

Towards Achieving, Self-Load Balancing

In Autonomic Overlay Networks.

A Thesis Submitted in Partial Fulfillment of the Requirements of

the Master Degree in Computer Science

By

Mwafaq Salim Al-Zboon

Main Supervisor

 Dr. Hussein H. Owaied

Co-Supervisor

 Dr. Ibrahim Al-Oqily

Faculty of Information Technology

Middle East University

Amman-Jordan

January, 2012

 II

 III

 IV

 V

Mwafaq Salim Al-Zboon

Department of computer information system

Faculty of Information Technology

Middle East University

 VI

Dedication

To my dear parents and specially my mother for her love, care and

support.

 To my dear wife for her support, love and patience throughout my

work.

 Also, to my children- Lujin, Faisal and Zaid and my brothers and

sisters.

To all teachers, friends and those who helped and encouraged me

throughout my work.

For all of these, I dedicate this thesis supplicating Allah for benefit

and success.

 VII

Acknowledgments

First and foremost, Thanks be to Allah for my life, you made my life

bountiful, may your name be exalted, honored, and glorified.

A journey is easier when travelled together; interdependence is certainly

more valuable than independence. This thesis is the result of 13 months of

work whereby, I have been accompanied and supported by many people. It is

a pleasant aspect that I have now the opportunity to express my gratitude

for all of them.

The development of this thesis was a time of personal growth and that

development did not always take place without pain.

I would like to thank all those who supported me. Especially, I wish to thank

supervisor Dr. Hussein H. Owaied for all his advice and support during this

studies. Special thanks to Dr. Ibrahim Al-Oqily for being a great Co-

supervisor. He spent a lot of time helping me to complete this work. I am

very much grateful to Dr. Saad Bani Mohammad and Dr. Mohammad

Malkawi and Dr. Khalid Sarayrah. My thanks to Mr. Ahmed shtnawi and all

my friends for various help. Finally, I wish to thank my family for their

unflagging love and support throughout my life. I thank all my brothers and

sisters who were with me all the time. My deepest gratitude goes to my wife.

This thesis was simply impossible to complete without her. I am indebted to

my mother and father for their inspiration and support.

 VIII

Table of Contents

Chapter 1 Introduction

1.1. Introduction …………………………………………………. 1

1.2. Problem Definition …………………………………………... 2

1.3. Objectives …………………………………………………….. 4

1.4. Motivation …………………………………………………… 4

1.5. Contributions ………………………………………………… 5

1.6. Study Boundaries ……………………………….……………. 6

1.7. Thesis Structure ……………………………………………… 7

Chapter 2 Background

2.1. Overview………………………………………………………. 8

2.2. Autonomic Computing (AC)………………………………….. 8

2.2.1. Autonomic Service Specific Overlay Networks (A-SSON)..... 10

2.2.2. Autonomic Overlays (AO) self-composition………………….. 11

2.2.3. Quadtree……………………………………………………….. 15

2.2.4. Morton Ordering………………………………………………. 18

2.3. Load Balance……………………………………………….. 19

2.3.1. Self Load Balancing…………………………………………… 20

2.3.2. Analytical Load Balancing Algorithms……….……………… 21

2.3.3. Types of load balancing and policies ……………………… 25

2.3.3.1 Load Balancing Types (LBT)…………………………….. 26

2.3.3.2 Load balancing policies …………………………………….

30

 IX

Chapter 3 Related work

3.1 Load Balance…………………………...…………………… 32

3.2 Load Balancing in different domains…………………………. 32

3.2.1. Load Balancing In Grid Networks…………………………... 32

3.2.2. Load Balancing in Wireless networks………………………… 38

 3.2.3. Load Balancing in Overlay networks………………………….. 42

3.3. The Implementation of DQT for Networks ………..……….. 43

3.3.1 Distributed Quadtree for Spatial Querying in WSNs…………. 44

3.3.2 A QT-Based Data Dissemination Pr. for WSNs with mobile sinks 48

Chapter 4 Design of Algorithms and Methods Used

4.1. Overview…………………………………………………… 52

4.2. The Strategy of Designing a Self-Load Balancing Scheme…… 53

4.2.1. Scheme Formulation…………………………………………. 54

4.2.2. Computing the Processing speed……………………………… 55

4.2.3. MPs Power Calculation…………………………………….. 56

4.2.4. Standardize the parameters Measurements……………………. 57

4.2.5. Local knowledge calculation……………………………. 57

4.2.6. The main formula……………………………………………… 58

4.2.7. Formula for each type……………………………. 58

4.2.8. Proof……………………………………………………… 59

4.2.9. Encoding the resources in the topology of the overlay……….. 61

4.2.10. Selection of powerful MPs…………………………………… 62

 X

Chapter 5 Proposed self load balance scheme

5.1. Introduction ………………………………………………….. 63

5.2. Partitioning the geographical location of the networks…… 63

5.3. Building the DQT……………………………………………… 64

5.3.1. Building the DQT dependent only on local knowledge……….. 64

5.3.2. Node Type…………………………………………………….. 65

5.3.3. Indexing the geographical location Spatial Indexing …………. 65

5.3.4. Parent Detection……………………………………………….. 69

5.3.5. My Parent Detection…………………………………………... 69

5.3.6. Parent level Detection………………………………………… 70

5.3.7. Children Detection…………………………………………… 71

5.3.8. Root Detection………………………………………………… 72

5.3.9. Brothers Root Detection……………………………………… 72

5.3.10. Calculating the power………………………………………… 73

5.3.11. Routing Algorithm…………………………………………… 74

5.3.12. Joining the Overlay…………………………………………… 78

5.3.13. Leaving the Overlay…………………………………………… 78

5.4. A Self-Load Balancing………………………………………… 87

5.4.1. The Procedure Power Percentage…………………………… 87

5.4.2. The Procedure number of incoming edges…………………… 87

5.4.3. The Procedure Joining incoming edges……………………… 88

5.4.4. Procedure Assign Job………………………………………….. 89

5.4.5. Procedure Delete Edge………………………………………… 90

 XI

5.4.6. Procedure Add New Edge…………………………………… 90

Chapter 6 Experimental Evaluation

6.1. Network simulation…………………………………………… 91

6.2. The Simulation Tool (J-Sim Simulator) ……………………… 91

6.3. J-Sim for Network Simulation………………………………… 93

6.4. Justification of the Method of Study………………………… 93

6.5. Experiment One: Distributed Quadtree (DQT)……………… 95

6.5.1. The DQT Building Message for Each Level…………………. 95

6.5.2. The Stretch ………………………………….………………… 97

6.5.3. Response Time ………………………..……………………… 99

6.5.4. Success Rate ………………………………………………… 100

6.6. Experiment Two: Joined Node………………………………. 101

6.6.1 The Network Load……………………………………………. 101

6.6.2 Response Time……………………………………………… 102

6.7. Experiment Three: Left Node………………………………… 103

6.7.1. The Network Load……………………………………………. 103

6.7.2. Response Time……………………………………………….. 104

6.8. Experiment Four The Self-Load Balancing…………………… 105

6.8.1 Number of job equal 100 jobs……………..…………………. 105

6.8.2 Number of job equal 200 jobs……………..…………………. 106

6.8.3 Number of job equal 300 jobs……………..…………………. 107

6.8.4 Number of job equal 400 jobs……………..…………………. 108

6.8.5 Number of job equal 500 jobs……………..…………………. 109

6.8.6 Number of job equal 600 jobs……………..…………………. 110

 XII

Chapter 7 Verification & Validation of designing a self load Balancing scheme

 7.1. Overview……………………………………………………. 111

7.2. Verification of the Self-Load Balancing Based Algorithm…… 113

7.2.1. Verification of the Building DQT………………………… 113

7.2.2. Verification of the Self-Load Balancing………………

114

7.3. Validation of the self-load balancing algorithm………… 116

7.3.1 Validating The DQT Building Message for Each Level……… 116

7.3.2 Validating The Stretch And Response Time……………… 117

7.3.3 Validating algorithm for Joined and leave Node…………

118

7.4. Discussion and Results…………………………………… 119

Chapter 8 Conclusion and Future Work

8.1. Conclusion ……………………………………………………. 121

8.2. Future Work …………………………………………………. 121

References 122

 XIII

List of Figures:

Figure No. Figure Name Page

Figure 1.1
MPs at certain area in the network are overloaded while other MPs

are less overloaded

3

Figure 2.1 Functional details of an autonomic manager 10

Figure 2.2 Autonomic Overlay Architecture 12

Figure 2.3 The relationships between SAM and SSON-AM 14

Figure 2.4 Quad Tree space partitioning 16

Figure 3.1 Estimation and Status Exchange intervals 37

Figure 3.2 DQT Structure and Construction 45

Figure 3.3 Different direction 46

Figure 3.4 Node addressing and tree structures 46

Figure 3.5 (a) Sensor network space N partitioning. (b) QT representation 50

Figure 5.1 Procedure Indexing 66

Figure 5.2 Procedure ParentDetection 69

Figure 5.3 Procedure MyParentDetection 70

Figure 5.4 Procedure ParentLevelDetection 71

Figure 5.5 Procedure ChildrenDetection 71

Figure 5.6 Procedure RootDetection 72

Figure 5.7 Procedure BrotherRootDetection 73

Figure 5.8 Procedure CalculatePower 73

 XIV

Figure 5.9 Procedure INFOMessage 74

Figure 5.10 Procedure ListMessage 75

Figure 5.11 Procedure WhereMyparentQuery 75

Figure 5.12 Procedure SummeryMessage 76

Figure 5.13 Procedure TimeOutMessage 76

Figure 5.14 Procedure NumbersOfNodes 77

Figure 5.15 Procedure ParentsMessage 77

Figure 5.16 Procedure JoiningOverlay 78

Figure 5.17 Procedure SelectiveParentLeave 79

Figure 5.18 Procedure SelectiveChildLeave 79

Figure 5.19 Procedure ForceParentLeave 80

Figure 5.20 Procedure ForceChildLeave 80

Figure 5.21 show our network as a two dimensional array 81

Figure 5.22
Shows our partitioning and indexing procedures in first level and

its root

81

Figure 5.23 Shows our partitioning and indexing procedures in second level 82

Figure 5.24 Shows our partitioning and indexing procedures in third level 82

Figure 5.25 Shows the upper left (NW) section 83

Figure 5.26
Shows the upper left (NW) section, and the quadtree

representation

83

Figure 5.27 Shows the upper right (NE) section 84

Figure 5.28 Shows the upper right (NE) section, and quadtree representation 84

 XV

Figure 5.29 Shows the lower left (SW) section 85

Figure 5.30 Shows the lower left (SW) section, and quadtree representation 85

Figure 5.31 Shows the lower left (SE) section 86

Figure 5.32 Shows the lower right (SE) section, and quadtree representation 86

Figure 5.33 Procedure Power Percentage 87

Figure 5.34 Procedure InCom Edges 88

Figure 5.35 Procedure Join InCom Edges 88

Figure 5.36 Procedure Assign Job 89

Figure 5.37 Procedure Delet Edge 90

Figure 5.38 Procedure Add Edge 90

Figure 6.1 Distributed Quadtree building message 96

Figure 6.2 a Direct Hop Stretch 97

Figure 6.2 b DQT Hop Stretch 98

Figure 6.3 Response Time 99

Figure 6.4 Success rate 100

Figure 6.5 Network load 101

Figure 6.6 Response Time 102

Figure 6.7 Network load 103

Figure 6.8 Response Time 104

Figure 6.9 Percentage usage of MPs when number of jobs equals 100 jobs 105

Figure 6.10 Percentage usage of MPs when number of jobs equals 200 jobs 106

 XVI

Figure 6.11 Percentage usage of MPs when number of jobs equals 300 jobs 107

Figure 6.12 Percentage usage of MPs when number of jobs equals 400 jobs 108

Figure 6.13 Percentage usage of MPs when number of jobs equals 500 jobs 109

Figure 6.14 Percentage usage of MPs when number of jobs equals 600 jobs 110

 XVII

List of Tables:

Table No. Table Name Page

Table 2.1 Performance Analysis of Load Balancing Algorithms 22

Table 2.2
Qualitative Parametric Comparison of Load Balancing Algorithms

24

Table 4.1 MP resources and the percentage value for each service provide 56

Table 4.2 MP resource and the percentage value for each service provide 56

Table 5.1 The original node distribution in a grid 66

Table 5.2 Represents the Morton Order after apply it over table 5.1 68

Table 7.1
The number of queerer node, direct hop, DQT hop and response

time of the simulation model

117

Table 7.2
The number of Join, Left node, network load and response time of

the simulation model

118

 XVIII

List of Abbreviation

AC: Autonomic Computing

ACS: Ambient Control Space

ALB: Autonomic Load Balancing

ANs: Ambient Networks

AO: Autonomic Overlays

AFWBM: Autonomic Flowing Water Balancing Method

ARMS: Agent-based Resource Management System

ART: Average Response Time

AT: Application Tools

AVI: Audio Video Interleave

BON: Balanced Overlay Networks

CN: Coordinator Nodes

CSIS: Common Service Information System

CSMA: Carrier-Sense Multiple Access protocol

DQT: Distributed Quad Tree

DLB: Dynamic Load Balancing

EE: Evaluation Engine

E-UTRAN: Evolved Universal Terrestrial Radio Access

 XIX

FTP: File Transfer Protocol

GIC: Grid Information Center

LB: Load Balancing

LBA: Load Balancing on Arrival

LBT: Load Balancing Types

LCA: linked Cluster Algorithm

LTE: Long Term Evolution

MAC: Medium Access Control protocol

MACA: Multiple Access with Collision Avoidance protocol

MC: Media Cliente

MCLB: Multi hop Clustering Algorithm for Load Balancing

MPs: Media Ports

MS: Media Server

NE: North East

NW: North West

ON: Overlay Networks

ONAMs: Overlay Network Autonomic Managers

OSL: Overlay Support Layer

PID: Physical ID

 XX

QT: Quad Tree

QoS: Quality of Service

RAN: Radio Access Networks

RW: Random Walk

RT: Resource Tools

RTS/CTS: Request To Send/Clear To Send

SAM: System Autonomic Managers

SLB: Static Load Balancing

SSON-AM: Service Specific Overlay Networks Autonomic Manager

SSONs: Service Specific Overlay Networks

SE: South East

SW: South West

TDMA: Time Division Multiple Access

TTFB: Time To First Byte

VID: Virtual ID

WN: Worker Nodes

WSN: Wireless Sensor Networks

 XXI

Abstract

Services Specific Overlay Networks are virtual networks built on top of the

physical computer network to meet the users’ specific requirements. They are basically

used to deliver multimedia content from a streaming media server to the user. A central

component to this kind of networks is the media ports. They are network side functions

that offer extra tasks such as catching, synchronization, and adaptation for the

multimedia content.

Having a specific overlay network for each user implies that huge number of

overlay networks will coexist. This could lead to competition on the media ports. In

addition to that, users may join and leave the network which will render managing this

huge number of networks a complex task.

In this thesis, we propose a self-load balancing scheme for service specific

overlay networks. It is intended to balance the loads between media ports, which will

fairly distribute tasks between media ports to increase its efficiency. The proposed

solution builds a quadtree overlay, quantifies the media ports’ resources, and encodes

the quantified values into an incoming edges overlay. Self-load balancing is then

achieved by sending tasks to the highest in degree media ports.

 XXII

 ا�����

��ؤه� ��ق �
	�ت ا�����ب ا���د�� ا��
	�ت ا������ ه� �
	�ت ������،�ا� "ا!�� � �
�ً$

- ا��% ,+م . ا����)ة &%� .& ����ء �8ع ��ص &. ه15 ا��
	�ت ���ا�4 & 23
�ت &�+د1 و&/�� �:

 .(SSONs)و:%�= ه15 ا��
	�ت �ـ�
	� ا�,+&� ا���+دة او ا��,;;� ا������

 ا��
	� �� و����C اB<اء ه� (MP)ا�ـ . (MP)ا�ـ ه� ا������ ا��
	� �� �A@ا�" ا�?<ء

D�E �F8ا GA�Cو G�H: 1+�+B �	
�2� -I& �>, وا� <ا&. و. ا� G�	 ان ادارة و:�$�4 :�ازن .ا�
�ً�+�: "
 /� �M�

	�ت ا�,+&� ا��,;;� ا������ . ا��EOل �� ه15 ا�� .& -Aه� �د آ�B�� Qوذ�

 -	� �FS���� &I- ه15 . &,;;� ��% ,+م واT$� +EوواE+ة &. ه15 ا��
	�ت ه��2A ا�/+د و:
 "�U Vدي ا�= :�ز�X� ��& �&+,اآ< ا�"�� �����O2= ا��;�در اS �� E @���: (��ا�Z"وف �

 . & �ازن �]��Eل

ا� 	��2 و:\��" وز��دة 2S= ذ�Q ��ن ا� 	������B ا��+��I :�ا�B :�+ي وه� ز��دة ا� /$�+
��� ا� � ����اص
2
� و�B�E =2S]2\ : Oت . ا�: O ��+�2$ ا:�?��ت ا�" �Oه5ا ��ن ا .& �U"���و

�� ه15 اO_"و�E 8$ "ح �B �3+�+1 و�I�+E � �$�4 ا� �ازن ا�5ا:� �� . ا� 	������B ا������
 .ا��
	�ت ا������ ذات ا�O $]ل ا�5ا:�

$�� :�$4 ا�+_ �
��&�	�� و:�ازن ذا:� �]��Eل ��Oر:	�ز ا�,�3 ا��$ "�E :� �ز � "آ��
 �Sا���ز ��S��ا�3
$�� وا� � O : وه15 ا�,�3 :��- ا���ا`��ت ا� ���� 2S(DQT)= ا��?"ة ا�"

 ،�	
��� ا� � �� و:+S� ز��دة وE b$8?� ا��
���]��ت ا� ���
��ء &�دي &. S. �&% $2و:�اي
 �$T �� آ- ��د 2S= ا��/�2&�ت ا�� �ا�"ة �+�F$4 ا� �ازن ا�5ا:� ����S� SOرة ا��
	�ت و:�

(MP).

 �E" $وا� �آ+ &. ا�,�3 ا�� b�� �: ل[$ �Oت ا������ ذات ا�	
� �$�4 ا� �ازن ا�5ا:� �� ا��
��&�	�ـ� : � ـ. ��F8ـ�
ـو:&. �]ل ا����آ�1 � ــا�5ا:�+� Vـ���S ــ����- &. ـ� �	ـــ� :�����Z ذا:�ــ� و

	
وآ]ه�� ا�+و ����ت راA/� �� &�ا�FB ا���- و�� . (DQT and MPs) ـــ� �2ـــــ� ا�����ــا��
��ن ا� ?�رب ا� � :� اB"اؤه� ا�5ت �/�.). ��2�S)MPs :�$�4 ا� �ازن G2 ,& =2S ا�ـ �ً�2S

�ر :��ع ا��;�در ا�������� ا�� �ا�"ة SOتا�
 . ا�� <ا�+1 �� :���5 ا��SOل وا�23

 1

1.1 Introduction

Autonomic Computing (AC), where technology manages technology, was

motivated by the increasing of technology complexity, the increased size of computing

infrastructure, and the ballooning maintenance costs of infrastructure, and the shortages

of skilled labor (IBM Corporation, 2006). Overlay networks face the same challenges.

They are growing so fast, they are being deployed on the fly without special

equipments, they are being used to solve problems in network routing, and they are

being used to realize services that can't be implemented otherwise (Khalid, Haye, Khan,

& Shamail, 2009), (IBM Corporation, 2006) (Al-Oqily, & Karmouch, 2008).

Also the expression outgrowth of networks and services has lead to new complex

mediums. To survive with this convolution, IBM Corporation proposed AC in (IBM

Corporation, 2006). It permits systems to run and control themselves as an alternative of

relying on IT specialists. Overlay networks are receiving a great concentration due to

the reliable and effective services that they provide. One type of overlay networks is

being designed to meet user's requirements. It is called Service Specific Overlay

Networks (SSONs). It is a service definite in the wisdom that it is tailored to a definite

user for a definite type of service. It has been proposed for multimedia delivery sessions

(Al-Oqily, and Karmouch, 2008).To connect the gap between clients and the network

and to be able to make available seamless services, the SSONs use network side

functions called Media Ports (MPs). MPs make available value further functionality to

the overlay such as media caching, media synchronization, media adaptations and

routing. With the augmented number of mobile clients and services, SSONs

management is becoming more complex and hard to achieve using traditional methods

(Khalid, Haye, Khan, and Shamail, 2009), (IBM Corporation, 2006) (Al-Oqily, and

Karmouch, 2008).

 2

Runs and controls SSONs involve creating, adapting and terminating them. Since a

huge number of them may coexist in the network, creating them and assigning network

resources such as MPs are not a trouble-free mission.

Al-Oqily, Karmouch, and Glitho, (2008) proposed Autonomic Overlay (AO) to

solve the management complexity and to handle with the augmented claim of creating

and deploying new services. Composition and self-organizing schemes have also been

proposed by (Al-Oqily, Karmouch, 2008) to create and maintain SSONs in such an

autonomic situation.

1.2 Problem Definition

Users in certain locality (domain) usually tend to request the same kind of services.

In other words, if they are interested in watching a certain movie or video clip from a

certain streaming video server, another close group might be interested in the same

video as well. Since those users are close to each other and based on the locality scheme

in creating SSONs, the same set of MPs is being reused each time. Based on this

scenario, the following problems have been identified:

1. The miss distribution of tasks among MPs is a major cause for network

inefficiency (Al-Oqily, Karmouch, 2008).

2. Exploiting local knowledge only when searching for MPs. Such way could

result in using a subset of the available MPs and ignoring the rest.

3. The network environment is dynamic; users may leave and join at any time thus

achieving load balancing is challenging.

4. A set of MPs is overloaded while another set is idle. This is a load-balancing

problem.

 3

MPs have their own resource limitations they can leave and join the network as they are

owned by the network provider. In a dynamic network, a single set of MPs may not be

able to cope with the ever increased users requirements. Moreover, users at a certain

time may be interested in the same type of the services but each one of them has

different device and service requirements. As shown in Figure 1.1, this will result in

overloaded MPs while the others are less loaded which has a clear negative impact on

the network performance and the Quality of Service (QoS). Therefore, it is essential to

device ways where load balancing is achieved between the available MPs.

Figure 1.1 MPs at certain area in the network are overloaded while other MPs are less
overloaded.

 4

1.3 Objectives

This thesis has the following objectives:

1. Review the state of the art in AC, SSONs, load balancing, and self-load

 balancing.

2. Deeply study the network environment in order to identify the different

 parameters that can affect self-load balancing.

3. Design a distributed algorithm that can achieve self-load balancing between

 MPs.

4. Maintain the users’ requested Quality of Service (QoS), and efficiently

distribute resources between SSONs to increase and maintain network

performance.

1.4 Motivation

Overlay networks are getting great attention due to their flexibility, ability to

provide new services, and for their low cost, as they do not require the installation of

new devices or equipments. This, in addition to the increased development of mobile

applications and the ever-increasing demand on new and novel services designed

specifically to meet users' requirements has led to the introduction of SSONs.

MPs have their own resource limitations they can leave and join the network, as the

network provider owns them. In a dynamic network, a single set of MPs may not be

able to cope with the ever-increased users requirements. Moreover, users at a certain

time may be interested in the same type of the services but each one of them has

 5

different device and service requirements. This will result in overloaded MPs while the

others are less loaded which has a clear negative impact on the network performance

and the service QoS. Network providers install MPs and wish to maximize their profit,

while service providers wish to reduce the cost of using MPs and to satisfy users. These

are two conflicting goals. Load balancing seems to bring them into an equilibrium state.

In one hand, load balancing will utilize MPs efficiently and will distribute the load

between them which leaves the network environment stable and problem free, on the

other hand, with load-balanced services users' satisfaction can be achieved through

providing services that satisfy their requirements. Therefore, it is essential to device

ways with which load balancing can be achieved.

1.5 Contributions

The contributions of this thesis are as follow:

1. A Self-Load Balancing scheme for MPs is presented and discussed. The

presented scheme uses an indexing method to build a hierarchical structure

known as a distributed quad tree. It encodes the available resources in each MP

and presents it as overly incoming edges.

2. A formula to quantify MPs power, i.e the amount of available resources in the

MP. It takes into consideration the MPs types and their relation to the MP

internal resources.

3. Building an overlay network that maps MPs power for all MPs into incoming

edges to these MPs thus facilitating the process of distributing tasks between

MPs by following the edges that point to less used MPs.

 6

1.6 Study Boundaries

This work considers a network environment that is distributed, intelligent and

autonomic. Where the concept of distributed implies this existent of no global entity.

Furthermore, the concept of AC implies that each autonomic entity (node, computer, or

MP) is self-managed. This can be interpreted, as "there is no authority higher than the

autonomic entity". Besides, it is based on the AONs and focuses on the SSONs as

proposed for multimedia delivery sessions. In addition, the main form of

communications between each autonomic entity such as MPs is only via messaging

(Khalid, Haye, Khan, & Shamail, 2009), (IBM Corporation, 2006) & (Al-Oqily, &

Karmouch, 2008).

 7

1.7 Thesis Structure

This thesis includes eight chapters; the preceding chapter gives an introduction

about this thesis. Chapter two presented the background regarding AC, A-SSON and the

realization of AO then, will shed light in the field of self-load balancing, distributed

load balancing, and finally talking about Quad Tree (QT) and Distributed Quad Tree

(DQT).

Chapter three presents literature survey and related work for the thesis, showing the

related work regarding load balancing in different domains and DQT implementations.

Chapter four introduces the methodology used through this thesis including the

Comprehensive Literature Survey, a design of a self-load balancing scheme. However,

chapter five goes within the implementation of the proposed methodology of the self

load balance scheme. Chapter six discusses experimental evaluation of the ability of

building self-load balancing scheme for (AO) networks. Chapter seven discusses

verification and validation of the designing of a self load Balancing scheme. Chapter

eight has conclusions and the future work of this thesis. The last chapter illustrates the

references. Algorithms were defined and written using the standard programming code

(pseudo code), and were tested and proved using java simulator.

 8

 8

2.1 Overview

This chapter presents the necessary background information that is needed to

better understand the types of applications that are targeted and their working

environment. In addition to that, it presents all the necessary concepts and terminology

required.

2.2 Autonomic Computing (AC)

This section presents a brief review of Autonomic Computing (AC), Autonomic

Service Specific Overlay Networks (A-SSON), Autonomic Overlays (AO) self-

composition, Quadtree, and Morton Ordering.

IBM Corporation claimed that (IBM Corporation, 2006) the current technology

faces the challenge of increased complexity, cost, and heterogeneity. Communications

and software technologies are growing rapidly; though, the scale & complexity have

grown as well. The growth in system/application development, configuration, and

management have begun to overcome existing tools and methodologies, which are

rapidly making systems/apps fragile, unmanageable, and insecure. Therefore, there is a

great demand to change the ways in which these systems are managed as proposed by

(Al-Oqily, Karmouch, & Glitho, 2008). IBM Corporation in 2001 introduced the

concept of AC to overcome this complexity. It is inspired from the human biological

system. IBM envisioned a computing environment with the capability to manage itself

and dynamically adapt to change in accordance with business policies and objectives

through a set of self-managing functions such as self-configuring, self-healing, self-

optimizing, and self-protecting.

 9

To this end an architectural blueprint for AC has been proposed by IBM and has

been revised in 2002 by (Lohman, & Lightstone 2002), 2003 by (Chess, & Kephart,

2003), 2004 by (Hariri, & Parashar, 2004), 2005 by (Berk, Cybenko, & Roblee, 2005),

and finally in 2006 by (IBM Corporation, 2006). The blueprint defines concepts and

constructs for building self-managing abilities into modern computer systems as well as

architectural building blocks of these abilities. The goal of AC is thus to manage

complexity (technology manages technology), to reduce cost of ownership (automation

reduces human involvement/error) and to enhance other software qualities by (Khalid,

Haye, Khan, & Shamail, 2009). AC systems are used to automate the management of a

resource (Hardware or software) such as storage, server, network, etc. The resource is

monitored for significant events and controlled accordingly. An interface is used for

sensing a change in the monitored resources and another is used to enforce a behavior

for managed resources to react astronomically and manage the targeted environment

with minimal human intervention as proposed by (IBM Corporation, 2006), (Hariri, &

Parashar, 2004), (Berk, Cybenko, & Roblee, 2005) [2,3,29]. For the management

continuity, the four phases control loop as shown in Figure 2.1 is introduced, these are:

1. Monitor: the monitor function provides the mechanisms that collect, aggregate,

filter and report details (such as metrics and topologies) collected from a managed

resource.

2. Analyze: the analyze function provides the mechanisms that correlate and model

complex situations (e.g., time-series forecasting and queuing models).

3. Plan: the plan function provides the mechanisms that construct the actions

needed to achieve goals and objectives; it uses policy information to guide its work.

 10

4. Execute: the execute function provides the mechanisms that control the

execution of a plan with considerations for dynamic updates.

Figure 2.1 Functional details of an autonomic manager (IBM Corporation, 2006).

2.2.1 Autonomic Service Specific Overlay Networks (A-SSON)

The SSONs are overlay networks built and setup for a single service. This

overlay is usually customized to meet the user's request. Since different users may need

different types of overlays, the setup process is pretty different for each user as

proposed by (Al-Oqily, Karmouch, & Glitho, 2008). SSONs have been proposed in the

context of the Ambient Networks (ANs) project (Abrahamsson, & Gunnar, 2004). The

network environment is dynamically changing and heterogeneous as it consists of

potentially a large number of independent, heterogeneous mobile nodes, with

spontaneous topologies that can logically interact with each other to share a common

 11

control space, known as the Ambient Control Space (ACS). ANs are also flexible i.e.

they can compose and decompose dynamically and automatically, for supporting the

deployment of cross-domain (new) services. Thus, the AN architecture must be

sophisticatedly designed to support such high level of dynamicity, heterogeneity and

flexibility. Thus, SSONs are used in ANs. They are created on-demand according to

specific service requirements, they have to deliver, and to automatically adapt services

to the dynamically changing user and network context.

Al-Oqily, Karmouch, & Glitho, (2008) proposed in AO draw upon IBM’s vision and

blueprint described earlier. In their proposal, overlays are viewed as a dynamic

organization for self management in which self-interested nodes can join or leave

according to their goals. Establishing SSONs involves Resource discovery to discover

network side nodes that support the required media processing capabilities. An

optimization criterion is needed to decide which nodes should be included in the overlay

network, configure the selected overlay nodes; adapt the overlay to the changing

network context, user, or service requirements, and join and leaving nodes.

2.2.2 Autonomic Overlays (AO) self-composition

The objective of the proposed architecture (see Figure 2.2) is to create AO that are

driven by different levels of policies. Policies are generated at different levels of the

autonomic management hierarchy and enforced on the fly. SSON construction uses

network side functions, called Media Ports. MPs, thereby, provide the flexibility to

modify the content and the services, such as caching, adaptation and synchronization.

Every service consists of an allocation of resource amounts to perform a function. In

AO, each step imposes a set of minimum requirements. Resource discovery scheme

should be: distributed and not rely on a central entity, dynamic to cope with changing

 12

network conditions, efficient in terms of response time which is the difference between

the starting time of the query and the arrival time of the reply.

Moreover, message overhead which is the total number of generated messages. Should

be accurate in terms of its success rate, which is defined as the number of requests that

receives positive responses divided by the total number of queries. Optimization is

mapped into a self-optimization that: selects resources based on an optimization

criterion (such as delay, bandwidth, etc.). It should yield the cheapest overlay; overlay

with the least number of hops, overlay that is load-balanced, low latency overlay

network, and a high bandwidth overlay network. The configuration is mapped into a

self-configuration and self-adaptation: Self-configuring SSONs dynamically configure

themselves on the fly, they can adapt their overlay nodes immediately to the joining and

leaving nodes, and to the changes in the network environment. Self-adapting SSONs

self-tune their constituent resources dynamically to provide uninterrupted service.

Figure 2.2 Autonomic Overlay Architecture (Al-Oqily, Karmouch, & Glitho,
2008)

 13

As shown in Figure 2.2. The AO architecture is a layered architecture where the lowest

layer contains the system resources that are needed for multimedia delivery sessions.

MPs are special network side components that provide valuable functions such as

special routing capabilities, caching, and adaptation. The Overlay Support Layer (OSL)

receives packets from the network, sends them to the network, and forwards them on to

the overlay.

The next layer contains the overlay nodes. The second layer Overlay nodes are

physical Ambient Network nodes that have the necessary capabilities to become part of

the SSON. They consist of a control plan and a user plan. The control plan is

responsible for the creation, routing, adaptation, and termination of SSONs, while the

user plan contains a set of managed resources. The self-management functions of

overlay nodes are located in the control plan. The Ambient manageability interfaces are

used by the self-managing functions to access and control the managed resources. The

next layer SSON Autonomic Manager (SSON-AM) is responsible for tackling the

complexity of overlay management; each SSON is managed by an SSON Autonomic

Manager (SSON-AM) that dictates the service performance parameters. This ensures

the self-load functions of the services. In addition to this, overlay nodes are made

autonomic to self-manage their internal behavior and their interactions with other

overlay nodes. So, in this thesis, be sure which system is widely performed. A single

SSON-AM alone is only able to achieve self-management functions for the SSON that

it manages. If a large number of SSONs in a given network with their autonomic

managers are considered, it is observable that these SSONs are not really isolated. On

 14

the one hand, each overlay node can be part of many SSONs if it offers more than one

service or if it has enough resources to serve more than one session.

 On the other hand, the SSONs’ service paths may overlap, resulting in two or

more SSONs sharing the same physical or logical link. This will lead to a competition

between autonomic managers that are expected to provide the best achievable

performance. Therefore, and in order to achieve a system wide autonomic behavior, the

SSON-AMs need to coordinate their self-managing functions; this is achieved by using

SAMs. The top layer System Autonomic Managers (SAM) manages the different SSON

managers by providing them with high-level directives and goals. In other words, SAMs

can manage one or more SSON-AMs. They pass the system high-level policies, such as

load balancing policies, to the SSON-AMs as shown in Figure 2.3. A SSON-AM can

manage one or more overlay nodes directly to achieve its goals and receive goal policies

from the SAMs to decide the types of actions that should be taken for their managed

resources. Therefore, the overlay nodes of a given SSON are viewed as its managed

resources. In addition, they expose manageability interfaces to other autonomic

managers, thus allowing SAMs to interact with them in much the same way that they

interact with the Overlay Node AMs.

 15

Figure 2.3 The relationships between SAM and SSON-AM (Al-Oqily, Karmouch, &
Glitho, 2008).

2.2.3 Quadtree

In this section, will try to cover all aspects of quadtree starting by defining the

quadtree. Next, we will go to state how it works. When reviewing the literature a

different definition (illustrated below) was found:

A. A quad tree, occasionally quadtree, Q-tree or QT, is a computer science term

that refers to a method of organizing data in four quadrants. Databases sometimes use

quad trees to store and find their records. This type of organizational structure work

especially well to find a particular bit or pixel in a two-dimensional image (Dooley,

2004), (Harwood, Samet & Tanin, 2005), (Gorman, Popinet, Rickard & Tolman,

2010).

B. The quad tree somewhat follows the tree data structure commonly used in the

computer science. The normal tree data structure looks like an upside down tree, where

a parent node at the top of the tree has one or more children nodes connected to it.

Every other node on the tree has one parent node and can have any number of children

nodes, including zero (Mir, & Ko, 2006), (Tayeb, Ulusoy, & Wolfson, 1998),

(Schuster, & Katsaggelos, 1998).

C. A quadtree is a type of tree structure in which each node has up to four children.

Quadtrees are commonly used to divide 2D spaces into smaller areas. They are similar

to octrees. The advantage of using quadtrees, like other trees, is that it can be quickly

searched. For instance, a tree storing sixteen pieces can be searched in only two search

 16

iterations. A tree storing 64 pieces of data can be searched in only three iterations (Ang,

& Samet, 1989), (Oliver, & Wiseman, 1983), (Samet, & Shaffer, 1986).

D. Quadtrees are a well-established technique in computer graphics and computer

visions for representing a 2D shape. A quadtree is a tree of data structure with each tree

node having up to four children. A quadtree node usually represents a square, which can

be subdivided into four other squares, which cover the same area. Each leaf node is

marked as being part of the object or not (Manolopoulos, Tzouramanis, &

Vassilakopoulos 2000), (Dehne, Ferreira, & Rau-chaplin 1991), (Mazumder, 1987).

Now, how the quadtree works will be explained. A quadtree, like other tree

structures, has three main components. The first is a "root" or parent node, which

represents the head of the tree. Child nodes are all below this root node. Each child has

exactly one parent, except for the tree's root node. A "leaf" is a child node, which has no

other children. Leaves are usually where the data is stored. Quadtrees are a helpful data

structure for dividing a 2D area into smaller pieces as illustrated in figure 2.4.

Figure 2.4 Quad Tree space partitioning

 17

In the figure 2.4, the "root" node represents the entire area of the tree. Underneath that

node is four smaller areas, zero, one, two, and three. Below each of those nodes is there

are four nodes that divide that space further. For instance, one has four child nodes, 10,

11, 12, and 13 and another example node 12 has four child nodes, 120, 121, 122, and

123.

Quadtrees are the majority frequently used to divide a two dimensional space by

recursively subdividing it into four quadrants or regions. The regions may be square or

rectangular, or may have random shapes. A quadtree is a tree data structure in which

every node in the interior node has up to four children. This data structure was named a

quadtree by Raphael Finkel and J.L. Bentley in 1974 (World News Website, 2011). A

related partitioning is also known as a Q-tree. Each and every one forms Quadtrees

share some ordinary features, they decompose space into adjustable cells; each cell has

a maximum capability. When maximum capability is achieved, the cell splits, and the

tree directory follows the spatial decomposition of the Quadtree (Aboulnaga, & Aref,

2001), (Harwood, Samet, & Tanin, 2005), (Eppstein, Goodrich, & Sun, 2005), (Lario,

Antonijuan, & Pajarola, 2002), (Eisenstat, 2011).

 18

2.2.4 Morton Ordering

Frens, & Wisey (1999) conclude that Morton order was introduced in 1966 by G. M.

Morton. In the mathematical analysis and computer science, Z-order, Morton order, or

Morton code is a space-filling curve which maps multidimensional data to one

dimension while preserving locality of the data points (Alexander, Frens, Gu, & Wise,

2001).

To enable us to know and determine where the (X,Y) coordinate lie in the distributed

quadtree or vice versa where a distributed quadtree indexes lie in coordinate space. To

achieve this addressing scheme using the bit interleaving as follow:

1. take a cell's row and column numbers

A. e.g. row Y= 2, column X= 5

2. write the row and column numbers in binary notation, using bits

A. 2 = 010; 5 = 101

3. interleave the bits, starting at the left and working to the right, and taking a row

bit first

0 1 1 0 0 1

The blue color and shading refer to the Y axis (2) and the black refer to the X (5)

axis

4. The result is 011001, now replacing zero by 00, 1 by 01, 2 by 10, and 3 by 11.

 19

2.3 Load Balance

In this section, survey and present Load Balancing for Self Load Balancing,

Analytical Load Balancing Algorithm and Load Balancing types and policies are

presented.

Various definitions of load balancing have been introduced. For example (Alakeel,

2010) define the load balancing as “the process of redistributing the work load among

nodes of the distributed system to improve both resource utilization and job response

time while also avoiding a situation where some nodes are heavily loaded while others

are idle or doing little work”. Again (Alakeel, 2010) defines it as “the mechanism that

enables jobs to move from one computer to another within the distributed system, this

creates faster job service e.g., minimize job response time which is the difference

between the starting time of the query and the arrival time of the reply. And enhances

resource utilization”. There is a more interesting definition proposed by (Eager,

Lazowski, & Zahorjan 1986) where they define it as "the process of roughly equalizing

the workload among all nodes included in the distributed system. It strives to produce a

global improvement in system performance". In this manner, load balancing goes one-

step further than load sharing which only avoids having some nodes idle in the

distributed system when other nodes have too much work. This definition better

captures the essence of the problem trying to solve, thus will be adopted through this

proposal. Load balancing has been proposed to solve problems in various disciplines. In

the following sections, load balancing in Grid, wireless, and overlay networks is

reviewed.

 20

2.3.1 Self Load Balancing

While reviewing the literature, not a lot about self-load balancing was found for this era.

For instance, a lot of work was based on central entity while others try to predicate the

load status and not all of them cope with this environment.

Flatebo, Datta, & Bourgon, (1994) proposed a Self-stabilizing Load Balancing

Algorithm. This algorithm cares for the receiving and completion of jobs as

perturbations to the system. A long time ago, the system stabilizes and the local

variables permit jobs to be thrown to the least loaded node. Once the least loaded node

begins the job, its load will be increased which would yield the modification in the

variables. The variables will dramatically update and reflect to be converging so that

jobs can go ahead to a least loaded node. The proposed solution yields an extra

overhead because of the message passing to update the different lists and variables.

Meng, Qiu,, Zhang, & Zhang, (2010) proposed a design of distributed and

Autonomic Load Balancing (ALB) for self-organization. Long Term Evolution (LTE).

This proposed effort distributed Autonomic Flowing Water Balancing Method

(AFWBM) which function can be described as monitoring, analyzing, optimization and

implementation. For that, AFTWBM can detect their load conditions depending on self-

monitoring actions. To attaining ALB for LTE Radio Access Networks (RAN) by

employing AFWBM modules in Evolved Universal Terrestrial Radio Access (E-

UTRAN) NodeB (eNBs), overload conditions can be detected by eNBs, then handover

 21

hysteresis margin HOM will be adjusted and handover actions will be triggered to

balance load. This work is restricted for a specific domain.

For that as declared in chapter one, the section on problem definition, the only

key is to provide a self-load-balancing technique maybe by redesigning an existing one

to cope with the restricted new network environment or by proposing a new one.

2.3.2 Analytical Load Balancing Algorithm

Performance Analysis of Load Balancing Algorithms has been proposed by

(Sharma, Sharma, & Singh, 2008). They present the performance analysis of various

load balancing algorithms based on different parameters, considering two typical load

balancing approaches static and dynamic. The analysis shows that static and dynamic

(both types of algorithm) can have advancements as well as weaknesses over each other.

To decide which; type of algorithm to be implemented will relay on type of parallel

applications to solve. The main reason for their work is to assist in proposing new

algorithms in the future by studying the behavior of various accessible algorithms. The

comparison of various load-balancing algorithms on behalf of the different parameters

is shown in Table 2.1 below.

 22

Table 2.1 Performance Analysis of Load Balancing Algorithms (Sharma, Sharma, &

Singh, 2008).

Parameters Round

Robin

Random Local

Queue

Central

Queue

Central

Manager

Threshold

Overload Rejection No No Yes Yes No No

Fault Tolerant No No Yes Yes Yes No

Forecasting Accuracy More More Less Less More More

Stability Large Large Small Small Large Large

Centralized/Decentralized D D D C C D

Dynamic/Static S S Dy Dy S S

Cooperative No No Yes Yes Yes Yes

Process Migration No No Yes No No No

Resource Utilization Less Less More Less Less Less

Load balancing algorithms work on the belief that in any situation workload is

assigned, during compile time or at runtime. The above comparison shows that static

load balancing algorithms are more stable in contrast to dynamic and it is also simple to

guess the behavior of static, but at the same time, dynamic distributed algorithms are

always measured better than static algorithms.

 23

Chhabra, & Singh, (2006) made a qualitative parametric comparison of load

balancing algorithms in a parallel and distributed computing environment. Decreases in

hardware costs and advances in computer networking technologies have led to increased

interest in the use of large-scale parallel and distributed computing systems.

One of the biggest issues in such systems is the development of effective

techniques/algorithms for the distribution of the processes/load of a parallel program on

multiple hosts to achieve goal(s) such as:

1. Minimizing execution time.

2. Minimizing communication delays.

3. Maximizing resource utilization.

4. Maximizing throughput.

Researches using queuing analysis and assuming job arrivals following a Poisson

pattern, have shown that in a multi-host system the probability of one of the hosts being

idle while other host has multiple jobs queued up can be very high. Such imbalances in

system load suggest that performance can be improved by either transferring jobs from

the currently heavily loaded hosts to the lightly loaded ones or distributing load

evenly/fairly among the hosts .The algorithms known as load balancing algorithms, help

to achieve the above said goal(s). These algorithms come into two basic categories -

static and dynamic. Whereas Static Load Balancing algorithms (SLB) take decisions

regarding assignment of tasks to processors based on the average estimated values of

process execution times and communication delays at compile time, Dynamic Load

Balancing algorithms (DLB) are adaptive to changing situations and take decisions at

run time.

 24

The objective of their work is to identify qualitative parameters for the comparison of

the above said algorithms. This comparison work in tabular form is shown in Table 2.2

below.

Table 2.2 Qualitative Parametric Comparison of Load Balancing Algorithms Chhabra,

& Singh, (2006).

 Load balancing

Parameters

SLB Algorithms DLB Algorithms

1.Nature Static Dynamic

2.Associated overhead Lesser overhead More overhead

3.Resource Utilization Lesser Utilization More Utilization

4.Processor Thrashing No Thrashing Substantial Thrashing

5.Preemptiveness Non-preemptive Preemptive and Non-preemptive

6.Predictability More Predictable Lesser predictable

7.Adaptability Less adaptive More Adaptive

8.Reliability Less More

9.Response Time Less More

10.Stability More Less

11.Other Issues Determining process execution time at

run time

Developing techniques to reduce comm.

Overhead

 25

2.3.3 Types of load balancing and policies

By means of the huge developments in computer machinery in addition to the

ease of use of many distributed systems, the difficulty of load balancing in distributed

systems has increased a superior awareness and significance (Casavant, & Kuhl, 1988),

(Goscinski, 1991). As a result, a huge quantity plus diversity of investigation has been

carried out in a challenge to resolve this trouble. Classification of load balancing

algorithms in distributed systems are reported by (Wang, & Morris, 1985). Solutions to

the load balancing problem are divided into two main approaches depending on whether

a load balancing algorithm bases its decisions on the current state of the system or not:

static and dynamic. As described Load balancing algorithms can be classified into two

categories: static or dynamic. In static algorithms, the decisions related to load balance

are made at compile time when resource requirements are estimated. Multicomputers

with dynamic load balancing allocate or reallocate resources at runtime based on no

prior task information, which may determine when and whose tasks can be migrated

(Slimani, & Yagoubi, 2006), (Alakeel, 2010).

In the presents networks nowadays all systems have common factors such as

heterogeneity, scalability, adaptability. Additionally, request load and resource

administration are two vital purposes presented at the service level of the grid software

infrastructure. Several load balancing types or strategies and algorithms have been

proposed to improve the global throughput of these software situations; workloads have

to be equally planned between the accessible resources. Most strategies were developed

in a state of mind assuming homogeneous set of sites linked with homogeneous and

high-speed networks.

 26

2.3.3.1 Load Balancing Types (LBT)

There are different kinds of LBT that are used widely; Selecting an appropriate load

balancing strategy permits CSIS to offer balancing service according to the load

capacity of each server (Fuse source website, 2010), (Apache camel website, 2010).

1. Round Robin balancing: In a round-robin algorithm, the IP sprayer assigns the

requests to a record of the servers on a rotating basis. The earliest request is allocated

to a server selected randomly from the cluster, so that if an additional IP sprayer is

concerned, not all the original requests depart to the same server. For the subsequent

requests, the IP sprayer goes after the circular sort to forward the request. Formerly a

server allocating a request; the server is going out to the end of the record. This

remains the servers uniformly assigned. In computing, "round-robin" illustrates a

technique of selecting a resource for a task from a list or record of accessible ones

typically for the ideas of load balancing. Such that may be a distribution of incoming

requests to an amount of processors, worker threads, or servers. At the same time, as

the basic algorithm, the scheduler chooses a resource pointed to by a counter from a

list, later than which the counter is incremented and if the ending is reached, returned

to the start of the list. Round-robin selection has an optimistic attribute of avoiding

starvation, since every resource will be sooner or later chosen by the scheduler,

excluding may be not fitting for some applications where similarity is desirable, for

instance when handing over a process to a CPU or in link aggregation. The services

requested from a consumer are distributed to each server in a cluster in turn. This

kind of equilibrium algorithm is appropriate for all the servers in a server cluster

having the similar software and hardware configure; and the average resource

practice of each request is relative to the same efficiency. This algorithm belongs to a

static load balancing.

 27

2. Weighted Round Robin balancing: According to unlike processing ability of

each server, each server has a defined related weighted value in order to admit the

service request of corresponding weighted value. This class of balancing algorithm

can guarantee the high-performance server that can acquire more accesses, in the

meantime avoid the server of low-performance from overloading, or go to

overcapacity. This algorithm belongs to the static load balancing.

3. Random balancing: Distributing the requests from a network to a server in a

server cluster is random. In a random allocation, the HTTP requests are allocated to

any server chosen randomly amongst the cluster of servers. In such situation,

individual of the servers might be allocated several additional requests to process,

whilst the other servers are sitting idle or unused. However, on average, every server

acquires its share of the load outstanding to the random selection. This algorithm

belongs to the static load balancing.

4. Weighted Random balancing: This balancing algorithm is similar to Weighted

Round Robin algorithm; nevertheless, the loads are distributed randomly depending

to weighted value. Weighted Round Robin is a highly developed version of the round

robin with the reason of reducing the shortages of the simple round robin algorithm.

In situation of a weighted round-robin, individuals can allocate a weight to each

server in the group so that if one server is skilled of handling two times as much load

as the other, the powerful server obtains a weight of two. In such situations, the IP

sprayer will assign two requests to the powerful server for each request assigned to

the weaker one. This algorithm belongs to the static load balancing.

 28

5. Flash DNS balancing: The service requests of client achieve IP address of the

server from the first to the last determining domain name. Usually, by means of this

balancing algorithm, the diverse load balancing equipment (DNS) dispersed in

dissimilar geographical locations accept the same request of determining domain

name from the same client. After that, the domain name is determined into IP address

by different DNS and returns to the client. The client will admit the server’s service

of which IP address arrives first and ignores other’s service of which IP address

arrives behind schedule. This balancing strategy is appropriate for the situation of

global load balancing, however, it is inappropriate for the local load balancing. This

algorithm belongs to static load balancing.

6. Least Connection balancing: In attendance, there may be bigger varieties in

serving time of each one request. If assuming the Round Robin or Random balancing

algorithm, the quantity of service connection on every server might turn out to be

more dissimilar alongside with time trailing off, and it will origin load balancing halt.

Least Connection balancing exercises a list to record the quantity of connections of

every server. When a fresh service request arrives, it will be distributed to the server

of which connection number is the least. This type of balancing algorithm is

appropriate for the request that requires long time service such as FTP service. This

algorithm belongs to the static load balancing.

 29

7. Response Time balancing or least response time Load balancer: Load balancing

tools start sensing command or request such as Ping packet to every server in the

server cluster, after that distribute service request to the server of which response

time is the shortest. This Response Time balancing algorithm can find enough

mirrors for the usability of servers, but the least time just capital the shortest

communication time among load balancing equipment and server. When a Load

balancer is configured to employ the least response time technique, it chooses the

service with the least number of active connections and the least average response

time. The response time also called Time to First Byte, or TTFB is the time period

between sending a request packet to a server and receiving the first response packet

back. This algorithm belongs to the dynamic load balancing.

The approaches of aforementioned load balancing exist not enough subjectively

assigning and scheduling loads. Except “response time balancing”, aforementioned

strategies are unidirectional, static and subjective, and they cannot reproduce the true

load conditions of the server and load ability in time. Temporarily, they cannot notice

server fault and recognize fault tolerance.

 30

2.3.3.2 Load balancing policies

Load balancing algorithms can be defined by their implementation of the following

policies or strategies (Karatza, 1994):

1. Information policy or strategy: identifies what workload information to be

grouped, when it is to be grouped and from where it is to be grouped. Information

strategy is the information heart of a dynamic load-balancing algorithm. It is in

charge for afford location and transfer strategies at each node with the essential

information required to build their load balancing decisions. A complicated

information strategy maintains each and every one node of the distributed system

updated on the universal system state but produces extra load traffic and thus

enlarges the overhead generated by the algorithm. For that reason, there is a trade-off

between the total of information swap and the occurrence of the swap of this

information.

2. Transfer Strategy: taking into account that significant limitations such as job

execution time, size, I/O, and memory necessities are not recognized until the job is

carried out; selecting a job for load balancing is not a simple mission. Furthermore, a

single advance has been attempted in order to treat with this absent piece of

information. One advance to load balancing creates job transfer decisions separately

of the job’s properties. In this method, a job is transferred if the queue length at the

local node goes beyond a definite threshold or else, the job is executed locally.

Shortly it finds out the suitable epoch to start a load balancing operation.

 31

3. Resource type policy: categorizes a resource as a server or receiver of tasks

according to its availability condition.

4. Location Strategy: Solitary of the main decisions achieved by a load-balancing

algorithm is the selection of a target node for a job transferred for load balancing.

This decision symbolizes the sole purpose for load balancing: an over loaded node

attempts to find a lightly loaded node to assist in performing a quantity of its jobs.

This decision is carried out by the location strategy. The choice of a remote node is

based on the current workload exists at that node. Shortly, Location policy utilizes

the outcome of the resource type policy to discover an appropriate collaborator for a

server or receiver.

5. Selection policy: describes the responsibilities that must be transferred from

overloaded resources to most idle resources.

6. The achievement of a load-balancing algorithm relies on: the steadiness of the

quantity of messages, little overhead, maintained environment, low down cost update

of the workload and tiny mean response time, which is an important amount for a

user (Badidi, 2000). It is also necessary to determine the communication rate

persuaded by a load balancing function.

 32

3.1 Load Balance

In this section, a survey and the related work for Load Balancing in different

domains and Distributed Quadtree Implementations are presented:

3.2 Load Balancing in different domains

While reviewing the literature, it was found that each type of load balancing

algorithm is suitable for one domain and not applicable for others unless, if was adapted

to compatible domains in Grid Networks, Wireless networks, and Overlay networks.

3.2.1 Load Balancing In Grid Network

A grid network is a type of computer network component of a number of computer

systems linked in a grid topology. Grid computing offers a homogeneous interface to

heterogeneous and bodily-distributed resources, each and every one connected over a

high-speed network. Current Grid implementations are geared toward scientific

projects, which require large amounts of compute, storage, and network resources.

These operations remain fairly static over time and as such demand long-lived, photonic

network connections by (De Leenheer, etal., 2005). The fundamental inspiration behind

Grid computing is to interconnect and utilize available storage, processor, or memory

subcomponents of distributed computing systems to work out larger problems more

professionally.

 33

 The benefits of Grid computing are cost savings, enhanced business quickness by

decreasing the time-to-market (delivering actual results), and improved group effort and

sharing of resources among departments or institutions. Several economic and business

features are causal to the heightened interest in the development and deployment of

Grid computing. Based on the Internet and E-commerce, today’s society is inundated

with data. As the available data repository grows bigger and wider, the window of

opportunity for capturing and translating the obtainable data into information shrinks

quickly.

Singh, & Suri, (2010) proposed a dynamic load balancing algorithm for a decentralized

grid model. The algorithm considers load index as a decision factor for scheduling of

tasks within a cluster and among clusters (grid). The decentralized grid system model is

a set of clusters; each cluster contains Coordinator Nodes (CN) together with the

multiple Worker Nodes (WN) but they have different processing powers. The tasks that

are generated by users are sent to the CN where a decentralized job scheduling approach

is used. CN collect jobs from users in their cluster and place them in a global task set

and then compute the utilization factor for its cluster. Once CN with high utilization

factor receive a new job, the Grid Information Center (GIC) is consulted to provide an

alternative cluster with low utilization factor to which the CN will transfer the new job.

Therefore, the algorithm periodically collects load information of clusters and sends it

to the GIC entity. Although job scheduling is decentralized, the GIC entity is a central

entity thus represents a single point of failure to the system since load balancing has a

great impact on resources' performance (Singh, & Suri, 2010).

 34

 Deldari, & Salehi, (2006) try to provide a more accurate load

measurement/estimation method, which relies on the time needed for executing current

jobs (instead of number of current jobs). Then they are proposing a new load balancing

method, as an agent, based on this new measurement/estimation policy. As application

performance prediction provides the important functionality that enables the grid load

balancing capabilities. The agent is equipped with a performance prediction toolkit

called PACE. The PACE toolkit is used to supply this ability for both the local

schedulers and the grid agents. The main components of the PACE toolkit include

Application Tools (AT), Resource Tools (RT), and an Evaluation Engine (EE). The

PACE evaluation engine can mingle application and resource models at execution time

to produce performance data e.g. total execution time. In the Agent-based Resource

Management System (ARMS), agents obtain their resource capabilities using PACE and

exchange them with their neighbors periodically. An agent advertises its load

information only to its neighbors, for the purpose of scalability needed in the grid. It is

possible to attach load characteristics of the nodes to this exchanging of information.

Here, they consider the total execution time (gained through PACE evaluation engine in

each node), average of the job arriving rate and job completion rate (considering the

number of arrivals/completions in a certain fixed interval of time in each node) as the

load information.

 35

This information helps to provide a more accurate measurement as well as

estimation for load as follows:

1. The agents estimate the current load of their neighbors.

3. Then the agent computes the average load on its neighboring agents. An agent calls
itself “overloaded” if its load is greater than the average load of its neighbors.

3. Agents in the neighboring set, whose estimated load is less than the estimated
average load by more than a threshold, form an active set.

4. The sender each time finds a member of the active set which has the most profit
(result in less response time) sends to it jobs (extra load).

However, load can be spread to a large area after many steps of equalization

over a period of time. It is probable that an under loaded agent situated in an active set

of two or more overloaded agents simultaneously. In these circumstances, overloaded

agents may send their extra load to the under loaded agent at the same time and make

the under loaded agent, overloaded. Hence, this condition causes instability for the

proposed method. To this end, they use a locking technique to avoid these situations.

Therefore, each agent only sends its load information to one requester, and does not

respond to any other agent at the same time. This continues until the agent is dismissed

by the requester. The Grid computing environment is a collaboration of spread

computer systems where customer jobs can be executed on any home or remote

computer. Many troubles live in the grid environment.

In a computational Grid, as resources are in nature distributed and positioned at

different sites, the job transfer time from one spot to another site is a very important

factor for load balancing. In addition, the communication latency is very big for the

WAN through which Grid resources are usually connected. Furthermore, due to

network heterogeneity, the network bandwidth varies from one link to another. For this

 36

reason, the job transfer cost cannot be ignored when making a job migration decision. In

addition, since the resources are heterogeneous, jobs that have to be assigned to

processors according to their performance are needed.

Saravanakumar, & Prathima, .(2010) proposed, adaptive, and decentralized load

balancing algorithm for computational Grid environments, called the Load Balancing on

Arrival (LBA). The processors that are directly connected to a processor constitute its

buddy set. It is assumed that each processor has knowledge about its buddy processors

and the communication latency between them, and load balancing is carried out within

buddy sets only. It may be noted that two neighboring buddy sets may have a few

processors common to each set and use three performance metrics of relevance at three

different levels:

1. At the job level, they consider the ART of the jobs processed in the system as

the performance metric. If N jobs are processed by the system (Saravanakumar, and

Prathima, 2010), then

 (1)

2. At the system level, they consider the total execution time as the performance

metric to measure the algorithm’s efficiency. It indicates the time at which all N jobs

get executed.

3. At the processor level, they consider the resource utilization as the performance

metric. It is the ratio between the processor’s busy time to the sum of the processor’s

busy and idle time (Saravanakumar, & Prathima, 2010):

 (2)

 37

Accordingly, the objective is to propose well-organized load balancing algorithms to

reduce the ART of the jobs for computational Grid environments. This algorithm will

influence load balancing by watchful estimation of the job arrival rates, CPU processing

rates, and loads on the processor. Moreover, they take into account the resource

heterogeneity, network heterogeneity, and job migration cost before a load balancing

decision. The process of parameter estimation and the way in which load balancing is

carried out is described below.

Figure 3.1 Estimation and Status Exchange intervals (Saravanakumar, & Prathima, 2010).

At each periodic interval of time, Ts called the status exchange interval; Each Pi in the

system calculates its status parameters, as follows:

1. The estimated arrival rate.

2. The service rate.

3. Load on the processor.

4. Exchanges of its status information with the processors in its buddy set.

The instant at which this information exchange takes place is called a status exchange

instant. In Figure 3.1, Tn-1 and Tn represent the status exchange instant.

 38

Each Pi calculates its status information at status exchange instant Tn-1. Each

status exchange period is further divided into equal subintervals called estimation

interval Te. These points are known as estimation instants. In figure 3.1, t1, t2, . . . t

m_1 represent the estimation instants. Each Pi calculates the estimated load on its buddy

processor Pk .The status exchange instants and the estimation instants together

constitute the transfer instants. The decision to transfer jobs and actual transfer of jobs

are done at transfer instants.

3.2.2 Load Balancing in Wireless network

Wireless networks refer to any type of a computer network that is wireless

(without any type of wires), and is commonly associated with a telecommunications

network whose interconnections between nodes are implemented without the use of

wires. Wireless telecommunications networks are generally implemented with some

type of remote information transmission systems. These systems use electromagnetic

waves, such as radio waves, for the carrier and this implementation usually takes place

at the physical level or "layer" of the network. In this context, Ad hoc networks are

wireless, decentralized networks that consist of a set of identical nodes to form a

network. Ad hoc is a Latin phrase, which, literally, means "For this". The network is ad

hoc because it does not rely on a pre-existing infrastructure, Instead, all nodes almost

identical in their capabilities move freely and independently and communicate with

other nodes via wireless links, participate in routing by forwarding data for other nodes

and so the determination of which nodes forward data is made dynamically based on the

network connectivity.

 39

 Ad hoc network may be reasonably represented as a set of clusters by grouping

together nodes that are in close proximity with one another. Such network consists of

ordinary node and cluster heads (a leader). Clusterheads are ordinary nodes selected

sometimes based on random algorithm to form the backbone of the wireless network,

and have more responsibility to route packets or to distribute routing information or

both within the same cluster or between cluster heads in another cluster. Nodes in ad

hoc networks are mobile. For that powered by batteries, Communications or

transmissions cause the batteries to be depleted. Therefore, the communications should

be kept to a lower boundary to avoid a node dropping out of the network rashly.

Because the clusterheads are involved in every communication, the battery's life

depletes earlier than other battery’s node in the clusters. Therefore, there is a need to

distribute the load or to balance the load between other nodes as mentioned in (Amis, &

Prakash, 2000).

It is assumed that the MAC layer will mask unidirectional links and pass only

bidirectional links. Beacons could be used to determine the presence of neighboring

nodes. The Multiple Access with Collision Avoidance (MACA) protocol utilizes a

Request To Send/Clear To Send (RTS/CTS) handshaking to avoid collision between

nodes.

 40

Another type of wireless networks is the Wireless Sensor Networks (WSNs). It

consists of spatially distributed autonomous sensors to cooperatively monitor physical

or environmental conditions, such as temperature, sound, vibration, pressure, motion, or

pollutants. The developments of wireless sensor networks were motivated by military

applications such as battlefield surveillance and are now used in many industrial and

civilian application areas, including industrial process monitoring and control, machine

health monitoring, environment and habitat monitoring, healthcare applications, home

automation and traffic control.

Israr, & Awan, (2007) proposed a new cluster based routing algorithm that exploits

the redundancy properties of the sensor networks in a try to address the usual problem

of load balancing and energy efficiency in the WSNs. Any WSNs face challenges and

issues in clustering such as:

1. Network deployment: Node deployment in WSNs is either fixed or random

depending on the application.

2. Heterogeneous network: the WSNs are not always uniform. In some cases, a

network is heterogeneous consisting of nodes with different energy levels.

3. Network scalability: When a WSN is deployed, some time new nodes need to be

added to the network in order to cover more area or to prolong the lifetime of the

current network.

4. Uniform energy consumption. Transmission in WSNs is more energy

consuming compared to sensing. Therefore, the cluster heads which perform the

function of transmitting the data to the base station consume more energy compared

to the rest of the nodes.

5. Multi-hop or single hop communication: The communication model that a

wireless sensor network uses is either single hop or multi hop.

 41

6. Cluster Dynamics: Cluster dynamics means how the different parameters of the

cluster are determined for example, the number of clusters in a particular network.

As thus, they propose Multi hop Clustering Algorithm for Load Balancing (MCLB)

(Israr, & Awan, 2007). It consists of two distinct parts, the setup part and the steady

part. During the setup part, Cluster Heads and temporary cluster heads are elected

followed by the steady part. The steady part is the data transmission part and is longer

than the setup part. In the setup part, the algorithm first filters all the nodes in the

network of which area coverage is covered by its neighbors. Because of this operation,

the network is divided into two layers the top layer and the bottom layer. The top layer

comprises of nodes whose sensing area is completely covered by its neighbors along

with cluster heads, whereas the bottom layer comprises of the rest of the network nodes.

Because of operations, part of the algorithm is the same as that of each in which a set of

cluster heads are chosen at random. These cluster heads then broadcast an advertisement

message. Depending on the message strength, each node then decides to which cluster

head it belongs. This part uses the CSMA MAC protocol and during this period all the

nodes are listening. The selection of the cluster head is dependent on the probability.

During each cycle, the cluster head selection is random and is dependent on the amount

of energy a node has left and its probability of being not a cluster head during the last

rounds. After this, the data transmission part starts. In this part, all nodes transmit data

using TDMA based scheduling.

When all the nodes within the cluster finish sending data, the cluster head performs

some computation on it and sends it to base station using multi hop communication

involving temporary clusters and other clusters heads.

 42

3.2.3 Load Balancing in Overlay network

 Bridgewater, Boykin, & Roychowdhury, (2007) proposed a Balanced Overlay

Networks (BON), a new decentralized load-balancing advance that codes the balancing

algorithm in the developing construction of the graph that connects the resource-bearing

nodes. A BON is scalable, self-organized, and relies only on local information to build

job assignment decisions. New jobs are allocated to a node by a random walk on the

graph which not only samples the graph preferentially but also selects the highest-

degree node that was visited on the walk. Each node’s idle resources are relative to its

degree, so this approach works very fine when a network is not loaded further than its

clipping point. When a BON is clipped, the relationship between load and in-degree

breaks down, but the balancing performance remains quite good due to the so-called

“power of two choices” in a ball-bin load balancing. Based on previous theoretical

results and extensive simulation results, BON is seen to be efficient and practical.

Added ongoing work on this difficulty includes geographical alertness extensions using

more difficult walk objective functions. Lastly, it should be distinguished that this is

only one probable way to code information about a network in its topology; other

distributed algorithms may benefit from using a graph state to a favoritism node

selection.

 43

Dalal’ah (2006) proposed a sliding policy for load balancing. The policy grouping a

definite number of neighboring nodes to execute load balancing. Upon the achievement

of a certain period, the groups are to be span by changing each group one place to the

right, therefore create different groups.

 This policy (sort of clustering) not only reduces the load balancing overheads, but

also could be utilized as a backbone by any load balancing policy. The proposed load

balancing strategy always comes together, and tends to be in a steady state in an

insignificant processing time. The load status and the locations of the nodes concerning

the system’s topology are irrelevant to the load balancing process. The new algorithm

can be constantly applied to any distributed system, even if it is heavily loaded, since

the rate of scheduling is very low due to the highly reduced number of communication.

This is pulled off by dropping dramatically the overheads acquired from attached

information tables, message passing, job thrashing, and response time. Two methods of

grouping the nodes were introduced; the first is to group the nodes in couples while the

other one is to group the nodes into triples. The overhead branch from computations is

reduced dramatically in both methods. Therefore, the number of communication

(message passing) is not any more an important issue, since it turns to be rigid with a

small number of messages and when the utilization of the system is maximized. The

proposed policies guaranteed the distributed system to be scalable.

3.3 The Implementation of DQT for Networks

DQT is simple infrastructure and stateless environment, the DQT demonstrates a

charming flexibility to the appearance of node breakdowns.

 44

3.3.1 DQT for Spatial Querying in WSNs

Demirbas, & Xuming, (2007) presented an in-network querying infrastructure, called a

distributed quad-tree (DQT) structure, appropriate for employing in actual globe WSN

deployments. The DQT convinces a distance-sensitive querying as well as a well-

organized information storage in a network. The DQT building is local and does not

need any communication.

 Furthermore, due to its simple infrastructure and stateless environment, the

DQT demonstrates a charming flexibility to the appearance of node breakdowns. The

DQT is acquiescent to an organism extended to arbitrary and compound queries than the

binary version “is there an event?” queries exist at this point. In that case, since the

queries are arbitrary, the information advertisement cannot be hopeful of all queries, and

only a review of sensor data should be accumulated for energy-efficiency purposes. As

such, for a declaration of queries there may be several corresponding alternatives that

need to be discovered excluding that they may not assure the query and may result in

back-tracking and model-based query optimization techniques. The stateless nature of

DQT formulates that it is flexible to topology alters. In fact, it may possibly expand

DQT to give a location service for mobile ad hoc networks. The thought is to redo a

query until it grabs up with the mobile objective. Even if a target node may shift during

the query implementation and guides to a fail to see the query when invoked from this

new location closer to the target node. It will have an improved chance to catch up to

the target node due to the distance-sensitivity property in DQT.

 45

In building his model, the author takes for granted that the WSN motes sit down

on a two dimensional plan and their coordinates (X,Y) are made accessible to

themselves. The network is separated into grid cells while inserting a DQT over the

network. A level one box in DQT represents the minimum cell area in the DQT

construction. The authors suppose that all the WSN motes inside a level 1 box are

within one hop distance. According to his jargon, a mote refers to a physical MPs node,

while a “node” refers to a virtual DQT node, such as level one box. The cost of

querying an event is calculated as the number of hops passed through from the querying

mote to a mote that holds an advertisement about the event.

 0 1 2 3 4 5 6 7

0 000 001 010 011 100 101 110 111

1 002 003 012 013 102 103 112 113

2 020 021 030 031 120 121 130 131

3 022 023 032 033 122 123 132 133

4 200 201 210 211 300 301 310 311

5 202 203 212 213 302 303 312 313

6 220 221 230 231 320 321 330 331

7 222 223 232 233 322 323 332 333

Figure 3.2 DQT Structure and Construction (Demirbas, & Xuming, 2007).

 46

Figure 3.3 Different directions (Demirbas, & Xuming, 2007).

Figure 3.4 Node addressing and tree structures (Demirbas, & Xuming, 2007).

For building DQT, they utilize an encoding trick. In this encoding, every level 1 box in

the construction is assigned an ID, which uniquely identifies a region. The length of the

ID is equivalent and identical to the number of levels. Employ this addressing method to

care for the location information of a node. Due to the technique building level 1 box,

this scheme is self-governing of the number of nodes, but relies on the division levels.

Figure 3.4 illustrates the addresses of the nodes in a region with three levels. In all level

of partition, a node is assigned as a clusterhead node of the region. The clusterhead is

always its own child in lower levels. The clusterhead at every level division is statically

assigned to be the closest node to the geographic center place of the entire network. For

N

S

E W

NW
NE

SW SE

 47

instance, in level one division, node 003 is selected as a clusterhead for 00 regions,

because it is closer to the center than nodes 000, 001 and 003. In the same way, node

033 is selected as level two clusterhead, as it is closer to the center than level two nodes

003, 013, and 023. Therefore, the node closest to the center of the entire network in each

sub partition is selected as the parent node of that sub partition. The advantage of such a

choice is to pass up rearward links. For instance, in figure 3.4, node 000 propagates the

query to its root node 033 by first contacting parent node 003, then 003’s parent 033. A

short path is achieved since there is no rearward link on the querying trail. A DQT node

can fit in to different levels in the hierarchy depending on its place. If a node is a

member at level k, it is also a member at all levels fewer than k. Indicate a node p’s

parent as p.parent & children as p.child. The neighboring nodes are called siblings,

which are denoted as p.sibling. The author Mapping from localization to DQT

addressing: Each node in DQT can calculate the DQT address of the level one partition

it resides in from its X,Y coordinates easily. Let (Xs,Ys) at NW and (Xe,Ye) at SE be

the two endpoints of the area where DQT should be overlaid. (Demirbas, and Xuming,

2007). Assuming DQT has i levels. The region of each level 1 box of division is (w*l) ,

where width

 (3)

Then DQT address of a node(X,Y) can be calculated as claimed (Demirbas, & Xuming,
2007):

 (4)

 48

The mappings compute the X and Y address individually, and next add them

together. This can be verified this from figure 3.4, for instance, node ID 033 is obtained

by adding 011 and 022, and node ID 332 is obtained by adding 110 and 223.The

motivation that the second term in the DQT address computation is multiplied by 2 is

because the Y addresses pace by two for every increment in DQT addressing scheme.

Given this mapping, any node can locally compute its DQT address based on its

coordinates (X,Y). Besides the DQT address, each node also maintains its (X,Y)

coordinate address. By using the above encoding trick and assigning DQT addresses

for DQT nodes, can start constructing the DQT structure.

3.3.2. A Quadtree-Based Data Dissemination Protocol for WSN with Mobile Sinks:

Mir, & Ko, (2006) proposed a wireless sensor network (WSN) made of a

number of small sensors that are closely positioned to watch and work together with

the physical world where each sensor can partially monitor the large topography.

Environment monitoring application differs very much with one common aim of

detecting and reporting on the event of interest to the sink. The author proposed an

efficient and simple, Quadtree-based data broadcasting protocol for large scale

wireless sensor networks that chains both stimulus and sink mobility. By

construction the data propagation process self-governing of each other’s current

location. Quadtree-based Data Dissemination (QDD), a familiar hierarchy of data

forwarding nodes is created by Quadtree based partitioning of physical space into

following quadrants. A source node computes a set of rendezvous points by one

 49

after another partitioning the sensor network space into four uniformly sized logical

quadrants, and fires data packets to the nodes closer to the centric of each following

partition.

The mobile sink follows the same approach for the data query packet

propagation. It starts from querying the direct rendezvous node and continues until it

finds the required data report which results in lower overhead. For example, a sensor

node S with locality (Xs, Ys), gets the complete sensor network space N as the root

of a Quadtree, after that reasonably partitions N into four equivalent sized quadrants.

Each of these four quadrants North West (NW), South West (SW), North East (NE)

and South East (SE) match up to a child of N, in that order. The root N stands for the

entire network space, particulate by as claimed by (Mir, & Ko, 2006)

 , , , (5)

Where (N.XLB, N.YLB) are coordinates for lower left corner (lower bound) and

(N.XUB, N.YUB) are coordinates for upper right corner (upper bound) of a square,

respectively. If P is the parent of child quadrant C, then values for C.XLB, C.YLB,

C.XUB and C.YUB, depends upon whether C is the NW, SW, NE, or SE child of P.

Next, each quadrant is considered as a split parent and divided into further four sub-

quadrants. By Knowing the present position of node S (Xs, Ys), this procedure is

repeated for each quadrant, until node S leftovers are the only node in a sub-

quadrant (the leaf cell). This routine requires a relationship at each partition level, to

test out if the current sub-quadrant is the leaf cell. For example, as proposed by (Mir,

& Ko, 2006) if node S is in the NW quadrant of parent P (i.e., C = P.NW), after that:

 50

{

 (6)

Figure 3.5 (a) Sensor network space N partitioning. (b) QT representation. (Mir, &
Ko, 2006)

His method is in the mode a source node disseminates data. Upon sensing a

stimulus, source node S executes a reasonable partitioning of sensor network field as

above. For every partition level I represented by a square with lower corner and

upper corner values set to (&) respectively, it

calculates a list of central point’s called rendezvous points

given as proposed by (Mir, & Ko, 2006):

 51

 , (0 < i ≤ k)

(7)

Figure 3.5 (a) illustrates the rendezvous points computed by node S and the data

passing process. It begins from its current place as the first rendezvous point (0th

level) and frontwards data packet to the immediate rendezvous point (1st partition

level) using geographical greedy forwarding. If S is not itself the neighboring node

to the immediate rendezvous point, it searches in its neighbor's table for a neighbor

that is closest to that point and forwards the packet to it.

Every node in turn recurs this process; until a node locates that, no other node

in its neighborhood is nearer than itself. Now this node becomes the rendezvous

node. Even though forwarding data packets, each rendezvous node maintains a local

table so that the copy entries related to the same data packet can be known and then

dropped. In addition, all table entry contains an expire field that decides how lengthy

that entry would remain suitable before it is unnecessary from the table.

 52

 52

4.1 Overview

A comprehensive literature survey assists to build a case for this research and

review of the literature relevant to our topic, which is a Self-Load Balancing in

Autonomic Overlay Networks. Moreover conducting the literature survey in-depth

helps, us to identify our problems in more accurate details based on a strong scholarly

foundation. Moreover, it gives us a hand to design our own scheme.

We start by reviewing the materials that formulate the background to get adequate

information to understand and to have a chance to find some interesting solution. For

that, we started by Autonomic Computing (AC), Autonomic Service Specific Overlay

Networks A-SSON, the recognition of Autonomic Overlay AO, a Quadtree (QT) and

spatial indexes. Then moved one-step forward to realize the load balance in different

aspects such as definition, types, strategies, and implementation in different areas for

example in wired or wireless networks. Next, we go a further step by reviewing the Self

Load Balancing proposed in the literature. Finally, we conducting an in-depth the

literature survey to be able to identify gaps in our research.

 53

4.2 The Strategy of Designing a Self-Load Balancing Scheme

1. Employ the DQT, for partitioning the space, in distributed manner, to cope with

our era.

2. Identify each region of the network by a unique ID for that employing the

Morton order to index each single box by a unique ID.

3. Adopt a new formula to calculate the power and take into perspective the

different services that MPs provide.

4. Develop a method, to encode the computation resources, in the topology of the

network.

5. Demonstrate a greedy mechanism to select the more powerful MPs to execute

the incoming jobs.

 54

4.2.1. Scheme Formulation

As described in the previous chapter, on section problem definition here again we

will re-mention the main problems that face us through proposing such scheme in steps:

1. The essence of the load balancing problem focuses on distributing the load from

a resource perspective and completely neglects the user's (or request)

perspective.

2. Transparency of load balancing algorithms is an assumption that has not been

treated as a requirement for traditional distributed systems applications.

3. Finally, the concept of AC implies that each autonomic entity (node, computer,

or MP) is self-managed. That can be interpreted, as "there is no authority higher

than the autonomic entity". This is vitally important because it means that

traditional load balancing algorithms may not be applicable in the era of AC.

While reviewing, the literature we didn't find a suitable formula for calculating the

power because our environment is completely different and all of the previous literature

talks only about the so-called normal node which refers to a normal personal computer.

In the end, we were convinced that in order to overcome this problem we must

formulate our formula to calculate the power for each MP separately, according to the

service provided by each one of it. For that, we should review the conditions that must

be met and not neglect the calculation of power for each MP.

 55

4.2.2 Computing the Processing speed

Below we identify the main factors affecting processing speed (Kitchen table

computers website, 2010), (e-learning website, 2011). The circuitry design of a CPU

determines its basic speed, but several additional factors can make chips already

designed for speed work even faster.

1. CPU’s registers:

The size of the registers is sometimes called the word size which indicates the

amount of data with which the computer can work at any given time.

2. the memory:

The amount of RAM in a computer can have a profound effect on the computer’s

power.

3. data bus:

The bus refers to the paths between the components of a computer.

A. The data bus: An electrical path connects the CPU, memory, and the other

hardware devices on the motherboard.

 B. The address bus

It is a set of wires similar to the data bus that connects the CPU and RAM and

carries the memory addresses. The reason why the address bus is important is that

the number of wires in it determines the maximum number of memory addresses.

4. Cache Memory: It is similar to RAM, except that it is extremely fast compared to

the normal memory, and it is used in a different way. It helps to reduce the time –

consuming operation of CPU which is moving data back and forth to RAM.

5. Math coprocessor:

Passing math operations to a math coprocessor; the math coprocessor is a chip that

is specially designed to handle complicated mathematical operations.

 56

6. Bandwidth

Measured in bits, the bandwidth determines how much information the processor

can process in one instruction. If you were to compare data flow to the flow of

traffic on a highway, then clock speed would be the speed limit, and the bandwidth

would be the number of lanes on the highway.

4.2.3 MPs Power Calculation

Each MPs has a resource list as declared in table 4.1 below. Any MPs can

provide different services such as caching, adaptation, synchronization and routing. For

that each service has resource limitations as shown in table 4.2 below and the

percentage values for different services.

Table 4.1 show the MP resources and the percentage value for each service provided
Mediaport ID RAM

C.P.U

Access speed of hard

disk system (bus speed)

Bandwidth

01 2 G 3 G 400 100 Mbps

Table 4.2 show the MP resource and the percentage value for each service provided

Media Port

Services

(RAP)

RAM

percentage

(CPP)

C.P.U

percentage

(BSP)

Bus Speed

Percentage

(BAP)

Bandwidth

percentage

(CAC) Caching 15% 15% 40% 30%

(ADA) Adaptation 30% 30% 20% 20%

(SYN) Synchronization 25% 30% 15% 30%

(ROU) Routing 25% 25% 15% 35%

Before starting our calculation, the above information in the resources list table. 4.1was

converted to gigabyte (RAM, C.P.U, BUS SPEED, and BW).

 57

4.2.4 Standardize the parameters Measurements
There are many types of parameters used deferent measurements, such as:

A. Central Processing Unit in GHZ

B. Cache Memory in GB

C. Data Bus in MB

D. Bandwidth in Mbit

Therefore the standard measure used in this research is Gigabytes, so all other measures

have been converted into Gigabytes otherwise it is stated.

4.2.5 Local knowledge calculation:

Each MediaPort can calculate its power depending on a local knowledge and according
to the following formula:

 (1)

Where P1+P2+P3+P4 = 1 and corresponds to a weighted value shown in table 4.2.

 = refers to the power or the load ability of MediaPort.

 = refers to the CPU power.

= refers to the memory speed.

 = refers to the access speed of hard disk system (bus speed).

= refers to the bandwidth or throughputs.

= refers to the load ability of MediaPort = 100%

P1 = refers to the percentage of c.p.u , P2 = refers to the percentage of memory

 58

P3= refers to the percentage of access speed of hard disk sys. ,P4 = refers to the

percentage of band width

4.2.6 The main formula:

 (1)

4.2.7 Formula for each type:

 (2)

 (3)

 (4)

 (5)

In this way, can conclude the following formula:

(6)

 59

4.2.8 Proof

Jiang & Zhang (2007) suggested a formula to calculate power for each server.

The goal is to achieve load balancing between multiple servers. The load status of

servers can be reflected by the utilization ratio of resources including CPU, memory,

hard disk system, and network. They defined the formula as follows

C(t)=((1-a(t))*P+(1-b(t))*R+(1-c(t))*D+(1-d(t))*N)* Z (7)

where

a (t) = the utilization ratios of CPU.

b (t) = the utilization ratios of memory.

c (t) = the utilization ratios of hard disk system.

d (t) = the utilization ratios of network at the time of t.

P, R, D and N is corresponding weighted value.

P+R+D+N=1

Z is defined as the total load ability of the server.

MPs are similar in that they are computers and share the same properties as servers.

Even though the functionality of the server is completely different than the functionality

of the MP, we can adopt the same procedure proposed by Jiang & Zhang, 2007.

However, we assume the values is the value (1- a (t)), is the

 60

value (1- b (t)), is the value (1- c (t)), and is the value (1- a (t)).

Moreover, the weighted values P1, P2, P3, and P4 are P, R, D and N respectively.

Finally, we assumed the which is referred to the power or the load ability of

MP. As a result, we get the following formula:

 (1)

 expresses the approximate processing capability of the MP in [t,t+△△△△t],

and the load distributor assigns tasks to node according to .

To be able to compare one MP power to others, has to be represented as a

ratio value. This can be obtained by dividing the current MP power by the highest MP

power in the network. This is called the MOST POWERFULL INTEREST

MEDIAPORT. The most powerful MP is available in the network and treated as a

benchmark.

Since we will map MP power into incoming edges, we have to divide the power by a

value. This should result in a maximum number of incoming edges, as we should not

allow an infinite or non-deterministic one. Therefore, the parameter Z in formula (7) is

assumed to be 100 in formula (1) and we divide the result by 12.5. This will allow us to

have a number of incoming edges that does not exceed 8.

Finally, it is worth noting that the hard disk value in formula (7) has been replaced by

the bus speed in formula (1). This is because for the different services that the MPs

provide, the bus speed is more important. Moreover, the hard disk size will dominate

the result of the formula that will make other parameters invisible.

 61

4.2.9 Encoding the resources in the topology of the overlay:

After adopting a new formula to calculate the power we need a method or way

to encode the computation resources in the topology of the networks where this way

should be directly proportional to the power of each MPs and inversely to the workload

for each. The fundamental thought Self Load Balance Distributed Quad Tree

(SLBDQT) is that the workload properties of a distributed computing system can be

encoded in the topology of the network that connects the computational MPs. In

representation language, an edge in a SLBDQT network represents a certain unit of

unused capacity on the MPs to which the edge refers. On the one hand, when the MPs

resources are being worn out, their in-degree will turn down. On the other hand, when

the MPs obtainable resources are increasing, its in-degree will get higher, and this is

only one possible way to encode information about a network in its topology.

In our proposed model, we make the maximum in coming edges equal eight edges

because we want a very cheap way to build the overlay networks and the minimum in

coming edge equal four edges to maintain and always produce a strongly connected

component where we can sample and visit any MPs with a minimum effort and less

time.

 62

4.2.10 Selection of powerful MPs:

When an incoming job inters the network, the highest power of MPs to execute

this job is needed. For that, we need to employ a greedy strategy to assign any incoming

jobs to be run at powerful MPs. Greedy algorithms produce good solutions on some

mathematical problems greedy choice properties can make whatever choice seem the

best at the moment and then solve the sub problems that arise later. The reason behind

that is to maintain the quality of service (QoS) to the client by reducing the execution

time for this job.

 63

 63

5.1 Introduction

To achieve the goal, which is A Self-Load Balancing overlay for Locality of

autonomic entities; we use the dived and conquer principle with an indexing method, to

build a hierarchical structure known as a distributed quad tree. Besides, we adopt a new

formula to calculate the power for each MP, we take into consideration the MPs type

and the service it provided, and finally employ a mapping technique between the power

for each MP and the incoming edges to these MPs.

As described in the previous section, we are interested in using the DQT

structure where the cluster head node has four children (in this proposed algorithm it is

called cluster head, parent, or ancestor interchangeably where the children called

producer, or leafs). The second interest is the indexing technique, which is used to

enable to identify each geographical location by a unique ID. The indexing is at the

heart of DQT. The leaves of this sub-tree correspond to the computing elements of a

geographical location, and the root is a virtual node associated to the geographical

location as each geographical location contains at minimum or at least four MPs.

5.2 Partitioning the geographical location of the network

A Quadtree is a hierarchical data structure that has advantages for geographic

data storage. As, a two-dimensional geometric region is recursively decomposed into

four quadrants. Every one of the four quadrants turns out to be a node in the quadtree. A

superior quadrant is a node at an upper hierarchical level of the quadtree, and lesser

quadrants come into sight at lower levels. The benefit of this organization is that the

standard breakdown provides for straightforward and capable data storage, retrieval, and

processing. The straightforwardness branches the facade of the geometric regularity of

the breakdown into squares, and the effectiveness obtained by storing only those nodes

containing data of significance.

 64

5.3 Building the DQT

This network is divided into grid cells while inserting a DQT over the network.

The suppose that the MPs which consist of about 30% of the whole network (the rest is

a normal node which consist 70% of the network) sit on a two dimensional, and their

(X,Y) coordinates are prepared accessible to themselves . A single box in DQT makes

up the minimum cell vicinity in the DQT structure. It is assume that all nodes inside

level one box are within one hop distance. The cost of querying an event is measured as

the number of hops traveled from one node to another. The dissimilarity between DQT

and the centralized quad-tree is that the first does not need a root of the tree. The four

nodes in the first level service as the root. In order to build DQT an indexing deception

is utilized. In this indexing, each cell in the structure allocates an ID, which uniquely

identifies a region or location. The length of the ID is equal to the number of levels. We

apply this addressing system to safeguard the position information of a node. As the

centralized quad-tree, DQT is a hierarchical structure. In each level of partition, a node

is assigned as a parent node of the region. The parent is always its own child in lower

levels. A DQT node may belong to different levels in the hierarchy depending on its

location. If a node is a member at level A, it is also a member at all levels less than A.

 5.3.1 Building the DQT dependent only on local knowledge

As illustrated above each node in DQT, we can calculate the DQT address of the

level one partition it residing in from its (X,Y) coordinates easily. DQT uses a local

building instead of a bottom-up construction to reduce communication cost during

initial constructions. A static and local scheme that uses the address of the box suffices

for calculating every level parent and neighbors. Each node may have neighbors at

North, South, East, and West. In the below sections, it is demonstrated how this

 65

proposed algorithm is composed from an accumulation to achieve A Self-Load

Balancing. As said in the beginning, this DQT will be a product of 2^n * 2^n where n is

integer number > 1. In the example in table 5.1, this networks product of 2^3 * 2^3 = 64

node, and because n= 3 then should partition this network into 3 level equal to n,

besides the number of digits for each index again equal n = 3. For that, the first bit

refers to level one the first and second digits refer to level 2, the three digits together

refer to level 3 which is the lowest level in the DQT as illustrated in figures from 5.21-

5.32.

5.3.2 Node Type

Given a square two dimensional array with size N * N where n is a power of 2

1. Normal node Type = 0.

2. MP caching type = 1.

3. MP synchronization type = 2.

4. MP routing type = 3.

5. MP adaptation type = 4.

5.3.3 Indexing the geographical location (Spatial Indexing)

G. M. Morton introduced it in 1966 (Frens, and Wisey, 1999). It is called

Morton order, Morton code, or Z-order, which is a space-filling curve that maps

multidimensional information to one dimension while maintaining the locality of the

information points. The z-value of a point in multidimensions is designed by

interleaving the binary representations of its (X, Y) coordinate values. Once the data are

sorted into this ordering, any one-dimensional data structure can be used such as binary

search trees. The Z-ordering can be used to efficiently construct quadtrees and related

 66

higher dimensional data structures (Alexander, Frens, Gu, and Wise, 2001) As Figure

5.1 shows.

Indexing indexing any cell in the grid to a unique index

Begin procedure Indexing () {
Convert the X coordinate of the node into binary using Log2N bit representation
Convert the Y coordinate of the node into binary using Log2N bit representation
Grouping by Interleaving (putting Y coordinator in an odd position and X
coordinator in an even position) started from most left bit of y and grouped them
in a single chunk.
Get the index from the chunk by replacing each pair in the chunk as follows
00 by 0 , 01 by 1 , 10 by 2 , 11 by 3 }

Call PrentDetection ()
End Procedure

Figure 5.1 Procedure Indexing.

The figure below shows the two dimensional array which is a product of 2^3 * 2^3 with
integer coordinates 0 ≤ x ≤ 7, 0 ≤ y ≤ 7.

Table 5.1 The original node distribution in a grid

 0 1 2 3 4 5 6 7

0 0 1 4 5 16 17 20 21

1 2 3 6 7 18 19 22 23

2 8 9 12 13 24 25 28 29

3 10 11 14 15 26 27 30 31

4 32 33 36 37 48 49 52 53

5 34 35 38 39 50 51 54 55

6 40 41 44 45 56 57 60 61

7 42 43 46 47 58 59 62 63

 67

To index any geographical location for example node 37 in bold and underlined

1. First, Get the (X,Y) coordinates as such as (X coordinate= 3,Y coordinate= 4)

2. Change the (X) coordinate from decimal to binary X coordinate= 3 in decimal

change it to binary = 011

3. After that, Change the (Y) coordinate from decimal to binary Y coordinate= 4 in

decimal change it to binary = 100,

4. Next Get the result for (X,Y) coordinates in binary which is (011,100)

5. Interleave the result starting from (Y) and from left to right

1 0 0 1 0 1

As shown, the odd number represents the Y coordinates (in red color and shading) and

the even number represents the X coordinates (in black color),

6. Next collect them in a single chunk

1 0 0 1 0 1

7. Then, Change the pairs as follows (00 by 0, 01 by 1, 10 by 2 and 11 by 3)

2 1 1

8. Now, get the result that is the index value

2 1 1

Interleaving the binary coordinate values yields binary z-values as shown in the

illustrative example below. Connecting the z-values in their numerical order

produces the recursively Z-shaped curve.

 68

Table 5.2 represents the Morton Order after applying it over table 5.1 above

 0 1 2 3 4 5 6 7

0 000 001 010 011 100 101 110 111

1 002 003 012 013 102 103 112 113

2 020 021 030 031 120 121 130 131

3 022 023 032 033 122 123 132 133

4 200 201 210 211 300 301 310 311

5 202 203 212 213 302 303 312 313

6 220 221 230 231 320 321 330 331

7 222 223 232 233 322 323 332 333

 69

5.3.4 Parent Detection

Each node in the network can be determined, if it is a parent or a leaf node by

checking its index. If it ends with zero values, then it is a parent, otherwise, it is a leaf

node. For example in table 2 above, the index 333 is not ending with zeros value so, it is

a leaf but in the same table index 220 ending with a zero value for so, it’s a parent. As

Figure 5.2 shows.

ParentDetection check index is parent or leaf

Begin procedure ParentDetection ()

If (last digit in ==0) then {

 is parent
} Else {

If (last digit in != 0) then {

 is leaf
}

Call MyParentDetection ()

End Procedure

Figure 5.2 Procedure ParentDetection.

5.3.5 My Parent Detection

Each node in the network has only one parent and wants to know its parent. To

do this, first parent detection procedures is called, if it is a leaf node, then the last digit

in the index is changed to zero; otherwise (if it is a parent then) the digit that proceeds the

last zero value in the index is changed to zero. For example in table 5.2, the index 111 is a

leaf node and to get its parent change the last digit to zero value then gets its parent

 70

which is 110. However, in the same table, index 330 ends with a zero value so, it is a

parent and a parent of a parent are 300. As Figure 5.3 shows.

MyParentDetection change leaf to index to be parent

Begin procedure MyParentDetection ()

If (index == leaf) then {

Change the last digit in the index to 0 to be parent
} Else {

If (index == parent)then {

Change the digit proceeding the last 0 value in the index to 0
}

Call ParentLevelDetection ()

End Procedure

Figure 5.3 Procedure MyParentDetection.

5.3.6 Parent level Detection

As said above, each node in the network has just one parent but this parent has

many indexes. Each index is for each level for that, each parent wants to know its

different index according to the level it appears on. A number of successive zeros

determined the level for each parent node. For example, in table 5.2 the index 111 is a

leaf node and to get its level, we check the number of zeros the index contains. We have

null zeros value so, it is a leaf node then it is at level one in DQT, besides it is at level 3,

for that, this number refers to the number of digits for this index . Take another index

which is 220. It is a parent and has just one zero value for that, add to it one which

equals 2.Then it is at level two in the DQT. Besides, it is at level 2 for that, this number

refers to the number of digits for this index which equals 22. As Figure 5.4 shows.

 71

ParentLevelDetection determined where index level

Begin procedure ParentLevelDetection ()

If (==) then {

 at 1

 new = original
} Else {

If (=)then {

 let Z be the numbers of successive 0 in the last digits of the

 let L be the number of
 L= Z+ 1
}

Call ChildrenDetection ()

End Procedure

Figure 5.4 Procedure ParentLevelDetection.

5.3.7 Children Detection

Each parent has just 4 children, besides it can calculate its children. For

example, the parent index 330 can know its children by substituting the zero value in

the index by number from 1-3 to get its children. So parent 330 children are

(330,331,332 and 333) . As Figure 5.5 shows.

ChildrenDetection determined whose my children for parent

Begin procedure ChildrenDetection ()

If (==) then {
 For (S=0,S<=3,S++)

 Let C be the

 = concatenate C with (S)

 Add to ChildrenList
 Next

 72

}

Call RootDetection ()

End Procedure

Figure 5.5 Procedure ChildrenDetection.

5.3.8 Root Detection

Each tree has one root but this DQT has four roots why? Because it is interested

in building a DQT which does not need any central point. Besides, working on a quad

and so, this algorithm always produces four roots.

How can it be determined if the index is a root or not?

That can be known by numbering the successive zeros in the index. If it is more than or

equal to n-1 then it is a root. For example, index 200 the number of successive zeros

equal 2 and then (n) = 3 then 3-1= 2 then it is a root. Again the index (000) the number

of successive zeros equal 3 and (n) = 3 then it is a root. As Figure 5.6 shows.

RootDetection. determined index is root

Begin procedure RootDetection ()

If (>= N-1) then {

 is
}

Call BrotherRootDetection ()

End Procedure

Figure 5.6 Procedure RootDetection.

5.3.9 Brothers Root Detection

 73

Because the root always lies on level one and the index in level one encodes by

just one digit, each root node can compute its brother by substituting its value by

numbers from 0-3. As Figure 5.7 shows.

BrotherRootDetection. determine brothers root for

root

Begin procedure BrotherRootDetection ()

If (==) then {

 Let B be the first digit of

 Let C be the remaining of
 For (S=1,S<=3,S++)

 = concatenate ((B+S) mod 4) with C

 Add to Brothersroot list
 Next
Return Brothersroot list
}

Call BrotherRootDetection ()

End Procedure

Figure 5.7 Procedure BrotherRootDetection.

5.3.10 Calculating the power

Each node in the network knows its type (0,1,2,3,and 4) and can calculate its

power according to its service. For more details, refer to chapter 4, calculating the

power section 4.2.3. As Figure 5.8 shows.

 74

CalculatePower Calculate a MP Power according to its type

Begin procedure CalculatePower ()
If (tp = 1) then

{ = }
 Else If (tp = 2) then

{ =

}
Else If (tp = 3) then

{
=

}

 Else If (tp =4) then

{ =

}

Call RoutingAlgorithm ()
End Procedure

Figure 5.8 Procedure CalculatePower.

5.3.11 Routing Algorithm

Each node in the DQT will be one of two (a leaf (child) node, or a parent node).

Each node can communicate with the other

1. The leaf (child) node does the following

A. Broadcast information messages containing (my index, my ID, my IP, my

Power, and my Type) by two hops. Because the network is constructed by such

way, be sure that each node arrives to its parent by two hops only. As Figure 5.9

shows.

INFOMessage each child does information message .

Begin procedure INFOMessage ()

Broadcast my containing (, , , and) by 2 TTL
Count=0, ++
If (Count ==2) then
 { Discarded message}

 75

Call ListMessage ()

End Procedure

Figure 5.9 Procedure INFOMessage.

2. When it reaches it's parent

A. Parents multicast a list message to all children.

A Parent check if this child belongs to it or not. If it belongs to it, storing it in a list

that consist from information about its children, besides itself, then multicast

a list message to all children. As Figure 5.10 shows.

ListMessage a parent receiving information message .
Begin procedure ListMessage ()

If (of received ==) then

 { store and my children at list

 containing (, , , and and)

 multicast the list to all }

 If (tp of node != 0) then
 { Broadcast }

Call WhereMyparentQuery ()

 76

End Procedure

Figure 5.10 Procedure ListMessage.

B. Parents do a query message

The parent node in the DQT has a responsibility to know where a parent is

because it knows the logical address for it and searches for a physical

address for that broadcasting a query message by 3 hops. If any query

message knows the answer for this query, it sends it directly to the initiator

of a query node to forward it to the nearest neighbors. As Figure 5.11 shows.

WhereMyparentQuery a parent asking about its upper physical
address

Begin procedure WhereMyparentQuery ()

If (==) then

 send query message by 3 TTL asking about its physical address
Each node receiving WhereMyparentQuery

 If (he knows the answer) then

 { send it directly to the initiator query
 Else{ forward the message to its neighbors}

 If (Count ==3) then

 { Discarded query }
 }
Call SummeryMessage ()
End Procedure

Figure 5.11 Procedure WhereMyparentQuery.

C. Parents send a summary message to its upper parent containing (index, ID,IP,

power, type). As Figure 5.12 shows.

SummeryMessage parent send an updated message for upper

Begin procedure SummeryMessage ()

If (==) then

 77

 sends for its upper

containing (, , , and)

Call SummeryMessage ()

End Procedure

Figure 5.12 Procedure SummaryMessage.

D. Parents do Time Out Message (Die detection)

A Parent Periodically sends a hi message to all children, The children reply with "I

am a live" message If no replies within time T=100, it is resend, if no replies, then

the child is dying. As Figure 5.13 shows.

TimeOutMessage parent send message for

Begin procedure TimeOutMessage ()

If (==) then

Periodically sends to list

 replies with message

If (no message withint T= 100 ms time) then

{ resend message

If (no message) then {

 is dyeing }
}

Call NumbersOfNodes ()

End Procedure

Figure 5.13 Procedure TimeOutMessage.

E. Parents do Numbers Of Nodes Messages

 78

From time to time, each parent sends Numbers of Nodes messages to their upper

parent until reaching the root. The root receiving this message exchanges it with its

root brothers. The least id root node calculate the numbers of node by addition; If

the number of node > 2^n * 2^n then, rebuild the DQT. As Figure 5.14 shows.

NumbersOfNodes the least ID root check to reconstruct DQT

Begin procedure NumbersOfNodes ()

Periodically send message to upper until reaching the

 receiving this message exchange it with its brothers

 The least id calculate the numbers of node by addition
 If (number of node > 2^n * 2^n) then

 { Rebuild the DQT.}
 Else

 { Do nothing.}

Call ParentsMessage ()

End Procedure

Figure 5.14 Procedure NumbersOfNodes.

3. Root do Parents Message

Any index equal root then send Parents Message containing (Index,ID,IP,Ttpe,Power)

To all its children. As Figure 5.15 shows.

ParentsMessage root send ParentsMessage to all my child list

Begin procedure ParentsMessage ()

If (==) then

 { send ParentsMessage containing (, , , ,)To

 list}
 Else If (index = parent) then {
 { Store it at list }

 }

 End Procedure

Figure 5.15 Procedure ParentsMessage.

 79

5.3.12 Joining the Overlay

If any new node wants to join the overlay, it sends its information by a message

to 3 hops to be insure to arrive to its parent. Then, parent check the index if it exited or

not by using IP address and replay with change index by adding literal from A-Z . As

Figure 5.16 shows.

JoiningOverlay any new node wants to join the overlay

Begin procedure JoiningOverlay ()

If (want to join) then

 { call INFOMessage () + 1 hop

 receiving this INFOMessage checks

 if (exists by IP address)

 send change by adding a letter from A – Z to the end of
 } Else {

 replies with a join acknowledge message to with a list message

 calls SummeryMessage ()

 stores it at list }

End Procedure

Figure 5.16 Procedure JoiningOverlay.

5.3.13 Leaving the Overlay

A. A Selective Leave

A Parent Leave

A Parent sends a leave message to its parent when it reaches parent act by

1. A Parent checks its children's list for any index ending with a literal (backup

level)

2. If found then

3. substitute the leaved node and delete the letter from the index

4. else

 80

5. The least ID node takes the place of the leaved node.

6. Send an update summary message to its parent.

7. Send a message to all children to delete the leaved node from the children.

8. Delete the leaved node from its list.

9. Connect all of children with its ancestor. As Figure 5.17 shows.

A SelectiveParentLeave parent wants the selective leave of the

overlay

Begin procedure SelectiveParentLeave ()

If (wants the selective leave overlay) then

 { sends a leave message to its upper

 receiving this leave message check

 if (list has with literal (backup level) then

substitute the leaved and delete letter from
}else {

The least node takes the place of the leaved node.
Call SummeryMessage ()

Send a message to all list to delete the leaved node

 delete the leaved node from list
 Connect all of child with their ancestor }
End Procedure

Figure 5.17 Procedure SelectiveParentLeave.

A Child Leave

CHILD sends a leave message to a parent when it reaches parent act by

1. A Parent checks the backup level

2. If found then

3. substitute the leaved node

4. else

5. Send an updated summary message to its parent.

6. Send a message to all children to delete the leaved node from children.

7. Delete the leaved node from its list. As Figure 5.18 shows.

 81

SelectiveChildLeave child wants the selective leave of the

overlay

Begin procedure SelectiveChildLeave ()

If (wants the selective leave overlay) then

 { sends a leave message to its

 receiving this leave message check

 if (list has with literal (backup level) then

substitute the leaved and delete letter from
}else {
Call SummeryMessage ()

Send message to all list to delete the leaved node

 deletes the leaved node from list
 }
End Procedure

Figure 5.18 Procedure SelectiveChildLeave.

B. A Force Leave

A Parent Leave

1. When the upper parent detects that the child is dying, it does the following

2. The Parent checks its children's list for any index ending with literal (a backup

level)

3. If found then ,

4. substitutes the leaved node and deletes the letter from the index

5. else

6. The least ID node takes the place of the leaved node.

7. Send an updated summary message to its parent.

8. Send a message to all children to delete the leaved node from children.

9. Delete the leaved node from its list.

10. Connect all of children with its ancestor. As Figure 5.19 shows.

ForceParentLeave parent forced to leave the overlay

Begin procedure ForceParentLeave ()

If (upper detects its is die) then

 82

 { if (list has with literal (backup level)

substitute the leaved and delete letter from
}else {

The least node takes place of the leaved node.
Call SummeryMessage ()

Send message to all list to delete leaved node

 delete the leaved node from list
 Connect all of child with its ancestor }
End Procedure

Figure 5.19 Procedure ForceParentLeave.

Child Leave

When parent detects the child is die

1. Send update summary message to its parent.

2. The message is sent to all children to delete the left MPs from children.

3. Delete the leaved MPs from its list. As Figure 5.20 shows.

ForceChildLeave child forced to leave the overlay

Begin procedure ForceChildLeave ()

If (detects its is die) then
 { Call SummeryMessage ()

 Send message to all list to delete leaved node

 delete the leaved node from list }

End Procedure

Figure 5.20 Procedure ForceChildLeave.

 0 1 2 3 4 5 6 7

0

1

2

3

 83

4

5

6

7

Figure 5.21 shows network as a two dimensional array.

0 1

2 3

0 1 2 3

Figure 5.22 shows partitioning and indexing procedures in the first level and its root.
00 01 10 11

02 03 12 13

20 21 30 31

 84

22 23 32 33

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

Figure 5.23 shows partitioning and indexing procedures in the second level.

000 001 010 011 100 101 110 111

002 003 012 013 102 103 112 113

020 021 030 031 120 121 130 131

022 023 032 033 122 123 132 133

200 201 210 211 300 301 310 311

202 203 212 213 302 303 312 313

220 221 230 231 320 321 330 331

222 223 232 233 322 323 332 333

Figure 5.24 shows partitioning and indexing procedures in the third level.
000 001 010 011

002 003 012 013

020 021 030 031

022 023 032 033

 85

Figure 5.25 shows upper the left (NW) section.

Figure 5.26 shows the upper left (NW) section, and the quadtree representation

 100 101 110 111

 102 103 112 113

 120 121 130 131

 122 123 132 133

 86

Figure 5.27 shows the upper right (NE) section.

Figure 5.28 shows the upper right (NE) section, and the quadtree representation.

200 201 210 211

202 203 212 213

 87

220 221 230 231

222 223 232 233

Figure 5. 29 shows the lower left (SW) section.

Figure 5.30 shows the lower left (SW) section, and the quadtree representation.

 300 301 310 311

 88

 302 303 312 313

 320 321 330 331

 322 323 332 333

Figure 5.31 shows the lower left (SE) section.

Figure 5.32 shows the lower right (SE) section, and the quadtree representation.

5.4 A Self-Load Balancing

In this section, we will try to cover and demonstrate each step to achieve the self-load

balancing between all MPs available in the networks

5.4.1 The Procedure Power Percentage

Each MP knows its type and power then each of them must calculate its Power

to be a percentage (between 0-100 percent). For that, each MPs according to its type

 89

sends a message to its parent to determine the highest (power full) MPs. Finally, each

MP can calculates its power percentage. As Figure 5.33 shows.

PowerPercentage Calculate MP Power percent according to its type

Begin procedure PowerPercentage ()

If (= 1) then

 { = .}

 Else If (= 2) then

 { = . }

 Else If (= 3) then

 { = .}

 Else If (=4) then

 { = . }

Call CALInComEdges ()
End Procedure

Figure 5.33 Procedure PowerPercentage.

5.4.2 The Procedure number of incoming edges

Each MP can calculate its incoming edges by dividing its power over 12.5 to get

the incoming edges to these MPs. Why do they choose this value 12.5? To always get at

maximum 8 incoming edges and minimum 4 incoming edges. Why are the 8 and 4

maximum and minimum respectively? Because they always need to build this overly

network by the cheapest price and 4 edges to maintain the property which produces

strongly connected components. As Figure 5.34 shows.

CALInComEdges Calculate in coming edges
Begin procedure CALInComEdges ()

NumbIn(edges) = round(power / 12.5)

If (NumbIn (edges) < 4) then
 { NumbIn (edges) = 4. }

 90

Call JoinInComEdges ()
End Procedure

Figure 5.34 Procedure InComEdges

5.4.3 Procedure Joining incoming edges

Joining, the incoming edges to MPs, here setting a counter, which initial state

equals zero and the maximum value equals the number of incoming edges. To receive

the incoming edges, first each MP searches its own geographical area by looking into its

own list for the lowest MPs power and should be the same type. If it still wants more

incoming edges, MPs send a message to its parent asking for edges and its parent in

turn forwards the request to the upper parents until it accumulates the required number

of edges. After that, the accumulated list will be returned to the MPs that initiate the

request. The list contains the following information (index, IP address, type) and finally

connects with the accumulated list. As Figure 5.35 shows.

JoinInComEdges MP receiving a from other lowest MPs

Begin procedure JoinInComEdges ()

If (found MP && same) then {

 selects the MP which belongs to its area
} Else {

 send message to its asking for

its sends a message to its upper asking for

If (list is accumulated) then {

 forward the list to MP that initiate the request.

 The accumulated list contains (, , and)
}

 connect with MP
}

End Procedure
Figure 5.35 Procedure JoinInComEdges.

5.4.4 Procedure Assigning Job

 91

When a new job enters the network, the job received by a normal node which is type =

0 then it forwards the request to the nearest MPs it knows, Otherwise, sending it to its parent. If

the job received by a MPs node which is type = 1- 4. Then it can provide the service then MPs

find out the highest incoming edges MPs and assign the job to it to process, and always chooses

the MPs, which belongs to the same host area (the nearest MPs). If it cannot provide the service

then MPs forwards the request to the nearest MPs it knows to serve this job; otherwise, sending

it to its parent. After that, it calls the Delete Edge Procedure to decrease its connectivity. After

finishing the job and exiting from the network, it calls Add Edge Procedure to increase its

connectivity. As Figure 5.36 shows.

AssignJob a MP receiving a job request

Begin procedure AssignJob ()

If (can provide the service) then {

 find the highest incoming edge from MP

 asign the job to .
} Else {

 chooses the MP which belongs to the same host area.
If (type = 0) then {

 forward the request to the nearest MP in its knowledge.

} Else { send the request to parent. }
}

Call DeletEdge ()

If (is finished) then { Call AddEdge () }

End Procedure

Figure 5.36 Procedure AssignJob.

 92

5.4.5 Procedure Delete Edge

Each MP can decrease its connectivity when the job is assigned to it. The

removing edge will be from the farthest geographical area, and from the MP that has the

highest power. After that, updating its power by subtracting about 12 from its original

power. As Figure 5.37 shows.

DeletEdge the MP receiving a job request

Begin procedure DeletEdge ()

If (receiving) then {

 deletes one of its incoming edge from the farthest geog.area to the high MPs

 = round (– 12.5)

 sends an updated message to its parent until reaching root
}
End Procedure

Figure 5.37 Procedure DeletEdge.

5.4.6 Procedure Add New Edge

Each MP can increase its connectivity when the job exits the network and sends

a message to its parent asking him for new incoming edges from the lowest power value

MP. Then, updates its power by adding about 12 to its original power. As Figure 5.38

shows.

AddEdge the MP finishing a job request

Begin procedure AddEdge ()

If (finishing) then {

 sends a message to its asking for

its sends a message to its upper asking for

If (list is accumulate) then {

 forward the list to MP that initiates the request.

 Accumulate the list that contains (, , and)

 93

}

 connects with it

 = round (+ 12.5)

 sends an updated message to its parent until reaching root
}
End Procedure

Figure 5.38 Procedure AddEdge.

 91

6.1 Network simulation

Openxtra website (2007) argues, Network simulators try to model actual world

networks. The inspiration being that if a proposed system can be modelled, then

characteristics of the model can be altered and the output analyzed. Since the process of

model modification is relatively cheap then a wide variety of scenarios can be analyzed

at low cost comparative to making changes to a real network. Network simulators are

not perfect. They will not perfectly model the network. They will, though, be close

enough so as to give a meaningful insight into how the network is working, and how the

modifications will affect its function. Network simulators are most useful when used to

model large networks such as the environment that we are considering in this thesis.

6.2 The Simulation Tool (J-Sim Simulator)

This section introduces briefly the well-known JSim simulation tool. JSim

(previously known as JavaSim) is a Java-based simulation system for building

quantitative numeric models and analyzing them with respect to experimental reference

data. J-Sim's primary focus is in physiology and biomedicine; however, its

computational engine is quite general and applicable to a wide range of scientific

domains (j-sim website, 2008).

Hou & Tyan (2005) argue, J-Sim is a component-based, compositional

simulation environment. It has been built upon the notion of the autonomous

component-programming model. The basic entity in J-Sim is components, but unlike

the other component-based software packages/standards, components in J-Sim are

autonomous and are realization of software ICs. Besides J-Sim is an object-oriented

library for discrete-time process-oriented simulation. Its main application area is

 92

queuing network simulation. However, the range of its use can be very wide – almost

any system where object states change discretely can be modelled using J-Sim. The

autonomous component architecture mimics the IC design architecture in the closest

possible way (physiome website, 2011).

The behaviour of J-Sim components are defined in terms of contracts (in much

the same way IC chips are defined in the specification in the cookbook) and can be

individually designed, implemented, tested, and incrementally deployed in a software

system. A system can be composed of individual components in much the same way a

hardware module is composed of IC chips. Moreover, components can be plugged into

a software system, even during execution. J-Sim has been developed entirely in

JavaTM. This, coupled with the autonomous component architecture, makes J-Sim a

truly platform-neutral, extensible, and reusable environment. J-Sim also provides a

script interface to allow integration with different script languages such as Perl, Tcl, or

Python. In the current release, it is fully integrated with a Java implementation of the

Tcl interpreter (with the Tcl/Java extension), called Jacl. So, similar to ns-2, J-Sim is a

dual-language simulation environment in which classes are written in Java (for ns-2, in

C++) and "glued" together using Tcl/Java. However, unlike ns-2, classes/methods/fields

in Java need not be explicitly exported in order to be accessed in the Tcl environment.

Instead, all the public classes/methods/fields in Java can be accessed (naturally) in the

Tcl environment (arcor website, 2009).

 93

6.3 J-Sim for Network Simulation

Jsim official website (2010) argue J-Sim is executed on top of a component-

based software architecture, called the Autonomous Component Architecture (ACA),

that strictly mimics the integrated circuit (IC) design. The fundamental entities in the

ACA are components, which talk with one another via sending/receiving data at their

ports. When data arrives at a port of a component, the component processes the data

without delay in a self-governing execution context. The software architecture of the

ACA is aggravated by the conviction that software design cannot accomplish the same

level of modularity as IC design due to the fact that the Object Oriented (OO)

programming paradigm is fundamentally dissimilar from hardware design in component

binding. Specially, in OO programming, a class makes straight references to other class

instances and makes function calls to those exposed by other class instances (Tyan

2002).

6.4 Justification of the Method of Study

In this research, extensive simulation experiments have been conducted to

explore performance-related issues of Self-Load Balancing in Autonomic Overlay

Networks. This section discusses briefly the choice of simulation as a tool of study for

the purpose of this research, justifies the adoption of J-Sim as the preferred simulation

tool, and further provides information on the techniques used to reduce the opportunity

of simulation errors.

After some consideration, simulation has been selected as the method of study in

this research. In general, in addition to conducting measurements on a real practical

system or test bed, there exist two techniques for system performance evaluation:

 94

analytical modelling and simulation. One of the key considerations when adopting a

given evaluation technique is the level of the desired accuracy. In general, analytical

models have often-low requirements in terms of computation costs, but they often rely

on many assumptions and simplifications that restrict their applicability to a limited

number of scenarios. In contrast, simulation models can easily incorporate details to the

desired level of accuracy in order to mimic more closely the behaviour of the real

system. The consequence of this is that simulations often require a longer time to

develop and run the code, compared to analytical modelling. However, as we have used

the J-Sim simulator that has already been developed and extensively validated, we have

easily incorporated our suggested algorithms into the simulator. This has helped to

considerably cut down the development time and debugging of the code. Most often

cost, along with the ease of being able to change configurations, is the prime motivation

for developing simulations for expensive systems. The Self-Load Balancing algorithms

designed and analysed in this study are for Autonomic Overlay Networks, which could

consist of a large number of processors. Such a study could not be easily carried out on

a practical system, as the experimental setup would require substantial and expensive

resources. J-Sim has been widely used to evaluate the performance of network

simulation. It is worth mentioning that we have evaluated the performance of our Self-

Load Balancing algorithms based on a real workload trace and compared the results

against those obtained from our simulation study based on 95% Confidence interval

(95% CI) workloads. The results of the comparison have revealed that the conclusions

reached on the performance merits of the Self-Load Balancing.

 95

6.5 Experiment one: Distributed Quadtree (DQT)

This research employs the Limited-flooding to build the DQT. In a limited-

flooding protocol, a service request is broadcasted to all direct neighbors of the

requesting node. Close neighbors send it on to their neighbors; the propagation is

controlled by a TTL value that indicates how far the query should be sent from the

requesting node. The measurements will include the overhead of building different

levels of distributed Quadtree, stretch, time, and success rate were tested against the

query overhead in a large-scale network.

6.5.1 The DQT Building Message for Each Level

The DQT Message cost represents the total number of generated messages from

the moment of initiating a broadcast until reaching the required DQT parent. Figure 6.1

shows that our DQT algorithm produces fewer messages as go up in the tree for

example to construct level one need the biggest number of messages and messages cost

decreases by quarter to build level two and so on until reaching the root . The curve in

figure 6.1 shows that when moving up from level to level the messages cost decreases

by a quarter, besides, all of this operation happened only one time. Moreover can

conclude from the figure the confidence interval at 95% CI for all levels are distributed

normally for each level mapped with numbers of messages.

 96

Number of Level

1 2 3 4 5

D
Q

T
 B

u
ild

in
g

 M
e

s
s

a
g

e

0

5000

10000

15000

20000

25000

30000

Figure 6.1 Distributed Quadtree building message

 97

6.5.2 The stretch

A stretch is defined as the average number of hops taken by an overlay packet

divided by the number of hops the packet takes when using an IP-layer path between the

same source and destination. Figure 6.2 a & b. shows that the proposed DQT algorithm

compared with the direct hop. The curve shows the maximum hops equal 20. The

reason behind that the direct hop does better than the proposed algorithm. Direct hop is

assumed each node knows the IP for the distention node. While the proposed algorithm

used the DQT parent to go from level to level. In addition can conclude from the figure

the confidence interval at 95% CI for all number of query are distributed normally for

each number of query mapped with numbers of hops.

Number of Query

10 20 30 40 50

D
ir

e
c
t
h

o
p

 S
tr

e
tc

h

4

6

8

10

12

14

Figure 6.2a stretch

 98

Number of query

10 20 30 40 50

D
Q

T
 H

o
p

 S
tr

e
tc

h

10

12

14

16

18

20

22

24

Figure 6.2b stretch

 99

6.5.3 Response Time

The response time is the difference between the starting time of the query and

the arrival time of the reply. Figure 6.3 shows the response time for queries. The

proposed algorithm curves almost the same and does not exceed 120 ms. Here we can

conclude from the figure the confidence interval at 95% CI for all numbers of query are

distributed normally for each response time..

Number of Qquery

10 20 30 40 50

R
e

s
p

o
n

s
e

 T
im

e
 (

M
S

)

0

100

200

300

400

500

Figure 6.3 Response Time

6.5.4 Success Rate

 100

The success rate is defined as the number of requests that receives positive

responses, divided by the total number of queries. In a network, the stability success rate

algorithm indicates a better performance. Figure 6.4 shows the success rate the proposed

approach results in a constant success rate. We can say from the figure the confidence

interval at 95% CI for all numbers of query are distributed normally mapped with

success rate.

Number of Query

20 40 60 80 100

S
u
c
c
e
s
s
 r

a
te

0.6

0.8

1.0

1.2

 Figure 6.4 Success rate

6.6 Experiment Two: Joined Node

 101

As described in chapter one, MPs have their own resource limitations. They can join the

network as they are being owned by the network provider. Besides, users may join this

dynamic network at any time.

6.6.1 The Network Load

The network load is the total number of messages used to join any new node to

the DQT. Figure 6.5 shows the average network load. The proposed algorithm curve is

almost the same and it does not exceed the 25 messages. In addition, from the figure the

confidence interval at 95% CI for all joining nodes is distributed normally mapping with

numbers of messages.

Number of Nodes

10 20 30 40 50

N
e

tw
o

rk
 L

o
a

d

0

20

40

60

80

100

 Figure 6.5 Network load

6.6.2 Response Time

 102

The response time is the difference between the starting time of the query and

the arrival time of the reply. Figure 6.6 shows the response time. The proposed

algorithm curve shows the maximum response time equal 50 ms. In addition, from the

figure the confidence interval at 95% CI for all joining nodes are distributed normally

mapping with response time.

Number of Nodes

10 20 30 40 50

R
e

s
p

o
n

s
e

 T
im

e
 (

M
S

)

0

10

20

30

40

 Figure 6.6 Response Time

6.7 Experiment Three: Left Node

 103

Again, MPs have their own resource limitations they can leave the network, as the

network provider owns them. Besides, users may leave this dynamic network at any

time.

6.7.1 The Network Load:

Network load is the total number of messages used to leave any node from the

DQT. Figure 6.7 shows the average network load. The proposed algorithm curve is

constant because the number of messages generated by the leave nodes is constant.

From the figure, the confidence interval is at 95% CI for all leaving nodes are

distributed normally mapping with numbers of generated messages.

Number of Nodes

10 20 30 40 50

N
e

tw
o

rk
 L

o
a

d

0

2

4

6

8

10

12

14

Figure 6.7 Network load

6.7.2 Response Time

 104

The response time is the difference between the starting time of the query and

the arrival time of the reply. Figure 6.8 shows the average response time. The proposed

algorithm curves almost the same and does not exceed 50 ms. the figure show the

confidence interval at 95% CI for all leaving nodes which are distributed normally

mapping with response time.

Number of Node

10 20 30 40 50

R
e

s
p

o
n

s
e

 T
im

e
 (

M
S

)

20

40

60

80

100

Figure 6.8 Response Time

6.8 Experiment Four: The Self-Load Balancing

 105

In these experiments, we try to approve that load balancing is the process of

roughly equalizing the workload among all MPs included in the autonomic system

according to MPs power to produce a global improvement in system performance. As

shown in figure 6.9 to figure 6.14.

6.8.1 Number of job equals 100 jobs

In figure, 6.9 below when assigned 100 jobs to be processed, the confidence

interval at 95% CI for 100 jobs are distributed normally mapping with numbers of MPs.

Percentage of MPs Usage

20 40 60 80 100

N
u

m
e

r
o

f
M

P
s

0

50

100

150

200

250

300

Figure 6.9 percentage usage of MPS when number of job equal 100 jobs

6.8.2 Number of job equal 200 jobs

 106

In figure, 6.10 below when assigned 200 jobs to be processed, the confidence

interval at 95% CI for 200 jobs are distributed normally mapping with numbers of MPs.

Percentage of MPs Usage

20 40 60 80 100

N
u

m
e

r
o

f
M

P
s

0

50

100

150

200

250

Figure 6.10 percentage usage of MPS when number of job equal 200 jobs

6.8.3 Number of job equal 300 jobs

 107

In figure, 6.11 below when assigned 300 jobs to be processed, the confidence

interval at 95% CI for 300 jobs are distributed normally mapping with numbers of MPs.

Percentage of MPs Usage

20 40 60 80 100

N
u

m
e

r
o

f
M

P
s

0

20

40

60

80

100

120

140

160

180

200

Figure 6.11 percentage usage of MPS when number of job equal 300 jobs

6.8.4 Number of job equal 400 jobs

 108

In figure, 6.12 below when assigned 400 jobs to be processed, the confidence

interval at 95% CI for 400 jobs are distributed normally mapping with numbers of MPs.

Percentage of MPs Usage

20 40 60 80 100

N
u

m
e

r
o

f
M

P
s

0

20

40

60

80

100

120

140

160

180

Figure 6.12 percentage usage of MPS when number of job equal 400 jobs

6.8.5 Number of job equal 500 jobs

 109

In figure, 6.13 below when assigned 500 jobs to be processed, the confidence

interval at 95% CI for 500 jobs are distributed normally mapping with numbers of MPs.

Percentage of MPs Usage

20 40 60 80 100

N
u

m
e

r
o

f
M

P
s

0

20

40

60

80

100

120

140

160

Figure 6.13 percentage usage of MPS when number of job equal 500 jobs

6.8.6 Number of job equal 600 jobs

 110

In figure, 6.14 below when assigned 600 jobs to be processed, the confidence

interval at 95% CI for 600 jobs are distributed normally mapping with numbers of MPs.

Percentage of MPs Usage

20 40 60 80 100

N
u

m
e

r
o

f
M

P
s

0

20

40

60

80

100

120

140

Figure 6.14 percentage usage of MPS when number of job equal 600 jobs

 111

7.1 Overview

Currently, Simulation models are increasingly being used in problem solving

and aid in decision-making. The developers and users of these models, the decision

makers using information obtained from the results of these models, and the individuals

affected by decisions based on such models are all rightly concerned with whether a

model and its results are “correct”. This concern is addressed through model verification

and validation. Model verification in such research case is often defined as “ensuring

that the designed algorithm model and its implementation are correct. Model validation

is usually defined to mean “substantiation that the designed algorithm within its domain

of applicability possesses a satisfactory range of accuracy consistenting with the

intended application of the model” (Schlesinger et al. 1979) and is the definition used

here. A model sometimes becomes accredited through model accreditation. Model

accreditation determines if a model satisfies specified model accreditation criteria

according to a specified process.

In this chapter, we discuss verification and validation of simulation models

based algorithms. Therefore, the verification and validation steps used in chapter seven

for the designing of a self-load balancing that can be fairly implemented by a simulation

at the system level for the designed algorithm procedure and their methods to ensure if

the designed algorithm meets the initial design requirements and specification as well as

the input and output to simulating process.

 112

In software engineering, the verification defines the quality assurance process

intended to check that a service meets a set of initial design requirements,

specifications, and regulations. Which means (did you build the load self-balancing

algorithm right in/with the system (business dictionary 2010).

However, the validation defines the quality control process intended to check

that the development and verification procedures for a load balancing scheme results

meets the initial defined requirements, specifications, and regulations. In other meaning,

(are you built the right algorithm in/with the system) (Wikipedia website 2010).

Quality control and quality assurance are important concepts the first one refers

to the quality related activities associated with the designed algorithm. It is the

systematic measurements comparison with a standard, monitoring of processing as it

may include dead fit for purpose and right first time. While the quality assurance the

second one refers to the process used to create the deliverable algorithm (Wise geek

website 2010).

This chapter is organized as follows. Section 2 presents a verification of the self-

load balancing for the designed algorithm scheme. Section 3 presents a validation of the

self-load balancing for the designed algorithm scheme. Finally, a summary is presented

in section 3.

 113

7.2 Verification of the Self-Load Balancing Based Algorithm

There are two basic approaches for deciding whether a simulation model of the self load

balancing based algorithm is valid or not. In case of this research study, the designing

approach and input methods used for the designed algorithm is very important to

verified and the second approach requires the model development to conduct

verification and validation as part of the model development process, which is discussed

below. The first approach, and a frequently used one, is for the verification for the

designed algorithm components to make the decision later on whether a simulation

model for the designed algorithm is valid or not. A subjective decision is made based on

the results of the various evaluations conducted as part of the model development

process. The verification steps of the self-load balancing algorithm and its components

include the following:

7.2.1 Verification of the Building DQT

The verification step for the two dimensional geometric region should include

indexing and partitioning. The verification results for this step is as follows:

• The indexing and partitioning are defined on the biases of the X,Y coordinates of

the defined two dimensional array and limited with 2n with one overlay for all sizes

, For example if the defined two dimensional array are including 3 nodes, the array

size should be 21
* 2

1 the maximum number of nodes should not more than 4 nodes,

however, if we have 16 nodes, the size of the array should be 22
* 2

2
, in addition, if

the number of nodes for instance are 17, the size should be exceeded to 23
* 2

3, that

means the maximum number of nodes should be included 64 nodes.

 114

• If we already have defined the number of nodes in a specific geographical location

(i.e. 22
* 2

2) and the number of nodes exceed the defined partitioning, in this case,

the reconstruct of the partitioning are not applicable if the number of nodes are not

exceeded to 62 nodes. So, any new node that wants to join the defined overlay by

sending its information by a message to 3 hops to insure the arrived its parent then

the parent checks the index if it exited or not by using IP address and replay with

change index by adding literal from A-Z, if the number of nodes are 63 or above in

this case, the reconstruct of new distribute quadtree are needed for 23
* 2

3.

• In the previous two paragraphs, the defined nodes specify their self types on the

biases of the node specification, for instance if node 1 identifies its type with 0 this

means this node type is normal. Otherwise, if the node type specified their types

between 1 to 4, this mean the nodes types are considered as media ports. From the

literature we considered in the designed algorithm. There are 30% of the defined

nodes of the constructed DQT have Mediaports (IBM Corporation, 2006) & (Al-

Oqily, & Karmouch, 2008).

7.2.2 Verification of the Self-Load Balancing

The verification step for the Self-Load Balancing should include power percentage

verification and incoming edge verification. The verification results for this step as

follows:

• The self-load balancing is built as upper layer based on the DQT layer see the

previous section.

 115

• The power for the media port (media node) can locally be calculated based on the

(CPU, Memory, Bandwidth, and Bus speed). In the previous published work bus

speed component are not taken into their consideration, but they are considered the

hard disc, in case calculating the hard disc percentage the highest power obtained

belong to the hard disc because its value is always big. Moreover, when we want to

get actual power for any node within the network you should not neglect the bus

speed because its important factor that determined the power

• The power percentages are calculated based on a defined power of each media port

or media node divided by the highest media port multiplying with 100% on the

defined DQT.

• To identify the incoming edges, we dived the defined power by 12.5 to produce as a

maximum 8 edges to construct the self load-balancing overlay with a minimum

effective load in the defined DQT as well as the algorithm defined the minimum

edge with 4 for strong connected components.

• When a new job enters the network, the media node provides the service and finds

out the highest incoming edges. If it cannot provide the service then MPs forward

the request to the nearest MPs to serve this job; otherwise, calling the Delete Edge

Procedure to decrease its connectivity.

• After finishing the job and exiting from the network, then call Add Edge Procedure

to increase its connectivity.

 116

7.3 Validation of the self-load balancing algorithm

A Conceptual model validation based simulation is defined as determining that the

theories and assumptions underlying the conceptual model are correct and that the

model representation of the problem entity is reasonable for the intended purpose of the

model. The validation steps of the self-load balancing algorithms include the following:

7.3.1 Validating The DQT Building Message for Each Level

The following data are used as part of the validation for the designing algorithm

from level 1 to level 5 with the maximum number of messages (27500) and with the

minimum with 107 messages

• Level 1 which is the leaf level need 27500 message to construct them

• Level 2 parent1 level need 6875 message to construct them

• Level 3 parent2 level need 1718 message to construct them

• Level 4 parent3 level need 430 message to construct them

• Level 5 parent4 level need 107 message to construct them

Our validating result based on the collected data papers that the messages cost decrease

by quarter when we move from level to level which means that DQT building message

could be useful for reducing the cost using the DQT building message.

 117

7.3.2 Validating The Stretch And Response Time:

The following data are used to validate the number of hops taken by an overlay

packet divided by the number of hops when using an ip layer path between the same

source and destination.C2 and C3. While the C4 uppers the average response time for

enquiries

Table 7.1 show the number of queerer node, direct hop, DQT hop and response

time of the simulation model

Number of
Queerer Direct Hop DQT Hop

Response
Time

5 5 20 125
10 7 18 159
15 7 18 166
21 8 17 156
27 9 16 143
32 8 15 131
37 8 14 121
42 8 15 119
48 8 15 118
54 9 16 119
60 9 16 117
65 9 16 114
71 9 15 107
80 9 15 100
85 9 15 98
90 9 15 98
97 9 15 101

104 10 15 102
109 9 15 105
115 9 15 106

 118

7.3.3 Validating algorithm for Joined and leave Node

The following data are used to validate the joined and leaved node. C2 for joining

nodes and its load where C3 illustrates the joining nodes with corresponding response

time. C4 for leaving nodes and its load. While C5 refer to leaving nodes with response

time.

Table 7.2 show the number of Join, Left node, network load and response time of the

simulation model

Number of node Join network

load

Join response

time

Leave network

load

Leave

response time

5 17 34 5 43

10 17 51 5 45

15 17 60 5 45

20 22 56 5 52

25 21 50 5 51

30 23 50 5 54

35 24 46 5 54

40 23 43 5 53

45 23 40 5 51

50 23 38 5 52

55 23 40 5 52

60 23 43 5 51

 119

7.4 Discussion and Results

This section describes various validation techniques used in model verification

and validation. Most of the techniques described here are found in the literature,

although some may be described slightly differently. They can be used either

subjectively or objectively. By “objectively,” we mean using some type of mathematical

procedure, for more details see chapter 5., and a hypothesis tests or confidence intervals

for a simulation or experimental test for more details see chapter 6.

A combination of techniques is generally used. These techniques are used for verifying

and validating the sub algorithm models and the overall model.

1. Animation: The algorithm model and sub model operational behaviour is displayed

graphically as the model moves through time. For example the movements of parts

through a factory during a simulation run are shown graphically see chapter 6.

2. Comparison to Other Models: are not used while the research idea is slightly innovative,

and there is no schemes or algorithms designed before for such research problem.

3. Degenerate Tests: The degeneracy of the model’s behaviour is tested by appropriate

selection of values of the input and internal parameters. For example, section 2, a

verification of the load-self balancing algorithm and their components.

4. Event Validity: The “events” of occurrences of the simulation model in chapter 6

are subjectively compared to those of the real system to determine if they are

similar. For example, the number of queerer node, direct hop, DQT hop and

response time of the simulation model as well as the Join, Left node, network load

and response time in the simulation.

 120

5. Face Validity: Asking individuals knowledgeable about the designed algorithm of

the load balancing scheme and its behaviour are reasonable. For example, is the

logic in the conceptual model correct and are the model’s input-output relationships

reasonable.

6. Historical Methods: The two historical methods of validation are rationalism, and

empiricism. Rationalism assumes that everyone knows whether the underlying

assumptions of a model are true, Logic deductions are used from these assumptions

to develop the correct (valid) model. In the design algorithm based simulation

achieves this method through a formal representation of the self load balancing

scheme, see chapter 5 . and Empiricism requires every assumption and outcome to

be empirically validated are achieved (shown in chapter 6).

7. Internal Validity: of the design algorithm are represented in chapter 5 and 6 as well

as (runs) of a stochastic model are made to determine the amount of (internal)

stochastic variability in the model, see table 7.1 and table 7.2 in the previous

section.

8. Predictive Validation: The designed algorithm model in this thesis is used to predict

(forecast) the self load balancing efficiency of the distributed behaviour based

geographical region by predictive logically indexing and partitioning the DQT then

build their predictive of the network self load balancing view.

9. A Conceptual model validity for the designed algorithm built in this these is

determines that (1) the theories and assumptions underlying the conceptual model

are correct and (2) the model’s representation of the problem entity and the model’s

structure, logic, and formal and causal relationships are “reasonable” in chapter 5 for

the intended purpose of the model.

 121

8.1 Conclusion:

Load balancing is a challenge due to the increased complexity, cost, and

heterogeneity of current technologies. This work, reviewed the state of the art in load

balancing techniques. This study shows that traditional techniques are not adequate to

face the ever-increasing challenge and complexity of technology. A Self Load

Balancing in Autonomic Overlay Networks is proposed. The scheme employs the

spatial index and partitions the network to build a distributed quad-tree. Another logical

layer is built based on the available resources. This layer is connecting resources of the

same type thus facilitating the process of load balancing. The local knowledge is

exploited to achieve a better performance. A simulation tool has been used to test the

proposed method and to quantify its cost and efficiency. Results show that MPs overlay

can efficiently balance MPs load. The experiments take into account the importance of

heterogeneity in available computing resources and extra burst in incoming jobs.

8.2 Future work:

In the future, we plan to reflect our proposed scheme and adopt it to wireless

sensor networks (WSN), and rather than using DQT, we plan to investigate the use of

Octree in a distributed manner.

 122

Aboulnaga, A., & Aref, W.G. (2001) Window query processing in linear quadtrees. Citeseerx

Distributed and Parallel Databases,10,2.

Abrahamsson, H., & Gunnar, A. (2004) Traffic engineering in ambient networks: challenges
and approaches. In the Second Swedish National Computer Networking Workshop (SNCNW),
Karlstad.

Alakeel, A. (2010) A guide to dynamic load balancing in distributed computer systems.
International Journal of Computer Science and Network Security IJCSNS, 10,6.

Alavi, M.h., & Hariri, B., Mohammadi, S.S. (2009) Using geometrical routing for overlay
networking in mmogs. Journal Multimedia Tools and Applications,45.

Alexander, G.A., Frens,J.D., Gu,Y., & Wise,D.S. (2001) Language support for morton-order
matrices. ACM Proceedings Of The Eighth SIGPLAN Symposium On Principles And

Practices Of Parallel Programming (Ppopp),24-33.

Al-Oqily, I., & Karmouch, A. (2008) A self-organizing composition towards autonomic overlay
networks. IEEE Network Operations and Management Symposium (NOMS), 287-294.

Al-Oqily, I., Karmouch, A., & Glitho, R. (2008) An Architecture for Multimedia Delivery Over
Service Specific Overlay Networks. Springer Boston IFIP Conference on Wireless Sensor and

Actor Networks II, (264) 97-112.

Amis, A.D., & Prakash, R. (2000) Load-balancing clusters in wireless ad hoc networks.
Proceedings 3rd IEEE Symposium on Application-Specific Systems and Software
Engineering Technology, 25-32.

Ang, ch., & Samet, H. (1989) Node distribution in a pr quadtree. Citeseer In Proceedings 1st

International Symposium On Large Spatial Databases, 233—252.

Apache camel website (2010) (on-line) available:http://camel.apache.org/load-balancer.html

Arcor website (2009) (on-line), available http://home.arcor.de/jensaltmann/jsim-e.htm

Avin, C., Dvory, Y., & Giladi, R. (2011) Geographical quadtree routing. IEEE Computers and

Communications (ISCC), 302 -308.

Backhaus, H., & Krause, S. (2010) Quon – a quad-tree based overlay protocol for distributed
virtual worlds. ACM Journal In IJAMC, 4 (2), 126-139.

Badidi, E. (2000) Architecture and services for load balancing in object distributed systems,
(Published doctoral dissertation), Faculty of High Studies, University of Montreal,
Montreal,Canada.

Bauer, B. Gufler, B., Kemper, A., Kuntschke, R., Reiser, A., & Scholl, T. (2008) Scalable
community-driven data sharing in e-science grids. Journal In Future Generation Comp. Syst,
25 (3), 290-300.

 123

Berg, M.D.,Haverkort, H.J.,Thite, S., and Toma L. (2010) Star-quadtrees and guard-quadtrees:
i/o-efficient indexes for fat triangulations and low-density planar subdivisions. ACM Computer

Geometry, 43 (5), 493-513.

Berk, V., Cybenko, G., & Roblee, C. (2005) Implementing large-scale autonomic server
monitoring using process query systems. Proceedings Second International Conference On

Autonomic Computing, 123-133.

Beygelzimer, A., Kakade, S., & Langford, J, (2006) Cover trees for nearest neighbor. Italian

Campaign Master List (ICML).

Bhattacharjee, B., Han, B., Levin, D., Lumezanu,C., & Spring, N. (2010) Don’t love thy nearest
neighbor. Citeseer Proceedings IPTPS'10 Proceedings Of The 9th International Conference

On Peer-To-Peer Systems.

Bridgewater, J.S.A., Boykin, P.O., & Roychowdhury, V.P. (2007) Balanced overlay networks
(bon): an overlay technology for decentralized load balancing. IEEE Parallel and Distributed

Systems, 18 (8), 1122 -1133.

Buragohain, C. and Agrawal, D. and Suri, S. (2006) Distributed navigation algorithms for
sensor networks. IEEE International Conference on Computer Communications. Proceedings

25
th

 INFOCOM, 1 -10.

Business dictionary website (2010) (on-line),
available:http://www.businessdictionary.com/definition/verification.html

Casavant, T.L. & Kuhl, J.G.(1988) A taxonomy of scheduling in general-purpose distributed
computing systems. IEEE Transactions on Software Engineering,14 (2), 141 -154.

Chang, S., & Smith, J.M. (1994) Quad-tree segmentation for texture-based image query.
Proceedings of the Second ACM International Conference onMultimedia, 279-286.

Chess, D.M., & Kephart, J.O.(2003) The vision of autonomic computing. Computer, 36 (1), 41-
50.

Chhabra, A., & Singh, G. (2006) Qualitative parametric comparison of load balancing
algorithms in distributed computing environment. IEEE International Conference on

Advanced Computing and Communications(ADCOM), 58 -61.

Clem, K.,Luettgen, M.R. , W. and Willsky, A.S.(1994) Efficient multiscale regularization with
applications to the computation of optical flow. IEEE Transactions On Image Processing, 3
(1), 41 -64.

Corson, M.S., & Park, V.D. (1997) A highly adaptive distributed routing algorithm for mobile
wireless networks. IEEE Proceedings Sixteenth Annual Joint Conference Of The IEEE

Computer And Communications Societies (INFOCOM), 3, 1405 -1413.

Dalal’ah, A.(2006) A dynamic sliding load balancing strategy in distributed systems.The

International Arab Journal Of Information Technology (IAJIT),3, (2).

 124

De Leenheer, M., Farahmand, F., Thysebaert, P., Volckaert, B., De Turck, F., Dhoedt, B.,
Demeester, P., & Jue, J. (2005) Anycast routing in optical burst switched grid networks. IEEE

31st European Conference On Optical Communication(ECOC) , 3, 699 – 700.

Dehne, F., Ferreira, A.G. and Rau-chaplin A.(1991) Parallel processing of pointer based
quadtrees on hypercube multiprocessors. Citessr International Conference On Parallel

Processing.

Deldari, H., & Salehi, M.A., (2006) A novel load balancing method in an agent-based grid.
IEEE International Conference On Computing Informatics, 1 -6.

Demirbas, M., & Xuming Lu. (2007) Distributed quad-tree for spatial querying in wireless
sensor networks. IEEE International Conference On Communications (ICC), 3325 -3332.

Deqiang, C. , Haenggi, M. and Nicholas, L., J. (2007) Distributed Spectrum-efficient routing
algorithms in wireless networks. IEEE 41st Annual Conference On Information Sciences And

Systems(CISS), 649 -654.

Dooley, R. (2004) A distributed quadtree dictionary approach to multi-resolution compression.
IEEE International Conference On Information Technology: Coding And Computing, 2, 155-
156.

Eager D.L., Lazowski E.D., & Zahorjan J. (1986) Adaptive load sharing in homogeneous
distributed systems. IEEE Trans Software Eng., 12 (5), 662-675.

Eisenstat, D. (2011) Random road networks: the quadtree model. The Eighth Workshop On

Analytic Algorithmics And Combinatorics (ANALCO), 76–84.

e-learning website (2011) (on-line) available:http://e-
learning.mfu.ac.th/mflu/1301103/data_process/web1_files/right_files/web6.html

Ephremides, A., & Michail, A. (1998) A distributed routing algorithm for supporting
connection-oriented service in wireless networks with time-varying connectivity. IEEE

Symposium On Computers And Communications, 587 -591.

Eppstein, D., Goodrich, M.T., & Sun,J.Z. (2005)The skip quadtree: a simple dynamic data
structure for multidimensional data. ACM In Proc. 21st ACM Symposium On Computational

Geometry, 296-305.

Falchi, F., Gennaro, C., Rabitti, F., & Zezula, P. (2007) A distributed incremental nearest
neighbor algorithm. ACM Proceedings Of The 2nf International Conference On Scalable

Information Systems, 82.

Flatebo, M., Datta, A.K. & Bourgon, B. (1994) Self-stabilizing load balancing algorithms.
IEEE 13th Annual International Phoenix Conference On Computers And Communications,
303.

Frens, J.D., & Wisey, D.S. (1999) Morton-order matrices deserve compilers support.(
Technical Report 533).

 125

Fuse source website (2010) (on-line),
available:http://fusesource.com/docs/ide/camel/1.0/eip/MsgRoutLoadBalancer.html#_IDU_Loa
dBalancer_HSH_Failover

GIS website (2011) (on-line), available:http://www.gis.com.

Gorman R.M., Popinet, S., Rickard G. J., & Tolman H. L. (2010) A quadtree-adaptive spectral
wave model. Journal Ocean Modelling, 34, 36-49.

Goscinski, A. (1991) Distributed operating systems: the logical design, California: Addison-
Wesley Pub. Co.
Hariri, S., & Parashar, M. (2004) Autonomic computing: an overview. In UPP, 257–269.

Har-Peled,S. (2006) Geometric Approximation Algorithms.
(on-line), available:http://graphics.stanford.edu/courses/cs468-06-fall/Papers/01%20har-
peled%20notes.pdf

Harwood, A., Samet, H., & Tanin, E. (2005) A distributed quadtree index for peer-to-peer
settings. Citeseer In Proceedings of the International Conference on Data Engineering

(ICDE), 254-255.

Harwood, A., Samet, H., & Tanin, E. (2005) A distributed quadtree index for peer-to-peer
settings. Citeseer In Proceedings of the International Conference on Data Engineering

(ICDE), 254-255.

Hernandez,C., Marin, M. & Rodriguez, M.A. (2008) A p2p meta-index for spatio-temporal
moving object databases. Springer 13th International Conference On Database Systems For

Advanced Applications, 653-660.

Hou,J.C., Sobeih, A., & Tyan, H.Y. (2005) Towards composable and extensible network

simulation. IEEE International Proceedings Parallel and Distributed Processing Symposium,

8.

IBM Corporation, (2006). An architectural blueprint for autonomic computing. White Paper.
Armonk, New York, United States.

Israr, N., & Awan, I. (2007) Multihop clustering algorithm for load balancing in wireless sensor
networks. International Journal of Simulation Systems Science and Technology.

Jiang, C. & Zhang, J. (2007) A load balancing technology oriented to common service
information system, International Conference On Service Systems And Service Management,
1-6.

Jsim official website (2010) (on-line), available http://sites.google.com/site/jsimofficial/

J-sim website (2008) (on-line), available http://www.j-sim.zcu.cz/

Kang, M., Laurini, R., Li, K., & Servigne, S. (1999) Indexing field values in field oriented
systems: interval quadtree. CIKM, 335-342.

 126

Kannan, G., Merchant, S.N., & Desai, U.B. (2007) Cross layer routing for multihop cellular
networks. IEEE 21st International Conference On Advanced Information Networking And

Applications Workshops (AINAW), 2, 165 -170.

Karatza, H.D. (1994) Job scheduling in heterogeneous distributed systems. Journal. Of Systems

And Software, 56, 203–212.

Khalid, A., Haye, M.A., Khan, M.J. & Shamail, S. (2009) Survey of frameworks, architectures
and techniques in autonomic computing. Fifth International Conference on Autonomic and

Autonomous Systems(ICAS), 220-225.

Khan, M., Pandurangan, G., & Anil Kumar, V.S. (2009) Distributed algorithms for constructing
approximate minimum spanning trees in wireless networks. IEEE Transactions On Parallel

And Distributed Systems, 20 (1), 124 -139.

Kitchen table computers website, (2010) (on-line),
available:http://www.kitchentablecomputers.com/processor2.php

Ku W., Nguyen, T., Wang, H., & Zimmermann, R. (2006) Annatto: adaptive nearest neighbor
queries in travel time networks. International Conference On Mobile Data Management, 50.

Lario, R., Antonijuan, M., & Pajarola, R.(2002) Quadtin: quadtree based triangulated irregular
networks. IEEE Visualization, 395 -402.

Lohman, G. M. and Lightstone S. S.(2002) Smart:Making db2 (more) autonomic. In

Proceedings Of The 28th International Conference On Very Large Data Bases VLDB
Endowment, 877–879.

Manolopoulos, Y., Tzouramanis, T., & Vassilakopoulos M. (2000) Overlapping linear quadtrees
and spatio-temporal query processing. Journal In Comput. J.,43 (4), 325-343.

Mazumder, P.,(1987) Planar decomposition for quadtree data structure. ACM Computer Vision,

Graphics, And Image Processing,38, (3), 258-274.

Meng, L., Qiu, X., Zhang, H., & Zhang, X. (2010) Design of distributed and autonomic load
balancing for self-organization. IEEE 72nd Vehicular Technology Conference Fall (VTC

2010-Fall), 1-5

Mir, Z.H. & Ko,Y. (2006) A quadtree-based data dissemination protocol for wireless sensor
networks with mobile sinks. International Conference On Personal Wireless

Communications, 447-458.

Mundia, L.C. (2007) "Strengthening the Importance of Geographical Information Systems
(GIS) Components in Organisations for a Successful GIS Technology" (On-Line), available:
http://www.gim-international.com/download/whitepaper_uploadfile_3.pdf.

NICTA website (2010) (on-line),
available:http://www.nicta.com.au/research/project_list/completed_projects/ambient_networks

 127

Oliver, M. A., & Wiseman N. E. (1983) Operations on quadtree leaves and related image areas.
The Computer Journal, 26 (4), 375-380.

Openxtra website (2007) (on-line), ailable http://www.openxtra.co.uk/articles/network-
simulation

Palanisamy, V., Baskaran, K., & Prabeela. S. (2011) Efficient distributed clustering-based
anomaly detection algorithm for sensor stream in clustered wireless sensor networks. European

Journal of Scientific Research, 54 (4), 484-498.

Physiome website (2011) (on-line), available:http://www.physiome.org/jsim/

Picone, M., Amoretti, M., & Zanichelli, F. (2010) Geokad:a p2p distributed localization
protocol. IEEE International Conference on Pervasive Computing and Communications

Workshops (PERCOM Workshops), 800 -803

Ramakrishnan, K. (2005). An improved model for the dynamic routing effect algorithm for

mobility protocol, (Published Master's Thesis) Ontario University, Ontario, Canada.

Samet, H., & Shaffer, C.A. (1986) Optimal quadtree construction algorithms. Computer Vision,

Graphics, And Image Processing, 37, 3, 402-419.

Samet,H. (1984) The quadtree and related hierarchical data structures. Journal in ACM

Computing Surveys (CSUR), 16 (2).

Saravanakumar, E., & Prathima, G. (2010) A novel load balancing algorithm for computational
grid. IEEE International Conference On Innovative Computing Technologies (ICICT), 1 -6.

Schuster, G.M. and Katsaggelos, A.K.(1998) An optimal quadtree-based motion estimation and
motion-compensated interpolation scheme for video compression, IEEE Transactions On

Image Processing,7 (11), 1505 -1523.

scribd website (2011) (on-line), available: http://www.scribd.com/explore.

Sharma, M., Sharma, S., & Singh, S.(2008) Performance analysis of load balancing algorithms.
Proceedings Of World Academy Of Science Engineering And Technology, 38.

Singh, M., & Suri, P.K. (2010) An efficient decentralized load balancing algorithm for grid.
IEEE 2nd International Advance Computing Conference (IACC), 10 -13.

Slimani,Y., & Yagoubi, B. (2006) Dynamic load balancing strategy for grid computing.
Citeseerx World Academy Of Science, Engineering And Technology.

Sumengen, S., & Balcisoy,S. (2005) Real-time simulation of autonomous vehicles on planet-
sized continuous lod terrains. The 13-th International Conference in Central Europe on

Computer Graphics, Visualization and Computer Vision, Pilsen, Czech Republic.

 128

Tanin, E. (2009) Hierarchical data summarization. Springer Encyclopedia of Database

Systems, 1300-1304.

Tayeb, J., Ulusoy, Ö., & Wolfson O. (1998) A quadtree-based dynamic attribute indexing
method.Citeseer Computer Journal 41 (3), 185-200.

Tyan, H.Y., (2002). Design, realization and evaluation of a component-based compositional

software architecture for network simulation,(Published doctoral dissertation) Department of
Electrical Engineering, The Ohio State University, USA.

Wang T., & Morris, R.J.T.(1985) Load sharing in distributed systems. IEEE Transactions On

Computers,34 (3) 204 -217.

Weber, D. (2007) Distributed query processing for locality-aware data in p2p networks
(published master dissertation)Technische Universit¨at M¨unchen Fakult¨at f¨ur Informatik:
Gernany.

Wikipedia website (2010) (on-line), available:
http://en.wikipedia.org/wiki/Verification_and_validation

Wikipedia website (2010) (on-line),
available:http://en.wikipedia.org/wiki/Geographic_information_system

Wikipedia website (2010) (on-line), available:http://en.wikipedia.org/wiki/Ambient_network

Wise geek website (2010) (on-line), available:http://www.wisegeek.com/what-is-quality-
control.htm

World News Website (2011) (on-line) available:http://wn.com/quadtree.

Yiwei Wu., & Yingshu Li. (2009) Distributed indexing and data dissemination in large scale
wireless sensor networks. IEEE Proceedings Of 18th Internatonal Conference On Computer

Communications And Networks(ICCCN), 1 -6.

