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Abstract 
 

Services Specific Overlay Networks are virtual networks built on top of the 

physical computer network to meet the users’ specific requirements. They are basically 

used to deliver multimedia content from a streaming media server to the user.  A central 

component to this kind of networks is the media ports. They are network side functions 

that offer extra tasks such as catching, synchronization, and adaptation for the 

multimedia content.  

Having a specific overlay network for each user implies that huge number of 

overlay networks will coexist. This could lead to competition on the media ports. In 

addition to that, users may join and leave the network which will render managing this 

huge number of networks a complex task. 

In this thesis, we propose a self-load balancing scheme for service specific 

overlay networks. It is intended to balance the loads between media ports, which will 

fairly distribute tasks between media ports to increase its efficiency. The proposed 

solution builds a quadtree overlay, quantifies the media ports’ resources, and encodes 

the quantified values into an incoming edges overlay. Self-load balancing is then 

achieved by sending tasks to the highest in degree media ports. 
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1.1 Introduction 

Autonomic Computing (AC), where technology manages technology, was 

motivated by the increasing of technology complexity, the increased size of computing 

infrastructure, and the ballooning maintenance costs of infrastructure, and the shortages 

of skilled labor (IBM Corporation, 2006). Overlay networks face the same challenges. 

They are growing so fast, they are being deployed on the fly without special 

equipments, they are being used to solve problems in network routing, and they are 

being used to realize services that can't be implemented otherwise (Khalid, Haye, Khan, 

& Shamail, 2009), (IBM Corporation, 2006)  (Al-Oqily, & Karmouch, 2008). 

Also the expression outgrowth of networks and services has lead to new complex 

mediums. To survive with this convolution, IBM Corporation proposed AC in (IBM 

Corporation, 2006). It permits systems to run and control themselves as an alternative of 

relying on IT specialists. Overlay networks are receiving a great concentration due to 

the reliable and effective services that they provide. One type of overlay networks is 

being designed to meet user's requirements. It is called Service Specific Overlay 

Networks (SSONs).  It is a service definite in the wisdom that it is tailored to a definite 

user for a definite type of service. It has been proposed for multimedia delivery sessions 

(Al-Oqily, and Karmouch, 2008).To connect the gap between clients and the network 

and to be able to make available seamless services, the SSONs use network side 

functions called Media Ports (MPs). MPs make available value further functionality to 

the overlay such as media caching, media synchronization, media adaptations and 

routing.  With the augmented number of mobile clients and services, SSONs 

management is becoming more complex and hard to achieve using traditional methods 

(Khalid, Haye, Khan, and Shamail, 2009), (IBM Corporation, 2006)  (Al-Oqily, and 

Karmouch, 2008). 
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Runs and controls SSONs involve creating, adapting and terminating them. Since a 

huge number of them may coexist in the network, creating them and assigning network 

resources such as MPs are not a trouble-free mission.   

Al-Oqily, Karmouch, and Glitho, (2008) proposed Autonomic Overlay (AO) to 

solve the management complexity and to handle with the augmented claim of creating 

and deploying new services. Composition and self-organizing schemes have also been 

proposed by (Al-Oqily, Karmouch, 2008) to create and maintain SSONs in such an 

autonomic situation.  

 

1.2 Problem Definition 

Users in certain locality (domain) usually tend to request the same kind of services. 

In other words, if they are interested in watching a certain movie or video clip from a 

certain streaming video server, another close group might be interested in the same 

video as well. Since those users are close to each other and based on the locality scheme 

in creating SSONs, the same set of MPs is being reused each time. Based on this 

scenario, the following problems have been identified: 

1. The miss distribution of tasks among MPs is a major cause for network 

inefficiency (Al-Oqily, Karmouch, 2008).  

2. Exploiting local knowledge only when searching for MPs. Such way could 

result in using a subset of the available MPs and ignoring the rest.  

3. The network environment is dynamic; users may leave and join at any time thus 

achieving load balancing is challenging.  

4. A set of MPs is overloaded while another set is idle. This is a load-balancing 

problem. 
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MPs have their own resource limitations they can leave and join the network as they are 

owned by the network provider. In a dynamic network, a single set of MPs may not be 

able to cope with the ever increased users requirements. Moreover, users at a certain 

time may be interested in the same type of the services but each one of them has 

different device and service requirements. As shown in Figure 1.1, this will result in 

overloaded MPs while the others are less loaded which has a clear negative impact on 

the network performance and the Quality of Service (QoS). Therefore, it is essential to 

device ways where load balancing is achieved between the available MPs.  

 

 

 

Figure 1.1 MPs at certain area in the network are overloaded while other MPs are less 
overloaded. 
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1.3 Objectives 

This thesis has the following objectives: 

1. Review the state of the art in AC, SSONs, load balancing, and self-load 

 balancing. 

2. Deeply study the network environment in order to identify the different 

 parameters that can affect self-load balancing. 

3. Design a distributed algorithm that can achieve self-load balancing between 

 MPs. 

4. Maintain the users’ requested Quality of  Service (QoS), and efficiently 

distribute resources between SSONs to increase and maintain network 

performance. 

 

1.4 Motivation 

Overlay networks are getting great attention due to their flexibility, ability to 

provide new services, and for their low cost, as they do not require the installation of 

new devices or equipments. This, in addition to the increased development of mobile 

applications and the ever-increasing demand on new and novel services designed 

specifically to meet users' requirements has led to the introduction of SSONs. 

MPs have their own resource limitations they can leave and join the network, as the 

network provider owns them. In a dynamic network, a single set of MPs may not be 

able to cope with the ever-increased users requirements. Moreover, users at a certain 

time may be interested in the same type of the services but each one of them has 
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different device and service requirements. This will result in overloaded MPs while the 

others are less loaded which has a clear negative impact on the network performance 

and the service QoS. Network providers install MPs and wish to maximize their profit, 

while service providers wish to reduce the cost of using MPs and to satisfy users. These 

are two conflicting goals. Load balancing seems to bring them into an equilibrium state.  

In one hand, load balancing will utilize MPs efficiently and will distribute the load 

between them which leaves the network environment stable and problem free, on the 

other hand, with load-balanced services users' satisfaction can be achieved through 

providing services that satisfy their requirements. Therefore, it is essential to device 

ways with which load balancing can be achieved. 

 

1.5  Contributions 

The contributions of this thesis are as follow:  

1.  A Self-Load Balancing scheme for MPs is presented and discussed. The 

presented scheme uses an indexing method to build a hierarchical structure 

known as a distributed quad tree. It encodes the available resources in each MP 

and presents it as overly incoming edges.  

2. A formula to quantify MPs power, i.e the amount of available resources in the 

MP. It takes into consideration the MPs types and their relation to the MP 

internal resources.  

3. Building an overlay network that maps MPs power for all MPs into incoming 

edges to these MPs thus facilitating the process of distributing tasks between 

MPs by following the edges that point to less used MPs.  
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1.6  Study Boundaries 

This work considers a network environment that is distributed, intelligent and 

autonomic. Where the concept of distributed implies this existent of no global entity. 

Furthermore, the concept of AC implies that each autonomic entity (node, computer, or 

MP) is self-managed. This can be interpreted, as "there is no authority higher than the 

autonomic entity". Besides, it is based on the AONs and focuses on the SSONs as 

proposed for multimedia delivery sessions. In addition, the main form of 

communications between each autonomic entity such as MPs is only via messaging 

(Khalid, Haye, Khan, & Shamail, 2009), (IBM Corporation, 2006) & (Al-Oqily, & 

Karmouch, 2008).  
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1.7 Thesis Structure 

This thesis includes eight chapters; the preceding chapter gives an introduction 

about this thesis. Chapter two presented the background regarding AC, A-SSON and the 

realization of AO then, will shed light in the field of self-load balancing, distributed 

load balancing, and finally talking about Quad Tree (QT) and Distributed Quad Tree 

(DQT).  

Chapter three presents literature survey and related work for the thesis, showing the 

related work regarding load balancing in different domains and DQT implementations. 

Chapter four introduces the methodology used through this thesis including the 

Comprehensive Literature Survey, a design of a self-load balancing scheme. However, 

chapter five goes within the implementation of the proposed methodology of the self 

load balance scheme. Chapter six discusses experimental evaluation of the ability of 

building self-load balancing scheme for (AO) networks. Chapter seven discusses 

verification and validation of the designing of a self load Balancing scheme. Chapter 

eight has conclusions and the future work of this thesis. The last chapter illustrates the 

references. Algorithms were defined and written using the standard programming code 

(pseudo code), and were tested and proved using java simulator. 
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2.1 Overview 

This chapter presents the necessary background information that is needed to 

better understand the types of applications that are targeted and their working 

environment. In addition to that, it presents all the necessary concepts and terminology 

required.  

    

2.2 Autonomic Computing (AC) 

This section presents a brief review of Autonomic Computing (AC), Autonomic 

Service Specific Overlay Networks (A-SSON), Autonomic Overlays (AO) self-

composition, Quadtree, and Morton Ordering.  

IBM Corporation claimed that (IBM Corporation, 2006) the current technology 

faces the challenge of increased complexity, cost, and heterogeneity. Communications 

and software technologies are growing rapidly; though, the scale & complexity have 

grown as well. The growth in system/application development, configuration, and 

management have begun to overcome existing tools and methodologies, which are 

rapidly making systems/apps fragile, unmanageable, and insecure. Therefore, there is a 

great demand to change the ways in which these systems are managed as proposed by 

(Al-Oqily, Karmouch,  & Glitho, 2008). IBM Corporation in 2001 introduced the 

concept of AC to overcome this complexity. It is inspired from the human biological 

system. IBM envisioned a computing environment with the capability to manage itself 

and dynamically adapt to change in accordance with business policies and objectives 

through a set of self-managing functions such as self-configuring, self-healing, self-

optimizing, and self-protecting.  
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To this end an architectural blueprint for AC has been proposed by IBM and has 

been revised in 2002 by (Lohman, & Lightstone 2002), 2003 by (Chess, & Kephart, 

2003), 2004 by (Hariri, & Parashar, 2004), 2005 by (Berk, Cybenko, & Roblee, 2005), 

and finally in 2006 by (IBM Corporation, 2006). The blueprint defines concepts and 

constructs for building self-managing abilities into modern computer systems as well as 

architectural building blocks of these abilities. The goal of AC is thus to manage 

complexity (technology manages technology), to reduce cost of ownership (automation 

reduces human involvement/error) and to enhance other software qualities by (Khalid, 

Haye, Khan, & Shamail, 2009). AC systems are used to automate the management of a 

resource (Hardware or software) such as storage, server, network, etc. The resource is 

monitored for significant events and controlled accordingly. An interface is used for 

sensing a change in the monitored resources and another is used to enforce a behavior 

for managed resources to react astronomically and manage the targeted environment 

with minimal human intervention as proposed by (IBM Corporation, 2006), (Hariri, & 

Parashar, 2004), (Berk, Cybenko, & Roblee, 2005) [2,3,29]. For the management 

continuity, the four phases control loop as shown in Figure 2.1 is introduced, these are: 

1. Monitor: the monitor function provides the mechanisms that collect, aggregate, 

filter and report details (such as metrics and topologies) collected from a managed 

resource.  

2. Analyze: the analyze function provides the mechanisms that correlate and model 

complex situations (e.g., time-series forecasting and queuing models). 

3. Plan: the plan function provides the mechanisms that construct the actions 

needed to achieve goals and objectives; it uses policy information to guide its work. 
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4. Execute: the execute function provides the mechanisms that control the 

execution of a plan with considerations for dynamic updates. 

 

 

 

Figure 2.1 Functional details of an autonomic manager (IBM Corporation, 2006). 

 

2.2.1 Autonomic Service Specific Overlay Networks (A-SSON) 

 

The SSONs are overlay networks built and setup for a single service. This 

overlay is usually customized to meet the user's request. Since different users may need 

different types of overlays, the setup process is pretty different for each user as 

proposed by (Al-Oqily, Karmouch, & Glitho, 2008). SSONs have been proposed in the 

context of the Ambient Networks (ANs) project (Abrahamsson, & Gunnar, 2004). The 

network environment is dynamically changing and heterogeneous as it consists of 

potentially a large number of independent, heterogeneous mobile nodes, with 

spontaneous topologies that can logically interact with each other to share a common 
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control space, known as the Ambient Control Space (ACS). ANs are also flexible i.e. 

they can compose and decompose dynamically and automatically, for supporting the 

deployment of cross-domain (new) services. Thus, the AN architecture must be 

sophisticatedly designed to support such high level of dynamicity, heterogeneity and 

flexibility. Thus, SSONs are used in ANs. They are created on-demand according to 

specific service requirements, they have to deliver, and to automatically adapt services 

to the dynamically changing user and network context.  

Al-Oqily, Karmouch, & Glitho, ( 2008) proposed in  AO draw upon IBM’s vision and 

blueprint described earlier. In their proposal, overlays are viewed as a dynamic 

organization for self management in which self-interested nodes can join or leave 

according to their goals. Establishing SSONs involves Resource discovery to discover 

network side nodes that support the required media processing capabilities. An 

optimization criterion is needed to decide which nodes should be included in the overlay 

network, configure the selected overlay nodes; adapt the overlay to the changing 

network context, user, or service requirements, and join and leaving nodes.  

 

2.2.2 Autonomic Overlays (AO) self-composition  

The objective of the proposed architecture (see Figure 2.2) is to create AO that are 

driven by different levels of policies. Policies are generated at different levels of the 

autonomic management hierarchy and enforced on the fly. SSON construction uses 

network side functions, called Media Ports. MPs, thereby, provide the flexibility to 

modify the content and the services, such as caching, adaptation and synchronization. 

Every service consists of an allocation of resource amounts to perform a function. In 

AO, each step imposes a set of minimum requirements. Resource discovery scheme 

should be: distributed and not rely on a central entity, dynamic to cope with changing 
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network conditions, efficient in terms of response time which is the difference between 

the starting time of the query and the arrival time of the reply.   

 

Moreover, message overhead which is the total number of generated messages. Should 

be accurate in terms of its success rate, which is defined as the number of requests that 

receives positive responses divided by the total number of queries. Optimization is 

mapped into a self-optimization that: selects resources based on an optimization 

criterion (such as delay, bandwidth, etc.). It should yield the cheapest overlay; overlay 

with the least number of hops, overlay that is load-balanced, low latency overlay 

network, and a high bandwidth overlay network. The configuration is mapped into a 

self-configuration and self-adaptation: Self-configuring SSONs dynamically configure 

themselves on the fly, they can adapt their overlay nodes immediately to the joining and 

leaving nodes, and to the changes in the network environment. Self-adapting SSONs 

self-tune their constituent resources dynamically to provide uninterrupted service. 

 

 

Figure 2.2 Autonomic Overlay Architecture (Al-Oqily, Karmouch, & Glitho, 
2008) 
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As shown in Figure 2.2. The AO architecture is a layered architecture where the lowest 

layer contains the system resources that are needed for multimedia delivery sessions. 

MPs are special network side components that provide valuable functions such as 

special routing capabilities, caching, and adaptation. The Overlay Support Layer (OSL) 

receives packets from the network, sends them to the network, and forwards them on to 

the overlay.  

The next layer contains the overlay nodes. The second layer Overlay nodes are 

physical Ambient Network nodes that have the necessary capabilities to become part of 

the SSON. They consist of a control plan and a user plan. The control plan is 

responsible for the creation, routing, adaptation, and termination of SSONs, while the 

user plan contains a set of managed resources. The self-management functions of 

overlay nodes are located in the control plan. The Ambient manageability interfaces are 

used by the self-managing functions to access and control the managed resources. The 

next layer SSON Autonomic Manager (SSON-AM) is responsible for tackling the 

complexity of overlay management; each SSON is managed by an SSON Autonomic 

Manager (SSON-AM) that dictates the service performance parameters. This ensures 

the self-load functions of the services. In addition to this, overlay nodes are made 

autonomic to self-manage their internal behavior and their interactions with other 

overlay nodes. So, in this thesis, be sure which system is widely performed. A single 

SSON-AM alone is only able to achieve self-management functions for the SSON that 

it manages. If a large number of SSONs in a given network with their autonomic 

managers are considered, it is observable that these SSONs are not really isolated. On 
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the one hand, each overlay node can be part of many SSONs if it offers more than one 

service or if it has enough resources to serve more than one session. 

 On the other hand, the SSONs’ service paths may overlap, resulting in two or 

more SSONs sharing the same physical or logical link. This will lead to a competition 

between autonomic managers that are expected to provide the best achievable 

performance. Therefore, and in order to achieve a system wide autonomic behavior, the 

SSON-AMs need to coordinate their self-managing functions; this is achieved by using 

SAMs. The top layer System Autonomic Managers (SAM) manages the different SSON 

managers by providing them with high-level directives and goals. In other words, SAMs 

can manage one or more SSON-AMs. They pass the system high-level policies, such as 

load balancing policies, to the SSON-AMs as shown in Figure 2.3. A SSON-AM can 

manage one or more overlay nodes directly to achieve its goals and receive goal policies 

from the SAMs to decide the types of actions that should be taken for their managed 

resources.  Therefore, the overlay nodes of a given SSON are viewed as its managed 

resources. In addition, they expose manageability interfaces to other autonomic 

managers, thus allowing SAMs to interact with them in much the same way that they 

interact with the Overlay Node AMs.  
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Figure 2.3 The relationships between SAM and SSON-AM (Al-Oqily, Karmouch, & 
Glitho, 2008). 

 

 

2.2.3 Quadtree 

In this section, will try to cover all aspects of quadtree starting by defining the 

quadtree. Next, we will go to state how it works. When reviewing the literature a 

different definition (illustrated below) was found: 

A. A quad tree, occasionally quadtree, Q-tree or QT, is a computer science term 

that refers to a method of organizing data in four quadrants. Databases sometimes use 

quad trees to store and find their records. This type of organizational structure work 

especially well to find a particular bit or pixel in a two-dimensional image (Dooley, 

2004), (Harwood, Samet & Tanin, 2005), ( Gorman, Popinet, Rickard  & Tolman, 

2010). 

B. The quad tree somewhat follows the tree data structure commonly used in the 

computer science. The normal tree data structure looks like an upside down tree, where 

a parent node at the top of the tree has one or more children nodes connected to it. 

Every other node on the tree has one parent node and can have any number of children 

nodes, including zero (Mir, & Ko, 2006), (Tayeb, Ulusoy, &  Wolfson, 1998), 

(Schuster, & Katsaggelos, 1998). 

C. A quadtree is a type of tree structure in which each node has up to four children. 

Quadtrees are commonly used to divide 2D spaces into smaller areas. They are similar 

to octrees. The advantage of using quadtrees, like other trees, is that it can be quickly 

searched. For instance, a tree storing sixteen pieces can be searched in only two search 
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iterations. A tree storing 64 pieces of data can be searched in only three iterations (Ang, 

& Samet, 1989), (Oliver, & Wiseman, 1983), (Samet, & Shaffer, 1986). 

D. Quadtrees are a well-established technique in computer graphics and computer 

visions for representing a 2D shape. A quadtree is a tree of data structure with each tree 

node having up to four children. A quadtree node usually represents a square, which can 

be subdivided into four other squares, which cover the same area. Each leaf node is 

marked as being part of the object or not (Manolopoulos, Tzouramanis, & 

Vassilakopoulos 2000), (Dehne, Ferreira, & Rau-chaplin 1991), (Mazumder, 1987). 

Now, how the quadtree works will be explained. A quadtree, like other tree 

structures, has three main components. The first is a "root" or parent node, which 

represents the head of the tree. Child nodes are all below this root node. Each child has 

exactly one parent, except for the tree's root node. A "leaf" is a child node, which has no 

other children. Leaves are usually where the data is stored. Quadtrees are a helpful data 

structure for dividing a 2D area into smaller pieces as illustrated in figure 2.4.  

 

Figure 2.4 Quad Tree space partitioning 
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In the figure 2.4, the "root" node represents the entire area of the tree. Underneath that 

node is four smaller areas, zero, one, two, and three. Below each of those nodes is there 

are four nodes that divide that space further. For instance, one has four child nodes, 10, 

11, 12, and 13 and another example node 12 has four child nodes, 120, 121, 122, and 

123.   

Quadtrees are the majority frequently used to divide a two dimensional space by 

recursively subdividing it into four quadrants or regions. The regions may be square or 

rectangular, or may have random shapes. A quadtree is a tree data structure in which 

every node in the interior node has up to four children. This data structure was named a 

quadtree by Raphael Finkel and J.L. Bentley in 1974 (World News Website, 2011). A 

related partitioning is also known as a Q-tree. Each and every one forms Quadtrees 

share some ordinary features, they decompose space into adjustable cells; each cell has 

a maximum capability. When maximum capability is achieved, the cell splits, and the 

tree directory follows the spatial decomposition of the Quadtree (Aboulnaga, & Aref, 

2001), (Harwood, Samet, & Tanin, 2005), (Eppstein, Goodrich, & Sun, 2005), (Lario, 

Antonijuan, & Pajarola, 2002), (Eisenstat, 2011). 
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2.2.4 Morton Ordering   

Frens, & Wisey (1999) conclude that Morton order was introduced in 1966 by G. M. 

Morton. In the mathematical analysis and computer science, Z-order, Morton order, or 

Morton code is a space-filling curve which maps multidimensional data to one 

dimension while preserving locality of the data points (Alexander, Frens, Gu, & Wise, 

2001).  

To enable us to know and determine where the (X,Y) coordinate lie in the distributed 

quadtree or vice versa where a distributed quadtree indexes lie in coordinate space. To 

achieve this addressing scheme using the bit interleaving as follow: 

1. take a cell's row and column numbers  

A. e.g. row Y= 2, column X= 5  

2. write the row and column numbers in binary notation, using bits  

A. 2 = 010; 5 = 101  

3. interleave the bits, starting at the left and working to the right, and taking a row 

bit first  

0 1 1 0 0 1 

The blue color and shading refer to the Y axis (2) and the black refer to the X (5) 

axis  

4. The result is 011001, now replacing zero by 00, 1 by 01, 2 by 10, and 3 by 11. 
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2.3 Load Balance  

In this section, survey and present Load Balancing for Self Load Balancing, 

Analytical Load Balancing Algorithm and Load Balancing types and policies are 

presented.  

Various definitions of load balancing have been introduced. For example (Alakeel, 

2010) define the load balancing as “the process of redistributing the work load among 

nodes of the distributed system to improve both resource utilization and job response 

time while also avoiding a situation where some nodes are heavily loaded while others 

are idle or doing little work”. Again (Alakeel, 2010) defines it as “the mechanism that 

enables jobs to move from one computer to another within the distributed system, this 

creates faster job service e.g., minimize job response time which is the difference 

between the starting time of the query and the arrival time of the reply. And enhances 

resource utilization”. There is a more interesting definition proposed by (Eager, 

Lazowski, & Zahorjan 1986) where they define it as "the process of roughly equalizing 

the workload among all nodes included in the distributed system. It strives to produce a 

global improvement in system performance". In this manner, load balancing goes one-

step further than load sharing which only avoids having some nodes idle in the 

distributed system when other nodes have too much work. This definition better 

captures the essence of the problem trying to solve, thus will be adopted through this 

proposal. Load balancing has been proposed to solve problems in various disciplines. In 

the following sections, load balancing in Grid, wireless, and overlay networks is 

reviewed. 
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2.3.1 Self Load Balancing 

While reviewing the literature, not a lot about self-load balancing was found for this era. 

For instance, a lot of work was based on central entity while others try to predicate the 

load status and not all of them cope with this environment. 

Flatebo, Datta, & Bourgon, (1994) proposed a Self-stabilizing Load Balancing 

Algorithm. This algorithm cares for the receiving and completion of jobs as 

perturbations to the system. A long time ago, the system stabilizes and the local 

variables permit jobs to be thrown to the least loaded node. Once the least loaded node 

begins the job, its load will be increased which would yield the modification in the 

variables. The variables will dramatically update and reflect to be converging so that 

jobs can go ahead to a least loaded node. The proposed solution yields an extra 

overhead because of the message passing to update the different lists and variables. 

 

Meng, Qiu,, Zhang, & Zhang, (2010) proposed a design of distributed and 

Autonomic Load Balancing (ALB) for self-organization. Long Term Evolution (LTE). 

This proposed effort distributed Autonomic Flowing Water Balancing Method 

(AFWBM) which function can be described as monitoring, analyzing, optimization and 

implementation. For that, AFTWBM can detect their load conditions depending on self-

monitoring actions. To attaining ALB for LTE Radio Access Networks (RAN) by 

employing AFWBM modules in Evolved Universal Terrestrial Radio Access (E-

UTRAN) NodeB (eNBs), overload conditions can be detected by eNBs, then handover 
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hysteresis margin HOM will be adjusted and handover actions will be triggered to 

balance load. This work is restricted for a specific domain.  

For that as declared in chapter one, the section on problem definition, the only 

key is to provide a self-load-balancing technique maybe by redesigning an existing one 

to cope with the restricted new network environment or by proposing a new one. 

2.3.2 Analytical Load Balancing Algorithm 
 

Performance Analysis of Load Balancing Algorithms has been proposed by 

(Sharma, Sharma, & Singh, 2008). They present the performance analysis of various 

load balancing algorithms based on different parameters, considering two typical load 

balancing approaches static and dynamic. The analysis shows that static and dynamic 

(both types of algorithm) can have advancements as well as weaknesses over each other. 

To decide which; type of algorithm to be implemented will relay on type of parallel 

applications to solve. The main reason for their work is to assist in proposing new 

algorithms in the future by studying the behavior of various accessible algorithms. The 

comparison of various load-balancing algorithms on behalf of the different parameters 

is shown in Table 2.1 below. 

 

 

 

 

 

 

 

 



 22 

 

Table 2.1 Performance Analysis of Load Balancing Algorithms (Sharma, Sharma, & 

Singh, 2008). 

Parameters Round 

Robin 

Random Local 

Queue 

Central 

Queue 

Central 

Manager 

Threshold 

Overload Rejection  No No Yes Yes No No 

Fault Tolerant  No No Yes Yes Yes No 

Forecasting Accuracy  More More Less Less More More 

Stability  Large Large Small Small Large Large 

Centralized/Decentralized  D D D C C D 

Dynamic/Static  S S Dy Dy S S 

Cooperative  No No Yes Yes Yes Yes 

Process Migration  No No Yes No No No 

Resource Utilization  Less Less More Less Less Less 

 

 

Load balancing algorithms work on the belief that in any situation workload is 

assigned, during compile time or at runtime. The above comparison shows that static 

load balancing algorithms are more stable in contrast to dynamic and it is also simple to 

guess the behavior of static, but at the same time, dynamic distributed algorithms are 

always measured better than static algorithms. 
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Chhabra, & Singh, (2006) made a qualitative parametric comparison of load 

balancing algorithms in a parallel and distributed computing environment. Decreases in 

hardware costs and advances in computer networking technologies have led to increased 

interest in the use of large-scale parallel and distributed computing systems.  

One of the biggest issues in such systems is the development of effective 

techniques/algorithms for the distribution of the processes/load of a parallel program on 

multiple hosts to achieve goal(s) such as: 

1. Minimizing execution time. 

2. Minimizing communication delays. 

3. Maximizing resource utilization. 

4. Maximizing throughput.  

Researches using queuing analysis and assuming job arrivals following a Poisson 

pattern, have shown that in a multi-host system the probability of one of the hosts being 

idle while other host has multiple jobs queued up can be very high. Such imbalances in 

system load suggest that performance can be improved by either transferring jobs from 

the currently heavily loaded hosts to the lightly loaded ones or distributing load 

evenly/fairly among the hosts .The algorithms known as load balancing algorithms, help 

to achieve the above said goal(s). These algorithms come into two basic categories - 

static and dynamic. Whereas Static Load Balancing algorithms (SLB) take decisions 

regarding assignment of tasks to processors based on the average estimated values of 

process execution times and communication delays at compile time, Dynamic Load 

Balancing algorithms (DLB) are adaptive to changing situations and take decisions at 

run time.   
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The objective of their work is to identify qualitative parameters for the comparison of 

the above said algorithms. This comparison work in tabular form is shown in Table 2.2 

below. 

Table 2.2 Qualitative Parametric Comparison of Load Balancing Algorithms Chhabra, 

& Singh, (2006). 

           Load balancing 

Parameters 

SLB Algorithms DLB Algorithms 

1.Nature Static Dynamic 

2.Associated overhead Lesser overhead More overhead 

3.Resource Utilization Lesser Utilization More Utilization 

4.Processor Thrashing No Thrashing Substantial Thrashing 

5.Preemptiveness Non-preemptive Preemptive and Non-preemptive 

6.Predictability More Predictable Lesser predictable 

7.Adaptability Less adaptive More Adaptive 

8.Reliability Less More 

9.Response Time Less More 

10.Stability More Less 

11.Other Issues Determining process execution time at 

run time 

Developing techniques to reduce comm. 

Overhead 
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2.3.3 Types of load balancing and policies 
 

By means of the huge developments in computer machinery in addition to the 

ease of use of many distributed systems, the difficulty of load balancing in distributed 

systems has increased a superior awareness and significance (Casavant, & Kuhl, 1988), 

(Goscinski, 1991). As a result, a huge quantity plus diversity of investigation has been 

carried out in a challenge to resolve this trouble. Classification of load balancing 

algorithms in distributed systems are reported by (Wang, & Morris, 1985). Solutions to 

the load balancing problem are divided into two main approaches depending on whether 

a load balancing algorithm bases its decisions on the current state of the system or not: 

static and dynamic. As described Load balancing algorithms can be classified into two 

categories: static or dynamic. In static algorithms, the decisions related to load balance 

are made at compile time when resource requirements are estimated. Multicomputers 

with dynamic load balancing allocate or reallocate resources at runtime based on no  

prior task information, which may determine when and whose tasks can be migrated 

(Slimani, & Yagoubi, 2006), (Alakeel, 2010). 

In the presents networks nowadays all systems have common factors such as 

heterogeneity, scalability, adaptability. Additionally, request load and resource 

administration are two vital purposes presented at the service level of the grid software 

infrastructure. Several load balancing types or strategies and algorithms have been 

proposed to improve the global throughput of these software situations; workloads have 

to be equally planned between the accessible resources. Most strategies were developed 

in a state of mind assuming homogeneous set of sites linked with homogeneous and 

high-speed networks. 
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2.3.3.1 Load Balancing Types (LBT) 

There are different kinds of LBT that are used widely; Selecting an appropriate load 

balancing strategy permits CSIS to offer balancing service according to the load 

capacity of each server (Fuse source website, 2010), (Apache camel website, 2010). 

1. Round Robin balancing: In a round-robin algorithm, the IP sprayer assigns the 

requests to a record of the servers on a rotating basis. The earliest request is allocated 

to a server selected randomly from the cluster, so that if an additional IP sprayer is 

concerned, not all the original requests depart to the same server. For the subsequent 

requests, the IP sprayer goes after the circular sort to forward the request. Formerly a 

server allocating a request; the server is going out to the end of the record. This 

remains the servers uniformly assigned. In computing, "round-robin" illustrates a 

technique of selecting a resource for a task from a list or record of accessible ones 

typically for the ideas of load balancing. Such that may be a distribution of incoming 

requests to an amount of processors, worker threads, or servers. At the same time, as 

the basic algorithm, the scheduler chooses a resource pointed to by a counter from a 

list, later than which the counter is incremented and if the ending is reached, returned 

to the start of the list. Round-robin selection has an optimistic attribute of avoiding 

starvation, since every resource will be sooner or later chosen by the scheduler, 

excluding may be not fitting for some applications where similarity is desirable, for 

instance when handing over a process to a CPU or in link aggregation. The services 

requested from a consumer are distributed to each server in a cluster in turn. This 

kind of equilibrium algorithm is appropriate for all the servers in a server cluster 

having the similar software and hardware configure; and the average resource 

practice of each request is relative to the same efficiency. This algorithm belongs to a 

static load balancing. 
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2. Weighted Round Robin balancing: According to unlike processing ability of 

each server, each server has a defined related weighted value in order to admit the 

service request of corresponding weighted value. This class of balancing algorithm 

can guarantee the high-performance server that can acquire more accesses, in the 

meantime avoid the server of low-performance from overloading, or go to 

overcapacity. This algorithm belongs to the static load balancing. 

 

3. Random balancing: Distributing the requests from a network to a server in a 

server cluster is random. In a random allocation, the HTTP requests are allocated to 

any server chosen randomly amongst the cluster of servers. In such situation, 

individual of the servers might be allocated several additional requests to process, 

whilst the other servers are sitting idle or unused. However, on average, every server 

acquires its share of the load outstanding to the random selection. This algorithm 

belongs to the static load balancing. 

 

 

4. Weighted Random balancing: This balancing algorithm is similar to Weighted 

Round Robin algorithm; nevertheless, the loads are distributed randomly depending 

to weighted value. Weighted Round Robin is a highly developed version of the round 

robin with the reason of reducing the shortages of the simple round robin algorithm. 

In situation of a weighted round-robin, individuals can allocate a weight to each 

server in the group so that if one server is skilled of handling two times as much load 

as the other, the powerful server obtains a weight of two. In such situations, the IP 

sprayer will assign two requests to the powerful server for each request assigned to 

the weaker one. This algorithm belongs to the static load balancing. 
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5. Flash DNS balancing: The service requests of client achieve IP address of the 

server from the first to the last determining domain name. Usually, by means of this 

balancing algorithm, the diverse load balancing equipment (DNS) dispersed in 

dissimilar geographical locations accept the same request of determining domain 

name from the same client. After that, the domain name is determined into IP address 

by different DNS and returns to the client. The client will admit the server’s service 

of which IP address arrives first and ignores other’s service of which IP address 

arrives behind schedule. This balancing strategy is appropriate for the situation of 

global load balancing, however, it is inappropriate for the local load balancing. This 

algorithm belongs to static load balancing. 

 

6. Least Connection balancing: In attendance, there may be bigger varieties in 

serving time of each one request. If assuming the Round Robin or Random balancing 

algorithm, the quantity of service connection on every server might turn out to be 

more dissimilar alongside with time trailing off, and it will origin load balancing halt. 

Least Connection balancing exercises a list to record the quantity of connections of 

every server. When a fresh service request arrives, it will be distributed to the server 

of which connection number is the least. This type of balancing algorithm is 

appropriate for the request that requires long time service such as FTP service. This 

algorithm belongs to the static load balancing. 
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7.  Response Time balancing or least response time Load balancer: Load balancing 

tools start sensing command or request such as Ping packet to every server in the 

server cluster, after that distribute service request to the server of which response 

time is the shortest. This Response Time balancing algorithm can find enough 

mirrors for the usability of servers, but the least time just capital the shortest 

communication time among load balancing equipment and server. When a Load 

balancer is configured to employ the least response time technique, it chooses the 

service with the least number of active connections and the least average response 

time. The response time also called Time to First Byte, or TTFB is the time period 

between sending a request packet to a server and receiving the first response packet 

back. This algorithm belongs to the dynamic load balancing. 

The approaches of aforementioned load balancing exist not enough subjectively 

assigning and scheduling loads. Except “response time balancing”, aforementioned 

strategies are unidirectional, static and subjective, and they cannot reproduce the true 

load conditions of the server and load ability in time. Temporarily, they cannot notice 

server fault and recognize fault tolerance. 
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2.3.3.2 Load balancing policies  

Load balancing algorithms can be defined by their implementation of the following 

policies or strategies (Karatza, 1994): 

1. Information policy or strategy: identifies what workload information to be 

grouped, when it is to be grouped and from where it is to be grouped. Information 

strategy is the information heart of a dynamic load-balancing algorithm. It is in 

charge for afford location and transfer strategies at each node with the essential 

information required to build their load balancing decisions. A complicated 

information strategy maintains each and every one node of the distributed system 

updated on the universal system state but produces extra load traffic and thus 

enlarges the overhead generated by the algorithm. For that reason, there is a trade-off 

between the total of information swap and the occurrence of the swap of this 

information. 

 

2. Transfer Strategy: taking into account that significant limitations such as job 

execution time, size, I/O, and memory necessities are not recognized until the job is 

carried out; selecting a job for load balancing is not a simple mission. Furthermore, a 

single advance has been attempted in order to treat with this absent piece of 

information. One advance to load balancing creates job transfer decisions separately 

of the job’s properties. In this method, a job is transferred if the queue length at the 

local node goes beyond a definite threshold or else, the job is executed locally. 

Shortly it finds out the suitable epoch to start a load balancing operation. 
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3. Resource type policy: categorizes a resource as a server or receiver of tasks 

according to its availability condition. 

 

4. Location Strategy: Solitary of the main decisions achieved by a load-balancing 

algorithm is the selection of a target node for a job transferred for load balancing. 

This decision symbolizes the sole purpose for load balancing: an over loaded node 

attempts to find a lightly loaded node to assist in performing a quantity of its jobs. 

This decision is carried out by the location strategy. The choice of a remote node is 

based on the current workload exists at that node. Shortly, Location policy utilizes 

the outcome of the resource type policy to discover an appropriate collaborator for a 

server or receiver. 

 

5. Selection policy: describes the responsibilities that must be transferred from 

overloaded resources to most idle resources. 

 

6. The achievement of a load-balancing algorithm relies on: the steadiness of the 

quantity of messages, little overhead, maintained environment, low down cost update 

of the workload and tiny mean response time, which is an important amount for a 

user (Badidi, 2000). It is also necessary to determine the communication rate 

persuaded by a load balancing function. 
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3.1 Load Balance  

In this section, a survey and the related work for Load Balancing in different 

domains and Distributed Quadtree Implementations are presented:  

 

3.2 Load Balancing in different domains 

While reviewing the literature, it was found that each type of load balancing 

algorithm is suitable for one domain and not applicable for others unless, if was adapted 

to compatible domains in Grid Networks, Wireless networks, and Overlay networks. 

 

3.2.1 Load Balancing In Grid Network 

A grid network is a type of computer network component of a number of computer 

systems linked in a grid topology. Grid computing offers a homogeneous interface to 

heterogeneous and bodily-distributed resources, each and every one connected over a 

high-speed network. Current Grid implementations are geared toward scientific 

projects, which require large amounts of compute, storage, and network resources. 

These operations remain fairly static over time and as such demand long-lived, photonic 

network connections by (De Leenheer, etal., 2005). The fundamental inspiration behind 

Grid computing is to interconnect and utilize available storage, processor, or memory 

subcomponents of distributed computing systems to work out larger problems more 

professionally. 
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 The benefits of Grid computing are cost savings, enhanced business quickness by 

decreasing the time-to-market (delivering actual results), and improved group effort and 

sharing of resources among departments or institutions. Several economic and business 

features are causal to the heightened interest in the development and deployment of 

Grid computing. Based on the Internet and E-commerce, today’s society is inundated 

with data. As the available data repository grows bigger and wider, the window of 

opportunity for capturing and translating the obtainable data into information shrinks 

quickly. 

Singh, & Suri, (2010) proposed a dynamic load balancing algorithm for a decentralized 

grid model. The algorithm considers load index as a decision factor for scheduling of 

tasks within a cluster and among clusters (grid). The decentralized grid system model is 

a set of clusters; each cluster contains Coordinator Nodes (CN) together with the 

multiple Worker Nodes (WN) but they have different processing powers. The tasks that 

are generated by users are sent to the CN where a decentralized job scheduling approach 

is used. CN collect jobs from users in their cluster and place them in a global task set 

and then compute the utilization factor for its cluster. Once CN with high utilization 

factor receive a new job, the Grid Information Center (GIC) is consulted to provide an 

alternative cluster with low utilization factor to which the CN will transfer the new job.  

Therefore, the algorithm periodically collects load information of clusters and sends it 

to the GIC entity. Although job scheduling is decentralized, the GIC entity is a central 

entity thus represents a single point of failure to the system since load balancing has a 

great impact on resources' performance (Singh, & Suri, 2010). 
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 Deldari, & Salehi, (2006) try to provide a more accurate load 

measurement/estimation method, which relies on the time needed for executing current 

jobs (instead of number of current jobs). Then they are proposing a new load balancing 

method, as an agent, based on this new measurement/estimation policy. As application 

performance prediction provides the important functionality that enables the grid load 

balancing capabilities.  The agent is equipped with a performance prediction toolkit 

called PACE. The PACE toolkit is used to supply this ability for both the local 

schedulers and the grid agents. The main components of the PACE toolkit include 

Application Tools (AT), Resource Tools (RT), and an Evaluation Engine (EE). The 

PACE evaluation engine can mingle application and resource models at execution time 

to produce performance data e.g. total execution time. In the Agent-based Resource 

Management System (ARMS), agents obtain their resource capabilities using PACE and 

exchange them with their neighbors periodically. An agent advertises its load 

information only to its neighbors, for the purpose of scalability needed in the grid. It is 

possible to attach load characteristics of the nodes to this exchanging of information. 

Here, they consider the total execution time (gained through PACE evaluation engine in 

each node), average of the job arriving rate and job completion rate (considering the 

number of arrivals/completions in a certain fixed interval of time in each node) as the 

load information.  
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This information helps to provide a more accurate measurement as well as 

estimation for load as follows:  

1. The agents estimate the current load of their neighbors. 

3. Then the agent computes the average load on its neighboring agents. An agent calls 
itself “overloaded” if its load is greater than the average load of its neighbors. 

3. Agents in the neighboring set, whose estimated load is less than the estimated 
average load by more than a threshold, form an active set. 

4. The sender each time finds a member of the active set which has the most profit 
(result in less response time) sends to it jobs (extra load).  

However, load can be spread to a large area after many steps of equalization 

over a period of time. It is probable that an under loaded agent situated in an active set 

of two or more overloaded agents simultaneously. In these circumstances, overloaded 

agents may send their extra load to the under loaded agent at the same time and make 

the under loaded agent, overloaded. Hence, this condition causes instability for the 

proposed method. To this end, they use a locking technique to avoid these situations. 

Therefore, each agent only sends its load information to one requester, and does not 

respond to any other agent at the same time. This continues until the agent is dismissed 

by the requester. The Grid computing environment is a collaboration of spread 

computer systems where customer jobs can be executed on any home or remote 

computer. Many troubles live in the grid environment.  

In a computational Grid, as resources are in nature distributed and positioned at 

different sites, the job transfer time from one spot to another site is a very important 

factor for load balancing. In addition, the communication latency is very big for the 

WAN through which Grid resources are usually connected. Furthermore, due to 

network heterogeneity, the network bandwidth varies from one link to another. For this 
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reason, the job transfer cost cannot be ignored when making a job migration decision. In 

addition, since the resources are heterogeneous, jobs that have to be assigned to 

processors according to their performance are needed.  

Saravanakumar, & Prathima, .(2010) proposed, adaptive, and decentralized load 

balancing algorithm for computational Grid environments, called the Load Balancing on 

Arrival (LBA). The processors that are directly connected to a processor constitute its 

buddy set. It is assumed that each processor has knowledge about its buddy processors 

and the communication latency between them, and load balancing is carried out within 

buddy sets only. It may be noted that two neighboring buddy sets may have a few 

processors common to each set and use three performance metrics of relevance at three 

different levels:  

1. At the job level, they consider the ART of the jobs processed in the system as 

the performance metric. If N jobs are processed by the system (Saravanakumar, and 

Prathima, 2010), then  

          (1)   

2. At the system level, they consider the total execution time as the performance 

metric to measure the algorithm’s efficiency. It indicates the time at which all N jobs 

get executed.  

3. At the processor level, they consider the resource utilization as the performance 

metric. It is the ratio between the processor’s busy time to the sum of the processor’s 

busy and idle time (Saravanakumar, & Prathima, 2010): 

                     (2)       
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Accordingly, the objective is to propose well-organized load balancing algorithms to 

reduce the ART of the jobs for computational Grid environments. This algorithm will 

influence load balancing by watchful estimation of the job arrival rates, CPU processing 

rates, and loads on the processor. Moreover, they take into account the resource 

heterogeneity, network heterogeneity, and job migration cost before a load balancing 

decision. The process of parameter estimation and the way in which load balancing is 

carried out is described below. 

 

Figure 3.1 Estimation and Status Exchange intervals (Saravanakumar, & Prathima, 2010). 

 

At each periodic interval of time, Ts called the status exchange interval; Each Pi in the 

system calculates its status parameters, as follows: 

1. The estimated arrival rate. 

2. The service rate. 

3. Load on the processor.  

4. Exchanges of its status information with the processors in its buddy set.  

The instant at which this information exchange takes place is called a status exchange 

instant. In Figure 3.1, Tn-1 and Tn represent the status exchange instant. 
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Each Pi calculates its status information at status exchange instant Tn-1. Each 

status exchange period is further divided into equal subintervals called estimation 

interval Te. These points are known as estimation instants. In figure 3.1, t1, t2, . . . t 

m_1 represent the estimation instants. Each Pi calculates the estimated load on its buddy 

processor Pk .The status exchange instants and the estimation instants together 

constitute the transfer instants. The decision to transfer jobs and actual transfer of jobs 

are done at transfer instants. 

3.2.2 Load Balancing in Wireless network 
 

Wireless networks refer to any type of a computer network that is wireless 

(without any type of wires), and is commonly associated with a telecommunications 

network whose interconnections between nodes are implemented without the use of 

wires. Wireless telecommunications networks are generally implemented with some 

type of remote information transmission systems. These systems use electromagnetic 

waves, such as radio waves, for the carrier and this implementation usually takes place 

at the physical level or "layer" of the network. In this context, Ad hoc networks are 

wireless, decentralized networks that consist of a set of identical nodes to form a 

network. Ad hoc is a Latin phrase, which, literally, means "For this". The network is ad 

hoc because it does not rely on a pre-existing infrastructure, Instead, all nodes almost 

identical in their capabilities move freely and independently and communicate with 

other nodes via wireless links, participate in routing by forwarding data for other nodes 

and so the determination of which nodes forward data is made dynamically based on the 

network connectivity. 
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 Ad hoc network may be reasonably represented as a set of clusters by grouping 

together nodes that are in close proximity with one another. Such network consists of 

ordinary node and cluster heads (a leader). Clusterheads are ordinary nodes selected 

sometimes based on random algorithm to form the backbone of the wireless network, 

and have more responsibility to route packets or to distribute routing information or 

both within the same cluster or between cluster heads in another cluster. Nodes in ad 

hoc networks are mobile. For that powered by batteries, Communications or 

transmissions cause the batteries to be depleted. Therefore, the communications should 

be kept to a lower boundary to avoid a node dropping out of the network rashly. 

Because the clusterheads are involved in every communication, the battery's life 

depletes earlier than other battery’s node in the clusters. Therefore, there is a need to 

distribute the load or to balance the load between other nodes as mentioned in (Amis, & 

Prakash, 2000).  

It is assumed that the MAC layer will mask unidirectional links and pass only 

bidirectional links. Beacons could be used to determine the presence of neighboring 

nodes. The Multiple Access with Collision Avoidance (MACA) protocol utilizes a 

Request To Send/Clear To Send (RTS/CTS) handshaking to avoid collision between 

nodes.  
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Another type of wireless networks is the Wireless Sensor Networks (WSNs). It 

consists of spatially distributed autonomous sensors to cooperatively monitor physical 

or environmental conditions, such as temperature, sound, vibration, pressure, motion, or 

pollutants. The developments of wireless sensor networks were motivated by military 

applications such as battlefield surveillance and are now used in many industrial and 

civilian application areas, including industrial process monitoring and control, machine 

health monitoring, environment and habitat monitoring, healthcare applications, home 

automation and traffic control.  

Israr, & Awan, (2007) proposed a new cluster based routing algorithm that exploits 

the redundancy properties of the sensor networks in a try to address the usual problem 

of load balancing and energy efficiency in the WSNs. Any WSNs face  challenges and 

issues in clustering such as: 

1. Network deployment: Node deployment in WSNs is either fixed or random 

depending on the application. 

2. Heterogeneous network: the WSNs are not always uniform. In some cases, a 

network is heterogeneous consisting of nodes with different energy levels. 

3. Network scalability: When a WSN is deployed, some time new nodes need to be 

added to the network in order to cover more area or to prolong the lifetime of the 

current network. 

4. Uniform energy consumption. Transmission in WSNs is more energy 

consuming compared to sensing. Therefore, the cluster heads which perform the 

function of transmitting the data to the base station consume more energy compared 

to the rest of the nodes. 

5. Multi-hop or single hop communication: The communication model that a 

wireless sensor network uses is either single hop or multi hop. 
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6.  Cluster Dynamics: Cluster dynamics means how the different parameters of the 

cluster are determined for example, the number of clusters in a particular network. 

As thus, they propose Multi hop Clustering Algorithm for Load Balancing (MCLB) 

(Israr, & Awan, 2007). It consists of two distinct parts, the setup part and the steady 

part. During the setup part, Cluster Heads and temporary cluster heads are elected 

followed by the steady part. The steady part is the data transmission part and is longer 

than the setup part. In the setup part, the algorithm first filters all the nodes in the 

network of which area coverage is covered by its neighbors.  Because of this operation, 

the network is divided into two layers the top layer and the bottom layer. The top layer 

comprises of nodes whose sensing area is completely covered by its neighbors along 

with cluster heads, whereas the bottom layer comprises of the rest of the network nodes. 

Because of operations, part of the algorithm is the same as that of each in which a set of 

cluster heads are chosen at random. These cluster heads then broadcast an advertisement 

message. Depending on the message strength, each node then decides to which cluster 

head it belongs. This part uses the CSMA MAC protocol and during this period all the 

nodes are listening. The selection of the cluster head is dependent on the probability. 

During each cycle, the cluster head selection is random and is dependent on the amount 

of energy a node has left and its probability of being not a cluster head during the last 

rounds. After this, the data transmission part starts. In this part, all nodes transmit data 

using TDMA based scheduling.  

When all the nodes within the cluster finish sending data, the cluster head performs 

some computation on it and sends it to base station using multi hop communication 

involving temporary clusters and other clusters heads. 
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3.2.3 Load Balancing in Overlay network 
 

 Bridgewater, Boykin, & Roychowdhury, (2007) proposed a Balanced Overlay 

Networks (BON), a new decentralized load-balancing advance that codes the balancing 

algorithm in the developing construction of the graph that connects the resource-bearing 

nodes. A BON is scalable, self-organized, and relies only on local information to build 

job assignment decisions. New jobs are allocated to a node by a random walk on the 

graph which not only samples the graph preferentially but also selects the highest-

degree node that was visited on the walk. Each node’s idle resources are relative to its 

degree, so this approach works very fine when a network is not loaded further than its 

clipping point. When a BON is clipped, the relationship between load and in-degree 

breaks down, but the balancing performance remains quite good due to the so-called 

“power of two choices” in a ball-bin load balancing. Based on previous theoretical 

results and extensive simulation results, BON is seen to be efficient and practical. 

Added ongoing work on this difficulty includes geographical alertness extensions using 

more difficult walk objective functions. Lastly, it should be distinguished that this is 

only one probable way to code information about a network in its topology; other 

distributed algorithms may benefit from using a graph state to a favoritism node 

selection. 
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Dalal’ah (2006) proposed a sliding policy for load balancing.  The policy grouping a 

definite number of neighboring nodes to execute load balancing. Upon the achievement 

of a certain period, the groups are to be span by changing each group one place to the 

right, therefore create different groups.  

 

 This policy (sort of clustering) not only reduces the load balancing overheads, but 

also could be utilized as a backbone by any load balancing policy. The proposed load 

balancing strategy always comes together, and tends to be in a steady state in an 

insignificant processing time. The load status and the locations of the nodes concerning 

the system’s topology are irrelevant to the load balancing process. The new algorithm 

can be constantly applied to any distributed system, even if it is heavily loaded, since 

the rate of scheduling is very low due to the highly reduced number of communication. 

This is pulled off by dropping dramatically the overheads acquired  from attached 

information tables, message passing, job thrashing, and response time. Two methods of 

grouping the nodes were introduced; the first is to group the nodes in couples while the 

other one is to group the nodes into triples. The overhead branch from computations is 

reduced dramatically in both methods. Therefore, the number of communication 

(message passing) is not any more an important issue, since it turns to be rigid with a 

small number of messages and when the utilization of the system is maximized. The 

proposed policies guaranteed the distributed system to be scalable. 

3.3 The Implementation of DQT for Networks 

DQT is simple infrastructure and stateless environment, the DQT demonstrates a 

charming flexibility to the appearance of node breakdowns. 
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3.3.1 DQT for Spatial Querying in WSNs 

Demirbas, & Xuming, (2007) presented an in-network querying infrastructure, called a 

distributed quad-tree (DQT) structure, appropriate for employing in actual globe WSN 

deployments. The DQT convinces a distance-sensitive querying as well as a well-

organized information storage in a network. The DQT building is local and does not 

need any communication. 

 Furthermore, due to its simple infrastructure and stateless environment, the 

DQT demonstrates a charming flexibility to the appearance of node breakdowns. The 

DQT is acquiescent to an organism extended to arbitrary and compound queries than the 

binary version “is there an event?” queries exist at this point. In that case, since the 

queries are arbitrary, the information advertisement cannot be hopeful of all queries, and 

only a review of sensor data should be accumulated for energy-efficiency purposes. As 

such, for a declaration of queries there may be several corresponding alternatives that 

need to be discovered excluding that they may not assure the query and may result in 

back-tracking and model-based query optimization techniques. The stateless nature of 

DQT formulates that it is flexible to topology alters. In fact, it may possibly expand 

DQT to give a location service for mobile ad hoc networks. The thought is to redo a 

query until it grabs up with the mobile objective. Even if a target node may shift during 

the query implementation and guides to a fail to see the query when invoked from this 

new location closer to the target node. It will have an improved chance to catch up to 

the target node due to the distance-sensitivity property in DQT.  
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In building his model, the author takes for granted that the WSN motes sit down 

on a two dimensional plan and their coordinates (X,Y) are made accessible to 

themselves. The network is separated into grid cells while inserting a DQT over the 

network. A level one box in DQT represents the minimum cell area in the DQT 

construction. The authors suppose that all the WSN motes inside a level 1 box are 

within one hop distance. According to his jargon, a mote refers to a physical MPs node, 

while a “node” refers to a virtual DQT node, such as level one box. The cost of 

querying an event is calculated as the number of hops passed through from the querying 

mote to a mote that holds an advertisement about the event. 

 

 0 1 2 3 4 5 6 7 

0 000 001 010 011 100 101 110 111 

1 002 003 012 013 102 103 112 113 

2 020 021 030 031 120 121 130 131 

3 022 023 032 033 122 123 132 133 

4 200 201 210 211 300 301 310 311 

5 202 203 212 213 302 303 312 313 

6 220 221 230 231 320 321 330 331 

7 222 223 232 233 322 323 332 333 

 

Figure 3.2 DQT Structure and Construction (Demirbas, & Xuming, 2007). 

 

 

 

 



 46 

 

 

 

 

 

 

 

Figure 3.3 Different directions (Demirbas, & Xuming, 2007). 

 

Figure 3.4 Node addressing and tree structures (Demirbas, & Xuming, 2007). 

 

For building DQT, they utilize an encoding trick. In this encoding, every level 1 box in 

the construction is assigned an ID, which uniquely identifies a region. The length of the 

ID is equivalent and identical to the number of levels. Employ this addressing method to 

care for the location information of a node. Due to the technique building level 1 box, 

this scheme is self-governing of the number of nodes, but relies on the division levels. 

Figure 3.4 illustrates the addresses of the nodes in a region with three levels. In all level 

of partition, a node is assigned as a clusterhead node of the region. The clusterhead is 

always its own child in lower levels. The clusterhead at every level division is statically 

assigned to be the closest node to the geographic center place of the entire network.  For 
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instance, in level one division, node 003 is selected as a clusterhead for 00 regions, 

because it is closer to the center than nodes 000, 001 and 003. In the same way, node 

033 is selected as level two clusterhead, as it is closer to the center than level two nodes 

003, 013, and 023. Therefore, the node closest to the center of the entire network in each 

sub partition is selected as the parent node of that sub partition. The advantage of such a 

choice is to pass up rearward links. For instance, in figure 3.4, node 000 propagates the 

query to its root node 033 by first contacting parent node 003, then 003’s parent 033. A 

short path is achieved since there is no rearward link on the querying trail. A DQT node 

can fit in to different levels in the hierarchy depending on its place. If a node is a 

member at level k, it is also a member at all levels fewer than k. Indicate a node p’s 

parent as p.parent & children as p.child. The neighboring nodes are called siblings, 

which are denoted as p.sibling. The author Mapping from localization to DQT 

addressing: Each node in DQT can calculate the DQT address of the level one partition 

it resides in from its X,Y coordinates easily. Let (Xs,Ys) at NW and (Xe,Ye) at SE be 

the two endpoints of the area where DQT should be overlaid. (Demirbas, and Xuming, 

2007). Assuming DQT has i levels. The region of each level 1 box of division is (w*l) , 

where width 

 

                     (3)       

 
   
Then DQT address of a node(X,Y) can be calculated as claimed (Demirbas, & Xuming, 
2007): 
 

            (4)       
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The mappings compute the X and Y address individually, and next add them 

together. This can be verified this from figure 3.4, for instance, node ID 033 is obtained 

by adding 011 and 022, and node ID 332 is obtained by adding 110 and 223.The 

motivation that the second term in the DQT address computation is multiplied by 2 is 

because the Y addresses pace by two for every increment in DQT addressing scheme. 

Given this mapping, any node can locally compute its DQT address based on its 

coordinates (X,Y). Besides the DQT address, each node also maintains its (X,Y) 

coordinate address. By using the above encoding trick and assigning DQT addresses 

for DQT nodes, can start constructing the DQT structure. 

 

3.3.2. A Quadtree-Based Data Dissemination Protocol for WSN with Mobile Sinks: 

Mir, & Ko, (2006) proposed a wireless sensor network (WSN) made of a 

number of small sensors that are closely positioned to watch and work together with 

the physical world where each sensor can partially monitor the large topography. 

Environment monitoring application differs very much with one common aim of 

detecting and reporting on the event of interest to the sink. The author proposed an 

efficient and simple, Quadtree-based data broadcasting protocol for large scale 

wireless sensor networks that chains both stimulus and sink mobility. By 

construction the data propagation process self-governing of each other’s current 

location. Quadtree-based Data Dissemination (QDD), a familiar hierarchy of data 

forwarding nodes is created by Quadtree based partitioning of physical space into 

following quadrants. A source node computes a set of rendezvous points by one 
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after another partitioning the sensor network space into four uniformly sized logical 

quadrants, and fires data packets to the nodes closer to the centric of each following 

partition.  

The mobile sink follows the same approach for the data query packet 

propagation. It starts from querying the direct rendezvous node and continues until it 

finds the required data report which results in lower overhead. For example, a sensor 

node S with locality (Xs, Ys), gets the complete sensor network space N as the root 

of a Quadtree, after that reasonably partitions N into four equivalent sized quadrants. 

Each of these four quadrants North West (NW), South West (SW), North East (NE) 

and South East (SE) match up to a child of N, in that order. The root N stands for the 

entire network space, particulate by as claimed by (Mir, & Ko, 2006) 

 ,  ,  ,           (5)       

 

Where (N.XLB, N.YLB) are coordinates for lower left corner (lower bound) and 

(N.XUB, N.YUB) are coordinates for upper right corner (upper bound) of a square, 

respectively. If P is the parent of child quadrant C, then values for C.XLB, C.YLB, 

C.XUB and C.YUB, depends upon whether C is the NW, SW, NE, or SE child of P. 

Next, each quadrant is considered as a split parent and divided into further four sub-

quadrants.  By Knowing the present position of node S (Xs, Ys), this procedure is 

repeated for each quadrant, until node S leftovers are the only node in a sub-

quadrant (the leaf cell). This routine requires a relationship at each partition level, to 

test out if the current sub-quadrant is the leaf cell. For example, as proposed by (Mir, 

& Ko, 2006) if node S is in the NW quadrant of parent P (i.e., C = P.NW), after that:  
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{

       (6)      

 
 
 
 
 
 

 

 

Figure 3.5 (a) Sensor network space N partitioning. (b) QT representation. (Mir, & 
Ko, 2006) 

His method is in the mode a source node disseminates data. Upon sensing a 

stimulus, source node S executes a reasonable partitioning of sensor network field as 

above. For every partition level I represented by a square with lower corner and 

upper corner values set to (  & )  respectively, it 

calculates a list of central point’s called rendezvous points   

given as proposed by (Mir, & Ko, 2006): 
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  ,   (0 < i ≤ k)      

(7)      

 

 

Figure 3.5 (a) illustrates the rendezvous points computed by node S and the data 

passing process. It begins from its current place as the first rendezvous point (0th 

level) and frontwards data packet to the immediate rendezvous point (1st partition 

level) using geographical greedy forwarding. If S is not itself the neighboring node 

to the immediate rendezvous point, it searches in its neighbor's table for a neighbor 

that is closest to that point and forwards the packet to it.  

Every node in turn recurs this process; until a node locates that, no other node 

in its neighborhood is nearer than itself. Now this node becomes the rendezvous 

node. Even though forwarding data packets, each rendezvous node maintains a local 

table so that the copy entries related to the same data packet can be known and then 

dropped. In addition, all table entry contains an expire field that decides how lengthy 

that entry would remain suitable before it is unnecessary from the table. 
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4.1 Overview 

A comprehensive literature survey assists to build a case for this research and 

review of the literature relevant to our topic, which is a Self-Load Balancing in 

Autonomic Overlay Networks. Moreover conducting the literature survey in-depth 

helps, us to identify our problems in more accurate details based on a strong scholarly 

foundation. Moreover, it gives us a hand to design our own scheme.  

We start by reviewing the materials that formulate the background to get adequate 

information to understand and to have a chance to find some interesting solution. For 

that, we started by Autonomic Computing (AC), Autonomic Service Specific Overlay 

Networks A-SSON, the recognition of Autonomic Overlay AO, a Quadtree (QT) and 

spatial indexes. Then moved one-step forward to realize the load balance in different 

aspects such as definition, types, strategies, and implementation in different areas for 

example in wired or wireless networks. Next, we go a further step by reviewing the Self 

Load Balancing proposed in the literature. Finally, we conducting an in-depth the 

literature survey to be able to identify gaps in our research. 
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4.2 The Strategy of Designing a Self-Load Balancing Scheme 
 

1. Employ the DQT, for partitioning the space, in distributed manner, to cope with 

our era. 

 

2. Identify each region of the network by a unique ID for that employing the 

Morton order to index each single box by a unique ID.  

 

3. Adopt a new formula to calculate the power and take into perspective the 

different services that MPs provide.  

 

4. Develop a method, to encode the computation resources, in the topology of the 

network.  

 

5. Demonstrate a greedy mechanism to select the more powerful MPs to execute 

the incoming jobs. 

 

 

 

 

 

 

 

 



 54 

4.2.1. Scheme Formulation  

As described in the previous chapter, on section problem definition here again we 

will re-mention the main problems that face us through proposing such scheme in steps:  

1. The essence of the load balancing problem focuses on distributing the load from 

a resource perspective and completely neglects the user's (or request) 

perspective. 

2. Transparency of load balancing algorithms is an assumption that has not been 

treated as a requirement for traditional distributed systems applications. 

3. Finally, the concept of AC implies that each autonomic entity (node, computer, 

or MP) is self-managed. That can be interpreted, as "there is no authority higher 

than the autonomic entity". This is vitally important because it means that 

traditional load balancing algorithms may not be applicable in the era of AC.  

 

While reviewing, the literature we didn't find a suitable formula for calculating the 

power because our environment is completely different and all of the previous literature 

talks only about the so-called normal node which refers to a normal personal computer. 

In the end, we were convinced that in order to overcome this problem we must 

formulate our formula to calculate the power for each MP separately, according to the 

service provided by each one of it. For that, we should review the conditions that must 

be met and not neglect the calculation of power for each MP. 
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4.2.2 Computing the Processing speed 

Below we identify the main factors affecting processing speed (Kitchen table 

computers website, 2010), (e-learning website, 2011). The circuitry design of a CPU 

determines its basic speed, but several additional factors can make chips already 

designed for speed work even faster.  

1. CPU’s registers: 

The size of the registers is sometimes called the word size which indicates the 

amount of data with which the computer can work at any given time. 

2. the memory: 

The amount of RAM in a computer can have a profound effect on the computer’s 

power. 

3. data bus: 

The bus refers to the paths between the components of a computer.  

A.  The data bus: An electrical path connects the CPU, memory, and the other 

hardware devices on the motherboard.  

 B. The address bus 

It is a set of wires similar to the data bus that connects the CPU and RAM and 

carries the memory addresses. The reason why the address bus is important is that 

the number of wires in it determines the maximum number of memory addresses.  

4. Cache Memory: It is similar to RAM, except that it is extremely fast compared to 

the normal memory, and it is used in a different way. It helps to reduce the time – 

consuming operation of CPU which is moving data back and forth to RAM.  

5. Math coprocessor: 

Passing math operations to a math coprocessor; the math coprocessor is a chip that 

is specially designed to handle complicated mathematical operations.  
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6. Bandwidth 

Measured in bits, the bandwidth determines how much information the processor 

can process in one instruction. If you were to compare data flow to the flow of 

traffic on a highway, then clock speed would be the speed limit, and the bandwidth 

would be the number of lanes on the highway.  

 
4.2.3 MPs Power Calculation 
 

Each MPs has a resource list as declared in table 4.1 below. Any MPs can 

provide different services such as caching, adaptation, synchronization and routing. For 

that each service has resource limitations as shown in table 4.2 below and the 

percentage values for different services. 

Table 4.1 show the MP resources and the percentage value for each service provided 
Mediaport ID RAM 

 

C.P.U 

 

Access speed of hard 

disk system (bus speed) 

Bandwidth 

 

01 2 G 3 G 400 100 Mbps 

 
Table 4.2 show the MP resource and the percentage value for each service provided 

Media Port  

 

Services 

(RAP) 

RAM 

percentage 

(CPP) 

C.P.U 

percentage 

(BSP) 

Bus Speed 

Percentage 

(BAP) 

Bandwidth 

percentage 

(CAC ) Caching 15% 15% 40% 30% 

(ADA) Adaptation 30% 30% 20% 20% 

(SYN) Synchronization 25% 30% 15% 30% 

(ROU) Routing 25% 25% 15% 35% 

 
Before starting our calculation, the above information in the resources list  table. 4.1was 

converted to gigabyte (RAM, C.P.U, BUS SPEED, and BW). 
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4.2.4 Standardize the parameters Measurements   
There are many types of parameters used deferent measurements, such as: 

A. Central Processing Unit in GHZ 

B. Cache Memory in GB 

C. Data Bus in MB 

D. Bandwidth in Mbit 

Therefore the standard measure used in this research is Gigabytes, so all other measures 

have been converted into Gigabytes otherwise it is stated.  

4.2.5 Local knowledge calculation: 

Each MediaPort can calculate its power depending on a local knowledge and according 
to the following formula: 

        (1) 

Where P1+P2+P3+P4 = 1 and corresponds to a weighted value shown in table 4.2. 

 = refers to the power or the load ability of MediaPort. 

 = refers to the CPU power. 

= refers to the memory speed. 

 = refers to the access speed of hard disk system (bus speed). 

= refers to the bandwidth or throughputs. 

= refers to the load ability of MediaPort = 100% 

P1 = refers to the percentage of c.p.u , P2 = refers to the percentage of memory 
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P3= refers to the percentage of access speed of hard disk sys. ,P4 = refers to the 

percentage of band width 

 

 

 

4.2.6 The main formula: 
 

 

      (1) 
 
 
4.2.7 Formula for each type: 
 
 

    (2) 
 

    (3) 
 

                                (4) 
 

          (5) 
 
In this way, can conclude the following formula: 
 
 

                       
(6) 
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4.2.8  Proof  

Jiang & Zhang (2007) suggested a formula to calculate power for each server. 

The goal is to achieve load balancing between multiple servers. The load status of 

servers can be reflected by the utilization ratio of resources including CPU, memory, 

hard disk system, and network. They defined the formula as follows  

C(t)=((1-a(t))*P+(1-b(t))*R+(1-c(t))*D+(1-d(t))*N)* Z         (7) 

where 

a (t) = the utilization ratios of CPU. 

b (t) = the utilization ratios of memory. 

c (t) = the utilization ratios of hard disk system. 

d (t) = the utilization ratios of network at the time of  t. 

P, R, D and N is corresponding weighted value.  

P+R+D+N=1 

Z is defined as the total load ability of the server. 

MPs are similar in that they are computers and share the same properties as servers. 

Even though the functionality of the server is completely different than the functionality 

of the MP, we can adopt the same procedure proposed by Jiang & Zhang, 2007. 

However,  we assume the values  is the value (1- a (t)), is the 
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value (1- b (t)),  is the value (1- c (t)), and is the value (1- a (t)). 

Moreover, the weighted values  P1, P2, P3, and P4 are P, R, D and N respectively. 

Finally, we assumed the  which is referred to the power or the load ability of 

MP. As a result, we get the following formula: 

 

        (1) 

 

 expresses the approximate processing capability of the MP in [t,t+△△△△t], 

and the load distributor assigns tasks to node according to .  

To be able to compare one MP power to others,  has to be represented as a 

ratio value.  This can be obtained by dividing the current MP power by the highest MP 

power in the network. This is called the MOST POWERFULL INTEREST 

MEDIAPORT. The most powerful MP is available in the network and treated as a 

benchmark. 

Since we will map MP power into incoming edges, we have to divide the power by a 

value. This should result in a maximum number of incoming edges, as we should not 

allow an infinite or non-deterministic one. Therefore, the parameter Z in formula (7) is 

assumed to be 100 in formula (1) and we divide the result by 12.5. This will allow us to 

have a number of incoming edges that does not exceed 8.  

Finally, it is worth noting that the hard disk value in formula (7) has been replaced by 

the bus speed in formula (1). This is because for the different services that the MPs 

provide, the bus speed is more important. Moreover, the hard disk size will dominate 

the result of the formula that will make other parameters invisible. 
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4.2.9 Encoding the resources in the topology of the overlay: 
 

After adopting a new formula to calculate the power we need a method or way 

to encode the computation resources in the topology of the networks where this way 

should be directly proportional to the power of each MPs and inversely to the workload 

for each. The fundamental thought Self Load Balance Distributed Quad Tree 

(SLBDQT) is that the workload properties of a distributed computing system can be 

encoded in the topology of the network that connects the computational MPs. In 

representation language, an edge in a SLBDQT network represents a certain unit of 

unused capacity on the MPs to which the edge refers. On the one hand, when the MPs 

resources are being worn out, their in-degree will turn down. On the other hand, when 

the MPs obtainable resources are increasing, its in-degree will get higher, and this is 

only one possible way to encode information about a network in its topology. 

In our proposed model, we make the maximum in coming edges equal eight edges 

because we want a very cheap way to build the overlay networks and the minimum in 

coming edge equal four edges to maintain and always produce a strongly connected 

component where we can sample and visit any MPs with a minimum effort and less 

time. 
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4.2.10  Selection of powerful MPs: 
 

 

When an incoming job inters the network, the highest power of MPs to execute 

this job is needed. For that, we need to employ a greedy strategy to assign any incoming 

jobs to be run at powerful MPs. Greedy algorithms produce good solutions on some 

mathematical problems greedy choice properties can make whatever choice seem the 

best at the moment and then solve the sub problems that arise later. The reason behind 

that is to maintain the quality of service (QoS) to the client by reducing the execution 

time for this job. 
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5.1 Introduction 
 

To achieve the goal, which is A Self-Load Balancing overlay for Locality of 

autonomic entities; we use the dived and conquer principle with an indexing method, to 

build a hierarchical structure known as a distributed quad tree. Besides, we adopt a new 

formula to calculate the power for each MP, we take into consideration the MPs type 

and the service it provided, and finally employ a mapping technique between the power 

for each MP and the incoming edges to these MPs.  

As described in the previous section, we are interested in using the DQT 

structure where the cluster head node has four children (in this proposed algorithm it is 

called cluster head, parent, or ancestor interchangeably where the children called 

producer, or leafs).  The second interest is the indexing technique, which is used to 

enable to identify each geographical location by a unique ID. The indexing is at the 

heart of DQT. The leaves of this sub-tree correspond to the computing elements of a 

geographical location, and the root is a virtual node associated to the geographical 

location as each geographical location contains at minimum or at least four MPs. 

5.2 Partitioning the geographical location of the network  
 
A Quadtree is a hierarchical data structure that has advantages for geographic 

data storage. As, a two-dimensional geometric region is recursively decomposed into 

four quadrants. Every one of the four quadrants turns out to be a node in the quadtree. A 

superior quadrant is a node at an upper hierarchical level of the quadtree, and lesser 

quadrants come into sight at lower levels. The benefit of this organization is that the 

standard breakdown provides for straightforward and capable data storage, retrieval, and 

processing. The straightforwardness branches the facade of the geometric regularity of 

the breakdown into squares, and the effectiveness obtained by storing only those nodes 

containing data of significance. 



 64 

5.3 Building the DQT 
 

This network is divided into grid cells while inserting a DQT over the network. 

The suppose that the MPs which consist of about 30% of the whole network (the rest is 

a normal node which consist 70% of the network) sit on a two dimensional, and their 

(X,Y) coordinates are prepared accessible to themselves . A single box in DQT makes 

up the minimum cell vicinity in the DQT structure. It is assume that all nodes inside 

level one box are within one hop distance. The cost of querying an event is measured as 

the number of hops traveled from one node to another. The dissimilarity between DQT 

and the centralized quad-tree is that the first does not need a root of the tree. The four 

nodes in the first level service as the root. In order to build DQT an indexing deception 

is utilized. In this indexing, each cell in the structure allocates an ID, which uniquely 

identifies a region or location. The length of the ID is equal to the number of levels. We 

apply this addressing system to safeguard the position information of a node. As the 

centralized quad-tree, DQT is a hierarchical structure. In each level of partition, a node 

is assigned as a parent node of the region. The parent is always its own child in lower 

levels. A DQT node may belong to different levels in the hierarchy depending on its 

location. If a node is a member at level A, it is also a member at all levels less than A.  

 
 5.3.1 Building the DQT dependent only on local knowledge 

 

As illustrated above each node in DQT, we can calculate the DQT address of the 

level one partition it residing in from its (X,Y) coordinates easily. DQT uses a local 

building instead of a bottom-up construction to reduce communication cost during 

initial constructions. A static and local scheme that uses the address of the box suffices 

for calculating every level parent and neighbors. Each node may have neighbors at 

North, South, East, and West. In the below sections, it is demonstrated how this 
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proposed algorithm is composed from an accumulation to achieve A Self-Load 

Balancing. As said in the beginning, this DQT will be a product of 2^n * 2^n where n is 

integer number > 1. In the example in table 5.1, this networks product of 2^3 * 2^3 = 64 

node, and because n= 3 then should partition this network into 3 level equal to n, 

besides the number of digits for each index again equal n = 3. For that, the first bit 

refers to level one the first and second digits refer to level 2, the three digits together 

refer to level 3 which is the lowest level in the DQT as illustrated in figures from 5.21- 

5.32. 

5.3.2 Node Type 

Given a square two dimensional array with size N * N where n is a power of 2 

1. Normal node Type = 0. 

2. MP caching type = 1. 

3. MP synchronization type = 2. 

4. MP routing type = 3. 

5. MP adaptation type = 4. 

5.3.3 Indexing the geographical location (Spatial Indexing) 
 

G. M. Morton introduced it in 1966 (Frens, and Wisey, 1999). It is called 

Morton order, Morton code, or Z-order, which is a space-filling curve that maps 

multidimensional information to one dimension while maintaining the locality of the 

information points. The z-value of a point in multidimensions is designed by 

interleaving the binary representations of its (X, Y) coordinate values. Once the data are 

sorted into this ordering, any one-dimensional data structure can be used such as binary 

search trees. The Z-ordering can be used to efficiently construct quadtrees and related 
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higher dimensional data structures (Alexander, Frens, Gu, and Wise, 2001) As Figure 

5.1 shows. 

Indexing   indexing any cell  in the grid to a unique index  
 
Begin procedure Indexing ( ) { 
Convert the X coordinate of the node into binary using Log2N bit representation 
Convert the Y coordinate of the node into binary using Log2N bit representation 
Grouping by Interleaving (putting Y coordinator in an odd position and X 
coordinator in an even position) started from most left bit of y and grouped them 
in a single chunk. 
Get the index from the chunk by replacing each pair in the chunk as follows  
00 by 0 , 01 by 1 , 10 by 2 , 11 by 3 } 
 
Call PrentDetection ( ) 
End Procedure 
 

Figure 5.1 Procedure Indexing. 

 
The figure below shows the two dimensional array which is a product of 2^3 * 2^3 with 
integer coordinates 0 ≤ x ≤ 7, 0 ≤ y ≤ 7. 

 
Table 5.1 The original node distribution in a grid 

 0 1 2 3 4 5 6 7 

0 0 1 4 5 16 17 20 21 

1 2 3 6 7 18 19 22 23 

2 8 9 12 13 24 25 28 29 

3 10 11 14 15 26 27 30 31 

4 32 33 36 37 48 49 52 53 

5 34 35 38 39 50 51 54 55 

6 40 41 44 45 56 57 60 61 

7 42 43 46 47 58 59 62 63 
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To index any geographical location for example node 37 in bold and underlined  

1. First, Get the (X,Y) coordinates as such as (X coordinate= 3,Y coordinate= 4) 

2. Change the (X) coordinate from decimal to binary  X coordinate= 3 in decimal 

change it to binary = 011 

3. After that, Change the (Y) coordinate from decimal to binary Y coordinate= 4 in 

decimal change it to binary = 100, 

4. Next Get the result for (X,Y) coordinates in binary which is (011,100) 

5. Interleave the result starting from (Y) and from left to right 

1 0 0 1 0 1 

As shown, the odd number represents the Y coordinates (in red color and shading) and 

the even number represents the X coordinates (in black color),  

6. Next collect them in a single chunk 

1 0 0 1 0 1 

 

7. Then, Change the pairs as follows (00 by 0, 01 by 1, 10 by 2 and 11 by 3)  

2 1 1 

8. Now, get the result that is the index value 

2 1 1 

 

Interleaving the binary coordinate values yields binary z-values as shown in the 

illustrative example below. Connecting the z-values in their numerical order 

produces the recursively Z-shaped curve. 
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Table 5.2 represents the Morton Order after applying it over table 5.1 above 

 0 1 2 3 4 5 6 7 

0 000 001 010 011 100 101 110 111 

1 002 003 012 013 102 103 112 113 

2 020 021 030 031 120 121 130 131 

3 022 023 032 033 122 123 132 133 

4 200 201 210 211 300 301 310 311 

5 202 203 212 213 302 303 312 313 

6 220 221 230 231 320 321 330 331 

7 222 223 232 233 322 323 332 333 
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5.3.4  Parent Detection 
 

Each node in the network can be determined, if it is a parent or a leaf node by 

checking its index. If it ends with zero values, then it is a parent, otherwise, it is a leaf 

node. For example in table 2 above, the index 333 is not ending with zeros value so, it is 

a leaf but in the same table index 220 ending with a zero value for so, it’s a parent. As 

Figure 5.2 shows. 

 

ParentDetection  check index   is parent  or leaf   
 
Begin procedure ParentDetection ( ) 

If  (last digit in  ==0) then { 

 is parent    
} Else {  

If  (last digit in  != 0) then {  

      is leaf    
} 
 
Call MyParentDetection ( ) 
 
End Procedure 
 

Figure 5.2 Procedure ParentDetection. 

 

5.3.5  My Parent Detection 
 

Each node in the network has only one parent and wants to know its parent. To 

do this, first parent detection procedures is called, if it is a leaf node,  then the last digit 

in the index is changed to zero; otherwise (if it is a parent then) the digit that proceeds the 

last zero value in the index is changed to zero. For example in table 5.2, the index 111 is a 

leaf node and to get its parent change the last digit to zero value then gets its parent 
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which is 110. However, in the same table, index 330 ends with a zero value so, it is a 

parent and a parent of a parent are 300. As Figure 5.3 shows. 

 

 

MyParentDetection  change leaf   to index   to be parent   
 
Begin procedure MyParentDetection ( ) 

If  (index   == leaf  ) then { 

Change the last digit in the index  to 0 to be parent    
} Else {  

If  (index   == parent )then {  

Change the digit proceeding the last 0 value in the index  to 0    
} 
 
Call ParentLevelDetection ( ) 
 
End Procedure 
 

Figure 5.3 Procedure MyParentDetection. 

 

5.3.6  Parent level Detection 
 

As said above, each node in the network has just one parent but this parent has 

many indexes. Each index is for each level for that, each parent wants to know its 

different index according to the level it appears on. A number of successive zeros 

determined the level for each parent node. For example, in table 5.2 the index 111 is a 

leaf node and to get its level, we check the number of zeros the index contains. We have 

null zeros value so, it is a leaf node then it is at level one in DQT, besides it is at level 3, 

for that, this number refers to the number of digits for this index . Take another index 

which is 220. It is a parent and has just one zero value for that, add to it one which 

equals 2.Then it is at level two in the DQT. Besides, it is at level 2 for that, this number 

refers to the number of digits for this index which equals 22. As Figure 5.4 shows. 
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ParentLevelDetection  determined  where index   level   
 
Begin procedure ParentLevelDetection ( ) 

If  (  == ) then { 

                 at  1   

                new  = original  
} Else {  

If  (  = )then {  

                 let Z be the numbers of successive 0 in the last digits of the     

                 let L be the number of   
                L= Z+ 1 
} 
 
Call ChildrenDetection ( ) 
 
End Procedure 
 

Figure 5.4 Procedure ParentLevelDetection. 

 

5.3.7  Children Detection 
 

Each parent has just 4 children, besides it can calculate its children. For 

example, the parent index 330 can know its children by substituting the zero value in 

the index by number from 1-3 to get its children. So parent 330 children are 

(330,331,332 and 333) . As Figure 5.5 shows. 

ChildrenDetection  determined  whose my children  for parent   
 
Begin procedure ChildrenDetection ( ) 

If  (  == ) then { 
              For (S=0,S<=3,S++)    

                     Let C be the  

                      = concatenate C with ( S) 

                     Add  to ChildrenList 
                      Next 
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} 
 
Call RootDetection ( ) 
 
End Procedure 
 

Figure 5.5 Procedure ChildrenDetection. 

 
5.3.8  Root Detection 
 

Each tree has one root but this DQT has four roots why? Because it is  interested 

in building a DQT which does not need any central point. Besides, working on a quad 

and so, this algorithm always produces four roots. 

How can it be determined if the index is a root or not? 

That can be known by numbering the successive zeros in the index. If it is more than or 

equal to n-1 then it is a root. For example, index 200 the number of successive zeros 

equal 2 and then (n) = 3 then 3-1= 2 then it is a root. Again the index (000) the number 

of successive zeros equal 3 and (n) = 3 then it is a root. As Figure 5.6 shows. 

 

RootDetection.  determined index is root   
 
Begin procedure RootDetection ( ) 

If  (  >= N-1) then { 

      is   
} 
 
Call BrotherRootDetection ( ) 
 
End Procedure 
 

Figure 5.6 Procedure RootDetection. 

 
 
5.3.9  Brothers Root Detection 
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Because the root always lies on level one and the index in level one encodes by 

just one digit, each root node can compute its brother by substituting its value by 

numbers from 0-3. As Figure 5.7 shows. 

 

 

 

 

BrotherRootDetection.  determine brothers root  for 

root   
 
Begin procedure BrotherRootDetection ( ) 

If  (  == ) then { 
                  

                     Let B be the first digit of  

                     Let C be the remaining of  
                     For (S=1,S<=3,S++)               

                      = concatenate ((B+S) mod 4 ) with C 

                    Add  to Brothersroot list 
                     Next 
Return Brothersroot list 
} 
 
Call BrotherRootDetection ( ) 
 
End Procedure 
 

Figure 5.7 Procedure BrotherRootDetection. 

5.3.10  Calculating the power 
 

Each node in the network knows its type (0,1,2,3,and 4) and can calculate its 

power according to its service. For more details, refer to chapter 4, calculating the 

power section 4.2.3. As Figure 5.8 shows. 
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CalculatePower  Calculate a MP  Power  according to its type  
 
Begin procedure CalculatePower ( ) 
If  (tp = 1) then 

{  =  } 
 Else If  (tp = 2) then  

{  = 

} 
Else  If  (tp = 3) then 

{  
=

} 

 Else If  (tp =4) then  

{  = 

} 

Call RoutingAlgorithm ( ) 
End Procedure 
 

Figure 5.8 Procedure CalculatePower. 

5.3.11   Routing Algorithm  
 

Each node in the DQT will be one of two (a leaf (child) node, or a parent node). 

Each node can communicate with the other  

1. The leaf (child) node does the following  

A. Broadcast information messages containing (my index, my ID, my IP, my 

Power, and my Type) by two hops. Because the network is constructed by such 

way, be sure that each node arrives to its parent by two hops only. As Figure 5.9 

shows. 

INFOMessage  each child does information message . 
 
Begin procedure INFOMessage ( ) 
 

Broadcast my  containing ( , , ,  and ) by 2 TTL  
Count=0, ++  
If  (Count ==2) then 
 { Discarded  message} 
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Call ListMessage ( ) 
 
End Procedure 
 

Figure 5.9 Procedure INFOMessage. 

2. When it reaches it's parent  

A. Parents multicast a list message to all children. 

A Parent check if this child belongs to it or not. If it belongs to it, storing it in a list 

that consist from information about its children, besides itself, then multicast 

a list message to all children. As Figure 5.10 shows. 

 

 

 

 

ListMessage  a parent  receiving  information message . 
Begin procedure ListMessage ( ) 

If  (  of received  == ) then 

 { store  and my children  at  list 

    containing ( , , ,  and  and ) 

    multicast the list to all  } 
 

  If  (tp of node != 0) then 
   { Broadcast } 

 
Call WhereMyparentQuery ( ) 
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End Procedure 
 

Figure 5.10 Procedure ListMessage. 

B. Parents do a query message  

The parent node in the DQT has a responsibility to know where a parent is 

because it knows the logical address for it and searches for a physical 

address for that broadcasting a query message by 3 hops. If any query 

message knows the answer for this query, it sends it directly to the initiator 

of a query node to forward it to the nearest neighbors. As Figure 5.11 shows. 

WhereMyparentQuery  a parent  asking about its  upper  physical 
address 
 
Begin procedure WhereMyparentQuery ( ) 
 

If  (  == ) then 

 send query message by 3 TTL asking about its   physical address 
Each node receiving WhereMyparentQuery 

       If  (he knows the answer) then 

            { send it directly to the initiator query  
 Else{  forward the message to its neighbors} 

 
        If  (Count ==3) then 

                   { Discarded query } 
            } 
Call SummeryMessage ( ) 
End Procedure 

Figure 5.11 Procedure WhereMyparentQuery. 

C. Parents send a summary message to its  upper parent containing (index, ID,IP, 

power, type ). As Figure 5.12 shows. 

SummeryMessage   parent  send an updated message  for upper 

  
  
Begin procedure SummeryMessage ( ) 
 

If  (  == ) then 
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 sends  for its  upper   

containing ( , , ,  and ) 
 

Call SummeryMessage ( ) 
 
End Procedure 
 

Figure 5.12 Procedure SummaryMessage. 

 

D. Parents do Time Out Message ( Die detection ) 

A Parent Periodically sends a hi message to all children, The children reply with "I 

am a live" message If no replies within time T=100, it is resend, if no replies, then 

the child is dying. As Figure 5.13 shows. 

TimeOutMessage   parent  send  message for   
  
Begin procedure TimeOutMessage ( ) 
 

If  (  == ) then 

Periodically  sends  to  list 

 replies with  message 

If (no  message withint T= 100 ms time) then 

{  resend  message 

If (no  message) then { 

 is dyeing } 
} 
 

Call NumbersOfNodes ( ) 
 
End Procedure 
 

Figure 5.13 Procedure TimeOutMessage. 

 

E. Parents do Numbers Of Nodes Messages 
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From time to time, each parent sends Numbers of Nodes messages to their upper 

parent until reaching the root. The root receiving this message exchanges it with its 

root brothers. The least id root node calculate the numbers of node by addition; If 

the number of node > 2^n * 2^n then, rebuild the DQT. As Figure 5.14 shows. 

NumbersOfNodes   the least ID root check to reconstruct DQT  
  
Begin procedure NumbersOfNodes ( ) 

Periodically  send  message to upper  until reaching the 

 
 receiving this message exchange it with its   brothers  

       The least id  calculate the numbers of node by addition  
             If  (number of node > 2^n * 2^n) then 

       { Rebuild the DQT.} 
 Else   

          { Do nothing.} 
 

Call ParentsMessage ( ) 
 
End Procedure 
 

Figure 5.14 Procedure NumbersOfNodes. 

 

3. Root do Parents Message  

Any index equal root then send Parents Message containing (Index,ID,IP,Ttpe,Power) 

To all its  children. As Figure 5.15 shows. 

ParentsMessage   root  send ParentsMessage to all my child list 

  
  

Begin procedure ParentsMessage  ( ) 

If  ( == ) then 

       { send ParentsMessage containing ( , , , , )To 

 list} 
  Else If  ( index = parent) then { 
 { Store it at list } 

               } 
 
 End Procedure 

Figure 5.15 Procedure ParentsMessage. 



 79 

 

5.3.12   Joining the Overlay 
 

If any new node wants to join the overlay, it sends its information by a message 

to 3 hops to be insure to arrive to its parent. Then, parent check the index if it exited or 

not by using IP address and replay with change index by adding literal from A-Z . As 

Figure 5.16 shows. 

JoiningOverlay   any new node  wants to join the  overlay 

Begin procedure JoiningOverlay  ( ) 

If  (  want to join) then 

       {  call INFOMessage () + 1 hop 

          receiving this INFOMessage checks  

                         if (  exists by IP address)  

 send change  by adding a letter from A – Z to the end of  
    } Else { 

 replies with a join acknowledge message to  with a list message 

 calls SummeryMessage ( ) 

        stores it at list } 
                         
End Procedure 
 

Figure 5.16 Procedure JoiningOverlay. 

 

5.3.13  Leaving the Overlay  
 

A. A Selective Leave  

A Parent Leave  

A Parent sends a leave message to its parent when it reaches parent act by 

1. A Parent checks its  children's list for any index ending with a literal (backup 

level) 

2. If found  then  

3. substitute the leaved node and delete the letter from the index 

4. else 
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5. The least ID node takes the place of the leaved node. 

6. Send an update summary message to its parent. 

7. Send a message to all children to delete the leaved node from the children. 

8. Delete the leaved node from its list. 

9. Connect all of children with its ancestor. As Figure 5.17 shows. 

 

A SelectiveParentLeave  parent   wants the selective leave of the  

overlay 

Begin procedure SelectiveParentLeave  ( ) 

If  (  wants the selective leave overlay) then 

       {  sends a leave message to its  upper  

          receiving this leave message check  

                         if (  list has  with literal (backup level) then 

substitute the leaved  and delete letter from  
}else { 

The least  node takes the place of the leaved node. 
Call SummeryMessage ( ) 

Send a message to all  list to delete the leaved node 

 delete the leaved node from  list 
      Connect all of child with their ancestor }             
End Procedure 

Figure 5.17 Procedure SelectiveParentLeave. 

A Child Leave  

CHILD sends a leave message to a parent when it reaches parent act by 

1. A Parent checks the backup level  

2. If found  then  

3. substitute the leaved node 

4. else 

5. Send an updated summary message to its  parent. 

6. Send a message to all children to delete the leaved node from children. 

7. Delete the leaved node from its list. As Figure 5.18 shows. 
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SelectiveChildLeave   child  wants the selective leave of the  

overlay 

Begin procedure SelectiveChildLeave  ( ) 

If  (  wants the selective leave overlay) then 

       {  sends a leave message to its   

          receiving this leave message check  

                         if (  list has  with literal (backup level) then 

substitute the leaved  and delete letter from  
}else { 
Call SummeryMessage ( ) 

Send message to all  list to delete the leaved node 

 deletes the leaved node from  list 
      }               
End Procedure 
 

Figure 5.18 Procedure SelectiveChildLeave. 

B. A Force Leave  

A Parent Leave  

1. When the upper parent detects that the child is dying, it does the following  

2. The Parent checks its  children's list for any index ending with literal (a backup 

level) 

3. If found  then , 

4. substitutes the leaved node and deletes the letter from the index 

5. else 

6. The least ID node takes the place of the leaved node. 

7. Send an updated summary message to its  parent. 

8. Send a message to all children to delete the leaved node from children. 

9. Delete the leaved node from its list. 

10. Connect all of children with its  ancestor. As Figure 5.19 shows. 

ForceParentLeave   parent   forced to leave the  overlay 

Begin procedure ForceParentLeave  ( ) 

If  (upper  detects  its   is die) then 
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       {  if (  list has  with literal (backup level)  

substitute the leaved  and delete letter from  
}else { 

The least  node takes place of the leaved node. 
Call SummeryMessage ( ) 

Send message to all  list to delete leaved node 

 delete the leaved node from  list 
      Connect all of child with its  ancestor } 
End Procedure 

Figure 5.19 Procedure ForceParentLeave. 

Child Leave  

When parent detects the child is die  

1. Send update summary message to its  parent. 

2. The message is sent to all children to delete the left MPs from children. 

3. Delete the leaved MPs from its list. As Figure 5.20 shows. 

ForceChildLeave   child  forced to leave the  overlay 

Begin procedure ForceChildLeave  ( ) 

If  (  detects  its   is die) then 
       { Call SummeryMessage ( ) 

          Send message to all  list to delete leaved node 

           delete the leaved node from  list  } 
                
End Procedure 

Figure 5.20 Procedure ForceChildLeave. 
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Figure 5.21 shows network as a two dimensional array. 
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0 1 2 3 

Figure 5.22 shows partitioning and indexing procedures in the first level and its root. 
00   01   10   11   

                

02   03   12   13   

                

20   21   30   31   
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22   23   32   33   

                

 

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33 

 

Figure 5.23 shows partitioning and indexing procedures in the second level. 
 

 

 

000 001 010 011 100 101 110 111 

002 003 012 013 102 103 112 113 

020 021 030 031 120 121 130 131 

022 023 032 033 122 123 132 133 

200 201 210 211 300 301 310 311 

202 203 212 213 302 303 312 313 

220 221 230 231 320 321 330 331 

222 223 232 233 322 323 332 333 

 

Figure 5.24 shows partitioning and indexing procedures in the third level. 
000 001 010 011     

002 003 012 013     

020 021 030 031     

022 023 032 033     
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Figure 5.25 shows upper the left (NW) section. 
 

 

 

 
 

Figure 5.26 shows the upper left (NW) section, and the quadtree representation 
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Figure 5.27 shows the upper right (NE) section. 
 

 

 

 

 
 

 

 

Figure 5.28 shows the upper right (NE) section, and the quadtree representation. 
 

 

 

 

        

        

        

        

200 201 210 211     

202 203 212 213     
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220 221 230 231     

222 223 232 233     

 

Figure 5. 29 shows the lower left (SW) section. 
 

 

 

 
 

 

Figure 5.30 shows the lower left (SW) section, and the quadtree representation. 
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    302 303 312 313 

    320 321 330 331 

    322 323 332 333 

 

Figure 5.31 shows the lower left (SE) section. 
 

 

 

 
 

 

 

Figure 5.32 shows the lower right (SE) section, and the quadtree representation. 
 

 

 

5.4 A Self-Load Balancing  
 

In this section, we will try to cover and demonstrate each step to achieve the self-load 

balancing between all MPs available in the networks 

 
5.4.1  The Procedure Power Percentage 

 

Each MP knows its type and power then each of them must calculate its Power 

to be a percentage (between 0-100 percent). For that, each MPs according to its type 
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sends a message to its parent to determine the highest (power full) MPs. Finally, each 

MP can calculates its power percentage. As Figure 5.33 shows. 

PowerPercentage  Calculate MP  Power  percent according to its type 

 
 
Begin procedure PowerPercentage ( ) 

If  (  = 1) then 

       {  = .} 

 Else If  (  = 2) then 

 {  = . }  

       Else  If  (  = 3) then 

      {  = .} 

 Else If  (  =4) then 

 {  = . } 
 
Call CALInComEdges ( ) 
End Procedure 

Figure 5.33 Procedure PowerPercentage. 

 

5.4.2  The Procedure number of incoming edges  
 

Each MP can calculate its incoming edges by dividing its power over 12.5 to get 

the incoming edges to these MPs. Why do they choose this value 12.5? To always get at 

maximum 8 incoming edges and minimum 4 incoming edges. Why are the 8 and 4 

maximum and minimum respectively? Because they always need to build this overly 

network by the cheapest price and 4 edges to maintain the property which produces 

strongly connected components. As Figure 5.34 shows. 

CALInComEdges  Calculate in coming edges   
Begin procedure CALInComEdges ( ) 

NumbIn(edges) = round(power / 12.5) 

If  (NumbIn (edges) < 4) then 
 { NumbIn (edges) = 4. } 
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Call JoinInComEdges ( ) 
End Procedure 

Figure 5.34 Procedure InComEdges 

5.4.3  Procedure Joining  incoming edges  
 

Joining, the incoming edges to MPs, here setting a counter, which initial state 

equals zero and the maximum value equals the number of incoming edges. To receive 

the incoming edges, first each MP searches its own geographical area by looking into its 

own list for the lowest MPs power and should be the same type. If it still wants more 

incoming edges, MPs send a message to its parent asking for edges and its  parent in 

turn forwards the request to the upper parents until it accumulates the required number 

of edges. After that, the accumulated list will be returned to the MPs that initiate the 

request. The list contains the following information (index, IP address, type) and finally 

connects with the accumulated list. As Figure 5.35 shows. 

JoinInComEdges  MP  receiving a  from other lowest MPs 

 
Begin procedure JoinInComEdges ( ) 

If  (  found MP  && same ) then { 

 selects the MP which belongs to its  area  
} Else {  

 send message to its   asking for   

its   sends a message to its  upper  asking for  

If  (  list is  accumulated) then {  

     forward the list to MP  that initiate the request. 

     The accumulated list contains ( , ,  and ) 
} 

 connect with MP    
}  

End Procedure 
Figure 5.35 Procedure JoinInComEdges. 

 
 
5.4.4 Procedure Assigning Job  
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When a new job enters the network, the job received by a normal node which is type = 

0 then it forwards the request to the nearest MPs it knows, Otherwise, sending it to its parent. If 

the job received by a MPs node which is type = 1- 4. Then it can provide the service then MPs 

find out the highest incoming edges MPs and assign the job to it to process, and always chooses 

the MPs, which belongs to the same host area (the nearest MPs). If it cannot provide the service 

then MPs forwards the request to the nearest MPs it knows to serve this job; otherwise, sending 

it to its parent. After that, it calls the Delete Edge Procedure to decrease its connectivity. After 

finishing the job and exiting from the network, it calls Add Edge Procedure to increase its 

connectivity. As Figure 5.36 shows. 

AssignJob  a MP  receiving a job request   
 
Begin procedure AssignJob ( ) 

If  (  can provide the service) then { 

 find the highest incoming edge from MP    

 asign the job to .  
} Else {  

 chooses the MP which belongs to the same host area.  
If  (type = 0) then {  

     forward the request to the nearest MP  in its knowledge. 

} Else { send the request to  parent. } 
} 
 
Call DeletEdge ( ) 

If (  is finished) then { Call AddEdge ( ) } 
 
End Procedure 
 

Figure 5.36 Procedure AssignJob. 
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5.4.5 Procedure Delete Edge  
 

Each MP can decrease its connectivity when the job is assigned to it. The 

removing edge will be from the farthest geographical area, and from the MP that has the 

highest power. After that, updating its power by subtracting about 12 from its original 

power. As Figure 5.37 shows. 

DeletEdge  the MP  receiving a job request   
 
Begin procedure DeletEdge ( ) 

If  (  receiving ) then { 

 deletes one of its incoming edge from the farthest geog.area to the high MPs 

 
 = round (  – 12.5) 

 sends an updated message to its  parent until reaching root  
} 
End Procedure 

Figure 5.37 Procedure DeletEdge. 

5.4.6 Procedure Add New Edge  
 

Each MP can increase its connectivity when the job exits the network and sends 

a message to its parent asking him for new incoming edges from the lowest power value 

MP. Then, updates its power by adding about 12 to its original power. As Figure 5.38 

shows. 

AddEdge  the MP  finishing a job request   
 
Begin procedure AddEdge ( ) 

If  (  finishing  ) then { 

 sends a message to its   asking for   

its   sends a message to its  upper  asking for  

If  (  list is  accumulate) then {  

     forward the list to MP  that initiates the request. 

     Accumulate the list that contains ( , ,  and ) 
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} 

 connects with it 

 = round (  + 12.5) 

 sends an updated message to its  parent until reaching root  
} 
End Procedure 

Figure 5.38 Procedure AddEdge. 
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6.1 Network simulation 

Openxtra website (2007) argues, Network simulators try to model actual world 

networks. The inspiration being that if a proposed system can be modelled, then 

characteristics of the model can be altered and the output analyzed. Since the process of 

model modification is relatively cheap then a wide variety of scenarios can be analyzed 

at low cost comparative to making changes to a real network. Network simulators are 

not perfect. They will not perfectly model the network. They will, though, be close 

enough so as to give a meaningful insight into how the network is working, and how the 

modifications will affect its function. Network simulators are most useful when used to 

model large networks such as the environment that we are considering in this thesis.  

6.2 The Simulation Tool (J-Sim Simulator) 

This section introduces briefly the well-known JSim simulation tool. JSim 

(previously known as JavaSim) is a Java-based simulation system for building 

quantitative numeric models and analyzing them with respect to experimental reference 

data. J-Sim's primary focus is in physiology and biomedicine; however, its 

computational engine is quite general and applicable to a wide range of scientific 

domains (j-sim website, 2008). 

Hou & Tyan (2005) argue, J-Sim is a component-based, compositional 

simulation environment. It has been built upon the notion of the autonomous 

component-programming model. The basic entity in J-Sim is components, but unlike 

the other component-based software packages/standards, components in J-Sim are 

autonomous and are realization of software ICs. Besides J-Sim is an object-oriented 

library for discrete-time process-oriented simulation. Its main application area is 
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queuing network simulation. However, the range of its use can be very wide – almost 

any system where object states change discretely can be modelled using J-Sim. The 

autonomous component architecture mimics the IC design architecture in the closest 

possible way (physiome website, 2011).  

The behaviour of J-Sim components are defined in terms of contracts (in much 

the same way IC chips are defined in the specification in the cookbook) and can be 

individually designed, implemented, tested, and incrementally deployed in a software 

system. A system can be composed of individual components in much the same way a 

hardware module is composed of IC chips. Moreover, components can be plugged into 

a software system, even during execution. J-Sim has been developed entirely in 

JavaTM. This, coupled with the autonomous component architecture, makes J-Sim a 

truly platform-neutral, extensible, and reusable environment. J-Sim also provides a 

script interface to allow integration with different script languages such as Perl, Tcl, or 

Python. In the current release, it is fully integrated with a Java implementation of the 

Tcl interpreter (with the Tcl/Java extension), called Jacl. So, similar to ns-2, J-Sim is a 

dual-language simulation environment in which classes are written in Java (for ns-2, in 

C++) and "glued" together using Tcl/Java. However, unlike ns-2, classes/methods/fields 

in Java need not be explicitly exported in order to be accessed in the Tcl environment. 

Instead, all the public classes/methods/fields in Java can be accessed (naturally) in the 

Tcl environment (arcor website, 2009). 
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6.3 J-Sim for Network Simulation 
 

Jsim official website (2010) argue J-Sim is executed on top of a component-

based software architecture, called the Autonomous Component Architecture (ACA), 

that strictly mimics the integrated circuit (IC) design. The fundamental entities in the 

ACA are components, which talk with one another via sending/receiving data at their 

ports. When data arrives at a port of a component, the component processes the data 

without delay in a self-governing execution context. The software architecture of the 

ACA is aggravated by the conviction that software design cannot accomplish the same 

level of modularity as IC design due to the fact that the Object Oriented (OO) 

programming paradigm is fundamentally dissimilar from hardware design in component 

binding. Specially, in OO programming, a class makes straight references to other class 

instances and makes function calls to those exposed by other class instances (Tyan 

2002).  

 

 

6.4 Justification of the Method of Study 

In this research, extensive simulation experiments have been conducted to 

explore performance-related issues of Self-Load Balancing in Autonomic Overlay 

Networks. This section discusses briefly the choice of simulation as a tool of study for 

the purpose of this research, justifies the adoption of J-Sim as the preferred simulation 

tool, and further provides information on the techniques used to reduce the opportunity 

of simulation errors.   

After some consideration, simulation has been selected as the method of study in 

this research. In general, in addition to conducting measurements on a real practical 

system or test bed, there exist two techniques for system performance evaluation: 
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analytical modelling and simulation. One of the key considerations when adopting a 

given evaluation technique is the level of the desired accuracy. In general, analytical 

models have often-low requirements in terms of computation costs, but they often rely 

on many assumptions and simplifications that restrict their applicability to a limited 

number of scenarios. In contrast, simulation models can easily incorporate details to the 

desired level of accuracy in order to mimic more closely the behaviour of the real 

system. The consequence of this is that simulations often require a longer time to 

develop and run the code, compared to analytical modelling. However, as we have used 

the J-Sim simulator that has already been developed and extensively validated, we have 

easily incorporated our suggested algorithms into the simulator. This has helped to 

considerably cut down the development time and debugging of the code. Most often 

cost, along with the ease of being able to change configurations, is the prime motivation 

for developing simulations for expensive systems. The Self-Load Balancing algorithms 

designed and analysed in this study are for Autonomic Overlay Networks, which could 

consist of a large number of processors. Such a study could not be easily carried out on 

a practical system, as the experimental setup would require substantial and expensive 

resources. J-Sim has been widely used to evaluate the performance of network 

simulation. It is worth mentioning that we have evaluated the performance of our Self-

Load Balancing algorithms based on a real workload trace and compared the results 

against those obtained from our simulation study based on 95% Confidence interval 

(95% CI) workloads. The results of the comparison have revealed that the conclusions 

reached on the performance merits of the Self-Load Balancing. 
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6.5  Experiment one: Distributed Quadtree (DQT) 

This research employs the Limited-flooding to build the DQT. In a limited-

flooding protocol, a service request is broadcasted to all direct neighbors of the 

requesting node. Close neighbors send it on to their neighbors; the propagation is 

controlled by a TTL value that indicates how far the query should be sent from the 

requesting node. The measurements will include the overhead of building different 

levels of distributed Quadtree, stretch, time, and success rate were tested against the 

query overhead in a large-scale network. 

 

6.5.1 The DQT Building Message for Each Level 

The DQT Message cost represents the total number of generated messages from 

the moment of initiating a broadcast until reaching the required DQT parent. Figure 6.1 

shows that our DQT algorithm produces fewer messages as go up in the tree for 

example to construct level one need the biggest number of messages and messages cost 

decreases by quarter to build level two and so on until reaching the root . The curve in 

figure 6.1 shows that when moving up from level to level the messages cost decreases 

by a quarter, besides, all of this operation happened only one time. Moreover can 

conclude from the figure the confidence interval at 95% CI for all levels are distributed 

normally for each level mapped with numbers of messages. 
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Figure 6.1 Distributed Quadtree building message 
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6.5.2 The stretch  

A stretch is defined as the average number of hops taken by an overlay packet 

divided by the number of hops the packet takes when using an IP-layer path between the 

same source and destination. Figure 6.2 a & b. shows that the proposed DQT algorithm 

compared with the direct hop. The curve shows the maximum hops equal 20. The 

reason behind that the direct hop does better than the proposed algorithm. Direct hop is 

assumed each node knows the IP for the distention node. While the proposed algorithm 

used the DQT parent to go from level to level. In addition can conclude from the figure 

the confidence interval at 95% CI for all number of query are distributed normally for 

each number of query mapped with numbers of hops. 
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Figure 6.2a stretch 
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Figure 6.2b stretch 
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6.5.3 Response Time 

The response time is the difference between the starting time of the query and 

the arrival time of the reply. Figure 6.3 shows the response time for queries. The 

proposed algorithm curves almost the same and does not exceed 120 ms. Here we can 

conclude from the figure the confidence interval at 95% CI for all numbers of query are 

distributed normally for each response time.. 
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Figure 6.3 Response Time 

 

6.5.4 Success Rate  
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The success rate is defined as the number of requests that receives positive 

responses, divided by the total number of queries. In a network, the stability success rate 

algorithm indicates a better performance. Figure 6.4 shows the success rate the proposed 

approach results in a constant success rate. We can say from the figure the confidence 

interval at 95% CI for all numbers of query are distributed normally mapped with 

success rate. 
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 Figure 6.4 Success rate 

 

6.6  Experiment Two: Joined Node 
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As described in chapter one, MPs have their own resource limitations. They can join the 

network as they are being owned by the network provider. Besides, users may join this 

dynamic network at any time. 

6.6.1 The Network Load 

The network load is the total number of messages used to join any new node to 

the DQT. Figure 6.5 shows the average network load. The proposed algorithm curve is 

almost the same and it does not exceed the 25 messages. In addition, from the figure the 

confidence interval at 95% CI for all joining nodes is distributed normally mapping with 

numbers of messages. 
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 Figure 6.5 Network load 

6.6.2 Response Time 
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The response time is the difference between the starting time of the query and 

the arrival time of the reply. Figure 6.6 shows the response time. The proposed 

algorithm curve shows the maximum response time equal 50 ms. In addition, from the 

figure the confidence interval at 95% CI for all joining nodes are distributed normally 

mapping with response time. 
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 Figure 6.6 Response Time 

 

 

 

6.7  Experiment Three: Left Node 
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Again, MPs have their own resource limitations they can leave the network, as the 

network provider owns them. Besides, users may leave this dynamic network at any 

time. 

6.7.1  The Network Load: 

Network load is the total number of messages used to leave any node from the 

DQT. Figure 6.7 shows the average network load. The proposed algorithm curve is 

constant because the number of messages generated by the leave nodes is constant. 

From the figure, the confidence interval is at 95% CI for all leaving nodes are 

distributed normally mapping with numbers of generated  messages. 
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Figure 6.7 Network load 

6.7.2 Response Time 
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The response time is the difference between the starting time of the query and 

the arrival time of the reply. Figure 6.8 shows the average response time. The proposed 

algorithm curves almost the same and does not exceed 50 ms. the figure show the 

confidence interval at 95% CI for all leaving nodes which are distributed normally 

mapping with response time. 
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Figure 6.8 Response Time 

 

 

 

6.8  Experiment Four: The Self-Load Balancing 
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In these experiments, we try to approve that load balancing is the process of 

roughly equalizing the workload among all MPs included in the autonomic system 

according to MPs power to produce a global improvement in system performance. As 

shown in figure 6.9 to figure 6.14. 

 

6.8.1 Number of job equals 100 jobs  

In figure, 6.9 below when assigned 100 jobs to be processed, the confidence 

interval at 95% CI for 100 jobs are distributed normally mapping with numbers of MPs. 
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Figure 6.9 percentage usage of MPS when number of job equal 100 jobs 

 

6.8.2 Number of job equal 200 jobs  
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In figure, 6.10 below when assigned 200 jobs to be processed, the confidence 

interval at 95% CI for 200 jobs are distributed normally mapping with numbers of MPs. 
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Figure 6.10 percentage usage of MPS when number of job equal 200 jobs 

 

 

 

6.8.3 Number of job equal 300 jobs  
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In figure, 6.11 below when assigned 300 jobs to be processed, the confidence 

interval at 95% CI for 300 jobs are distributed normally mapping with numbers of MPs. 
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Figure 6.11 percentage usage of MPS when number of job equal 300 jobs 

 

 

 

 

6.8.4 Number of job equal 400 jobs  
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In figure, 6.12 below when assigned 400 jobs to be processed, the confidence 

interval at 95% CI for 400 jobs are distributed normally mapping with numbers of MPs. 
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Figure 6.12 percentage usage of MPS when number of job equal 400 jobs 

 

 

 

 

 

 

6.8.5 Number of job equal 500 jobs  
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In figure, 6.13 below when assigned 500 jobs to be processed, the confidence 

interval at 95% CI for 500 jobs are distributed normally mapping with numbers of MPs. 
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Figure 6.13 percentage usage of MPS when number of job equal 500 jobs 

 

 

 

6.8.6 Number of job equal 600 jobs  
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In figure, 6.14 below when assigned 600 jobs to be processed, the confidence 

interval at 95% CI for 600 jobs are distributed normally mapping with numbers of MPs. 
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Figure 6.14 percentage usage of MPS when number of job equal 600 jobs 
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7.1  Overview 

Currently, Simulation models are increasingly being used in problem solving 

and aid in decision-making. The developers and users of these models, the decision 

makers using information obtained from the results of these models, and the individuals 

affected by decisions based on such models are all rightly concerned with whether a 

model and its results are “correct”. This concern is addressed through model verification 

and validation. Model verification in such research case is often defined as “ensuring 

that the designed algorithm model and its implementation are correct. Model validation 

is usually defined to mean “substantiation that the designed algorithm within its domain 

of applicability possesses a satisfactory range of accuracy consistenting with the 

intended application of the model” (Schlesinger et al. 1979) and is the definition used 

here. A model sometimes becomes accredited through model accreditation. Model 

accreditation determines if a model satisfies specified model accreditation criteria 

according to a specified process. 

 

In this chapter, we discuss verification and validation of simulation models 

based algorithms. Therefore, the verification and validation steps used in chapter seven 

for the designing of a self-load balancing that can be fairly implemented by a simulation 

at the system level for the designed algorithm procedure and their methods to ensure if 

the designed algorithm meets the initial design requirements and specification as well as 

the input and output to simulating process.  
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In software engineering, the verification defines the quality assurance process 

intended to check that a service meets a set of initial design requirements, 

specifications, and regulations. Which means (did you build the load self-balancing 

algorithm right in/with the system (business dictionary 2010). 

 

However, the validation defines the quality control process intended to check 

that the development and verification procedures for a load balancing scheme results 

meets the initial defined requirements, specifications, and regulations. In other meaning, 

(are you built the right algorithm in/with the system) (Wikipedia website 2010). 

 

Quality control and quality assurance are important concepts the first one refers 

to the quality related activities associated with the designed algorithm. It is the 

systematic measurements comparison with a standard, monitoring of processing as it 

may include dead fit for purpose and right first time. While the quality assurance the 

second one refers to the process used to create the deliverable algorithm (Wise geek 

website 2010). 

 

This chapter is organized as follows. Section 2 presents a verification of the self-

load balancing for the designed algorithm scheme. Section 3 presents a validation of the 

self-load balancing for the designed algorithm scheme. Finally, a summary is presented 

in section 3. 
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7.2  Verification of the Self-Load Balancing Based Algorithm 

There are two basic approaches for deciding whether a simulation model of the self load 

balancing based algorithm is valid or not. In case of this research study, the designing 

approach and input methods used for the designed algorithm is very important to 

verified and the second approach requires the model development to conduct 

verification and validation as part of the model development process, which is discussed 

below. The first approach, and a frequently used one, is for the verification for the 

designed algorithm components to make the decision later on whether a simulation 

model for the designed algorithm is valid or not. A subjective decision is made based on 

the results of the various evaluations conducted as part of the model development 

process. The verification steps of the self-load balancing algorithm and its components 

include the following: 

 

7.2.1 Verification of the Building DQT  

The verification step for the two dimensional geometric region should include 

indexing and partitioning. The verification results for this step is as follows: 

• The indexing and partitioning are defined on the biases of the X,Y coordinates of 

the defined  two dimensional array  and limited with 2n with one overlay for all sizes  

, For example if the defined two dimensional array are including 3 nodes, the array 

size should be 21
* 2

1 the maximum number of nodes should not more than 4 nodes, 

however, if we have 16 nodes, the size of the array should be 22
* 2

2
, in addition, if 

the number of nodes for instance are 17, the size should be exceeded to 23
* 2

3, that 

means the maximum number of nodes should be included 64  nodes. 
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• If we already have  defined the number of nodes  in a specific geographical location 

( i.e. 22
* 2

2)  and the number of  nodes exceed the defined partitioning, in this case, 

the reconstruct of  the partitioning are not applicable if the number of nodes are not 

exceeded to 62 nodes. So, any new node that wants to join the defined overlay by 

sending its information by a message to 3 hops to insure the arrived its parent then 

the parent checks the index if it exited or not by using IP address and replay with 

change index by adding literal from A-Z, if the number of nodes are 63 or above in 

this case, the reconstruct of new distribute quadtree are needed for 23
* 2

3.  

• In the previous two paragraphs, the defined nodes specify their self types on the 

biases of the node specification, for instance if node 1 identifies its type with 0 this 

means this node type is normal. Otherwise, if the node type specified their types 

between 1 to 4, this mean the nodes types are considered as media ports. From the 

literature we considered in the designed algorithm. There are 30% of the defined 

nodes of the constructed DQT have Mediaports (IBM Corporation, 2006) &  (Al-

Oqily, & Karmouch, 2008). 

 

7.2.2 Verification of the Self-Load Balancing 

The verification step for the Self-Load Balancing should include power percentage 

verification and incoming edge verification. The verification results for this step as 

follows: 

• The self-load balancing is built as upper layer based on the DQT layer see the 

previous section. 
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• The power for the media port (media node) can locally be calculated based on the 

(CPU, Memory, Bandwidth, and Bus speed). In the previous published work bus 

speed component are not taken into their consideration, but they are considered the 

hard disc, in case calculating the hard disc percentage the highest power obtained 

belong to the hard disc because its value is always big. Moreover, when we want to 

get actual power for any node within the network you should not neglect the bus 

speed because its important factor that determined the power  

• The power percentages are calculated based on a defined power of each media port 

or media node divided by the highest media port multiplying with 100% on the 

defined DQT. 

• To identify the incoming edges, we dived the defined power by 12.5 to produce as a 

maximum 8 edges to construct the self load-balancing overlay with a minimum 

effective load in the defined DQT as well as the algorithm defined the minimum 

edge with 4 for strong connected components. 

• When a new job enters the network, the media node provides the service and finds 

out the highest incoming edges. If it cannot provide the service then MPs forward 

the request to the nearest MPs to serve this job; otherwise, calling the Delete Edge 

Procedure to decrease its connectivity.  

• After finishing the job and exiting from the network, then call Add Edge Procedure 

to increase its connectivity.  
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7.3 Validation of the self-load balancing algorithm 

A Conceptual model validation based simulation is defined as determining that the 

theories and assumptions underlying the conceptual model are correct and that the 

model representation of the problem entity is reasonable for the intended purpose of the 

model. The validation steps of the self-load balancing algorithms include the following: 

 

7.3.1 Validating The DQT Building Message for Each Level 

The following data are used as part of the validation for the designing algorithm 

from level 1 to level 5 with the maximum number of messages (27500) and with the 

minimum with 107 messages 

• Level 1 which is the leaf level need 27500 message to construct them 

• Level 2 parent1 level need 6875 message to construct them 

• Level 3 parent2 level need 1718 message to construct them 

• Level 4 parent3 level need 430 message to construct them 

• Level 5 parent4 level need 107 message to construct them 

Our validating result based on the collected data papers that the messages cost decrease 

by quarter when we move from level to level which means that DQT building message 

could be useful for reducing the cost using the DQT building message. 
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7.3.2 Validating The Stretch And Response Time: 

The following data are used to validate the number of hops taken by an overlay 

packet divided by the number of hops when using an ip layer path between the same 

source and destination.C2 and C3. While the C4 uppers the average response time for 

enquiries  

 

Table 7.1 show the number of queerer node, direct hop, DQT hop and response 

time of the simulation model 

Number of 
Queerer Direct Hop DQT Hop 

Response 
Time 

5 5 20 125 
10 7 18 159 
15 7 18 166 
21 8 17 156 
27 9 16 143 
32 8 15 131 
37 8 14 121 
42 8 15 119 
48 8 15 118 
54 9 16 119 
60 9 16 117 
65 9 16 114 
71 9 15 107 
80 9 15 100 
85 9 15 98 
90 9 15 98 
97 9 15 101 

104 10 15 102 
109 9 15 105 
115 9 15 106 
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7.3.3 Validating algorithm for Joined and leave Node 

The following data are used to validate the joined and leaved node. C2 for joining 

nodes and its load where C3 illustrates the joining nodes with corresponding response 

time. C4 for leaving nodes and its load. While C5 refer to leaving nodes with response 

time. 

 

Table 7.2 show the number of Join, Left node, network load and response time of the 

simulation model 

 

Number of node Join network 

load 

Join  response 

time 

Leave network 

load 

Leave 

response time 

5 17 34 5 43 

10 17 51 5 45 

15 17 60 5 45 

20 22 56 5 52 

25 21 50 5 51 

30 23 50 5 54 

35 24 46 5 54 

40 23 43 5 53 

45 23 40 5 51 

50 23 38 5 52 

55 23 40 5 52 

60 23 43 5 51 
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7.4  Discussion and Results 

This section describes various validation techniques used in model verification 

and validation. Most of the techniques described here are found in the literature, 

although some may be described slightly differently. They can be used either 

subjectively or objectively. By “objectively,” we mean using some type of mathematical 

procedure, for more details see chapter 5., and a hypothesis tests or confidence intervals 

for a simulation or experimental test for more details see chapter 6.  

 

A combination of techniques is generally used. These techniques are used for verifying 

and validating the sub algorithm models and the overall model.  

1. Animation: The algorithm model and sub model operational behaviour is displayed 

graphically as the model moves through time. For example the movements of parts 

through a factory during a simulation run are shown graphically see chapter 6. 

2. Comparison to Other Models: are not used while the research idea is slightly innovative, 

and there is no schemes or algorithms designed before for such research problem. 

3. Degenerate Tests: The degeneracy of the model’s behaviour is tested by appropriate 

selection of values of the input and internal parameters. For example, section 2, a 

verification of the load-self balancing algorithm and their components. 

4. Event Validity: The “events” of occurrences of the simulation model in chapter 6 

are subjectively compared to those of the real system to determine if they are 

similar. For example, the number of queerer node, direct hop, DQT hop and 

response time of the simulation model as well as  the Join, Left node, network load 

and response time in the simulation. 
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5. Face Validity: Asking individuals knowledgeable about the designed algorithm of 

the load balancing scheme and its behaviour are reasonable. For example, is the 

logic in the conceptual model correct and are the model’s input-output relationships 

reasonable. 

6. Historical Methods: The two historical methods of validation are rationalism, and 

empiricism. Rationalism assumes that everyone knows whether the underlying 

assumptions of a model are true, Logic deductions are used from these assumptions 

to develop the correct (valid) model. In the design algorithm based simulation 

achieves this method through a formal representation of the self load balancing 

scheme, see chapter 5 . and Empiricism requires every assumption and outcome to 

be empirically validated are achieved (shown in chapter 6). 

7. Internal Validity: of the design algorithm are represented in chapter 5 and 6 as well 

as  (runs) of a stochastic model are made to determine the amount of (internal) 

stochastic variability in the model, see table 7.1 and table 7.2 in the previous 

section.  

8. Predictive Validation: The designed algorithm model in this thesis is used to predict 

(forecast) the self load balancing efficiency of the distributed behaviour based 

geographical region by predictive logically indexing and partitioning the DQT then 

build their predictive of the network self load balancing view. 

9. A Conceptual model validity for the designed algorithm built in this these is 

determines that (1) the theories and assumptions underlying the conceptual model 

are correct and (2) the model’s representation of the problem entity and the model’s 

structure, logic, and formal and causal relationships are “reasonable” in chapter 5 for 

the intended purpose of the model. 
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8.1   Conclusion: 

 
Load balancing is a challenge due to the increased complexity, cost, and 

heterogeneity of current technologies. This work, reviewed the state of the art in load 

balancing techniques. This study shows that traditional techniques are not adequate to 

face the ever-increasing challenge and complexity of technology. A Self Load 

Balancing in Autonomic Overlay Networks is proposed. The scheme employs the 

spatial index and partitions the network to build a distributed quad-tree.  Another logical 

layer is built based on the available resources. This layer is connecting resources of the 

same type thus facilitating the process of load balancing. The local knowledge is 

exploited to achieve a better performance.  A simulation tool has been used to test the 

proposed method and to quantify its cost and efficiency. Results show that MPs overlay 

can efficiently balance MPs load. The experiments take into account the importance of 

heterogeneity in available computing resources and extra burst in incoming jobs.  

 

8.2  Future work: 

 

In the future, we plan to reflect our proposed scheme and adopt it to wireless 

sensor networks (WSN), and rather than using DQT, we plan to investigate the use of 

Octree in a distributed manner. 
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