
i

Performance Evaluation of Similarity Functions for

Duplicate Record Detection

Master Thesis

By

Methaq Kadhum Alnoory

Supervised by

Prof. Musbah M. Aqel

Submitted in Partial Fulfillment of the Requirements for the Master
Degree in Computer Information Systems

Department of Computer Information Systems
Faculty of Information Technology

Middle East University
Amman, Jordan

August, 2011

ii

iii

iv

v

DEDICATION

This thesis is dedicated to my parents, my husband and partner for life, muthana and our

two children, Ali and Mariyam, for their patience, understanding and support during the

time of this research.

vi

ACKNOWLEDGEMENTS

I am highly indebted to my supervisor Prof. Musbah M. Aqel, Faculty of Information

Technology, Middle East University, for his eminent guidance, constant supervision, and

whelming encouragement throughout my thesis work.

I am grateful to a number of friends for their moral support, encouragement, and technical

discussions.

Finally, I would like to take a moment to thank my family members for their immense

patient, emotional support and encouragement during my entire graduate career.

vii

Table of Contents

List of Table ……………………..……………………………………………………………………………….…………….. vii

List of figure……………………………………………………….…………………..………. vii
List of acronyms... vii
Abstract in English………………………………………………………………………………..……………………………. vii
Abstract in Arabic……………………………………………………………………………………..………………………… vii

Chapter 1: Introduction.. 1

 1.1 Introduction………..1

1.2 Data Quality ..2

1.3 Similarity function in Duplicate Detection..3

1.4 Motivation ..4

1.5 Problem Statement ...5

1.6 Contribution..5

1.7 Thesis Outlines ..6

 Chapter 1: Introduction..6

 Chapter 2: Literature reviews and Similar Studies...6

 Chapter 3: Duplicate Detection Fraemwork..6

 Chapter 4: Discussion, Analysis and Results..6

 Chapter 5: Conclusion and Futuer work..6

CHAPTER 2: Theoretical Background... 7

2.1 Duplicate Detection process7

 2.1.1 Approximate field- Matching Similarity Functions..8

 2.1.1.1 Character-based similarity function ..8

 2.1.1.1.1 Q-gram similarity function………………………………………………….….9

2.1.1.2 Token-Based Similarity Metricsn ... 11

2.1.1.3 Hybrid similarity function .. 13

 2.1.1.3.1 Soft TF/IDF…………………………………………………………………………………………..………………..14

2.1.1.4 Phonetic similarity function.. 14

 2.1.1.4.1 Soundex Similarity Function……………………………………………………………………………….....16

2.1.2 Record Similarity function..……17

 2.1.2.1 Probabilistic Matching Decision Models ... 18

2.1.3 Duplicate detection algorithms .. 18

 2.1.3.1 Traditional blocking technique……………………………………………………………………………….…19

viii

 2.2 Performance Evaluation Methodologies of Similarity Functions.. 20

2.2.1 Similarity Function Measures and Threshold ... 20

2.2.2 Similarity Functions and Threshold Value ... 20

2.2.3 Threshold Process Definition... 21

2.2.4 Similarity function Quality Measurements... 21

2.2.5 Evaluating Similarity Functions Quality .. 22

2.2.6 Calculating Discernability ... 22

2.2.7 Using SimEval Tool to calculate similarity function quality... 25

 2.3 Related studies ……………………………………………………………………………………………….………………..26

Chapter 3: Duplecate Detaction Framework ..28

3.1 Introduction .. 28

Chapter 4: Analysis and Results ...39

 4.1 Introduction……......39

 4.2 Determining the discernability value for executing
experiment…………………………………….……..40

 4.2.1 Experiments…….……..41

 4.2.1.1 Blocking data according to
field………………………………………………………………………………….….41

 4.2.1.2 Blocking data according to
record………………………………………………………………………………….56

 4.3 finding……….....60

 4.4 Discussion………62

Chapter 5 CONCLUSION AND FUTURE WORK...64

5.1 Conclusion...64

5.2 Future work……………………………………………………………………………………….…………………………………65

References………66

Appendix A:... 69

 Appendix B………..70

 Appendix C……82

ix

List OF Tables

Table 4.1 sample dublicate records from the FEBRL data set

40

Table 4. 2: Data Blocking discernability Results according to "Given name".

42

Table 4. 3: Duplicate rate Calculations according to the discernability results

42

Table 4.4: Blocking data discernability calculation according to “SURNAME”

results.
47

Table 4. 5: Duplicate rate Calculations according to the discernability results.

47

Table 4. 6: Data Blocking Results according to “ADDRESS” field.

51

Table 4. 7: Duplicate Calculations according to the discernability results. 52

Table 4. 8: Comparisons among different similarity functions to

“GIVEN_NAME” field, blocking according to record.
56

Table 4. 9: Comparisons among different similarity functions to “SURNAME”

field, blocking according to record.
57

Table 4.10: Comparisons among different similarity functions to “ADDRESS”

field, blocking according to record.
59

Table 4. 11: Duplicate Rate Results for the Second Stage of Experiments. 62

x

List of Figure

Figure 1.1: Taxonomy of approximate data matching approaches 4

Figure 2.1: Prototypical duplicate detection process 7

Figure 2.2: Thresholds Intervals 25

Figure 3.1: Framework for duplicate detection 28

Figure 3.2: Create key for attribute/s

Figure 3.3: Block algorithm.

30

31

Figure 3.4: The user selects both the blocking keys and threshold value.

Figure 3.5 blocks created for dataset.

Figure 3.6 user select blocks

32

32

34

Figure 3.7: Calculate similarity function for select blocks

Figure 3.8: Best threshold algorithm.

34

35

Figure 3.9 Distribution relevant and irrelevant as function of kth block

Figure 3.10: Plot of f(t) as function of t for the similarity function

Figure 3.11:Pairs of record algorithm

36

37

38

Figure 4.1: Q-gram distribution relevant and irrelevant plot.

43

Figure 4.2: Tf-idf distribution of relevant and irrelevant plot.

43

Figure 4.3: Soft tfidf distribution relevant and irrelevant plot.

44

Figure 4.4: Soundex distribution relevant and irrelevant plot.

44

Figure 4.5: Qgram Distribution f(t) and t Curve

45

Figure 4.6: Soundex Distribution f (t) and t Curve.

46

Figure 4.7: Soft Distribution f (t) and t Curve.

46

Figure 4.8: tfidf The distribution f (t) and t curves.

46

Figure 4.9: Q-gram distribution relevant and irrelevant plot.

48

Figure 4.10: Tfidf distribution relevant and irrelevant plot.

48

Figure 4.11: Soft Tfidf distribution relevant and irrelevant plot.

49

Figure 4.12: Soundex distribution relevant and irrelevant plot.

49

Figure 4.13: Q-gram Distribution f (t) and t Curve. 50

xi

Figure 4.14: Tfidf Distribution f (t) and t Curve.

50

Figure 4.15: Soft Tfidf Distribution f (t) and t Curve.

51

Figure 4.16: Soundex Distribution f (t) and t Curve.

51

Figure 4.17: Q-gram distribution relevant and irrelevant plot.

53

Figure 4.18: TF-IDF distribution relevant and irrelevant plot.

53

Figure 4.19: Soft TFIDF distribution relevant and irrelevant plot.

54

Figure 4.20: Soundex distribution relevant and irrelevant plot.

54

Figure 4.21: Q-gram Distribution f (t) and t Curve.

55

Figure 4.22: TFIDF Distribution f (t) and t Curve.

55

Figure 4.23: TFIDF Distribution f (t) and t Curve.

55

Figure 4.24: Soundex Distribution f (t) and t Curve.

56

Figures 4.25: Q-gram distribution relevant and irrelevant plot

57

figures 4.26: TFIDF distribution relevant and irrelevant plot

57

Figures 4.27: Soft TFIDF distribution relevant and irrelevant plot

57

figures 4.28: Soundex distribution relevant and irrelevant plot

57

Figures 4.29: Q-gram distribution relevant and irrelevant plot

58

figures 4.30: TFIDF distribution relevant and irrelevant plot 58

Figures 4.31: Soft TFIDF distribution relevant and irrelevant plot

58

figures 4.32: Soundex distribution relevant and irrelevant plot

58

figures 4.33: Q-gram distribution relevant and irrelevant plot 59

figures 4.34: TFIDF distribution relevant and irrelevant plot 59

Figures 4.35: Soft TFIDF distribution relevant and irrelevant plot.

59

figures 4.36: Soundex distribution relevant and irrelevant plot 59

xii

List of Acronyms

TF-IDF Term Frequency-Inverse Document Frequency.

IR Information Retrieval.

NYSIIS New York State Identification and Intelligence System.

ONCA Oxford Name Compression Algorithm.

xiii

ABSTRACT

Performance Evaluation of Similarity Functions for Duplicate

Record Detection

By

Methaq Kadhum Alnoory

Duplicate record detection is an important process in data quality. Its methods usually rely

on the use of similarity functions to identify pairs of records in one or more datasets that

refer to the same real world entity.

There is a wide range of similarity functions and very few studies that compare the

effectiveness of the various similarity functions. In our research we evaluate the quality of a

number of similarity functions on synthetic datasets using a measure used in approximate

querying called discernability. We based on the semi-automatic method to estimate optimal

threshold values. Experiments were carried out to prove the technique proposed. The

results show that discernability measure can determine the threshold value and measure if a

similarity function is more adequate for a specific data set than another .

xiv

 ا�����

ت ا����رة��
���� أداء دا�ت ا���� �� ا������ ��

 م�"�ق أ� �ري

 �	
��ف ا����ت أ����ر� �� م��ل ����+� دا(ت ا���) ا��'&ر ا��%	�� ا�$ي �"��! ��	 ���	� اآ"�

��ب ب	- ا��	�ن�ت���ب ب	���5 وإرج�ع ,ا�+	�ن�ت �'��ب ن�+� ا��م- خ�ل إدخ�ل آ�%�	- وح��ب ن�+� ا�

م�+
� ی"�+� ا��	�ن�ن ی�?�ن =	� ب	- ا�>;� وا�&اح! وإذا م� آ�ن9 ا�
	�� أ��8 م- ح! أ�"�+ ا��'!د

 A��"ن �� ا��	ا�� B;ن�
	
. ا�'

 ���	� اخ�	�ر أ�!ا� ا���%�� ���	 م"
!� وص"+ �&ج&د �!د آ+	� م- ��E ا�!وال ب�(��D إ�8 =�� ان

�5�		
�
� ب�"�.ا�!راس�ت ا��

		A س�&ك م��&� م- دوال ���ب ب�س��!ام =	�س �� ه$� ا�!راس� وم- خ�ل ا����ب� ا�"��	� =��� ب�ا�

L	'ص M����ب ب���ب �- N	� ا��� ب�(��D ی�A م- خ�� �'!ی! آ;�ءة أ�!ا� �� �>M ا��	�ن�ت ا��

((�.=�ب�	� ا�!ا�� ��8 ا�� Discernability +� (ی��8 إ�8 �'!ی! م!ى ح! أ�"

1

CHAPTER ONE

INTRODUCTION

1. 1 Introduction

Duplicate Record Detection is the problem to identify pairs of records in one or more

datasets that refer to the same real world entity (e.g. patient or customer), where these

individual entities might be erroneous and incomplete. In addition, there exists no unique

identifying key for these entities that would allow to directly identifying them as duplicates.

The problem has existed for decades and several communities have worked on it using

different terminology (Hernandez, 1998). Pioneering in this area has been the statistics

community, which calls the problem "record linkage" or "record matching", the database

community calls it "the merge/purge, "data deduplication" , "instance identification" or

”eliminating fuzzy duplicates”, the Artificial intelligence community calls it "database

hardening", "name matching", "identity uncertainty", "object identification", "object

consolidation", "coreference resolution" or "entity resolution" (Elmagarmid et al., 2007)

We will use the term duplicate record detection or simply duplicate detection in our study.

Duplicate record detection is an important process in data integration and data cleaning

process. In data integration it is necessary to collate information about an object from

multiple data sources (Lim et al., 1996). In data cleaning it is critical to eliminate duplicate

records (Batini and Scannapieco, 2006). In light of these demands a variety of methods

have been proposed for detecting approximate duplicate records in a database: probabilistic,

supervised/semisupervised learning, distance-based, and rule-based [see (Elmagarmid et al.,

2007) for a recent survey].Duplicate detection methods usually depend on string similarity

2

functions for discriminating between match and non-match record fields, as well as on

record similarity functions for combining similarity estimates from individual string fields.

The similarity function measures the degree of similarity between two objects (strings,

records, etc). A similarity function takes two objects values as inputs and returns a score

value between in 0 and 1. If the similarity score value is greater than a given threshold

value, the two object values are considered to be representations of the same real world

object. A large variety of string similarity functions have been developed over the years.

(Elmagarmid et al., 2007; Jaro, 1989). Due to this variety, designers often meet the task of

choosing the most appropriate function for a given approximate data matching application.

There are very few studies that compare the effectiveness of the various similarity

functions, an issue raised by Elmagarmid et al. (2007). Hence, the goal of our research is to

compare a number of similarity functions on real-world and large-scale benchmarking

datasets, and evaluate their performance. We will use duplicate detection as a testbed for

evaluating similarity functions.

1.2 Data Quality

In spite of the truth that presents the reality of the impossibility of attaining 100% error-free

database for each field inside, data accuracy degree can be determined thoroughly, and that

can determine the desired quality criteria are needed according to the determined principle

interest variable for a certain database. Data Quality is a major issue nowadays for many

business environments and necessity for filter zing errors inside any data storage for mining

data process in order to ensure the stored data quality (Herzog, 2007). Duplicate detection

removal process can introduce a direct significant enhancement in data quality through

3

enhancing two major dimensions: accuracy and completeness. Other five most cited

properties of relevancy, timeliness, accessibility and results’ clarity, comparability;

coherence can determine higher data quality for the stored data but under a wider aspects

determination beyond what this thesis was described (Neumann and and Her-schel, 2010) .

1.3 Similarity function in Duplicate Detection

In Duplicate detection uses similarity or distance function for comparing between data

instances without knowing whether it is under a heterogeneous representation or not in real

world. Any similarity function fs (,) can determine pair score for and values for

[0,1] interval where higher the score value means more similar and values, .If two

objects are considered to be similar then they are considered to represent one object from

the real-world, and that would be satisfied if the similarity score surpassed the threshold

value which is predefined. But to choose the value of threshold is a difficult operation and

matter meanwhile if the similarity values are greater than the threshold value t, then they

represent the same real world object as a very wide range to choose from, The similarity

functions have wide range, that is from very simple string matching functions like

Levenshtein’s edit distance” (Hall and Dowling 1980; Levenshtein 1966; Navarro et al.,

2001) specific to XML trees functions (Dorneles et al., 2004). It was noticed that the

specifications for the matched data can affects on similarity functions’ result quality.

Problems were observed in defining the most suitable threshold value for utilizing it in

similarity functions calculations; another problem was also in determining specific

adequate measure to see whether the similarity function is adequate for specific set of data

rather than other ones. In order to calculate the amount of the similarity function, it is used

4

the recall/ precision curve, the curve is Information Retrieval (IR) quality measure, as an

essential foundation for the current methodologies. In addition to this, it has a significance

role of representing the ability of similarity function in ordering the similar outcomes with

our research outcomes. Yet, the recall /precision curve doesn’t suit the representing of the

range of efficiency for the similarity functions to dismiss the related from unrelated similar

outcomes (da silva et al., 2007).

As shown in figure 1.1, approximate data matching approaches can be classified into (a)

content-based approach, (b) structural-based approach, and (c) the mixed approach between

both. This thesis uses the content-based approach (Dorneles et al., 2010)

Figure 1.1: Taxonomy of approximate data matching approaches (Dorneles et al., 2010).

1.4 Motivation

With the increasing volume of data, and the improving ability of information systems for

the purpose of gathering data from distributed, heterogeneous, and many resources, the

problems of data quality abound. One of the most data quality intriguing problems is that of

multiple, yet different representations of the same real-world object in the data. For

5

example, an individual might be represented multiple in the customer database, a single

product might be listed several times in the online catalogue and data about a single type

protein might be stored in many different scientific databases.

1.5 Problem Statement

Since variations in approximate record-matching problem representation can arise from

typographical errors, misspellings, abbreviations, as well as the integration of multiple data

sources, using string similarity functions that capture the source of variation is essential for

accurate identification of approximate duplicates. There are several similarity available

functions “Characters-based (e.g., Levenshtein distance, n-gram distances), context-based,

tokens (e.g., Jaccard distance, TF-IDF(cosine similarity combined with the tf.idf weighting

scheme to compute the similarity of two fields)), phonetics (e.g., soundex distance) and

hybrid between them ” thus, it is often necessary to evaluate a number of them aiming at

choosing the function that is more adequate to a specific data matching application that

were rarely discussed and studied. This problem was presented by da Silva et al., (2007)

address problems related to flexible query processing for similarity functions usage among

different data sets; this problem was solved in this thesis through using the same method in

da Silva (2007) in duplicate deductions.

1.6 Contribution

This thesis contributes in benchmarking between different similarity functions that are used

for detecting duplicates in a certain dataset. We used an approach which was suggested for

determining the adequate function for detecting duplicates, our thesis recommended

applying the same proposed method of da silva et al., (2007) work that used in similarity

6

queries, and utilized it in blocking data for duplicate detection. The proposed approach

should improve both the “accuracy” and “completeness” values for enhancing data quality

through utilizes the “tbest” algorithm (da silva et al., 2007) in order to achieve the

following objectives:

1. Conduct an experimental study to evaluate the performance of a number of similarity

functions in the context of duplicate detection.

2. Find adequate measures that can decide upon the duplicity of records using several

similarity measures and thresholds that will contributes in records’ duplicates decision-

making through distinguishing between token-based measures, edit-based measures,

phonetic and hybrid measures to find the most accurate and completeness one to use.

3. Find the best threshold for each field that can best deploy string-similarity functions in

order to estimates the matching likeness of the record fields and the overall records.

1.7 Thesis Outlines

The thesis will be organized as follows:

Chapter 2: Literature reviews and Similar Studies.

Chapter 3: duplicate detection framework.

Chapter 4: Discussion, Analysis and Results.

Chapter 5: Conclusion and future work.

7

CHAPTER TWO

Theoretical Background

In this section, we present theoretical background on the important process of duplicate

record detection. The duplicate detection process is executed through, deleting duplicate

and restriction verification or “address normalization” that in result will enhance the whole

data quality (Naumann and Herschel, 2010).. Representative process for detecting duplicate

is shown in Figure 2.1 Where (R) can present records’ set that contains the duplication that

can be expected and chosen through using certain algorithm. Similarity measures can

calculate similarity threshold for separating between both the duplicate pairs and non-

duplicating.

Figure 2.1: Prototypical duplicate detection process (Naumann and Herschel, 2010).

2.1 Duplicate Detection process

Duplicate detection problem needs two components to solving: similarity measure and

algorithms.

8

 2.1.1 Approximate field- Matching Similarity Functions

Duplicate detection uses similarity function for measuring similarity degree between two

objects by taking the input of two objects values and the output of score value between (0

and 1) and comparing it with an agreed threshold value, considering two object values for

presenting the same available objects in real world. It is typical to compare for object

similarity instead of equality because it is common that mismatches happen due to

typographical error .When discussing similarity function we discuss similarity distance too.

Similarity distance can be calculated from similarity function measure as dist (,) =1-

fs(). Similarity function can be categorized as character-based similarity function,

token-based similarity function, hybrid similarity function and Phonetic similarity function

(Elmagarmid et al., 2007 ; Numann and Herschl,2010) .In following sections we discuss

this category of similarity function.

2.1.1.1 Character-based similarity function

So called edit-base similarity measure, the character-based similarity metrics are designed

to handle typographical errors well. Elmagarmid (2007) showed that where mainly usual

string similarity calculating techniques are classified into character-based and vector-space

based techniques, it all are based on using character edit operations as a base for its work,

like insertions, deletions, subsequence comparison, or even for substitutions, transforming

strings into vector account will be modified and translated after then for promoting

similarity calculations. Levenshtein (1966) started by introducing a character-based string

similarity metric called “Levenshtein Distance” and defined it as the minimum number of

insertions, deletions or substitutions necessary to transform one string into another. In his

9

article "Binary Codes Capable of Correcting Insertions and Reversals” as a most simple

edit-distance function which based on counting the inserted and deleted character(s) and

switching numbers. More complex edit-functions are affine functions, which assign a

relatively lower cost to a sequence of insertions or deletions, like a missing word or missing

suffix. In this section we briefly discuss the similarity function that is used in this thesis.

2.1.1.1.1 Q-grame similarity function

 Ullmann (1997) and Ukkonen (1992) identified the Q-grams as a short character

substrings1 of length q of the database strings, Elmagarmid (2007) showed the Q-gram is a

subsequence of q points from a particular sequence. The points within question might be

phonemes, syllables, letters, words or base pairs as per to the application. A “unigram”

refers to Q-gram of size1, “bi-gram” for size 2, “trigram” for size 3, and size 4 on more

simple words called “Q-gram”. The bigram and trigram for the value of the pressure is

utilized to handle the job of gauging the proximities of identification. It has been exploited

Letter Q-grams, including trigrams, bigrams, and/or unigrams in several ways within the

text explanation and spelling correction incremental consequences for introducing

definition of q-grams as short character substrings1 of length q of the database strings. The

intuition behind the use of q-grams as a foundation for approximate string matching is that,

when two strings s1 and s2 are similar, they share a large number of q-grams in common

letter q-grams, including trigrams, bigrams, and/or unigrams, have been used in a variety of

ways in text recognition and spelling correction. One natural extension of q-grams is the

positional q-grams, which also record the position of the q-gram in the string. Gravano et

al. (2001) showed how to use positional q-grams to efficiently locate similar strings within

10

a relational database.” Gravno et al., (2003) extended its capabilities to handle spelling

errors using Q-grams instead of words as tokens. In this setting, a spelling error minimally

affects the set of common q-grams of two strings, so the two strings "Gateway

Communications" and "Communication’s Gateway" have high similarity under this metric,

despite the block move and the spelling errors in both words. This metric handles the

insertion and deletion of words nicely. The string "Gateway Communications" matches

with high similarity the string "Communications Gateway International" since the Q-grams

of the word "International" appear often in the relation and have low weight. Gravano et al.,

(2001) showed how to “use positional Q-grams for efficient location for similar strings

within a relational database, Kukich (1992) explained that Q-grams Letter - including

trigrams, bigrams, and/or unigrams- used different ways for spelling correction and text

recognition. Sutinen and Tarhio (1995) continue the work and explained that “the one

natural extension of Q-grams is the positional Q-grams”. Naumann and Herschel (2010)

showed that It is a common sense that on a q-gram measures of similarities the tokens are

not specified according to the characters (white space and punctuations), they are turned

into a smaller tokens based on the size q which are called q-grams or n-grams. In addition

to that, it is known that these tokens normally overlap (one character appears in many

tokens) specifically q tokens. In order to generate a size q a window must be sled over the

string in order to be tokenized and to gather q tokens we present a special character not

alphabetically and pad the string with the alphabets. As an example for generating q-grams

consider the following:

For example Considering strings S1 = Hwnrei Waternoose and S2= Henry Waternose there

must be a generation to a trigram (3-gram) for the two resulted strings in the set, the

11

underscore (_) was used in order to refer to the padding character and the whitespace in

both the beginning and the end of the string which is noted as #

q-gram of S1= {##H,Hen, enr,ri_,i_W,_Wa,Wat,ate,ter,ern,rno,noo,oos,ose,se#,e##}

q-gram of S2 = {##H,#He,Hen,enr,nry,ry_,y_W,_Wa,Wat,ate,ter,ern,rno,nos,ose,se#,e##}

The Q-grams similarity metric between two strings is constructed ranging from 0 to 1.0

using a normalized formula (Ukkonen, 1992)

= …………….2.1

Where grams of first string S1 and grams of S2 and is the number

of common Q-grams between S1 & S

For above example we have =18, =17,=13

 2.1.1.2 Token-Based Similarity Metrics

 Elmagarmid (2007) showed that Character-based similarity metrics work well for

typographical errors. However, it is often the case that typographical conventions lead to

reorganizing the words as ("John Smith" versus "Smith, John") – where character-level

metrics cant capture similarity entities where Token-based metrics attempt to fill the gap of

the character-level while sequence-based “estimates distance between shorter strings that

differ largely at character level and became too computationally expensive and less accurate

for larger strings at the same time tries in computing string edit distance for larger strings

such as text documents on the Web since the computational complexity is quadratic in

12

average string size.” The vector-space model tries to overcoming the previous problems

through viewing strings as “bags of tokens” while ignoring its order in which the tokens

occur in the strings. By Naumann and Herschel (2010) discussed three token-based

measures: i- The basic Jaccard coefficient: Jaccard similarity presented the simplest method

for computing the shared token inside strings as the likeness degree of token’s proportions.

If strings s and t are presented as S and T token sets, Jaccard similarity is written as:

……………………….2.2

Jaccard similarity's main issue is that it doesn't take into consideration the proportional

significance of distinct tokens. Tokens that happen more than once within a presented chain

must contribute highly to similarity rather than tokens which take place little time, just like

such tokens which are unique between the strings’ groups beyond consideration.

ii-TF-IDF: The Cosine Similarity using Tokens Frequency and Inverse Document

Frequency (tf-idf), Cosine Similarity is often used in information retrieval. Let s, t be two

multi token in a string or multiple columns in a n dimensional space and t in a filed s (e.g.,

all tokens in every string value of the column). The cosine similarity for strings s and t is ;

Cosine similarity (s,t)=cos(s,t)= …………………………..2.3

Where the coefficients of vector t in filed s are defined as

tf-idf=log (………………..2.4

13

 Where frequency of token t in a filed s, =number of record in block to number

of record that contain t,

iii- Similarity based on tokenization string using Q-gram, string is divided into smaller

tokens in size q .strings are fixed tokens consisting of q characters (where often q = 3) The

strings s and t are broken into the sets S and T of all possible (overlapping) q-grams. These

sets are in turn compared using Jaccard or Cosine similarity. Example: s = ′Henri

Waternoose′ and t = ′Henry Waternose′

Trigrams for s: S = { ′##H′, ′#He′, ′Hen′, ... , ′i W′, ... , ′oos′, ′ose′, ′se#′, ′e##′ }

Trigrams for t: T = { ′##H′, ′#He′, ′Hen′, ... , ′y W′, ... , ′nos′, ′ose′, ′se#′, ′e##′ }

 Jaccard similarity is 13/22 = 0.59

cos similarity using tf-idf weighting is ≈ 0.64

This thesis used the similarity based on tokenization using the Cosine Similarity Using

Tokens Frequency and Inverse Document Frequency,

 2.1.1.3 Hybrid Similarity Functions

Discussing those similarity hybrid functions that combine string similarity with

tokenization for computing the score of final similarity were used two measures that called

the “Extended Jaccard Similarity” and the “SoftTF/IDF”. All the introduced hybrid

measures are combining the usage of applying both edit-based and token-based

measurement equipments in order to rank the repeated edit-based measurement equipments

prepared for errors in tokens since the token-based measurement equipments packaged for

faults which returned to the lost tokens and the transfer of tokens. Naumann and Herschel

14

(2010) were more detailed in defining both hybrid measures; it is used the “SoftTF/IDF”

one in this thesis.

 2.1.1.3.1 SoftTF/IDF

SoftTFIDF was presented by Cohen et al. (2003) and, Naumann and Herschel (2010) as a

proposed hybrid measure by which relies on normalizing the tf-idf weight of word tokens

and can work with any arbitrary similarity function to find similarity between word tokens.

In this measure, the similarity score, simSoftTFIDF , is defined as follows:

(,)=

……….2.5

Where V, W are the vector representation of s1 and s2 strings containing (tf-idf) scores:

Maxsim (ti, tj) = max TokenSim (ti, tj), where tj Tokenizer (s2)

2.1.1.4 Phonetic similarity function

Similarity Metrics uses the string-based representation for database records based on both

the character-level and token similarity metrics. But knowing that some strings might still

be phonetically similar even if are not in a token or character level similar; as can be

noticed through presenting the word Kageonne as an example of being phonetically similar

to Cajun in spite of the differences between both string representations to proved that such

phonetic similarity metrics have the ability of matching such strings. Soundex Phonetic

Similarity Function was introduced by Russell (1918 and 1922) as one of most familiar

scheme of phonetic coding, Newcombe (1967) showed its unchangeable ability proved

through exposing nearly “two-thirds of the spelling variations observed in linked pairs of

15

vital records, and that it sets aside only a small part of the total discriminating power of the

full alphabetic surname.” Soundex code was designed specifically for processing

“Caucasian surnames” but can generally be used with various names from various different

databases with some exclusions that been noticed that this code has some weaknesses in

dealing with names inherent in vowel sounds that are ignoring through.

Taft (1970) introduced another different phonetic similarity metric called “New York State

Identification and Intelligence System (NYSIIS)”, this metric keep hold of the vowels

places inside the encoded word through converting vowels into written letters but doesn’t

replacing letters with numbers but through replacing consonants with other similar

phonetically letters so can returning a “purely alpha code –not a numeric component.” For

conditioned surnames of nine letters maximum length while knowing the limitation of the

NYSIIS to handle only six characters; Taft (1970) compared Soundex with NYSIIS for this

specific purpose using the New York City names’ database and concluded the accuracy of

the NYSIIS coding system by 98.72 % comparing to Soundex that presented an accuracy of

95.99%, for that reason this coding system is still used nowadays in New York State for the

Division of Criminal Justice Services’ usage.

After then, Gill (1997) introduced another phonetic technique called “Oxford Name

Compression Algorithm (ONCA)” that works through two stages and introduced for

developing the pure Soundex-ing features under a parallel fitting format based on four-

character fixed length –where ONCA uses the British model of the NYSIIS in compression,

then transmitting and compressing partial name as a second stage. This technique proved its

effectiveness in combining similar names together.

16

Philips (1990) suggested using a “Metaphone and Double Metaphone algorithm” as an

improved alternative of Soundex that uses 16 consonant sounds for both English and non-

English phrases and providing some additional encoding choices in Double Metaphone

(2000) that added the ability of providing a combined encodings specifically for dealing

names with different pronunciations that shapes about 10% of total American surnames - in

which in result enhanced the matching performance for multiple phonetic encodings

(Elmagarmid et al., 2007).We used soundex similarity function.

2.1.1.4.1 Soundex similarity function

Elmagarmid et (2007) showed that It was previously mentioned this metric history where

Soundex algorithm picks a script term, like the surname of a person, as an input which

generates a character chain that determines a group of terms which phonetically resembles

each other. Once the user doesn’t have a complete data, it is useful to search for a large data

base. For instance, the word “Truben” resembles phonetically “Tropain” although the chain

demonstrations totally differ from each other. The metrics of the phonetic resemblance are

attempting to tackle some of these topics and coincide with similar chains. The approach

applied through Soundex relies on six phonetic categorizations of the human speech sounds

“bilabial, labiodentals, dental, alveolar, velar, and glottal” which thus are relied on the place

of locating your tongue and lips in order to utter the sounds. An essential algorithm for

computing Soundex is completely explained in appendix A this algorithm calculates

Soundex through using the task of the same system numbers for phonetically similar sets of

consonants which is mostly utilized to be identical with surnames. Soundex system

regulations are as follows: (1) maintain the surname’s first letter as a prefix letter and

totally disregard all the happenings of W and H in other places ;(2) allocate certain systems

17

to the rest of letters, (3) strengthen series of identical matches through sustaining just the

first happening of the system;(4) slump the separators; and (5) maintain the prefix letter and

the first three systems padding with zeros whether there are less than three systems.

2.1.2 Record Similarity function

In the previous section, we described methods that can be used to calculate the similarity of

individual fields of a record. In real-life the database records consist of multiple fields,

making the duplicate detection problem much more complex. Al-Khalifa et al., (2003)

experimentations showed three separated strategies for Evaluating Record Similarity: (1)

comparing the two records as a whole, as if they were a single field or attribute; (2)

comparing each field and averaging the resulting similarity scores, which is essentially

what is proposed in Broder (1997); and (3) using a feature vector to represent the fields and

train a binary support vector machine classifier using this vector. Al-Khalifa continued his

work by introducing a function for performing an adaptive edit-distance that performs on

specific textual data, Chapman (2004) introduced a more comprehensive similarity

functions from Al-Khalifa work for editing all types of textual elements, ActiveAtlas

system was introduced by Chaudhuri (2006) that sets major learning rules for mapping

tuples (or objects) out from the dual diverse relations (or sources) for setting uniqueness

between (Dorneles et al., 2010). In this section, we discus methods that are used for

duplicateing records in multiple fields. Nowadays approaches are using matching those

records that includ several fields which can be classified under a general status into two

groups (Elmagarmid, 2007) .

18

(a) Probabilistic models approach that uses both the Supervised and Semisupervised

Learning Techniques and heavily introduce training data for matching records.

(b) Rule-based approaches that uses the Distance-based techniques and depends on domain

knowledge or distance metrics for matching records. For this thesis we used Probabilistic

method

2.1.2.1 Probabilistic Matching Decision Models

If two record A and B are to be matched Classify pairs(a,b) as matched (M) or

non matched (U).we represent each pairs of record as pair(a,b) as a random vector

x=(x….xn) with n number of fields in rescored a Fellegi & Sunter(Fellegi & Sunter ,1969)

considered ratios of probabilities :

 R = Where is a random vector, e.g. {1, 0, 0, 1, 0}

The decision rule based on R is optimal: any other decision rule achieving the same error

rates implies conditional probabilities (either on M or U) of not making a decision always

greater than the Fellegi-Sunter rule’s computed using the training set of pre-label record-

based (Elmagarmid, 2007). Newcombe et al. (1959) were first introduced the duplicate

detection problem and named it as a “Bayesian inference problem”. Fellegi and Sunter

(1969) after then officially formalized the Newcombe et al. intuition and introduced a

general notation using the random vector technique for different density function of two

classes. It was showed that if each class density function is well-identified, duplicate

detection problem will called the Bayesian inference. Elmagarmid et al., (2007) showed

many developed techniques

19

2.1.3 Duplicate detection algorithms

So known as blocking algorithms, the purpose of the algorithms is to reduced the number

of comparisons to improve efficiency of the system particularly when operating on a large

set of data. Blocking algorithm (Jaro, 1989) is achieved by sorting the database on one or

combinations of a few attributes as the blocking key, then separating the records into

mutually exclusive partitions based on their agreement on the blocking key. Therefore, each

record will only be assigned to a block. For example, if the blocking key is the states in the

United States, the dataset will be sorted and partitioned into blocks where the first block

contains records with state ’AR’, the second block contains records with state ’AK’, and so

on. Records in the same block are considered for comparison. AlDummor (2010) discussed

in his master thesis "Performance Evaluation of Blocking Methods for Duplicate Record

Detection", the main challenge faces the detecting duplicate records process is the

complexity of the detection process itself; of the huge data base, each record in should be

compared to all records in data base. Introducing blocking methods was a good solution

for detecting duplicates problems that "minimized the number potential record pair

comparisons by partitioning the datasets into a set of mutually exclusive blocks or clusters

using a blocking key-where all records sharing the same blocking key value will be placed

in the same block and only records within a block will be compared". AlDummor also

made some comparative experiments in order to benchmark between most recent blocking

methods: the sorted blocks and standard suffix array, with two older ones: the standard

blocking and sorted neighborhood blocking within a common framework. Benchmarking

was according to the quality of the candidate record pairs generated by those methods.

Results showed that "sorted neighborhood blocking method outperforms the standard

20

blocking and that sorted blocks slightly outperforms it in terms of accuracy that the

improved suffix array method was better in and also can improve the standard blocking

accuracy in its turn. We utilized the traditional blocking technique.

2.1.3.1 Traditional blocking technique

This blocking achieved by creating blocking key from one or combinations of a few

attributes and sorted in database to blocking data according it with using similarity function

To arranged key (jaro, 1989).

2.2 Performance Evaluation Methodologies of Similarity Functions

2.2.1 Similarity Function Measures and Threshold

Bryan (2006) approach is to “generate individual rankings for each attribute present in a

query statement according to a specific similarity metric and then to combine the individual

rankings in order to obtain a global ranking such that distance among the individual

rankings is to be minimized”. Bryan built on the truth of that different score values spread

have different similarity functions produce tuple matching problems where various

similarity functions’ results according to various attributes should jointly be gathered, its

solution presents in normalizing similarity scores values into a proposed predestined range,

this solution helped in a certain way but didn’t solve the problem from its roots since score

results from each separate function usage holds diverse unlike meanings (Dorneles et al.,

2010).

2.2.2 Similarity Functions and Threshold Value

Throughout of similarity function usage, frequent score identify the two data instances

similarity process if the score exceeds the certain threshold for considering both data

21

instances through the real-life implementation. Determining the returned score values is to

be determining according to certain algorithm that is used inside similarity function. Using

an approximate matching depends on the used similarity function that allocates the scores

to each separate value of data pair where higher similarity introduced privileged scores.

Considering two objects as “similar” means that if similarity score s surpasses a pre-defined

threshold value yet the threshold value chooses considers as a hard task to perform.

Threshold should be defined before the learning process estimation, and determining the

result quality that measured through precision and recall calculations as scores values can

vary that resulted from using different functions when an exact threshold should be taken

into considerations as predefining threshold values for a certain function usage (Dorneles et

al., 2010).

2.2.3 Threshold Process Definition

Threshold definition process for the majority of applications is the user responsibility in

determining a proper random value to be applied inside queries’ implementation as a “trial

and error process” in executing possible chosen values until a satisfy result will appear in

getting the necessary retrieving data, bearing in mind that score values allocation can be

fluctuate extensively between one similarity function and another. Using semi-automatic

methodology in calculating threshold values for a given similarity function will produce

two threshold values acts as an interval [tmin best, tmax best] for calculating the “threshold

value” and considering it as an optimal results by maximizing case’s number in which

sirrel ≤ tbest ≤ srel, where srel is the lowest score for a relevant item, sirrel is the highest

score for an irrelevant item. The identification process of threshold includes reducing false

positives and false negatives as well as through taking samples from the pre-existing

22

collection V of data values (v) and compares it with similarity function in order to use it

for determining the distributed score values after then (da Silva, 2007).

2.2.4 Similarity function Quality Measurements

Santos (2010) proposed an estimation methodology for similarity function quality presents

in terms of the recall and precision calculations at various thresholds, and according to

specific application determinations, choosing threshold value will be held as the user

responsibility in estimating it according to the application adequacy – based on a clustering

phase executes on sample extracted from a gathered data with no human intervention for.

2.2.5 Evaluating Similarity Functions Quality

Assessing similarity functions performance and benchmark between various types can

determine the quality degree of the returned relevant and irrelevant data from the IR

querying as a matching degree evaluation, considering higher fmax resulted out from

similarity function usage as a more efficient function than the one that produce smaller

result, it has been noticed that the interval size of tbest presents an indicator about the

function quality where larger interval are produced from more efficient similarity

functions” (da silva et al., 2007).

Similarity functions have many evaluations approaches. One of the most famous and

traditional approaches are the recall and precision calculations (Baeza-Yates and Ribeiro-

Neto 1999; Bilenko and Mooney; Ravikumar and Fienberg; Cohen 2003) but unfortunately

have only one weakness that its unsuitability for expressing “how efficient similarity

functions are in telling apart relevant from irrelevant matches”, for covering that gap,

quality measures were customized in its design for that purpose using context-data

23

matching through introducing the ,Best Threshold Value that can reduce false positives and

false negatives with respect to an answer set” (da Silva et al., 2007).

2.2.6 Calculating Discernability

Discernability is a measure specifically designed for evaluating similarity functions

proposed by (da Silvaet al. 2007). Besides providing a means for evaluating similarity

functions, this technique also estimates the optimal threshold t to be used by a similarity

function for a data set. This threshold aims at minimizing false negatives and false positives

retrieved in response to a set of queries. Details of the discernability computation are given

in da Silva et al. (2007). This section provides a brief description of the method. The

calculation of discernability takes two aspects into consideration:

(i) Whether the similarity function succeeded in separating relevant and irrelevant data

items. A good similarity function should assign higher scores to all relevant data items than

to the irrelevant ones.

(ii) The level of separation between relevant and irrelevant data items. An ideal similarity

function should not only separate relevant and irrelevant data items, but it should also place

them within a reasonable distance, creating two clearly distinct sets.

The formula for calculating the discernability of a similarity function is given in the

following equation:

Discernability(L) (, , fmax)

= (-) + . ……….2.6

24

Where: L is the similarity function being analyses ; and are the limits for

the optimal threshold interval; c1 and c2 are coefficients which allow the user to express

the importance given to each of the two aspects considered above; fmax, is the number of

points achieved by the threshold interval [,]; and n is the number of queries.

The relevance judgments provided by the user enable the identification of two important

points in a ranking generated by a similarity function in response to a query:

Where srel: The lowest score achieved by a relevant data item, sirrel - The highest score

achieved by an irrelevant data item. Plotting a set of queries with their respective srel and

sirrel is possible to visualize the distance between the relevant and irrelevant data items

assigned by the similarity function. In our approach, such a distance is an important

parameter used to evaluate the quality of a given similarity metric. As mentioned before, a

good similarity function will clearly separate the relevant set from the irrelevant set.

The best thresh algorithm (da Silva et al. 2007), which finds the optimal threshold interval

(highlighted gray in Figure 1), is based on a reward function. It proceeds as follows: Each

threshold t in the interval [0,1] (varying according to a predefined numeric precision), is

compared to srel and sirrel for the rankings produced in response to a number of queries. One

of three outcomes is possible from such comparisons:

(i) The threshold t is at the same time less than srel and greater than sirrel. This means that it

is able to separate relevant and irrelevant items, so it earns two points.

25

(ii) The threshold t satisfies only one of the conditions. This means that both relevant and

irrelevant items are on the same side (either above or below) the line drawn by the

threshold. It then scores zero points.

(iii) The threshold t fails both conditions. In that situation, the last relevant result is below

the threshold line whilst the first irrelevant result is above it. As a result, t loses 2 points.

The algorithm then searches for the highest number of points (fmax) achieved by a threshold.

Once fmax is found, the algorithm searches for the contiguous interval of values of t

([,]) that achieve (fmax). In addition to best threshold, da Silva et al. (2007)

propose a statistical method for finding the optimal threshold. This method is based on the

distribution of srel and sirrel values for a sample of n queries. Experimental results show

that both methods for threshold estimation are in agreement, the interval of threshold that

best separates relevant and irrelevant data items - as shown in figure 2.2.

Figure 2.2: Thresholds Intervals (da Silva et al., 2007).

26

2.2.7 Using SimEval Tool to calculate similarity function quality

Heuser, et al. (2007) explored in their article "SimEval - A Tool for Evaluating the Quality

of Similarity Functions" the Approximate data matching applications typically use

similarity functions to quantify the degree of likeness between two data instances which is

necessary to evaluate them in order to choose the most suitable function to a specific

application. For that purpose, the paper presented "SimEval tool" that uses average

precision and discernability to evaluate the quality of similarity functions. The researchers

recommended making a decision of which similarity function is most suitable for a certain

application in order to perform range queries. Performance enhancements can be achieved

through direct implementation of the similarity functions into the database, and of the

graphic generation for visualizing results.

2.3 Related Studies

In this section we are introduceing some of the most important related studies in the field of

similarity function which provides us a good guidance to our work.

(Stasiu et al., 2005) in this paper means problem was threshold of similarity function.

Semi-automatic method was proposed to fined threshold for similarity function in term of

recall and precision. He was extracting samples from the dataset containing the instances to

be matched by the similarity function, then (a) Take each data instance from the sample as

a query instance.

(b) Compare each query instance to all instances in the sample and compute precision and

recall figures at several scores

27

 2-the human expert was informing how many distinct real world objects are represented by

the instances in the samples taken from the dataset

3. For the clusters Recall and precision were computed.

4. Precision and recall at different score values over all queries taken in the previous step

were computed.

 The main problem in this work was that, some similarity metrics are more adequate than

others for handling a specific data.

(da silva et al. , 2007) proposed semiautomatic methods specifically designed for

efficiency of similarity functions are in ranking of data as relevant or irrelevant.

 The first method is an algorithm based on a reward function, and the second is a statistical

method. Both methods for threshold produced similar results. The output of such methods

was used to calculate quality measure, called discernability.

 Discernability is a quality measure for similarity function discussed two problem related on

similarity function first, the threshold value and second the adequate function for specific

data set. The problem with this method was human intervention.

(Elmagarmid et al., 2007): The researchers presented a thorough analysis of the literature

on duplicate record detection covering similarity metrics that are commonly used to detect

similar field entries. They also present an extensive set of duplicate detection techniques that

can detect approximately duplicate records in a database. They also cover multiple methods

for improving the efficiency and scalability of approximate duplicate detection algorithms.

In addition to coverage of existing software tools with a brief discussion of the big open

problems in this filed.

28

CHAPTER THREE

Duplicate detection framework

3.1 Introduction

Duplicate detection process consists of several stages. Our design for duplicate record

detection framework takes its design from the generic frameworks suggested in solving

record linkage and duplicate detection problems (Gu et al., 2003). Figure 3.1 illustrates

diagram based on our search. We suggested four stages for the duplicate detection process.

Figure 3.1: Framework for duplicate detection

Decision Model

Bayes inference

decision rule with

minimum error by

Compute training

vector.

 Calculate

Duplicate rate

Similarity

computation

Blocking

dataset

• Similarity

function
• Discernability
• Evaluated

4

3

2

1

Prepare data

29

Stag One: prepare data

 Typical duplicate detection process is preceded by a data preparation stage in which data

entries are stored in a uniform manner in the database, resolving the structural heterogeneity

problem “refers to the problem of matching two databases with different domain structures,

as a customer address might be stored in the attribute ’address’ in one database but

represented in attributes ’street’, ’city’, and ’zip’ in another database”. In our research, we

are concerned with the Lexical heterogeneity problem (refers to databases with similar

structure but different representation of data, such as ’J. Smith’ and ’Smith, John’) and

assumed that structural heterogeneity has been resolved a priori (i.e. the input is a set of

structured and properly segmented records).

When transferring the datasets to the database, we added field to store the records blocking

keys to used in next stage

 Stage Two: Blocking Stage

Grete blocking key (cand key): it created by composite first three characters the

select attribute/s. The following example of SQL statement shows that we only

create candidate keys for records with non-empty data for the first attribute in the

candidate key, the result show in fig 3.2

 UPDATE DATA SET candKey=UPPER (CONCAT (SUBSTRING (venue, 1, 3), SUBSTRING

(given name, 1, 3))) WHERE venue! =’’

30

Figure 3.2: create key for attribute/s

 Then we block data by used Traditional blocking method. In this method all the blocks are

non-overlapping windows. Also, they may not appear subsequently one after another,

which means that there are records that do not belong to any blocks. In such cases, we

ignore those records.

Blocking algorithm that is shown in figure 3.3, (Pie, 2008) display how blocks are created:

recall first record (A) and below it (B) from the stored data inside memory; then computing

the similarity score between candKey A and candKey B using the Needleman and Wunsch

similarity metric (Amagarmid, 2007) show their class in appendix B, by used threshold was

defined by user. If the similarity score equals to threshold, record (B) and record (A) put

into the same block. Repeating previous process can put all subsequent records that satisfy

the threshold into the same block as record A. If no subsequent records are found to satisfy

the similarity test, the next record should be used for re-identifying a new block.

31

99

333

Figure 3.3: blocking algorithm (create block)

User Interaction with stage 2

In this stage the user selects the suitable attribute to make blocking key and sets how he will

be blocking data according to field or to record.

If the blocking data is according to field, the user selects one attribute and set the threshold

value as (1) for accurate results, see figure 3.4 and the result in figure 3.5. when he is

blocking data according to record, user select attributes that are suitable for blocking but

change threshold value into (0.70) for used data in this thesis , reasons were presented in

having 6000 original when take threshold in interval (1_0.75) we get block more than 6000

that means we loss delicate block, at 0.70 gets more than 5000 and less than 6000.

Input: All sorted records from database (data); blocking threshold

Output: Identifiers of all records in a block (ids)

1 quitSearch← false;

2 while not end of data and !quitSearch do

3 A← candidate key for the next record;

4 blockSize←1;

5 while not end of data do

6 B←candidate key for the next record;

7 score← similarity score between A and B based on Needleman and

 Wunsch similarity metric;

8 if score ≥ threshold then blockSize←blockSize+1;

9 else

10 go back to the previous record;

11 quit inner while loop;

12 if block size > 1 then

13 go back to blockSize previous records;

14 ids← identifiers of all records in block;

15 quitSearch←pairRecords(ids);

16 else skip;

32

 Figure 3.4: The user selects both the blocking keys of “Given name” and the most

suitable threshold value (1).

 Figure 3.5: blocks created for dataset

 Stage 3 Similarity Function’s work

 In this stage, the user sets similarity function suitable for data type. We chose the

following similarity function:

1-Character-Based Similarity Metrics: we used Q-gram with q=3.

2- Token-Based Similarity Metrics: we used TF-IDF

3-hybrid similarity function functions: We used similarity measure that combines between

Q-grame and TF-IDF (soft tf/idf)

33

4- Phonetic Similarity functions: we used soundex function.

In appendix B the class which is used in stages of frame work are presented.

 Evaluation similarity functions:

In this thesis, we used a quality measure specifically designed for similarity functions in the

context of data matching using with similarity query (Da selva , 2007) to evaluation

similarity function in duplicate deduction as below.

Calculate Discernability

 Discernability: a quality measure specifically designed for similarity functions in the

context of data matching (da selva , 2007).

-A similarity function f (,) → s assigns a score s to pair of data values and ,

values and are considered to be representing the same real world object if s is greater

than a given threshold t.

- How to determine the threshold value? And how to measure if a similarity function is more

adequate for a specific data set than another.

-To calculate discernability as a byproduct we provide a method for defining a threshold

value that may be explanation as the “best" one for a given similarity function, when

considering a specific data set. Best means a value of threshold that satisfies high duplicate

rate.

34

Calculate Best threshold algorithm:

 - User randomly select number of blocks had number of record more than (40) (Stasiu,

2005). See figure 3.6

fig

ure3.6: user select blocks

Next, a human expert is ranking each block in term of a relevant (rel), if the data value is

considered to represent the same real world object or an irrelevant (irrel) otherwise for

example shows figure 3.7 where NS represent relevant or irrelevant that user determine

Fig

ure 3.7: Calculate similarity functions to select blocks

 This labeling enables us to identify two important points in the blocks: rel(k) which is the

lowest score corresponding to a relevant item and irrel(k)which is the highest score attained

by an irrelevant item. Notice that for some queries irrel(k) could be greater than rel(k). Such

a situation indicates that the similarity function has failed to separate relevant from

irrelevant items where k is the number of block .Then we are calculate algorithm of tbest

threshold shows in figure 3.8 (da selva , 2007).

35

Figure 3.8:best threshold algorithm (da selva, 2007).

1: Input: n, tmin, tmax, sL rel(k), sL irrel(k), k = 1 . . . n, h

2: Output: tmin best, tmax best , fmax

3: fmax = −2n;

4: ndiv = (tmax − tmin)/h

5: for (a) i = 0, . . . , ndiv do

6: t = tmin + ih;

7: f (t) = 0;

8: for (b) k = 1, . . . , n do

9: d = 0;

10: if (Srel(k) > t) then

11: d = d + 1;

12: else

13: d = d − 1;

14: end if

15: if (S irrel(k) < t) then

16: d = d + 1;

17: else

18: d = d − 1;

19: end if

20: f (t) = f (t) + d;

21: end for (b)

22: if (f (t) ≥ fmax) then

23: fmax = f (t);

24: end if

25: end for (a)

26: t = tmin

27: while (f (t) ≥fmax) do

28: t = t + h

29: end while

30: tmin best= t

31: t = tmax

32: while (f (t) ≥fmax) do

33: t = t − h

34: end while

35: tmaxbest= t

36: if fmax < 0 then

37: aux = tmaxbest

38: tmaxbest= tminbest

39: tminbest= aux

40: end if

41: Write “the best threshold is in the interval” [tminbest, tmaxbest]

36

Where the k number of select block, tmin and tmax are, respectively, the smallest and the

largest similarity scores, h interval division for rel and irrle , n The numerical precision and

f(t) measured of similarity function for blocks.

The outputs of this algorithm are:

 Interval of best threshold for each similarity and fmax which is the number of points

achieved by best threshold.

When we are representing the value of relevant and irrelevant in a plot diagram can

determine best threshold manually show that in figure 3.9, and we can determine the

distribution of samples of blocks with threshold in a plot to sets at any threshold to gets

high distribution(fmax) manually show figure 3.10 (da Silva 2007)

Figure 3.9: distribution relevant and irrelevant as function of the kth block for

function L . (da Silva 2007)

37

 Figure 3.10: Plot of f(t) as function of t for the similarity function t is a threshold

(da Silva 2007)

Then we calculate discernability measure to judgment which similarity is adequate to used

for each attribute depending on the value of discernability. The best function has high value

of discernability.

 If there is more than one similarities function have high discernability, the decision

depending on the value of fmax ,when the value of fmax is high that means the function is

more adequate to achieved ranking of block

We set the best threshold for each attribute to be used in next stage to determine training so

as vector to calculate duplicate rate.

Stage 4 decision model

We use probabilities models for duplicate detection as Bayesian inference problem

techniques .This technique used when the density or threshold of each class or attribute

known (Elmagarmid et al, 2007).

fmax

38

The comparison vector x is the input to a decision rule that assigns U or M. Where U and M

are the un matching or matching respectively, and x the randomly vector for similarity of

each attribute, to pairs of records. We create pairs of recorded by using algorithm of pairs,

(pie, 2008) shows figure 3.11.

Figure 3.11: pairs of record algorithm (pie, 2008)

Input: Identifiers of all records in block

Output: Record pair (t1, t2), quitSearch

1 if evaluating a block then

2 for id1 ∈ ids do

3 t1←id1;

4 for id2 ∈ ids where position of id2 > position of t1 in ids do

5 t2←id2;

6 compare(t1, t2);

39

CHAPTER FOUR

Analysis and Results

4.1 Introduction

This chapter aims to use the discernability function to evaluate the quality of different

similarity functions. Discernability takes two aspects, given by Equation (2.6): first aspect

is how well the similarity function separates relevant from irrelevant items, given by the

maximum number of points (), noticed for some blocks, irrel(k) could be greater

than rel(k) which presents an indicates about the failure of this similarity function in

providing an accurate separation . Second aspect is how far apart in the ranking the

similarity function places relevant (rel) and irrelevant(irrel) can be calculated by taking the

difference between and , this aspects calculated by the BestThresh()

algorithm. Benchmark among the Discernability measure for utilized similarity function’s

performance is based on two aspect of Discernability. According to our approach, a

similarity function that has a higher (), is adequate function; added the interval

range size of as another indicator for function quality. Given that a good similarity

function should place both relevant and irrelevant items far away from the ranking process

concluded the truth of having larger interval can produce better, also Discernability that

presented as the difference between two coefficients and in which users expressions

can shed the light on the importance of considering each of the two aspects according to the

database type that can affect Our thesis experiment gave the same importance to and

sing = = 1. The produced values through using the discernability function will

40

range within)Interval under a fixed precision of h = 0.001 used in

computing [,] interval in BestThresh algorithm.

4.2 Determining the Discernability Value for Executing Experiments

The data set we have used for our experiment is called FEBRL (Freely Extensible

Biomedical Record Linkage) data set. The FEBRL data set contains patients data such

as names (given and surname), addresses, ages, phone numbers and social security

numbers. This data set contains 9000 records among them there are 6000 original records

and 3968 duplicated records. There is up to 8813 duplicates for an original record, a

maximum of 3 modifications per attribute, and a maximum of 10 modifications per

record in each duplicated record. Table 4.1 shows a sample duplicate records from this

data set. Data set preparation by MySQL due to its free usage and fast performance, the

system is built using the Java Platform. Java is chosen because of its cross-platform

capabilities.

41

4.2.1 Experiments

Our experiments processes are:

1. We create blocking key.

2. Blocking dataset according to blocking key.

3. User takes number of blocks in randomly shape, and calculate similarity functions

for each block.

4. Then user labels blocks as relevant rel (k) and irrelevant irrel (k).

5. After that Discernability is calculated.

 This experiment doing through 60 blocks ,when user is taking more or less numbers

showed take on constant results (even this blocking numbering changing can not affect on

() value, and fmax distribution curve. Experiments results when changing n into 50,

40, 30, and 20 respectively are shown in appendix C).

4.2.1.1 Blocking Data According to Field

In our data set the major fields are “given name, surname and address”. When we block

dataset according to field the result is shown as follows.

• Data blocking result according to” given name”

As shown in table 4. 2 below; where the first column presents the similarity function name,

the second column fmax values that determine the achieved point’s numbers by () for

a given function, the third column displays the results for discernability, and the fourth

column shows the interval for () calculated by the Best Thresh algorithm. According

42

to results, soundex showed best results and was ranked as best similarity function to use

while TFIDF was the worst. This conclusion can be proved and through the plotted curves

described in figures 4.1, 4.2, 4.3&4.4, showing both the relevant and irrelevant plots.

Indeed, the best separation between relevant and irrelevant data items was achieved by

soundex, whilst with TFIDF these items are often shuffled and/or too close together in the

ranking:

Function F-max Discernability [T-Min , T-Max] T-Best

Q-Gram 76.0 0.31667 [0.43501 , 0.43501] 0.43501

TFIDF 50.0 0.33284 [0.74101 , 0.99001] 0.99001

SoftTFIDF 72.0 0.3 [0.94601 , 0.94601] 0.94601

Soundex 106.0 0.44167 [0.94601 , 0.94601] 0.94601

Table 4.2: Discernability results according to Given name field.

Duplicate rate Calculations results according to the determined Discernability in table 4. 2

are shown in table 4.3.

Column (GIVEN_NAME) using Q-Gram |

Duplicate Dissimilar

1079.0 7736.0

Column (GIVEN_NAME) using TFIDF |

Duplicate Dissimilar

675.0 8140.0

 Column (GIVEN_NAME) using SoftTFIDF |

Duplicate Dissimilar

900.0 7915.0

Column (GIVEN_NAME) using Soundex |

Duplicate Dissimilar

1023.0 7792.0

43

Table4.3: Duplicate rate Calculations according to the discernability results in table 2.

Figure 4.1: distribution relevant and irrelevant as function of the kth block for

function Q-gram plot.

Figure 4.2: distribution relevant and irrelevant as function of the kth block for

function TF-IDFplot.

44

Figure 4.3: distribution relevant and irrelevant as function of the kth block

for function soft tf-idf plot.

Figure 4.4: distribution relevant and irrelevant as function of the kth block

for function soundex plot.

Calculating the duplicate numbers in the used dataset by using decision model for rating in

this thesis was through using Q-gram and soundex function as shown in table 2 ,the

resulted in more precision for Q-gram but not to consider as an adequate one in determining

45

similarity for chosen field even that they determine high rate of duplicate due to the irrel(k)

could be greater than rel(k) .Such situation indicates that the similarity function has failed

to separate relevant from irrelevant items, we have seen that in values in table 4.2 it

less than value of soundex. This can be confirmed by observing the plots in figure 4.5, 4.6,

4.7, 4.8 which show the number of points achieved by that threshold interval. Infer from

that the precession is not sufficient indicator to assess the quality of similarity function.

Figure 4.5: Qgram Distribution f(t) and t Curve

t

f(n,t)

46

Figure 4.6: Soundex Distribution f(t) and t Curve

Figure 4.7: Soft tf-idf Distribution f(t) and t Curve

Figure 4.8: TF-IDF the distribution f(t) and t curves

t

t

t

f(n,t

)

f(n,t)

f(n,t)

47

• Blocking Data According to “surname” field

Blocking data according to “surname” the result shown in table 4.4.

Function F-max Discernability [T-Min , T-Max] T-Best

Q-Gram 84.0 0.35 [0.43501 , 0.43501] 0.43501

TFIDF 60.0 0.74451 [0.00101 , 0.99001] 0.99001

SoftTFIDF 82.0 0.34167 [0.94601 , 0.94601] 0.94601

Soundex 62.0 0.25834 [0.99001 , 0.99001] 0.99001

Table 4.4: discernability calculation according to “SURNAME” field.

Column (SURNAME) using Q-Gram |

Duplicate Dissimilar

1099.0 7716.0

Column (SURNAME) using TFIDF |

Duplicate Dissimilar

561.0 8254.0

Column (SURNAME) using SoftTFIDF |

Duplicate Dissimilar

1100.0 7715.0

Column (SURNAME) using Soundex |

Duplicate Dissimilar

908.0 7907.0

Table 4.5: Duplicate rate Calculations according to the discernability results in table

4.4.

The best used function in analyzing dataset was Q-gram and soft-TFIDF while the worst

one was TFIDF. This can be confirmed by observing the plots in figures 4.9, 4.10, 4.11,

4.12 which show the distribution of srel and sirrel. Indeed, the best separation between

relevant and irrelevant data items was achieved by soundex, whilst with TFIDF these items

are often shuffled and/or too close together in the ranking. Table 4 shows that the duplicate

48

deduction for functions are the best. This can be confirmed by observing the plots in figure

4.13,4.14,4.15,4.16 which show the number of points achieved by that threshold interval.

Figure 4.9: distribution relevant and irrelevant as function of the kth block for

function Q-gram.

Figure 4.10: distribution relevant and irrelevant as function of the kth block for

function TF-IDF plot.

49

Figure 4.11: distribution relevant and irrelevant as function of the kth block for

function soft tfidf plot.

Figure 4.12: distribution relevant and irrelevant as function of the kth block for

function soundex plot.

50

Figure 4.13: Q-gram Distribution f(t) and t Curve

Figure 4.14: Tfidf Distribution f(t) and t Curve

t

t

f(n,t)

f(n,t)

51

Figure 4.15: Soft Tfidf Distribution f(t) and t Curve

Figure 4.16: Soundex Distribution f(t) and t Curve

• Blocking Data According to “ADDRESS” Field

Results are shown in table 4.6.

Function F-max Discernability [T-Min , T-Max] T-Best

Q-Gram 92.0 0.38334 [0.46501 , 0.46501] 0.46501

TFIDF 60.0 0.48101 [0.52801 , 0.99001] 0.99001

SoftTFIDF 74.0 0.35934 [0.52801 , 0.63001] 0.63001

Soundex 74.0 0.30834 [0.94601 , 0.94601] 0.94601

Table 4.6: Data Blocking Results according to “ADDRESS” field.

t

t

f(n,t)

f(n,t)

52

Column (ADDRESS_1) using Q-Gram |

Duplicate Dissimilar

1788.0 7027.0

Column (ADDRESS_1) using TFIDF |

Duplicate Dissimilar

580.0 8235.0

Column (ADDRESS_1) using SoftTFIDF |

Duplicate Dissimilar

1190.0 7625.0

Column (ADDRESS_1) using Soundex |

Duplicate Dissimilar

1236.0 7579.0

Table 4.7: Duplicate Calculations according to the discernability results in table 4.6

According to table 6, the best real function for the data set analyzed was Q-gram and the

worst was TFIDF. This can be confirmed by observing the plots in figures 4.17, 4.18, 4.19,

4.20 which show the distribution of srel and sirrel. Indeed, the best separation between

relevant and irrelevant data items was achieved by Q-gram, whilst with TFIDF these items

are often shuffled and/or too close together in the ranking. Table 6 shows that the duplicate

deduction for best function is the best and the worst function calculated the lower rate of

duplicate. This can be confirmed by observing the plots in figures 4.21, 4.22, 4.23, 4.24

which show the number of points achieved by that threshold interval that means the best

precision and adequate function.

53

Figure 4.17: distribution relevant and irrelevant as function of the kth block for

function Q-gram plot.

54

Figure 4.18: distribution relevant and irrelevant as function of the kth block for

function TFIDF plot.

Figure 4.19: distribution relevant and irrelevant as function of the kth block for

function soft tfidf plot.

Figure 4.20: distribution relevant and irrelevant as function of the kth block for

function soundex plot.

55

Figure 4.21: Q-gram Distribution f(t) and t Curve

Figure 4.22: TFIDF Distribution f(t) and t Curve

Figure 4.23: TFIDF Distribution f(t) and t Curve

f(n,t)

t

F(n,t)

t

f(n,t)

t

56

Figure 4.24: Soundex Distribution f(t) and t Curve

4.2.1.2 Blocking Data According to Record while changing blocking

threshold value to (0.75)

The Second stage for our experiments implementations was through taking certain “record”

instead to “field” for making the necessary data blocking. Comparing results for this

experiment with experment in (4.2.1.1) the results were shown in the tables 8,9,10, and

confirmed in figures 25,26.27,28 29,30,31,32,33,34,35,36.

GIVEN_NAME

Function F-max Discernability [T-Min , T-Max] T-Best

Q-Gram 74.0 0.25376 [0.35101 , 0.37801] 0.37801

TFIDF 52.0 0.66334 [0.00101 , 0.99001] 0.99001

SoftTFIDF 82.0 0.58074 [0.00101 , 0.63001] 0.63001

Soundex 84.0 0.29373 [0.86101 , 0.90301] 0.90301

Table4. 8: Comparisons among different similarity functions to “GIVEN_NAME”

field, blocking according to record.

f(n,t)
t

57

Results shown in table 8 shows that the Soundex is the best function for the Given-Name,

means that it doesn’t violate the results in table 1.

Figures 4.25: Q-gram figures 4.26: TFIDF

Figures 4.27: Soft TFIDF figures 4.28: Soundex

SURNAME

Function F-max Discernability [T-Min , T-Max] T-Best

Q-Gram 74.0 0.24026 [0.37801 , 0.37801] 0.37801

TFIDF 58.0 0.41932 [0.52801 , 0.99001] 0.99001

SoftTFIDF 72.0 0.28477 [0.52801 , 0.63001] 0.63001

Soundex 50.0 0.16234 [0.99001 , 0.99001] 0.99001

Table 4. 9: Comparisons among different similarity functions to “SURNAME” field,

blocking according to record.

Results were shown in table 4.9 which shows that Q-gram and Soft TFIDF are the best

function for this field “Surname”, this result matches the results of table 4.3.

58

Figures 4.29: Q-gram figures 4.30: TFIDF

Figures 4.31: Soft TFIDF figures 4.32: Soundex

59

ADDRESS_1

Function F-max Discernability [T-Min , T-Max] T-Best

Q-Gram 128.0 0.42759 [0.27601 , 0.30001] 0.30001

TFIDF 64.0 0.3698 [0.00101 , 0.32501] 0.32501

SoftTFIDF 108.0 0.55315 [0.00101 , 0.40601] 0.40601

Soundex 120.0 0.38962 [0.74101 , 0.74101] 0.74101

Table 4.10: Comparisons among different similarity functions to “ADDRESS” field,

blocking according to record.

Results shown in table 4.10 show that Q-gram is the best function for this field “Address”

that matches the results of table 4.6.

figures 4.33: Q-gram figures 4.34: TFIDF

Figures 4.35: Soft TFIDF figures 4.36: Soundex

60

4.3 Finding

Based on the above results, duplicate numbers in our decisions model are shown below in

table 4.11. Ranking the used similarity functions were according to the used “field” and

duplicate rate calculation was according to different similarity function to each determined

filed. Those results approved the first stage results, where Soundex function was the best

one for the “Given-Name”, “Hybrid” and “Q-gram” were better for the “Surename”, and Q-

gram was the best function to use for “Address”. TFIDF similarity function was the worst

one to use for all fields and we show that the Q-gram and soundax functions calculate the

same duplicate rate but Q-gram is not adequate because it fails to correctly separate

relevant item from irrelevant item in blocks in a consistent manner. Consequently, this

similarity function calculates items as duplicate where they are not duplicated and vice

versa.

**Column (GIVEN_NAME) using Soundex | Column (SURNAME) using Q-Gram |

Column (ADDRESS_1) using Q-Gram | best

Duplicate Dissimilar

1574.0 7241.0

*Column (GIVEN_NAME) using Q-Gram | Column (SURNAME) using Q-Gram |

Column (ADDRESS_1) using Q-Gram |

Duplicate Dissimilar

1390.0 7425.0

Column (GIVEN_NAME) using TFIDF | Column (SURNAME) using Q-Gram |

Column (ADDRESS_1) using Q-Gram |

Duplicate Dissimilar

1158.0 7657.0

Column (GIVEN_NAME) using SoftTFIDF | Column (SURNAME) using Q-Gram |

Column (ADDRESS_1) using Q-Gram |

61

Duplicate Dissimilar

1381.0 7434.0

Column (GIVEN_NAME) using Soundex | Column (SURNAME) using TFIDF |

Column (ADDRESS_1) using Q-Gram |

Duplicate Dissimilar

1443.0 7372.0

**Column (GIVEN_NAME) using Soundex | Column (SURNAME) using SoftTFIDF |

Column (ADDRESS_1) using Q-Gram | best

Duplicate Dissimilar

1584.0 7231.0

Column (GIVEN_NAME) using Soundex | Column (SURNAME) using Soundex |

Column (ADDRESS_1) using Q-Gram |

Duplicate Dissimilar

1516.0 7299.0

Column (GIVEN_NAME) using SoftTFIDF | Column (SURNAME) using Q-Gram |

Column (ADDRESS_1) using Q-Gram |

Duplicate Dissimilar

1381.0 7434.0

Column (GIVEN_NAME) using SoftTFIDF | Column (SURNAME) using Q-Gram |

Column (ADDRESS_1) using TFIDF |

Duplicate Dissimilar

874.0 7941.0

Column (GIVEN_NAME) using SoftTFIDF | Column (SURNAME) using Q-Gram |

Column (ADDRESS_1) using SoftTFIDF |

Duplicate Dissimilar

1182.0 7633.0

Column (GIVEN_NAME) using SoftTFIDF | Column (SURNAME) using Q-Gram |

Column (ADDRESS_1) using Soundex |

Duplicate Dissimilar

62

1330.0 7485.0

Column (GIVEN_NAME) using TFIDF | Column (SURNAME) using TFIDF |

Column (ADDRESS_1) using TFIDF | bad

Duplicate Dissimilar

498.0 8317.0

Column (GIVEN_NAME) using SoftTFIDF | Column (SURNAME) using SoftTFIDF |

Column (ADDRESS_1) using SoftTFIDF |

Duplicate Dissimilar

1185.0 7630.0

Column (GIVEN_NAME) using Soundex | Column (SURNAME) using Soundex |

Column (ADDRESS_1) using Soundex |

Duplicate Dissimilar

1463.0 7352.0

Table 4.11: Duplicate Rate Results for the Second Stage of Experiments

4.4 Discussion

Da silva (2007) proposes measure called discernability, which was used to compare a

number of similarity functions applied to an experimental data set to measure quality of

similarity function, Results of his study can be summarized as follows:

One similarity function can be considered better than another if it provides better separation

of relevant and irrelevant data items returned in response to a query.

According to his approach, a similarity function that has a higher fmax is considered better

than another function that has a smaller fmax. Also, the size of the range of the interval for

tbest is another indicator of the quality of the function. In our approach we used the same

measure on blocks of data set instead of query .we found that, a similarity function that has

63

a higher fmax is considered better than another function that has a smaller fmax so the

similarity function which has high fmax,it calculates high rate of duplicate but the size of

the range of the interval for tbest is not presented another indicator because the value of

= , mostly .

In our approach and da silva (2007) the problems are:

1- Process relies on human intervention.

2-What should be the size of the sample used for the evaluation?

3-Quality of a similarity function varies with different data sets.

64

CHAPTER FIVE

 CONCLUSION AND FUTURE WORK

 5.1Conclusion

Similarity functions is a mean processes in several data management application such as

duplicate detaction and similarity query to defining whether two data represent the same

real world .similarity function return score if similarity score greater than define threshold

the objects are same ,there are wide range of similarity function . It is difficult choose

suitable function in this thesis we used a measure called disernabilety(ability of the

similarity function)which was used to compare a number of similarity functions applied to

an experimental data set to chose adequate function in duplicate detection application.

The results of this thesis emphasize the fact that the Discernability method in addition the

Query similarity can be applied in duplicate detection

Based on the results of this study, determining the adequate function to matching duplicate

can be done in an early stage using the Duplicate Detection process instead of reaching the

last stage to determine the adequate function using the Precision/ Recall method.

Therefore, the accurate result means that similarity function has succeeded to separate

relevant from irrelevant items so that the function which calculates high duplicate rate is

not necessarily the most suitable function for this field or record. This is due to the fact that

the similarity function may provide inaccurate information by determining some objects as

relevant while they are irrelevant leading to a risk in the accuracy of the database which

65

may have a negative effect on the integrity and precision of data specially in sensitive

industries such as medical data.

When using the Discernability measure, it enables the user to utilize the used data based on

his/ her needs. Therefore, the user will have the option to decide whether he/ she needs the

data to be accurate or with a number of recall precision or a balance of both.

5.2 Future Work

Our work on quality of similarity function is how to choose the adequate function. The

main problem in the study lies in the need for the human intervention which is needed to

identify relevant from irrelevant data items since the process is semi- automatic. Based on

results of Santos et al, (2010), an automatic method is proposed and might be possibly

employed. Other suggestions are:

 - Using other similarity function or a hybrid of sundex and characteristic functions can be

focused at in future work to provide more accurate results in the different fields.

-The traditional blocking method was used in this thesis, however; other blocking methods

can be used as well.

- The study used content-based approach. Thus, it is recommended to conduct research

using the structural – based approach or mixing both approaches.

- In current study, the researcher used English dataset. It is recommended to conduct future

studies loc using on Arabic dataset.

66

 REFERENCES

.

ALdummor, R.M. 2010. Performance Evaluation of Blocking Methods for Duplicate
Record Detection, Department of Computer Information Systems, Faculty of

Information Technology, Middle East University, Amman, Jordan.

AL-khalifa, S. YU, C. & JAGADISH, HV. Querying Structured Text In An Xml Database. In:
Proceedings of the 29th ACM SIGMOD international conference on management of
data (SIGMOD). 2003. ACM.

BATINI, C. and SCANNAPIECO, M. 2006. Data Quality: Concepts, Methodologies and

Techniques, Springer. USA.

Baeza-Yates, R.A., Baeza-Yates, R., Ribeiro-Neto, B. 1999. Modern Information
Retrieval. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA.

Bilenko M. 2003. Learnable Similarity Functions and Their Applications to Record

Linkage and Cluttering. PHD proposal. Department of Computer Science. University of
Texas. Austin.

Broder, A. 1997. On The Resemblance and Containment of Documents. In: Proceedings
of the compression and complexity of sequences (SEQUENCES). IEEE Computer Society,
Washington.

Chapman, S. 2004. SimMetrics: a Java and C# .NET Library of Similarity Metrics.
Available at: http://sourceforge.net/projects/simmetrics/ ,
Accessed in: 13th March 2011.

 CHAUDHURI, S. GANTI, V. and KAUSHIK, R. A primitive operator for similarity joins in data

 cleaning. In: Proceedings of the 22nd international conference on data engineering (ICDE).
 2006. Washington, IEEE Computer Society.

Christen, P. and Goiser, K. Quality and Complexity Measures for Data Linkage and
Deduplication. Quality Measures in Data Mining, Studies in Computational Intelligence.
43. pp. 127-151.

Cohen, W. Ravikumar, P. and Fienberg, S. 2003. A Comparison of String Metrics for

Matching Names and Records. In Proceedings of the KDD-2003 Workshop on Data
Cleaning, Record Linkage, and Object Consolidation. 2003a. Washington, DC.

67

Dorneles C.F. Goncalves, R. and Mello, R.D.S. 2010. Approximate data instance

matching: a survey. Springer. 27 (1). London.

 Da Silva, R. K. Stasiu, V. M. Orengo, and C. A. Heuser.2007 Measuring quality

 of similarity functions approximate data matching. Journal of Informetrics,1(1):35{46,

 January 2007.

Elfeky, M. Vevykios, V. and Elmagarmid, A. TAILOR: A Record Linkage Toolbox. In:
Proceedings of the 18th Int. Conf. on Data Engineering. 2002. IEEE.

Elmagarmid, A.K.1 Ipeirotis, P.G.2 and Verykios, V.S.3 2007. Duplicate Record Detection:
A Survey. IEEE Transactions on Knowledge and Data Engineering. 19(1). 1Senior
Member, IEEE. 2Member, IEEE Computer Society. 3Member, IEEE Computer Society.

Fellegi, I.P. and Sunter, A.B. 1969. A Theory for Record Linkage. Journal of the

American Statistical Association. 64(328). pp. 1183–1210.

GILL, L.E. OX-LINK: The Oxford Medical Record Linkage System. Proc. Int’l Record

Linkage Workshop and Exposition. 1997.

Gravano, L. Iperrotis, P.G. Jagadissh, H.V. Koudas, N. Muthukrishnan, S. Pietainen, L.
and Srivastava, D. 2001. Using Q-Grams in a DBMS for Approximate String Processing.
IEEE. 24(4). pp. 28-34.

Gravano, L. Ireirotis, P.G. Koudas, N. and Srivastava, D. 2003. Text Joins In an Rdbms
For Web Data Integration. In WWW 2003, pages 90{101, New York, NY, USA, 2003.
ACM Press.
Available at: http://portal.acm.org/citation.cfm?id=775166

HERNÁNDEZ M. and STOLFO S. 1998. Real-world Data is Dirty: Data Cleansing and The
Merge/Purge Problem. Journal of Data Mining and Knowledge Discovery. 2 (1). pp. 9 –
37.

Herzog, TH.N. Scheuren, F.J. and Winkleir W.E. 2007. Data Quality and Record Linkage

Techniques. Springer.

Heuser, C.A. Krieser, F.N.A. and Orengo, V.M. 2007. SimEval - A Tool for Evaluating the
Quality of Similarity Functions. UFRGS - Instituto de Informtica. Brazil, Copyright
©2007, Australian Computer Society, Inc.

Joachims, T. 1999 .Transductive Inference for Text Classification Using Support Vector

Machines. In Proceedings of the Sixteenth International Conference on Machine

Learning (ICML-99). 1999. Bled, Slovenia.

Koudas, N. Marathe, A. and Srivastava. D. 2004. Flexible String Matching Against Large

Databases in Practice. In VLDB. 2004. Toronto, Canada.

68

Kukich, K. 1992. Techniques for Automatically Correcting Words in Text. ACM

Computing Surveys. 24(4). pp. 377-439.

Levenshtein. 1966. Binary Codes Capable of Correcting Insertions and Reversals. Soviet

Physics Doklady. 10 .pp. 707–710.

Lim, E. Srivastava, J. Prabhakar, S. and Richrdson, J. 1996. Entity Identification in

Database Integration. IEEE. 89(1-2). pp. 1–38

Naumann, F. and Herrschel, M. 2010. An Introduction to Duplicate Detection. USA.
Morgan & Claypool Publishers.

Newcombe, H.B Kennedy, J.M. Axford, S.J. and James, A.P. 1959. Automatic linkage of

vital records. Science. 130 (3381). pp. 954–959.

Newcombe, H.B. 1967. Record Linking: The Design of Efficient Systems for Linking
Records into Individual and Family Histories. Am. J. Human Genetics. 19 (3). pp. 335-
359.

Philips, L. 1990. Hanging on the Metaphone. Computer Language Magazine. 7(12). pp.
39-44. Dec. 1990.
Available at: http://www.cuj.com/documents/s=8038/cuj0006philips/.

Russell Index, R.C. U.S. Patent 1,261,167,
Available at: http://www.patft.uspto. gov/netahtml/srchnum.htm

Sutinen, E. and Tarhio, J. On Using Q-Gram Locations in Approximate String Matching.
Proc. Third Anual European Symposium Algorithms (ESA ’95). 1995. UK. Springer-
Verlag.

 Stasiu,R.K., Heuser C.A.,Da Silva,2005, Estimating recall and precision for vague

 queries in databases, in: Advanced Information Systems Engineering, 17th International

 Conference, , Proceedings, Lecture Notes in Computer Science, vol. 3520, Springer, pp.

 187–200

Taft, R.L. 1970. Name Search Techniques. Technical Report Special Report No. 1. New

York State Identification and Intelligence System. Albany, N.Y.

Ukkonen, E. 1992. Approximate String Matching with q-Grams and Maximal Matches.
Theoretical Computer Science. 92(1). pp. 191-211.

Ulimann, J.R. 1997. A Binary n-Gram Technique for Automatic Correction of
Substitution, Deletion, Insertion, and Reversal Errors in Words. The Computer Journal.
20(2). pp. 141-147.

69

APPENDICES

Appendix A: Soundex String-Coding Algorithm

“Soundex String-Coding Algorithm includes the following steps:

1. Capitalize all letters in the word and drop all punctuation marks. Pad the word with

rightmost blanks as needed during each procedure step.

2. Retain the first letter of the word.

3. Change all occurrence of the following letters to '0' (zero): 'A', E', 'I', 'O', 'U', 'H', 'W',

'Y'.

4. Change letters from the following sets into the digit given:

• 1 = 'B', 'F', 'P', 'V'

• 2 = 'C', 'G', 'J', 'K', 'Q', 'S', 'X', 'Z'

• 3 = 'D','T'

• 4 = 'L'

• 5 = 'M','N'

• 6 = 'R'

5. Remove all pairs of digits which occur beside each other from the string that resulted

after step (4).

6. Remove all zeros from the string that results from step 5.0 (placed there in step 3)

7. Pad the string that resulted from step (6) with trailing zeros and return only the first four

positions, which will be of the form <uppercase letter> <digit> <digit> <digit>.”

70

Appendix B

Traditional Blocking Class

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package Blocking;

import java.sql.*;

import ApplicationGlobals.*;

/**

 *

 * @author Administrator

 */

public class Standard {

 public void Standard()

 {}

 public String StartBlocking(double Acceptance) throws SQLException

 {

 String Results = "";

 Statement stmt = null;

 Statement innerStmt = null;

 Statement checkStmt = null;

 String query = "";

 try {

 drdDataBase.DB db = new drdDataBase.DB();

 Connection conn = db.dbConnect();

 query = "update main_data set BLOCKING = null;";

 stmt = conn.createStatement();

 innerStmt = conn.createStatement();

 checkStmt = conn.createStatement();

 innerStmt.execute(query);

 query = "select RECID, KEY1 from main_data order by KEY1 asc;";

 ResultSet rs = stmt.executeQuery(query);

 int nCurrentBlock = 0;

 while (rs.next()) {

 String CurrentKey = rs.getString("KEY1");

 String strCurrentRecoredID = rs.getString("RECID");

 query = "select BLOCKING from main_data where RECID = ".concat(strCurrentRecoredID).concat(";");

 ResultSet rsCheck = checkStmt.executeQuery(query);

 boolean ProcessInnert = false;

 while (rsCheck.next())

 {

 if(rsCheck.getString("BLOCKING") == null)

 {

 ProcessInnert = true;

 }

 }

 if (ProcessInnert)

71

 {

 ProcessInnerSelect(conn, CurrentKey, nCurrentBlock, Acceptance);

 nCurrentBlock = nCurrentBlock + 1;

 }

 }

 }catch (SQLException e) {

 Results = e.getMessage().concat(",,,").concat(query);

 } finally {

 if (stmt != null)

 {

 stmt.close();

 }

 if (innerStmt != null)

 {

 innerStmt.close();

 }

 return Results;

 }

 }

 private String ProcessInnerSelect(Connection conn, String CurrentKey, int nCurrentBlock, double Acceptance) throws

SQLException

 {

 String Results = "";

 Statement updStmt = null;

 Statement innerStmt = null;

 String query = "";

 try {

 query = "select RECID, KEY1 from main_data where BLOCKING is null order by KEY1 asc";

 innerStmt = conn.createStatement();

 updStmt = conn.createStatement();

 ResultSet rsCompareResultSet = innerStmt.executeQuery(query);

 while (rsCompareResultSet.next())

 {

 String ID = rsCompareResultSet.getString("RECID");

 String KEY = rsCompareResultSet.getString("KEY1");

 Blocking.NW nwBlocking = new Blocking.NW(CurrentKey,KEY);

 nwBlocking.fillScoreArray();

 if(nwBlocking.GetSimResults() >= Acceptance)

 {

 query = "update main_data set BLOCKING = ".concat(Integer.toString(nCurrentBlock))

 .concat(" where RECID = ").concat(ID).concat(" and BLOCKING is null");

 updStmt.execute(query);

 }

 }

 Results = "DONE";

 }catch (SQLException e) {

 Results = e.getMessage().concat(",,,").concat(query);

 } finally {

 if (innerStmt != null)

 {

 innerStmt.close();

 }

 return Results;

 }

 }

}

72

Needleman –Wunsch Class

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package Blocking;

/**

 *

 * @author Administrator

 */

public class NW {

 // Using simple linear gap score (-2 per indel)

 // and 4 for a match, -1 for a mismatch

 // Feel free to change this

 public static final int gapscore = -2;

 public static final int matchscore = 4;

 public static final int mismatchscore = -1;

 private String x; // First string

 private String y; // Second string

 private int xlen, ylen; // their lengths

 private int[][] scoreArray;

 public NW(String a, String b) {

 x = a;

 y = b;

 xlen = x.length();

 ylen = y.length();

 scoreArray = new int[ylen+1][xlen+1];

 }

 public void fillScoreArray() {

 int row, col; // for indexing through array

 int northwest, north, west; // (row, col) entry will be max of these

 int best; // will be the max

 // Fill the top row and left column:

 for (col=0; col <= xlen; col++) scoreArray[0][col] = gapscore*col;

 for (row=0; row <= ylen; row++) scoreArray[row][0] = gapscore*row;

 // Now fill in the rest of the array:

 for (row=1; row <= ylen; row++) {

 for (col=1; col <= xlen; col++) {

 if (x.charAt(col-1)==y.charAt(row-1))

 northwest = scoreArray[row-1][col-1] + matchscore;

 else northwest = scoreArray[row-1][col-1] + mismatchscore;

 west = scoreArray[row][col-1] + gapscore;

 north = scoreArray[row-1][col] + gapscore;

 best = northwest;

 if (north>best) best = north;

 if (west>best) best = west;

 scoreArray[row][col] = best;

 }

 }

 }

 public int GetOptimumValue()

 {

 int Opt = 0;

73

 for (int i = 1; i < scoreArray.length; i++)

 {

 Opt = Opt + scoreArray[i][i];

 }

 return Opt;

 }

 public double GetSimResults() {

 double sim = 0;

 for (int i = 1; i < scoreArray.length; i++)

 {

 sim = sim + scoreArray[i][i];

 }

 NW n = new NW(x,x);

 n.fillScoreArray();

 int Opemam = n.GetOptimumValue();

 return (sim/Opemam);

 }

}

74

Qgram Class

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package MatchingAlgorithms;

import java.util.ArrayList;

import java.util.List;

/**

 *

 * @author Administrator

 */

public class Qgram

{

 private class result

 {

 private String theWord;

 private int theCount;

 public result(String w, int c)

 {

 theWord = w;

 theCount = c;

 }

 public void setTheCount(int c)

 {

 theCount = c;

 }

 public String getTheWord()

 {

 return theWord;

 }

 public int getTheCount()

 {

 return theCount;

 }

 }

 private List<result> results;

 public Qgram()

 {

 results = new ArrayList<result>();

 }

 public double getSimilarity(String wordOne, String wordTwo)

 {

 if(wordOne.equals(""))

 {

 return 0;

 }

 List<result> res1 = processString(wordOne, 3);

 //displayResult(res1);

75

 List<result> res2 = processString(wordTwo, 3);

 //displayResult(res2);

 int c = common(res1,res2);

 int u = union(res1,res2);

 double sim = (double)c/(double)u;

 return sim;

 }

 private int common(List<result> One, List<result> Two)

 {

 int res = 0;

 for (int i = 0; i < One.size(); i++)

 {

 for (int j = 0; j < Two.size(); j++)

 {

 if (One.get(i).theWord.equalsIgnoreCase(Two.get(j).theWord)) res++;

 }

 }

 return res;

 }

 private int union(List<result> One, List<result> Two)

 {

 List<result> t = One;

 for (int i = 0; i < Two.size(); i++)

 {

 int pos = -1;

 boolean found = false;

 for (int j = 0; j < t.size() && !found; j++)

 {

 if (Two.get(i).theWord.equalsIgnoreCase(t.get(j).theWord))

 {

 found = true;

 }

 pos = j;

 }

 if (!found)

 {

 result r = Two.get(i);

 t.add(r);

 }

 }

 return t.size();

 }

 private List<result> processString(String c, int n)

 {

 List<result> t = new ArrayList<result>();

 String spacer = "";

 for (int i = 0; i < n-1; i++)

 {

 spacer = spacer + "%";

 }

 c = spacer + c + spacer;

76

 for (int i = 0; i < c.length(); i++)

 {

 if (i <= (c.length() - n))

 {

 if (contains(c.substring(i, n+i)) > 0)

 {

 t.get(i).setTheCount(results.get(i).getTheCount()+1);

 }

 else

 {

 t.add(new result(c.substring(i,n+i),1));

 }

 }

 }

 return t;

 }

 private int contains(String c)

 {

 for (int i = 0; i < results.size(); i++)

 {

 if (results.get(i).theWord.equalsIgnoreCase(c))

 return i;

 }

 return 0;

 }

 private void displayResult(List<result> d)

 {

 for (int i = 0; i < d.size(); i++)

 {

 System.out.println(d.get(i).theWord+" occurred "+d.get(i).theCount+" times");

 }

 }

}

TFIDF Class

package com.wcohen.secondstring;

import java.util.*;

import com.wcohen.secondstring.tokens.*;

77

/**

 * TFIDF-based distance metric.

 */

public class TFIDF extends AbstractStatisticalTokenDistance

{

 public TFIDF(Tokenizer tokenizer) { super(tokenizer); }

 public TFIDF() { super(); }

 public double score(StringWrapper s,StringWrapper t) {

 BagOfTokens sBag = (BagOfTokens)s;

 BagOfTokens tBag = (BagOfTokens)t;

 double sim = 0.0;

 for (Iterator i = sBag.tokenIterator(); i.hasNext();) {

 Token tok = (Token)i.next();

 if (tBag.contains(tok)) {

 sim += sBag.getWeight(tok) * tBag.getWeight(tok);

 }

 }

 //System.out.println("common="+numCommon+" |s| = "+sBag.size()+" |t| = "+tBag.size());

 return sim;

 }

 /** Preprocess a string by finding tokens and giving them TFIDF weights */

 public StringWrapper prepare(String s) {

 BagOfTokens bag = new BagOfTokens(s, tokenizer.tokenize(s));

 // reweight by tdfidf

 double normalizer = 0.0;

 for (Iterator i=bag.tokenIterator(); i.hasNext();) {

 Token tok = (Token)i.next();

 if (collectionSize>0) {

 Integer dfInteger = (Integer)documentFrequency.get(tok);

 // set previously unknown words to df==1, which gives them a high value

 double df = dfInteger==null ? 1.0 : dfInteger.intValue();

 double w = Math.log(bag.getWeight(tok) + 1) * Math.log(collectionSize/df);

 bag.setWeight(tok, w);

 normalizer += w*w;

 } else {

 bag.setWeight(tok, 1.0);

 normalizer += 1.0;

 }

 }

 normalizer = Math.sqrt(normalizer);

 for (Iterator i=bag.tokenIterator(); i.hasNext();) {

 Token tok = (Token)i.next();

 bag.setWeight(tok, bag.getWeight(tok)/normalizer);

 }

 return bag;

 }

 /** Explain how the distance was computed.

 * In the output, the tokens in S and T are listed, and the

 * common tokens are marked with an asterisk.

 */

 public String explainScore(StringWrapper s, StringWrapper t)

 {

// BagOfTokens sBag = (BagOfTokens)s;

// BagOfTokens tBag = (BagOfTokens)t;

// StringBuffer buf = new StringBuffer("");

// PrintfFormat fmt = new PrintfFormat("%.3f");

78

// buf.append("Common tokens: ");

// for (Iterator i = sBag.tokenIterator(); i.hasNext();) {

// Token tok = (Token)i.next();

// if (tBag.contains(tok)) {

// buf.append(" "+tok.getValue()+": ");

// buf.append(fmt.sprintf(sBag.getWeight(tok)));

// buf.append("*");

// buf.append(fmt.sprintf(tBag.getWeight(tok)));

// }

// }

// buf.append("\nscore = "+score(s,t));

// return buf.toString();

 return "";

 }

 public String toString() { return "[TFIDF]"; }

 static public void main(String[] argv) {

 doMain(new TFIDF(), argv);

 }

}

79

Soft FIDF Class

package com.wcohen.secondstring;

import java.util.*;

import com.wcohen.secondstring.tokens.*;

/**

 * TFIDF-based distance metric, extended to use "soft" token-matching.

 * Specifically, tokens are considered a partial match if they get

 * a good score using an inner string comparator.

 *

 * <p>On the WHIRL datasets, thresholding JaroWinkler at 0.9 or 0.95

 * seems to be about right.

 */

public class SoftTFIDF extends TFIDF

{

 // distance to use to compare tokens

 private StringDistance tokenDistance;

 // threshold beyond which tokens are considered a match

 private double tokenMatchThreshold;

 // default token distance

 private static final StringDistance DEFAULT_TOKEN_DISTANCE = new JaroWinkler();

 public SoftTFIDF(Tokenizer tokenizer,StringDistance tokenDistance,double tokenMatchThreshold) {

 super(tokenizer);

 this.tokenDistance = tokenDistance;

 this.tokenMatchThreshold = tokenMatchThreshold;

 }

 public SoftTFIDF(StringDistance tokenDistance,double tokenMatchThreshold) {

 super();

 this.tokenDistance = tokenDistance;

 this.tokenMatchThreshold = tokenMatchThreshold;

 }

 public SoftTFIDF(StringDistance tokenDistance) {

 this(tokenDistance, 0.9);

 }

 public void setTokenMatchThreshold(double d) { tokenMatchThreshold=d; }

 public void setTokenMatchThreshold(Double d) { tokenMatchThreshold=d.doubleValue(); }

 public double getTokenMatchThreshold() { return tokenMatchThreshold; }

 public double score(StringWrapper s,StringWrapper t) {

 BagOfTokens sBag = (BagOfTokens)s;

 BagOfTokens tBag = (BagOfTokens)t;

 double sim = 0.0;

 for (Iterator i = sBag.tokenIterator(); i.hasNext();) {

 Token tok = (Token)i.next();

 if (tBag.contains(tok)) {

 sim += sBag.getWeight(tok) * tBag.getWeight(tok);

 } else {

 // find best matching token

 double matchScore = tokenMatchThreshold;

 Token matchTok = null;

 for (Iterator j=tBag.tokenIterator(); j.hasNext();) {

 Token tokJ = (Token)j.next();

 double distItoJ = tokenDistance.score(tok.getValue(), tokJ.getValue());

 if (distItoJ>=matchScore) {

 matchTok = tokJ;

80

 matchScore = distItoJ;

 }

 }

 if (matchTok!=null) {

 sim += sBag.getWeight(tok) * tBag.getWeight(matchTok)

* matchScore;

 }

 }

 }

 //System.out.println("common="+numCommon+" |s| = "+sBag.size()+" |t| = "+tBag.size());

 return sim;

 }

 /** Explain how the distance was computed.

 * In the output, the tokens in S and T are listed, and the

 * common tokens are marked with an asterisk.

 */

 public String toString() { return "[SoftTFIDF thresh="+tokenMatchThreshold+";"+tokenDistance+"]"; }

}

81

Soundex Class

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package MatchingAlgorithms;

/**

 *

 * @author Administrator

 */

public class Soundex {

 public Soundex()

 {}

 public double Calculate(String A, String B)

 {

 uk.ac.shef.wit.simmetrics.similaritymetrics.Soundex objSoundex = new

uk.ac.shef.wit.simmetrics.similaritymetrics.Soundex();

 return (double)objSoundex.getSimilarity(A, B);

 }

}

82

Appendix C:

Similarity Functions’ Results for the “GIVEN-NAME” field while changing Blocking

Numbers

When n=60

Discernability

GIVEN_NAME

Function F-max Discernability [T-Min , T-Max] T-Best

Q-Gram 76.0 0.31667 [0.43501 , 0.43501] 0.43501

TFIDF 50.0 0.33284 [0.74101 , 0.99001] 0.99001

SoftTFIDF 72.0 0.3 [0.94601 , 0.94601] 0.94601

Soundex 106.0 0.44167 [0.94601 , 0.94601] 0.94601

Column (GIVEN_NAME) using Soundex |

Duplicate Dissimilar

1023.0 7792.0

When n=50

Discernability

GIVEN_NAME

Function F-max Discernability [T-Min , T-Max] T-Best

Q-Gram 58.0 0.24167 [0.43501 , 0.43501] 0.43501

TFIDF 42.0 0.29951 [0.74101 , 0.99001] 0.99001

SoftTFIDF 58.0 0.24167 [0.94601 , 0.94601] 0.94601

Soundex 90.0 0.375 [0.94601 , 0.94601] 0.94601

When n=40

Discernability

GIVEN_NAME

Function F-max Discernability [T-Min , T-Max] T-Best

Q-Gram 46.0 0.19167 [0.43501 , 0.43501] 0.43501

TFIDF 34.0 0.26617 [0.74101 , 0.99001] 0.99001

SoftTFIDF 48.0 0.20001 [0.94601 , 0.94601] 0.94601

Soundex 72.0 0.3 [0.94601 , 0.94601] 0.94601

83

When n=30

Discernability

GIVEN_NAME

Function F-max Discernability [T-Min , T-Max] T-Best

Q-Gram 32.0 0.13334 [0.43501 , 0.43501] 0.43501

TFIDF 24.0 0.22451 [0.74101 , 0.99001] 0.99001

SoftTFIDF 32.0 0.13334 [0.94601 , 0.94601] 0.94601

Soundex 56.0 0.23334 [0.94601 ,0.94601] 0.94601

When n=25

Discernability

GIVEN_NAME

Function F-max Discernability [T-Min , T-Max] T-Best

Q-Gram 26.0 0.18784 [0.27601 , 0.43501] 0.43501

TFIDF 20.0 0.20784 [0.74101 , 0.99001] 0.99001

SoftTFIDF 26.0 0.10834 [0.94601 , 0.94601] 0.94601

Soundex 46.0 0.21367 [0.94601 , 0.99001] 0.99001

Column (GIVEN_NAME) using Soundex |

Duplicate Dissimilar

1010.0 7805.0

When n=20

GIVEN_NAME

Function F-max Discernability [T-Min , T-Max] T-Best

Q-Gram 24.0 0.10001 [0.37801 , 0.37801] 0.37801

TFIDF 18.0 0.56951 [0.00101 , 0.99001] 0.99001

SoftTFIDF 22.0 0.09167 [0.94601 , 0.94601] 0.94601

Soundex 36.0 0.17201 [0.94601 , 0.99001] 0.99001

Column (GIVEN_NAME) using Q-Gram |

Duplicate Dissimilar

1225.0 7590.0

