300%

Key

Size

Data

Size

Execution

Time

Total

Numbers
Total Enc Total Dec

128 bit 1 digit 1.80ms 2586 1165628124 2585

128 bit 3 digit 1.78ms 193659 37349786 193659

128 bit 5 digit 1.93ms 21477720 57394769 21477720

128 bit 7 digit 2.00ms 2038962091 1900192984 2038962091

128 bit 9 digit 2.66ms ∞ 1.03986064 ∞

109

2- Compute performance for Multiplication (NTRU)

From the Table (4-17), the researcher has implemented equation (4-2) that is used to compute the

ratio of performance loss. It has been used this equation for each Data size on fixed Key size

through Multiplication NTRU algorithm to find optimal outcomes. For example:-

 1→ 3 = 180-178/180*100% = 1%

Table (4-18): Calculate Data Flexibility and Performance Ratio for Multiplication NTRU (Multi

Data size)

Data Size Data Flexibility Performance loss

1→ 3 300% 1%

1→ 5 500% 7%

1→ 7 700% 10%

1→ 9 900% 32%

3→ 5 166% 8%

3→ 7 233% 11%

3→ 9 300% 38%

5→ 7 140% 4%

5→ 9 180% 27%

7→ 9 128% 25%

In this experiment, the length (9 digits) of the data size has the maximum data flexibility, while

the length (1 digit) of the data size has the minimum data flexibility. The increasing data flexibility

depending on the increasing data size in each experiment, are illustrated in result Table (4-18) and

as shown below:-

110

- The increasing data size (from 1 to 3) digits, the ratio resulted in data flexibility is

(300%).

- The increasing data size (from 1 to 5) digits, the ratio resulted in the data flexibility is

(500%).

- The increasing data size (from 1 to 7) digits, the ratio resulted in the data flexibility is

(700%).

- The increasing data size (from 1 to 9) digits, the ratio resulted in the data flexibility is

(900%) which considered the maximum data flexibility.

- The increasing data size (from 3to 5) digits, the ratio resulted in the data flexibility is

(166%).

- The increasing data size (from 3 to 7) digits, the ratio resulted in the data flexibility is

(233%).

- The increasing data size (from 3 to 9) digits, the ratio resulted in the data flexibility is

(300%).

- The increasing data size (from 5 to 7) digits, the ratio resulted in the data flexibility is

(140%).

- The increasing data size (from 5 to 9) digits, the ratio resulted in the data flexibility is

(180%).

- The increasing data size (from 7to 9) digits, the ratio resulted in the data flexibility is

(128%) which considered the minimum data flexibility.

111

The data size used is affected directly on the performance through effects on the time. The length

(9 digits) of the data size has the maximum Performance loss while the length (1 digit) of the data

size has the minimum Performance loss. The increasing Performance loss depending on the

increasing data size in each experiment, as shown below:-

- The increasing data size (from 1 to 3) digits, the ratio resulted in the performance loss is

(1%) which considered the minimum performance loss.

- The increasing data size (from 1 to 5) digits, the ratio resulted in the performance loss is

(7%).

- The increasing data size (from 1 to 7) digits, the ratio resulted in the performance loss is

(10%).

- The increasing data size (from 1 to 9) digits, the ratio resulted in the performance loss is

(32%).

- The increasing data size (from 3to 5) digits, the ratio resulted in the performance loss is

(8%).

- The increasing data size (from 3 to 7) digits, the ratio resulted in the performance loss is

(11%).

- The increasing data size (from 3 to 9) digits, the ratio resulted in the performance loss is

(38%) which considered the maximum performance loss.

- The increasing data size (from 5 to 7) digits, the ratio resulted in the performance loss is

(4%).

- The increasing data size (from 5 to 9) digits, the ratio resulted in the performance loss is

(27%).

112

- The increasing data size (from 7to 9) digits, the ratio resulted in the performance loss is

(25%).

4.4.2.5 Execution Time of Multi-Data Size by Using Both NTRU Formula

Figure (4-21) shows the use of Both NTRU (Additive & Multiplication) equation on different sizes

of data (from one to nine digits) with selected fixed key size (128 bits).

Figure (4-21): Execute Both NTRU (Multi Data size)

The result of previous experiment has shown in Table (4-19) and Figure (4-22). The aim of this

experiment is to find the optimal data size on the key size (128 bits) through Both NTRU equation,

when importing (500) records as the number of input data. The difference between each time of

each data is determined the best data size to gives data flexibility with minimum Performance loss.

Table (4-19): Result Execute Both NTRU (Multi Data size)

113

Note: The (∞)

is

representing the large number in Tables

Figure (4-22): Timing Execute Both NTRU (Multi Data size)

1- Compute data flexibility for Both (NTRU)

From the Table (4-19), the researcher has implemented equation (4-1) that is used to compute the

ratio of data flexibility. It has been used this equation for each Data size on fixed Key size through

Both NTRU algorithm to find optimal outcomes. For example:-

(3/1)*100% =300%

Key

Size

Data

Size

Execution

Time

Total

Numbers
Total Enc Total Dec

128 bit 1 digit 1.94ms 5171 ∞ 5171

128 bit 3 digit 3.00ms 387317 382289047 387317

128 bit 5 digit 3.87ms 54647538686 1038892822 54647538686

128 bit 7 digit 3.99ms 54647538686 ∞ 54647538686

128 bit 9 digit 5.22ms 7632123445 ∞ 7632123445

114

2- Compute performance for Both (NTRU)

From the Table (4-19), the researcher has implemented equation (4-2) that is used to compute the

ratio of performance loss. It has been used this equation for each Data size on fixed Key size

through Both NTRU algorithm to find optimal outcomes. For example:-

1→ 3 =300-194/300*100% = 35%

Table (4-20): Calculate Data Flexibility and Performance Ratio for Both NTRU (Multi Data)

Data Size Data Flexibility Performance loss

1→ 3 300% 35%

1→ 5 500% 50%

1→ 7 700% 51%

1→ 9 900% 63%

3→ 5 166% 22%

3→ 7 233% 25%

3→ 9 300% 43%

5→ 7 140% 3%

5→ 9 180% 26%

7→ 9 128% 23%

In this experiment, the length (9 digits) of the data size has the maximum data flexibility, while

the length (1 digit) of the data size has the minimum data flexibility. The increasing data flexibility

depending on the increasing data size in each experiment, are illustrated in result Table (4-20) and

as shown below:-

115

- The increasing data size (from 1 to 3) digits, the ratio resulted in the data flexibility is

(300%).

- The increasing data size (from 1 to 5) digits, the ratio resulted in the data flexibility is

(500%).

- The increasing data size (from 1 to 7) digits, the ratio resulted in the data flexibility is

(700%).

- The increasing data size (from 1 to 9) digits, the ratio resulted in the data flexibility is

(900%) which considered the maximum data flexibility.

- The increasing data size (from 3to 5) digits, the ratio resulted in the data flexibility is

(166%).

- The increasing data size (from 3 to 7) digits, the ratio resulted in the data flexibility is

(233%).

- The increasing data size (from 3 to 9) digits, the ratio resulted in the data flexibility is

(300%).

- The increasing data size (from 5 to 7) digits, the ratio resulted in the data flexibility is

(140%).

- The increasing data size (from 5 to 9) digits, the ratio resulted in the data flexibility is

(180%).

- The increasing data size (from 7to 9) digits, the ratio resulted in the data flexibility is

(128%) which considered the minimum data flexibility.

116

4.5 Summary:-

This thesis has been implemented two algorithms (Partially Homomorphic and NTRU) to obtain

the results shown in the following Tables (4-21, 4-22, 4-23, and 4-24). These tables identify the

time difference between two similar experiments depending on different parameters (Key Size and

Data Size). It means RSA algorithm with Multiplication NTRU and paillier algorithm with

Additive NTRU:

1- Computed Time of Fixed Data Size with Multi-Key Size:-

 Paillier Algorithm with Additive NTRU

Table (4-21): Compare Time between Paillier and Additive NTRU with Different Key Size

Key size (bits) Time of paillier Time of Additive NTRU

32 0.80 0.80

64 0.81 1.55

128 0.83 2.39

256 0.95 3.20

Average time 0.85 1.98

The Table (4-21) will show the result obtained from the simulated equation for paillier with

Additive NTRU in different Key size parameter. This result shown the encryption time of Additive

NTRU is more than the encryption time of paillier almost in all cases and the average time in

Additive NTRU is more than the average time of Paillier.

117

 RSA Algorithm with Multiplication NTRU

Table (4-22): Compare Time between RSA and Multiplication NTRU with Different Key Size

Key size (bits) Time of RSA Time of Multiplication

NTRU

32 1.65 1.48

64 1.88 2.51

128 1.90 3.64

256 2.64 5.04

Average time 2.02 3.17

The Table (4-22) will show the result obtained from the simulated equation for RSA with

Multiplication NTRU in different Key size parameter. This result shown the encryption time of

Multiplication NTRU is more than the encryption time of RSA almost in all cases and the average

time in Multiplication NTRU is more than the average time of RSA.

 Both PHE Algorithm with Both NTRU

Table (4-23): Compare Time between Both PHE and Both NTRU with Different Key Size

key Size (bits) Time of

Paillier+RSA

Time of Both NTRU

32 2.45 2.55

64 2.69 2.71

128 2.73 3.01

256 3.59 4.74

Average time 2.86 3.25

The Table (4-23) will show the result obtained from the simulated equation for Both PHE with

Both NTRU in different Key size parameter. This result shown the encryption time of Both NTRU

is more than the encryption time of Both PHE almost in all cases and the average time in

Multiplication NTRU is more than the average time of Paillier & RSA.

118

2- Computed Time of Fixed Key size with Multi-Data Size

 Paillier Algorithm with Additive NTRU

Table (4-24): Compare Time between Paillier and Additive NTRU with Different Data Size

Data Size

(digits)

Time of paillier Time of Additive NTRU

1 0.81 1.20

3 0.83 1.01

5 0.84 1.98

7 0.85 1.90

9 0.87 1.95

Average time 0.84 1.61

The Table (4-24) will show the result obtained from the simulated equation for paillier with

Additive NTRU in different Data size parameter. This result shown the encryption time of Additive

NTRU is more than the encryption time of paillier in all cases and the average time in Additive

NTRU is more than the average time of Paillier.

 RSA Algorithm with Multiplication NTRU

Table (4-25): Compare Time between RSA and Multiplication NTRU with Different Data Size

Data Size

(digits)

Time of RSA Time of Multiplication NTRU

1 0.88 1.80

3 0.89 1.87

5 0.92 1.93

7 0.94 2.00

9 0.99 2.66

Average time 0.92 2.03

119

The Table (4-25) will show the result obtained from the simulated equation for RSA with

multiplication NTRU in different Data size parameter. This result shown the encryption time of

multiplication NTRU is more than the encryption time of RSA in all cases and the average time in

multiplication NTRU is more than the average time of RSA.

 Both PHE Algorithm with Both NTRU

Table (4-26): Compare Time between Both PHE and Both NTRU with Different Data Size

Data Size

(digits)

Time of

Paillier+RSA

Time of Both NTRU

1 1.69 1.94

3 1.72 3.00

5 1.76 3.87

7 1.79 3.99

9 1.86 5.22

Average time 1.76 2.83

The Table (4-26) will show the result obtained from the simulated equation for Both PHE with

Both NTRU in different Data size parameter. This result shown the encryption time of Both NTRU

is more than the encryption time of Both PHE almost in all cases and the average time in

multiplication NTRU is more than the average time of RSA.

120

121

5.1 Conclusion

Cloud computing is a new approach for distributed network to share resources between users.

Thus, many researchers focused on the protection of data in the cloud, and presented different

methods for providing appropriate security method to this data.

The encryption techniques are the most popular method to provide the data secure. This thesis

focused on the Homomorphic and NTRU encryption methods. It implemented two types of

Homomorphic techniques, RSA which represents the multiplication operation and Paillier which

represents the additive operation. Also, it implemented two types of operations over NTRU,

additive NTRU and multiplication NTRU, and both NTRU.

The researcher implemented each experiment on two types of parameters (key size and data size).

It concludes the results from these experiments to find the optimal parameters that affect the

performance and security of Homomorphic and NTRU. Noted the Tables (4-21, 4-22, 4-23, 4-24,

4-25 and 4-26) presented the affected key size and data size on the performance very obvious,

where the time of NTRU encryption increased 50% - 60% from the PHE depend on increased key

size and data size.

It has been built many experiments depending on the analysis performance between PHE and

NTRU to investigate the main goal of this research. This thesis accomplished many experiments

to study the effect of several parameters on the performance and security. It was found the optimal

point as a trade-off between security level and performance. The thesis has been computed the

gain of security with the performance and data flexibility with performance as a percentage then

compared between them. The results of the experiments have answered the questions of the thesis

(as listed in section… 1.3). These results will be presented as follows:

122

- The effect of using different key size

1- Paillier-PHE: For Paillier, this thesis has found that increasing the size of key from size

equal 32 bits to size equal 128 bits will gaining 400% security level with 4% losing

performance. From Table (4-1), it is clear that the optimal key size for paillier (PHE) is

128 bits.

2- RSA-PHE: For RSA, This thesis has found that increasing the size of key from size equal

32 bits to size equal 256 bits will gaining 800% security level with 1% losing

performance. From Table (4-3), it is clear that the optimal key size for RSA (PHE) is 256

bits.

3- Add-NTRU: For Add NTRU ,This thesis has found that increasing the size of key from

size equal 64 bits to size equal 256 bits will gaining 400% security level with 52% losing

performance. From Table (4-5), it is clear the optimal key size for Add (NTRU) is 256

bits.

4- multiplication -NTRU: For multiplication NTRU, This thesis has found that increasing

the size of key from size equal 64 bits to size equal 256 bits will gaining 400% security

level with 50% losing performance. From Table (4-7), it is clear the optimal key size for

multiplication (NTRU) is 256 bits.

5- Both-NTRU: This thesis has found that increasing the size of key from size equal 32 bits

to size equal 128 bits will gaining 400% security level with 15% losing performance.

From Table (4-9), it is clear the optimal key size for both (NTRU) is 128 bits.

-The effect of using different data size

123

1- Paillier PHE: This thesis has found that increasing the data size from 3 digits to7 digits will

be gaining 233% data flexibility with 2% losing performance. For Table (4-11), it is clear

the optimal data size for Paillier (PHE) is 7 digits.

2- RSA PHE: This thesis has found that increasing the data size from 1 digits to5 digits will

be gaining 500% data flexibility with 4% losing performance. For Table (4-13), it is clear

the optimal data size for RSA (PHE) is 5 digits.

3- Add NTRU: This thesis has found that increasing the data size from 5 digits to 9 digits will

be gaining 180% data flexibility with 2% losing performance. For Table (4-15), it is clear

the optima data size for Add (NTRU) is 9 digits.

4- multiplication NTRU: This thesis has found that increasing the data size from 1digits to 5

digits will be gaining 500% data flexibility with 7% losing performance. For Table (4-17),

it is clear the optimal data size for multiplication (NTRU) is 5 digits.

5- Both NTRU: This thesis has found that increasing the data size from 5digits to 7 digits will

be gaining 140% data flexibility with 3% losing performance. For Table (4-19), it is clear

the optimal data size for Both (NTRU) is 7 digits.

124

The researcher finds out that the optimal key size is 256 bits for RSA and NTRU (additive,

multiplication) which give high security level and minimal Performance loss. Also, the thesis finds

out that the optimal key size is 128 bits for Paillier and NTRU (Both) which give high security

level and minimal Performance loss. For the optimal data size, the optimal data size is for RSA

with 5 digits with minimal Performance loss (4%).

Based on the execution time, the researcher finds out that the equation of Paillier is the better than

Additive NTRU, the equation of RSA is the better than multiplication NTRU, and finally, Both

the PHE is the better than Both NTRU. At the end, worked to investigate accepted results through

what was implemented in this thesis and took into consideration the nature of using the security

from the key size and its impact on the performance also with the data size and its impact on

performance.

5.2 Future Work

At the end of this thesis, the researcher offers some suggestion for future work to provide more

security with the performance at the same time. These suggestions are:-

- It is possible to implement ElGamal algorithm instead of RSA of multiplication Homomorphic

- It is possible to implement Benaloh algorithm instead of Paillier of Additive Homomorphic

- It is possible to implement Alt-L´opez, Tromer and Vaikuntanathan (LTV) instead of NTRU

Algorthim.

125

126

 Abu Sharkh, M., Jammal, M., Shami, A., & Ouda, A. (2013). Resource allocation in a

network-based cloud computing environment: design challenges. Communications

Magazine, IEEE, 51(11), 46-52.

 Ali, M., Khan, S. U., & Vasilakos, A. V. (2015). Security in cloud computing:

Opportunities and challenges. Information Sciences, 305, 357-383.

 Barker, E., Barker, W., Burr, W., Polk, W., & Smid, M. (2012) Recommendation for Key

Management-Part 1: General (Revision 3). NIST Special Publication, 800-57.

 Çetin, G. S., Doröz, Y., Sunar, B., & Savas, E. (2015). Low Depth Circuits for Efficient

Homomorphic Sorting. IACR Cryptology ePrint Archive, 2015, 274.

 Chang, V., Walters, R. J., & Wills, G. (2013). The development that leads to the Cloud

Computing Business Framework. International Journal of Information

Management, 33(3), 524-538.

 Chen, D., & Zhao, H. (2012). Data security and privacy protection issues in cloud

computing. In Computer Science and Electronics Engineering (ICCSEE), 2012

International Conference on (Vol. 1, pp. 647-651). IEEE.

 Dahab, R., Galbraith, S., & Morais, E. (2015). Adaptive key recovery attacks on NTRU-

based somewhat homomorphic encryption schemes. In Information Theoretic

Security (pp. 283-296). Springer International Publishing.

 Dillon, T., Wu, C., & Chang, E. (2010). Cloud computing: issues and challenges.

In Advanced Information Networking and Applications (AINA), 2010 24th IEEE

International Conference on (pp. 27-33). Ieee.

127

 Doröz, Y., Hu, Y., & Sunar, B. (2014). Homomorphic AES evaluation using NTRU.

IACR Cryptology Print Archive, 2014, (39).

 Hu, Yin. (2013). Improving the efficiency of homomorphic encryption schemes

(Doctoral dissertation, Worcester Polytechnic Institute).

 Huang, Q. L., Yang, Y. X., FU, J. Y., & NIU, X. X. (2013). Secure and privacy-

preserving DRM scheme using homomorphic encryption in cloud computing. The

Journal of China Universities of Posts and Telecommunications, 20(6), 88-95.

 Li, Y., Zhou, J., & Au, O. C. (2015). Reducing the ciphertext expansion in image

homomorphic encryption via linear interpolation technique. In 2015 IEEE Global

Conference on Signal and Information Processing (GlobalSIP) (pp. 800-804). IEEE.

 Liu, B. (2015). Efficient Architecture and Implementation for NTRU Based Systems

(Master dissertation, University of Windsor).

 Liu, Z., Chen, X., Yang, J., Jia, C., & You, I. (2014). New order preserving encryption

model for outsourced databases in cloud environments. Journal of Network and

Computer Applications.

 Ma, Q. (2013). The LTV Homomorphic Encryption Scheme and Implementation in

Sage (Doctoral dissertation, Worcester Polytechnic Institute).

 Majithia, S., Singh, S., (2013). Performance Evaluation of NTRU Algorithm on Cloud

Network on an Android Platform. International Journal on Recent and Innovation Trends

in Computing and Communication, Vol. (1), Issue (11), PP(825 – 829).

 Majithia, S., Singh, S., (2013). Implementation of NTRU on Cloud Network in an

Android Platform and Comparison with DES and RSA. International Journal of

Advanced Research in Computer Science and Software Engineering, 3(11), 100-105.

128

 Mol, P., & Yung, M. (2008). Recovering NTRU secret key from inversion oracles.

In Public Key Cryptography–PKC 2008 (pp. 18-36). Springer Berlin Heidelberg.

 Paillier, P. (1999). Public-key cryptosystems based on composite degree residuosity

classes. In Advances in cryptology—EUROCRYPT’99 (pp. 223-238). Springer Berlin

Heidelberg.

 Rahman, M. M., Saha, T. K., & Bhuiyan, M. A. A. (2012). Implementation of RSA

Algorithm for Speech Data Encryption and Decryption. International Journal of

Computer Science and Network Security (IJCSNS), 12(3), 74.

 Ramgovind, S., Eloff, M. M., & Smith, E. (2010). The management of security in cloud

computing. In Information Security for South Africa (ISSA), 2010 (pp. 1-7). IEEE.

 Rohloff, K., & Cousins, D. B. (2014). A scalable implementation of fully homomorphic

encryption built on NTRU. In Financial Cryptography and Data Security (221-234).

Springer Berlin Heidelberg.

 Samanthula, B. K., Howser, G., Elmehdwi, Y., & Madria, S. (2012). An efficient and

secure data sharing framework using homomorphic encryption in the cloud. In

Proceedings of the 1st International Workshop on Cloud Intelligence (8). ACM.

 Sarwar, A., & Khan, M. N. (2013). A Review of Trust Aspects in Cloud Computing

Security. International Journal of Cloud Computing and Services Science, 2(2), 116.

 SO, K. (2011). Cloud computing security issues and challenges. International Journal of

Computer Networks, 3(5).

 Stehlé, D., & Steinfeld, R. (2010). Faster fully homomorphic encryption. In Advances

in Cryptology-ASIACRYPT 2010 (377-394). Springer Berlin Heidelberg.

129

 Steinfeld, R. (2014). NTRU cryptosystem: Recent developments and emerging

mathematical problems in finite polynomial rings. Algebraic Curves and Finite Fields:

Cryptography and Other Applications, 16, 179.

 Tebaa, M., El Hajji, S., & El Ghazi, A. (2012). Homomorphic encryption applied to the

cloud computing security. In Proceedings of the World Congress on Engineering (1), (4-

6).

 Youssef, A. E. (2012). Exploring cloud computing services and applications. Journal of

Emerging Trends in Computing and Information Sciences, 3(6), 838-847.

 Zissis, D., & Lekkas, D. (2012). Addressing cloud computing security issues. Future

Generation computer systems, 28(3), (583-592).

