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Abstract 

 

Dirty data (i.e. containing inconsistences, conflict and errors) is a serious 

problem for many organizations leading to incorrect decision making, inefficient 

daily operations, and ultimately wasting both time and money. Dirty data in a 

database often emerge as violation of integrity constraints, meant to preserve data 

consistency and accuracy. 

Conditional Functional Dependencies (CFDs) have recently been introduced 

for data cleaning. CFDs extends Functional Dependencies (FDs) by enforcing 

patterns of semantically related values , and have proved more effective in catching 

data inconsistencies than FDs , which were currently the basis of many data-

Cleaning tools 

Discovery of CFDs existing in an instance of a relation is an expensive 

process that involves intensive manual effort. In this thesis, the researcher develops 

an effective algorithm, called CFD_Mine for discovering CFDs in a relation 

instance. CFD_Mine is a Levelwise algorithm that extends TANE, a well-known 

algorithm for discovering FDs. it searches for minimal CFDs among the data 

values and prunes redundant candidates. 

An experimental study is presented for showing the scalability of our 

algorithm .Finally the results show that CFD_Mine works well when a given 

sample relation is large and scales well will the arity of the relation. 
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 الملخص

 

البٌانات المحتوٌة على أخطاء هً مشكلة حقٌقٌة فً معظم المنظمات و الشركات , 

طأ فً أتخاذ القرارت , و عدم فعالٌة العملٌات الٌومٌة , تؤدي هذة الأخطاء الى الخ

وضٌاع فً الوقت و المال. فً العادة تصنف البٌانات على أنها تحتوي أخطاء أذا 

 كانت تخالف حالات التقٌد السلٌمة.

تنظٌف البٌانات من هذه الأخطاء , لدمت موخراً العلاقات الوظٌفٌة المشروطة ق  

لاقات الوظٌفٌة التقلٌدٌة مدعومة بقٌم ذات معنى من نفس وهً عبارة عن أمتداد للع

جداول البٌانات , و قد أثبتت كفاءتها فً أكتشاف الأخطاء أكثر من العلاقات 

ظٌف البٌانات  .           تنالوظٌفٌة التقلٌدٌة التً كانت لمدة من الزمن تستخدم فً 

           

دة فً الجداول هً عملٌة مكلفة أذا ما أكتشاف العلاقات الوظٌفٌة المشروطة الموجو

لأكتشاف      ( CFD_Mine)فً هذه الرسالة طورنا خوارزمٌة   قمنا بها ٌدوٌاً , 

النوع المتسلسل فً المستوى أثناء البحث و تقلم  منهذه العلاقات , هذه الخوارزمٌة 

 التكرار فً هذه العلاقات.

النمو فً الخوارزمٌة , و نتائجنا قدمنا أٌضا فً بحثنا هذا دراسة تجرٌبٌة تظهر 

أثبتت أن هذه الخوارزمٌة تعمل بشكل صحٌح عند أزدٌاد حجم قاعدة البٌانات 

 المعطاة.
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CHAPTER ONE 
 

 

 INTRODUCTION 
 

 

1.0  Overview  

 

The prevalent use of information systems has made data one of the most 

valuable assets in most organizations. Nevertheless, the value of data highly 

depends on its quality.  

 

Dirty data (i.e. containing inconsistencies and errors) is a serious problem 

for businesses; leading to incorrect decision making, inefficient daily operations, 

and ultimately wasting both time and money.   

 

The presence of errors and inconsistencies in data dramatically reduce the 

value of data, making it worthless, or even harmful. Recent statistics reveals that 

dirty data costs US businesses 600 billion dollar annually [English, 2000]. It is 

also estimated that data cleaning, a labor-intensive and complex process, accounts 

for 30 to 80% of the development time and budget in most data warehouse 

projects [Shilakes and Tylman, 1998] .A study conducted by Gartner in 2005 

forecasts that more than 50 percent of data warehouse projects will have limited 

success, or will be outright failures, as a result of the lack of attention to data 

quality issues [Gartner, 2005]. In light of these, there has been increasing demand 

for data cleaning /quality tools to automatically detect and effectively remove 

inconsistencies and errors from the data. 

 

Dirty data often arises due to changes in use and perception of the data, and 

violation of integrity constraints (or lake of such constraints). Integrity constraint - 

meant to preserve data consistency and accuracy - are defined according to domain 

specific business rules, these rules define relationships among a restricted set of 

attribute values that are expected to be true under a given context. For example, an 

organization may have rules such as: all new customers will receive a 15% 

discount on their first purchase and preferred customers receive a 25 % discount 

on all purchases [Chiang and Miller, 2008]. 
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Inconsistencies and errors in a database often emerge as violations of 

integrity constraints [Arenas et al., 2003], [Rahm and Do, 2000]. Integrity 

constraints (a.k.a. data dependencies) are been widely used for improving the 

quality of schema. Recently constraints have enjoyed a revival for improving the 

quality of data.  

 

Constraint-based data cleaning has mostly focused on two topics, 

introduced in [Arenas et al., 2003], repairing: is to find another database that is 

consistent and minimally differs from the Original database, and consistent query 

answering:  is to find an answer to a given query in every repair of the original 

database, without editing the data,  

 

There has been a host of work on data cleaning (e.g., [Lopatenko and 

Bravo, 2007] [Arenas and Bertossi, 1999] [Bohannon et al., 2005] [Chomicki and 

Marcinkowski, 2005] [Jef, 2003]). However, to develop practical data-cleaning 

tools there is much more to be done. First, the previous work often models the 

consistency of data using traditional dependencies, e.g., Functional Dependencies 

(FDs). Traditional FDs were developed mainly for schema design, but are often 

inadequate for data cleaning. These call for the use of constraints particularly 

developed for data cleaning that are able to catch more inconsistencies than 

traditional dependencies [Rahm and Do, 2000]. Second, few algorithms have been 

developed for automatically finding repairs, and even less incremental methods 

are in place. Third, none of the previous automated methods provides performance 

guarantee for the accuracy of the repairs found. 

 

These limitations in Traditional Dependencies lead the authors in Data 

Cleaning to revive action by considering extensions of FDs and INDs ( Inclusion 

Dependencies ), referred to as Conditional Functional Dependencies CFDs and 

Conditional Inclusion Dependencies CINDs ( Conditional  Inclusion 

Dependencies )  ,  respectively, by additionally specifying patterns of semantically 

related values; these patterns impose conditions on what part of the relation(s) the 

dependencies are to hold and which combinations of values should occur   

together [Wenfei et al., 2008 (2)]. 
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1.1 Motivation 

  

Research on data quality has been mostly focusing on (a) error correction, 

(a.k.a. data imputation), (b) object identification, (a.k.a. record linkage, merge-

purge, data deduplication and record matching), and (c) profiling, to discover 

meta-data from sample data. There is also an intimate connection between data 

quality and data integration, data standardization, data acquisition, cost estimation, 

schema evolution, and even schema matching. 

 

Cleaning the data manually is unrealistic when the dataset is large. Indeed, 

manually cleaning a set of census data could easily take months by dozens of 

clerks [Winkler, 2004]. This highlights the need for automated data cleaning tools 

to detect and effectively remove inconsistencies and errors in the data. The need 

for discovering the constraint that the relation based on is important and easily 

helps to detect the tuples that violate this constraint, and prevent the end-user to 

add a new errornuce tuples, so, contribute to increase the consistency of the 

relational database in business and other domains. 

 

There has been increasing demand for data quality tools, to add accuracy 

and value to business processes. A variety of approaches have been put forward: 

probabilistic, empirical, rule-based, and logic-based methods. There have been a 

number of commercial tools for improving data quality, most notably ETL tools 

(Extraction, Transformation, Loading), as well as research prototype systems, e.g., 

Ajax, Potter‟s Wheel, Artkos and Telcordia. [Maletic and Marcus, 1999][Rahm 

and Do, 2000]. 

 

Most data quality tools, however, are developed for a specific domain (e.g., 

address data, customer records). Worse still, these tools often heavily rely on 

manual effort and low-level programs that are difficult to write and maintain. 

 

Our approach presents recent advances in constraint-based data cleaning , 

CFDs Rules repair the relation dataset based on two main phases ,                       

(a) Discovering Rules, to find the Rules that the relation depends on, and            

(b) Repairing Inconsistencies, to identify tuples  that have some error in some of 

its fields (violate the discovered Rules). 
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The demand of finding an  approach for automatically discovering the rules 

form  relational dataset  presents the initial step for data cleaning phases, by 

getting the most correct values from the relation , and prepare them to the next 

step of cleaning the data which is a new approach based on repairing the relation 

data on the discovered rules . 

 

 

1.2 Contributions of the Thesis 

 

The thesis contributions are the following: 

 

1. Proposing a method for discovering both a minimum set of 

Conditional Functional dependencies CFD and a Functional     Dependencies FD. 

Even though, the underlying ideas are not new, this is the first algorithm 

concentrates on discovering both Rules from database. 

 

2. Implementing  two new optimizations for finding correct and more 

accrue CFD, the first one is merging  the similar CFD for finding a few and more 

accrued Rules, while as the second one is finding the minimum set of CFD rules 

based on the intersect Partitions (Common Partitions) between the Candidates 

(Element on the lattice). 

 

3. Developing  an application for finding the CFDs and FDs  from any  

relation located anywhere, and with any extension , this application generates the 

partitions for the attribute set and then generates the Rules , you can change the 

accuracy of the discovered CFD rules , and you can filter the discovered rules 

after generate them. 
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1.3 Outline of the Thesis. 

 

In Chapter Two we give some background and survey the literature about 

integrity constraints and their discovery. 

 

In Chapter Three we present our general architecture for Rules discovery, 

and give instance case for each method in our approach. 

 

In Chapter Four we describe the testing of our algorithm on both real life 

and study how input parameters and data characteristics influence the performance 

of our application. 

 

Finally, we conclude in Chapter Five. 
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CHAPTER TWO 

 

LITERATURE REVIEW 

 

2.0  Background 

 

A few works are done on the area of CFD Mining (Discovery), because this 

area of research is fresh, nevertheless, this area depends mainly on Mining FD 

rules which present the backbone to CFD. 

 

Therefore, we cover the mining rules briefly in this chapter, and investigate 

the relation between the FD and Data Cleaning, and between FD and CFD. 

 

Definition (Basic relational database concepts). 

 

A relation schema R is a finite set of attributes. The domain of an attribute 

A, denoted by Dom (A) is the set of all possible values of A.   

 

A tuple t over a relation schema R = {A1……. Am} is a member of the 

Cartesian product Dom (A1) ×…. × Dom (Am).  

 

A relation r over R is a finite set of tuples over R. The cardinality of a set X 

of tuples is denoted by |X|. 

 

If X ⊆ R is an attribute set, and t a tuple over R, we denote by t[X] the 

restriction of t to X. The projection of a relation r over R onto X is defined by      

πx (r) =   {t[x] | t ∈ x}. A database schema R is a finite set of relation schemas Ri  , 

A database d over R is a set of relations ri over each Ri ∈ R. 
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2.1  Functional Dependency (FD) 

 

Functional dependencies are relationships between attributes of a relation: a 

Functional Dependency states that the value of an attribute is uniquely determined 

by the values of some other attributes. 

Let r (U) be a relation and X, Y ⊆ U. A Functional Dependency (FD) is a 

constraint, denoted X → Y. The FD X → Y is satisfied by r(U) if every two tuples 

ti, tj ∈ r(U) that have ti(X) = tj(X) also have ti (Y ) = tj (Y ).  

In an FD X→Y, we refer to X as the antecedent and Y as the consequent. 

 

 

2.1.1  Functional Dependencies and Data Cleaning 

 

Functional Dependency (FD) is an important feature for referencing to the 

relationship between attributes and Candidate keys in tuples. It also shows the 

relationship between entities in a data model [Calvanese et al., 2001]. In research 

areas of data cleaning [Arenas and Bertossi, 1999] [Bohannon et al., 2005], the FD 

is used for improving the data quality. In a data mining research, an FD discovery 

technique has been studied [Huhtala et al., 1998] [Flach and Savnik, 1993]. 

However, an FD discovery could find too many FDs and, if used directly in a 

cleaning process, could cause it to NP time [Bohannon et al., 2005]. Many 

techniques developed as cleaning engine by combining an FD discovery technique 

with Data Cleaning technique. 

 

Maletic and Marcus [Maletic and Marcus, 1999] introduced an automated 

data cleaning framework. Their work is divided into 2 parts: identifying error and 

cleaning data. The underlying theoretical aspects of the data quality of their 

research is a combination of existing problem-solving methods in software testing, 

data mining, knowledge based systems, and machine learning to address the 

framework. According to their research, to design automated data cleaning, one 

has to identify errors and then clean such dirty data. Several approaches use the 

FD discovery algorithm for identifying errors and cleaning algorithm together to 

produce FD cleaning tool. Several researchers in this field have mentioned       

that too many FDs have been generated [Arenas and Bertossi, 1999]                            

[Ilyas et al., 2004].        
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The authors in [Huhtala et al., 1998] showed a pruning technique for 

generating a Candidate set and computing each Candidate member to determine 

FDs. The ranking technique has been proposed in [Ilyas et al., 2004] and 

[Andritsos et al., 2004].  

Applied a selectivity value for ranking FDs from generated FDs (called 

“SoftFD”) [Ilyas et al., 2004]. Their work proposed that if p1 and p2 are 

predicates on respective columns    C1 and C2, then the selectivity of the 

conjunctive predicate p1 ∧ p2 is estimated by simply multiplying together the 

individual selectivity of |C1||C2| / |C1, C2|. The Authors in [Andritsos et al., 2004] 

proposed that the FD ranking should be concerned on the first merge of the 

attribute that has the most amount of duplicate attribute value. These 2 ranking 

techniques give us the idea of ranking by looking at the data distribution.  

 

However, the merging technique will take more time than the selectivity 

value because it generates the clustered matrix but the selectivity value which can 

be found by counting attribute value directly. Therefore, this work will choose the 

selectivity value technique for ranking the generated FDs. There are 2 parts for 

cleaning algorithms: FD repairing technique and Duplicate Elimination. FD 

repairing which has been proposed by [Bohannon et al., 2005]. Their research 

used a cost based technique which used a low cost data to repair a high cost data. 

[Hernandez and Stolfo 1995] Proposed Sorted Neighborhood methods for Data 

Duplicate elimination by finding keys to determine duplicate tuples, then sorting 

the duplicate tuples and finally, matching tuples in the window to identify its 

duplication.   

                                                                       

 2.1.2 Levelwise Search Technique 

 

Mannila and Toivonen [Mannila and Toivonen. 1997] , study thoroughly a 

breadth first or levelwise algorithm, also called generic data mining algorithm for 

finding all potentially interesting sentences. Their paper includes a complexity 

analysis, as well as some applications including functional and inclusion 

dependency discovery. The levelwise algorithm has been used among other 

applications for discovering association rules [Agrawal and Srikant, 1994] 

[Mannila et al., 1994], for discovering functional dependencies [Huhtala et al., 

1998] [St´ephane et al., 2000] [Novelli and Cicchetti, 2001], and for discovering 

inclusion dependencies [Fabien et al., 2002]. 
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The idea in the levelwise algorithm is to start from the most general 

attributes and try to generate and evaluate more and more specific attribute set. 

The semi-lattice illustrated in Figure 2.1, shows the search space of an exhaustive 

algorithm for finding Rules for four attributes. Figure 2.1 shows all possible nonempty 

combinations of the four attributes (A, B, C, and D). 

 

 For these attributes, there are    2
n
 =   2

4
   = 16   possible subsets of attributes, of 

which the    2
n
 - 2 = 14    nonempty, proper subsets are the Candidates. The levels of the 

semi-lattice are numbered from the top to the bottom. The set U at level 4 are not a 

Candidates, because for any CFD or FD with the form   U → vi,   we have       vi = U 

- U =   ø. There are n
2
 (n-1) edges in a full lattice for n attributes. Since the semi-lattice 

of the total search space of Rules starts from level 1, rather than the empty set, 

there are   n2 
n - 1 

– n edges     in the semi-lattice of the complete search space for 

Rules ,the size of the search space is exponential to the number of variables in U.  

 

 

 

 

 

 

 

 

  

 

 

 

Figure 2.1: Lattice for 4 attributes. 
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2.2 Conditional Functional Dependencies 

 

Constraints adopted for detecting inconsistencies are mostly traditional 

dependencies such as functional dependencies FDs and inclusion dependencies 

INDs, These constraints are required to hold on entire relation(s), and often fail to 

capture errors commonly found in real-life data.  

These limitations lead the researchers to considering an extensions of FDs 

and INDs, referred to as Conditional Functional Dependencies CFDs and 

Conditional Inclusion Dependencies CINDs, respectively, by additionally 

specifying patterns of semantically related values; these patterns impose 

conditions on what part of the relation(s) the dependencies are to hold and which 

combinations of values should occur together. 

 

CFDs extend FDs by incorporating a pattern tuple of semantically related 

data values. For each attribute A in a schema R, we denote its associated domain as 

Dom (A), which is either infinite (e.g., string; real) or infinite (e.g., Boolean; date). 

 

A CFD φ on R is a pair (R: X → Y, Tp), where, 

 

(1) X and Y are sets of attributes in attr(R),  

(2) X → Y is a standard FD, referred to as the FD embedded in φ, 

(3) Tp is a tableau with attributes in X and Y , referred to as the pattern 

tableau of φ, where for each A in X ∪ Y and each tuple t ∈ Tp, t[A] is either a 

constant „a‟ in dom(A), or an unnamed variable „_‟ that draws values from 

Dom(A)[Wenfei et al., 2008 (1)]. 

 

Medina and Nourine [Medina and Nourine, 2008] , present the idea of 

decomposition the relation into a small relations  (X-complete horizontal 

decomposition) denote by RX(r) the set of all X-complete fragment relations of r. 

More formally: RX(r) = {r′ ⊆ r | r is X-complete}.  

  

When stating that FD holds on the entire of relation, the CFD is a FD hold 

on a sub relation of R, but to find a hybrid idea between them, let‟s consider the 

decomposition of the relation R into small sub relation based on CFD, which 

means that these CFDs holds on a specific sub relation and maybe interleaved 

with another sub relation. 
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Table 2.1 shows a sample records from library instance which contains 

records about items available in the library and its Name, Type, Country, Price and 

Tax, and this relation holds on this Functional Dependency: 

 

FD: [Name, Type, Country] → [Price, Tax]. 

 

Table 2.1: Library Relation Instance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intuitively, we can recognize the following inconsistencies: 

1. In tuple t9;     the entire Harry Potter books sell in France don't have any 
tax rate, but in t9 we notice that this tuple has 0.05 tax rates, which violate the 
semantic constraint. 
2. In tuple t7; there are two different prices to the same item in same 
country, which means that one of these tuples violates the semantic constraint.  

As we noticed in the previous two cases, these tuples which violate the 

semantic constraints but don't violate the FD constraint, i.e. this functional 

dependency does not help us to find the tuples that violate the sales rules in the 

library. 

 

 

 

Tax Price Country Type Name 

0 10 France Book Harry Potter t1 

0.08 40 USA DVD Terminator t2 

0 10 France Book Harry Potter t3 

0.05 500 UK Clothing Armani Suit t4 

0 250 UK Clothing Armani Slacks t5 

0 25 UK DVD Star Wars t6 

0.08 25 USA DVD Terminator t7 

0.05 500 France Clothing Prada Shoes t8 

0.05 10 France Book Harry Potter t9 

0 10 France Book Harry Potter t10 

0.05 200 France Clothing Prada Shoes t11 
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Let‟s define a new type of rules to help us avoid these violations: 

 

 φ1 :( [Name, Type="Book", Country="France"]→ [Price, Tax=0]). 

 

 φ2 :( [Name, Type, Country="USA"]→ [Price, Tax]). 

 

This type of constraint is called Conditional Functional Dependency, which 

is FD but has some constant values to help users in data cleaning phases. 

 

The first CFD (φ1) prevents the user in the library system from violating 

this rule: if the book sells in France, then no tax rate is added. While as the second 

CFD (φ2) means that in USA country, the name and the type of items define the 

price and the tax for them, which prevent the same item to have two different 

prices. These rules do not violate the FD that the relation holds in, but added some 

consistency and accuracy to the relation. 

 

Example 2.1: 

 

 The library relation in Table 2.1 satisfies φ1 and φ2, However, tuple t9 

violates the pattern tuple tp = (-, Book, France   -, 0) in tableau T1 of φ1: t1 

[Name, Type, Country] = t2 [Name, Type, Country] ≍ tp (-, Book, France), but t1 

[Price, Tax] ≠ t2 [Price, Tax] 

 

φ1 :( [Name, Type="Book", Country="France"]→ [Price, Tax=0]). 

 

φ2 :( [Name, Type, Country="USA"]→ [Price, Tax]). 

 

Table 2.2: CFDs hold in Library Dataset. 

 

 

 

 

 

 

 

 

 

Name Type Country Price Tax 

- Book France - 0 

Name Type Country Price Tax 

- - USA - - 
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For a pattern tuple tp in Tp (Tableau) shown in Table 2.2, we define an 

instantiation ρ to be a mapping from tp to a data tuple with no variables, such that 

for each attribute A in X ∪ Y, if tp [A] is „-‟, ρ maps tp [A] to a constant in dom 

(A), and if tp [A] is a constant „a‟, ρ maps tp [A] to the same value „a‟. 

 

 For example, for tp [A, B] = (a,-), one can define an instantiation ρ such 

that ρ (tp [A, B]) = (a, b), which maps tp [A] to itself and tp [B] to a value „b‟ in 

Dom (B). Obviously, for an attribute A occurring in both X and Y, we require that 

ρ (tp [AL]) = ρ (tp [AR]). Note that an instantiation ρ may map different 

occurrences of „-‟ in tp to different constants; e.g., if tp [A, B] = (-, -), then ρ (tp 

[A, B]) = (a, b) is well-defined if a ∈ Dom (A) and b ∈ Dom (B). 

 

A data tuple t is said to match a pattern tuple tp, denoted by t ≍ tp, if there 

is an instantiation ρ such that ρ (tp) = t. For example, t [A, B] = (a, b) ≍ tp [A, B] 

= (a, -). An instance I of R satisfies the CFD ϕ, denoted by I |= ϕ, if for each pair 

of tuples t1, t2 in the instance I, and for each tuple tp in the pattern tableau Tp of 

ϕ, if t1[X] = t2[X] ≍ tp[X], then t1[Y] = t2[Y] ≍ tp[Y]. That is, if t1[X] and t2[X] 

are equal and in addition, they both match the pattern tp[X], then t1[Y] and t2[Y] 

must also be equal to each other and both match the pattern tp[Y]. 

 

Intuitively, each tuple tp in the pattern tableau Tp of ϕ is a constraint 

defined on the set I (φ, tp) = {t | t ∈ I, t[X] ≍ tp[X]} such that for any t1, t2 ∈ I (φ, 

tp), if t1[X] = t2[X], then (a) t1[Y] = t2[Y], and (b) t1[Y] ≍ tp[Y].   

 

Here (a) enforces the semantics of the embedded FD, and (b) assures the 

binding between constants in tp[Y] and constants in t1[Y]. Note that this 

constraint is defined on the subset I (φ, tp) of I identified by tp[X], rather than on 

the entire instance I. If ∑ is a set of CFDs, we write I |= φ if I |= φ for each CFD φ 

∈ ∑. If a relation I |= ∑, then we say that I is clean with respect to ∑. [Wenfei et 

al., 2008 (1)]. 
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2.2.1 Conditional Functional Dependency Discovery 

 

As the discovering of Functional dependencies take a lot of work from the 

researchers of the database and data cleaning system, the approaches for 

discovering the FD are varied and have different options and pruning phases. 

 

As tight relation exists between FDs and CFDs, we can think that FDs 

discovery approaches can apply to discover CFDs too. The authors in [Wenfei et 

al., 2009], divide the discovering of CFD into three methods .The first, referred to 

as CFDMiner, is based on techniques for mining closed item sets, and is used to 

discover constant CFDs, namely, CFDs with constant patterns only. The other two 

algorithms are developed for discovering general CFDs.  

 

The first algorithm, referred to as CTANE, is a levelwise algorithm that 

extends TANE, a well-known algorithm for mining FDs. The other, referred to as 

FastCFD, is based on the depthfirst approach used in FastFD, a method for 

discovering FDs.  

 

It leverages closed-item set mining to reduce search space. The authors 

demonstrate the following. (a) CFDMiner can be multiple orders of magnitude 

faster than CTANE and FastCFD for constant CFD discovery. (b) CTANE works 

well when a given sample relation is large, but it does not scale well with the arity 

of the relation. (c) FastCFD is far more efficient than CTANE when the arity of 

the relation is large. 
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2.3 Related Work   

 

When talking about the CFDs which present a special case of FD, we have 

to give some related works about FDs before discussing CFDs. 

 

2.3.1 Related Work on Functional Dependencies 

 

The size of the search space is exponential to the number of variables in R. 

One main issue in the discovery of functional dependencies is to prune the search 

space as much as possible. Existing algorithms can be classified into three 

categories: the Candidate generate-and-test approach [Flach and Savnik, 1999] 

[Hernandez and Stolfo 1995] [Savnik and Flach, 1993], the minimal cover 

approach [Shilakes and Tylman, 1998] [Mannila and Toivonen. 1997] [St´ephane 

et al., 2000]. 

 

The Candidate generate-and-test approach uses level wise search to explore 

the search space. It reduces the search space by eliminating Candidates using 

pruning rules. TANE [Huhtala et al., 1998] and FUN [Novelli and Cicchetti, 2001] 

[Savnik and Flach, 1993] both are level wise methods. They begin by testing FDs 

with small left-hand sides and prune the search space as soon as possible. More 

specifically, both methods are based on partitioning the set of tuples with respect 

to their attribute values.  

 

Using partitions, TANE and FUN can test the validity of FDs efficiently 

even for large number of tuples. They search the set containment lattice in a level 

wise manner. By computing closure of Candidates in level k, the FDs in this level 

are discovered, and results from level k are used to generate Candidates in level    

k +1. The difference among the algorithms TANE and FUN is that they use 

different pruning rules to eliminate Candidates. The minimal cover approach 

discovers the minimal cover of the set of FDs given a database. 

 

 FDEP [Flach and Savnik, 1999] consists of three algorithms: bottom-up 

algorithm, bi-directional algorithm and top-down algorithm. The experiment 

showed the bottom-up method is more efficient. For bottom-up method, it first 
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gave two hypotheses: positive cover (the dataset that FD holds) and negative cover 

(the dataset that FD does not hold). In second step, it computed the maximum 

negative cover (all possible dataset that FD does not hold); next this approach 

iterates negative cover again and only considers the dataset that the least general 

violated FD to get the minimum cover. Finally, by repeating specialize negative 

dependencies, the positive cover would be constructed, and then the FDs can be 

obtained from this cover.  

 

FastFDs [Wyss et al., 2001] and Dep-Miner [St´ephane et al., 2000] 

discover FDs by considering couples of tuples, i.e. agree sets. First, a stripped 

partition database is extracted from the initial relation. Then, using such partitions, 

agree sets are computed and maximal sets are generated. Thus, a minimum FD 

cover according maximal sets is found. FastFDs differs from Dep-Miner only in 

that Dep-Miner employs a levelwise search, whereas FastFDs use a first-depth 

search strategy. Formal concept analysis approach discovers functional 

dependencies from the view of formal concept analysis. By considering the 

relationship between relational database theory and formal concept analysis 

[Demetrovics et al., 1992], the functional dependencies hold in a database can be 

extracted by using pre-defined formal concept analysis closure operator.  

 

In [Lopes et al., 2002], Lopes et al. conclude that the qualitative 

comparison between DepMiner (or FastFDs) and TANE (or FUN) is more 

difficult because the approaches widely differ. The drawback of the former is the 

time-consuming computation of agree sets since it is quadratic with respect to the 

number of tuples in the relation. The drawback of the latter is their heavy 

manipulations of attribute sets and the numerous tests which have to be performed. 

  

FD_ Mine approach [Yao et al., 2002] belongs to generate-and-test 

approach. FD_Mine differs from TANE or FUN in that more effective pruning 

rules are identified such that a faster and more efficient algorithm is designed for 

mining FDs from data. 
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2.3.2 Related Work on Conditional Functional Dependencies 

 

A few works are done on CFDs, but this problem is still open to the data 

cleaning and database researchers, in Maher [Arenas and Bertossi, 1999] 

constraint functional dependencies presented, which is the backbone of CFDs, and 

the same author gave a modified form to Armstrong axioms for conditional 

functional dependencies in [Bohannon et al., 2005], these axioms present a 

minimal set of inference rules for CFDs. 

 

W.Fan, et.al [Wenfei et al., 2008 (1)], propose a class of integrity 

constraints for relational databases, referred to as conditional functional 

dependencies (CFDs), and study their applications in data cleaning.  

To be able to find which tuples in a relation violate the semantic of relation, 

you first need to discover the CDFs rules and then compare it with violated 

relation; a few works are presented to discover CFD. In [Medina and Nourine, 

2008] the authors propose an algorithm for discovering CFDs based on levelwise 

search on the lattice to find all possible constraints on the relation; another 

approach is presented by Chiang and Miller [Chiang and Miller, 2008] which is 

again a levelwise search algorithm but has additional pruning rules to filters the 

Candidates CFDs and reduce its numbers. Finally in [Golab et al., 2008] the 

authors present an approach for generating the Tableau and give some criteria for 

classification the good Tableau. 

 

W.Fan, et .al [Wenfei et al., 2008 (3)] present SEMANDEQ, which is a 

prototype system for improving the quality of relational data, based on conditional 

functional dependencies, W.FAN, et al [Wenfei et al., 2008 (1)], proposed a frame 

work for improving data quality concern on consistency and accuracy, by 

modifying the relation D that is inconsistence to D' which is satisfied the 

constraint and minimally differs from D and ensure that is accurate. 
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CHAPTER THREE 

 

 

 CFD_MINE ALGORITHM 
 

 

3.0 Overview 

 

Having defined the necessary basics of CFDs in Chapter 2 earlier, this 

chapter describes the algorithmic details for mining the minimum set of CFDs 

from a relational database.  

 

Our approach, CFD_Mine is a levelwise search algorithm for mining the 

CFD Rules, which means that each Candidate (element on the lattice) at level k is 

used to discover the results at level k+1. Our approach has multi pruning phases, 

which filter the discovered Rules, to finds a set of minimum CFDs and equivalent 

to another set of CFDs discovered by another approach. 

 

To find all Conditional Functional Dependencies according to the definition 

above, we search through the space of non-trivial dependencies, and CFD_Mine 

faces two costs:   

 

1) The cost of searching the rule space  

2) The cost of visiting the relational dataset to calculate the required partitions 

for the rules.  

 

The dominant factor is the combinatory complexity of searching a space 

related to the power set lattice of the set of attributes. An example of such a lattice 

for a dataset with five attributes shown in next Figure 3.1. 
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3.1 CFD_Mine Algorithm  

 

CFD_Mine  approach follows a breadth first search strategy, and performs 

a level-wise search in the lattice for finding the partitions to the Candidates and for 

generating the CFDs between adjacent levels, top-down search in the lattice starts 

from singleton sets and proceeds upwards level-wise in the lattice, searching 

bigger sets. 

 

At level one , CFD_Mine starts from  Singleton Candidates (i.e. form the 

single attributes set available in the relation)  and stores them in a variable  C1,          

at level two each element at set C1 used to generate the Candidates of the form  

(x1x2) where ,{ x1,x2 ∈ C1} and { x1 ≠ x2 }, and stores them again in  another  

variable C2 .   

 

After finding  all the Candidates in both levels ( one  and two ) ,  and 

storing them in C1 and C2 , respectively, all the FDs available between these two 

levels are discovered and stored in variable called F, and all the CFDs of the 

following form are discovered and stored in a variable CF . 

 

 φ: [ q = xi, p = ø ] →[ vi ]. 

 

Where xi is a single value from C1, and vi is a single value from C1 added to 

xi to represent a Candidate in C2. 

 

For instance, if there is a relationship between (B, AB), then the form of 

CFD is:  

 

 φ: [ q = B, p = ø ]→ [ A ]. 

At level three, the Candidate set available in C2 uses to generate the third 

level Candidates, which store in C3, After that, all FDs available between level two 

and level three are discovered and added to the previous FDs stored in variable F, 

and all CFDs of the following form is generated and added again to the previous 

CFDs stored in CF. 

 

 φ: [ q = xi, p ] → [ vi ] . 
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For instance, to find a relation between the elements on the edge (AB, 

ABC), the forms of CFDs are one of the following: 

 

 φ: [ q =  A,  p = B ] →[ C ] , or  

 

 φ: [ q =  B,  p = A ] →[ C ] , or 

 

 φ: [[ q = B, A], p = ø ]  →[ C ]. 

 

 

Table 3.1: Balloon Database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inflated Age Act Size Color 

T ADULT STRETCH SMALL YELLOW t1 

T CHILD STRETCH SMALL YELLOW t2 

T ADULT DIP SMALL YELLOW t3 

F CHILD DIP SMALL YELLOW t4 

F CHILD DIP SMALL YELLOW t5 

T ADULT STRETCH LARGE YELLOW t6 

T CHILD STRETCH LARGE YELLOW t7 

T ADULT DIP LARGE YELLOW t8 

F CHILD DIP LARGE YELLOW t9 

F CHILD DIP LARGE YELLOW t10 

T ADULT STRETCH SMALL PURPLE t11 

T CHILD STRETCH SMALL PURPLE t12 

T ADULT DIP SMALL PURPLE t13 

F CHILD DIP SMALL PURPLE t14 

F CHILD DIP SMALL PURPLE t15 

T ADULT STRETCH LARGE PURPLE t16 

T CHILD STRETCH LARGE PURPLE t17 

T ADULT DIP LARGE PURPLE t18 

F CHILD DIP LARGE PURPLE t19 

F CHILD DIP LARGE PURPLE t20 
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Before exploring the pseudo code of CFD_Mine algorithm, we will give 

some information about the dataset used to explain our approach; we used a 

database called Balloon Dataset as shown in Table 3.1, which is located in UCI 

(Machine Learning Repository) [UCI, 2008], and present a set of trousers with 

different characteristics, and has five attributes and twenty tuples. 

 

The semi-lattice in Figure 4.1, illustrates the search space of an exhaustive 

algorithm for finding the Rules for five attributes. It shows all possible nonempty 

combinations of the five attributes (Color, Size, Act, Age and Inflated).  

 

 

 

 

 

 

Figure 3.1: CFD_Mine levelwise semi-lattice. 
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CFD_Mine algorithm as Figure 3.2 shows is an Object Oriented algorithm 

(OO), which means that the Main algorithm calls different procedures, each one 

has its own Functionality, and the result of each one of the procedures comes 

back to the main algorithm, and uses in the next procedure.  

 

 

CFD_MINE Algorithm (r (U)) 

Input: A relation r (U) over U = {v1...vm} 

Output: A set of FDs and CFDs over r (U). 

{ 

Initialize variables step: 

1. CF = ø;  

2. C1 = U;  

3. SingletonCalculatePartition (C1, r (U));  

Iteration step:  

4. while |Ck| > 0 do 

5. { 

6. k = k + 1; 

7. AprioriGen (Ck-1); 

8. CalculatePartition (Ck, r (U));  

9. CF ∪ ObtainCFDs (Ck-1, Ck); 

10. MinimalCover (CF); 

11. } 

12. return (CF); 

} 

 

Figure 3.2: CFD_Mine pseudo code. 

Where, 

 

CF : variable to store all CFDs discovered during the algorithm progress. 

C1 : variable to store singleton Candidates attribute in relation. 

Ck : variable to store all results comes from calling the sub algorithms. 

k = 1 : variable present the level; where the algorithm works on. 

 

The procedures called by the CFD_Mine algorithm are 

SingletonCalculatePartition, CalculatePartition, AprioriGen, ObtainCFDs, and 

PartitionMinimalCover. 
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3.1.1 Generate Next Level Candidates. 

 

The AprioriGen algorithm in Figure 3.3 generates all possible Candidates 

at level k from the Candidates at level k-1. For example in Table 1 given                 

C1 = {Name, Type, Country, Price, and Tax}, by applying AprioriGen procedure, 

the results at second level which stores in C2 is = {(Name, Type), (Name, 

Country), (Name, Price)…etc}. 

 
AprioriGen (Ck-1)  
{ 
1. Ck = ø; 
2.          for each {y, z}  ⊆ Ck-1, y ≠ z   do  
3.         x = y ∪ z; 
4.                        if for each A ∈ x, x\ {A}   ∈ CK-1   then 
5.                        Ck = Ck   ∪ {x}; 
6. return Ck; 
}  
 

Figure 3.3: AprioriGen Algorithm. 

Where, 

 

z, y : Attribute set at level k. 

x : The new value at level k+1. 

 

Example 3.1: 

 

First of all, the AprioriGen algorithm takes the singleton elements 

(Candidates), which are the attributes names in the relation and stores them in C1, 

as shown in Table 3.2. 

 

Table 3.2: The Candidates in C1. 

 

 

 

 

 

 

 

Level Candidates 

C1=U   {Color, Size, Act, Age, Inflated}. 
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At level two the AprioriGen uses the Candidates available in C1 to finds the 

Candidates in C2, as in Table 3.3. 

 

Table 3.3: The Candidates in C2. 

 

 

 

3.1.2 Computing Partitions 

 

Definition (Partitions): 

 

Two tuples  t  and  u  are equivalent  with  respect  to a given set  X  of 

attributes , if    t [A] = u [A] for all  A  in  X . Any attribute set X partitions the 

tuples of the relation into equivalence classes. We denote the equivalence class of 

a tuple t ∈ r with respect to a given set  X ⊆ R by [t] X, i.e. [t] X = {u ∈ r | t [A] = 

u [A] for all A ∈ X}. The set ПX = {[t] X | t ∈ r} of equivalence classes is a 

partition of r under X.  

 

ПX   is a collection of disjoint sets (equivalence classes) of tuples, and each 

set has a unique value for the attribute set X and the union of sets equals to the 

relation r. The rank |П| (cardinality) of a partition П is the number of equivalence 

classes in П.  

 

Example 3.2: 

 

 From data available in Table 2.1 , suppose  X1 = Name , then Π Name =    

{{1, 3, 9, 10},{2, 7},{4}, {5}, {6}, {8,11}}, for X2 = Country, Π Country = 

{{1,3,8,9,10,11}, {2,7}, {4,5,6}}, and for X3 = (Name, Country) , Π Name, Country = 

{{1,3,9,10}, {2,7}, {4}, {5}, {6} , {8,11}}. The cardinality to each attribute set 

presents the number of equivalence classes in their partitions. For example,         

|Π Name | = 6, and    |Π Name, Country | = 6. We will use the idea of cardinality for the 

equivalences in each group.  

 

 

Level Candidates 

C2 = 
{ (Color, Size) , (Color, Act) , (Color, Age) , (Color, Inflated) , (Size, Act) , 

(Size, Age) , (Size, Inflated) , (Act, Age) , (Act, Inflated) , (Age, Inflated) }. 
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Definition (Stripped Partition): 

 

Stripped Partition is a partition with equivalent classes of one element size 

is removed, for instance, the Stripped Partition of the Name Attribute set is               

Π Name = {{1, 3, 9, 10}, {2, 7}, {8, 11}}, we will not mention it because we will 

use it as a default partitions, The benefit of using stripped partition is to reduce the 

comparison space in finding CFDs. 

 

The algorithm below shown in Figure 3.4 presents 

SingletonCalculatePartition, which finds all same tuples in the attribute set that 

have the same value in the domain for the single attribute set only.  

 
SingletonCalculatePartition (C1, r (U)) 
{ 
1. i , j = ø; 
2.  for each t[i ] ∈ dom(attr[A]) do  
3.   for j=0 to Table. length 
4.   If (value [i] = value [j]) 
5.    t[j]=t[j] ∪ i ; 
6.    break; 
7. return t[j]; 

} 
 

Figure 3.4: SingletonCalculatePartition Algorithm 

 

Where, 

t[i] :  The index number of the tuples. 

attr[a]:  The attribute set in the level. 

value :  Value domain available in the tuple of attribute, Dom (attr [A]). 

t[j] : Array of lists to store the partitions. 

 

Example 4.3: 

 

At level one , the SingletonCalculatePartition finds all equivalence classes 

to the singleton attributes stored in C1= {Color, Size, Act, Age, inflated}, updates 

the values of these Candidates with their partitions , and finally finds the 

cardinality to each attribute by counting the number of equivalent classes, as  

Table 3.4 shows.  

 

 

 



 
 

26 

Table 3.4: Partitions of the Candidates in C1 

 

 

 

The partitions are not computed from scratch (Lattice) for each attribute set. 

Instead, when CalculatePartition works its way through the lattice, it computes    

a partition as a product of two previously computed partitions (in the previous 

level), the product of two partitions П' and П'', denoted by П‟. П'' is the least 

partitions that refines both П' and П''. 

 

We compute the partitions ПX, for each X ∈ R, directly from the database 

if the value of X =1. Where the Partitions ПX for X ≥ 2, are computed as a product 

of partitions with respect to the two subsets of X. Any two different subsets of size 

|X|− 1 will do, which is convenient for the levelwise algorithm since only the 

partitions from the previous level are needed.  

 
CalculatePartition (Ck, r (U)) 
{ 
1. n, m = ø; 
2. for each (t[y] , t[z]) ⊆  Ck , t[y] ≠  t[z]  do  
3.  for each part[n] ∈ t[y] 
4.  for each part[m] ∈ t[z] 
5.  t[x] = (part [n] - part [m])  ∪ (part [m] - part [n]); 
6.    break; 
7. return t[x]; 
} 

 

Figure 3.5: CalculatePartition Algorithm 

 

Where, 

 

n, m : Numeric values present the index to the partitions to each Candidate. 

part : Array of tuples, present the partitions. 

 

Attr 

Name 

Partitions Cardinality 

Π Color  = {{1,2,3,4,5,6,7,8,9,10},{11,12,13,14,15,16,17,18,19.20}}. |Π Color| =2  

Π Size   =  {{1,2,3,4,5,11,12,13,14,15},{6,7,8,9,10,16,17,18,19.20}}. |Π Size| = 2 

Π Act    =  {{1,2,6,7,11,12,16,17},{3,4,5,8,9,10,13,14,15,18,19.20}}. |Π Act | = 2 

Π Age = {{1,3,6,8,11,13,16,18},{2,4,5,7,9,10,12,14,15,17,19,20}}. |Π Age | = 2 

Π Inflated =  {{1,2,3,6,7,8,11,12,13,16,17,18},{4,5,9,10,14,15,19,20}}. |Π Inflated |=2 
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Example 4.4: 

 

At level two, the CalculatePartition finds all equivalence classes for the 

Candidates attribute set stored in C2, update the values of these Candidates in C2, 

and finally finds the cardinality to each attribute by counting the number of 

equivalences classes, as shown in Table 3.5.  

 

 

Table 3.5:  Partitions of the Candidates in C2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Attr Name Partitions Cardinality 

Π Color,Size = {{1,2,3,4,5},{6,7,8,9,10},{11,12,13,14,15}, 

{16,17,18,19.20}}. 

|Π Color,Size | = 4 

Π Color,Act = {{1,2,6,7},{3,4,5,8,9,10},{11,12,16,17}, 

{13,14,15,18,19.20}}. 

|Π Color,Act | =4 

Π Color,Age  = {{1,3,6,8},{2,4,5,7,9,10},{11,13,16,18}, 

{12,14,15,17,19,20}}. 

|Π Color,Age| =4 

ΠColor,Inflated = {{1,2,3,6,7,8},{5,9,10},{11,12,13,16,17,18}, 

{14,15,19,20}}. 

|Π 

Color,Inflated|=4 

Π Size, Act = {{1,2,11,12},{3,4,5,13,14,15},{6,7,16,17}, 

{8,9,10,18,19,20}}. 

|Π  Size, Act | =4 

Π Size, Age = {{1,3,11,13},{2,4,5,12,14,15},{6,8,16,18}, 

{7,9,10,17,19,20}}. 

|Π Size , Age | =4 

Π Size, Inflated  = {{1,2,3,11,12,13},{4,5,14,15},{6,7,8,16,17,18}, 

{9,10,19,20}}. 

|Π  Size, 

Inflated|=4 

Π  Act, Age = {{1,6,11,16},{2,7,12,17},{3,8,13,18}, 

{4,5,9,10,14,15,19,20}}. 

|Π Act, Age | = 4 

Π  Act, Inflated  = {{1,2,6,7,11,12,16,17},{3,8,13,18}, 

{4,5,9,10,14,15,19,20}}. 

|Π Act, Inflated|= 3 

Π  Age, Inflated  

= 

{{1,3,6,8,11,13,16,18},{2,7,12,17}, 

{4,5,9,10,14,15,19,20}}. 

|Π Age, Inflated |=3 
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3.1.3 Searching for Rules 

 

Now, we use the partitions found for each attribute set in each level stored 

in Ck to find the CFDs Rules.  

 

The following steps illustrate how the procedure ObtainCFDs generates the 

CFDs, and how its sub procedures work. 

 

First Step : ObtainCFDs  algorithm receives two complete levels and 

compares each element at level Ck-1 with each related element in level Ck , only if  

the Candidate element at level  Ck-1 is a portion  of  the Candidate element in Ck  , 

(i.e. Ck-1 ⊆ Ck ) .  

 

Example 3.5: 

 

If there is an element in the first level such as (Age), and there are elements 

in the second level such as (Size, Age), (Color, Inflated), then the algorithm 

compare the element (Age) only with (Size, Age), because the (Age) Candidate in 

the first level is a portion of the (Size, Age) Candidate in second level. 

 

Second Step: If the partitions of these elements are exactly equal (identical) 

then there is a Functional Dependency FD between them, so the algorithm forms a 

nontrivial Functional Dependency between them. 

 

Example 3.6: 

 

If there is an element in second level such as (Act, Age) and its Partitions 

are  ΠAct,Age  =  {{1,6,11,16},{2,7,12,17},{3,8,13,18},{4,5,9,10,14,15,19,20}} , 

and one of its related elements in the third level is (Act, Age, Inflated), and its 

Partitions are ΠAct,Age,Inflated = {{1,6,11,16} ,{2,7,12,17}, {3,8,13,18}, 

{4,5,9,10,14,15,19,20}}. These two groups of partitions are identical so there is a 

FD between them, and the discovered FD is: 

 FD = [ Act,  Age → Inflated ]. 
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Third Step: If the partitions of these elements are not exactly equal (i.e. 

there is at least one partition shared) then maybe there is a Conditional Functional 

Dependency available, so go next to IntersectPartitions procedure which finds the 

same equivalence classes (Intersect Partitions) that are equal in both elements. 

 

Example 3.7:  

 

If there is an element in first level such as (Age) and its Partitions are               

ΠAge = {{1,3,6,8,11,13,16,18},{2,4,5,7,9,10,12,14,15,17,19,20}}. and one of its 

related element in the second level is (Age, Inflated) and its partitions are 

ΠAge,Inflated = {{1,3,6,8,11,13,16,18} ,{2,7,12,17} ,{4,5,9,10,14,15,19,20}}. 

 

Therefore, there is a common partition between these two Candidates      

{1, 3, 6, 8, 11, 13, 16, 18}, the IntersectPartitions procedure in Figure 3.7 finds 

this common partition and then CreateCFD procedure takes this common partition 

and forms a CFD between these two Candidates. 

 

Fourth Step:  CreateCFD algorithm receives two Candidates and the 

shared partitions between them to produces CFD Rule in this manner, and try to 

find an element in the LHS Candidate that contains the same Shared partition 

found by IntersectPartitions algorithm, if it is found, then it‟s a Condition 

Partition or Constant, if not then the element is variable, and its values are from 

the domain of its attribute.  

 

And this operation is repeated for the RHS. This idea reduces the number of 

CFDs discovered and gives you direct CFD and merges a lot of CFDs Rules.  

 

Example 3.8:  

 

If we have two  Candidates  (Act, Inflated) and (Act, Age, Inflated) and 

there is a Shared partition (Ωx) between them Ωx = {{3,8,13,18}, 

{4,5,9,10,14,15,19,20}}, The CreateCFD algorithm in Figure 3.8 checks the 

element in the LHS (Act) and  (Inflated) to see which one of them has the same 

partition in its partitions , in this case (Act) has the same common partition but 

(Inflated) doesn‟t , then the (Act) is the Condition portion and the (Inflated) is 

the Variable portion, and we repeat this operation on the RHS but we check only 
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the element that is not in the LHS ( i.e. Age) and we find that it doesn‟t have the 

same partition so it‟s a Variable portion.  

 

 φ: [Act = DIP, Inflated] → [Age]. 

 
ObtainCFDs (Ck, Ck-1) 
{ 
1. F= ø; 
2. for each x in Ck -1 
3.  for each vi ϵ U – x+ 
4.   if (|Πx| = |Πxvi|) 
5.   F =F ∪ (FD : [x →   vi ]) 
6.   else 
7.   Ωx = IntersectPartitions (x, xvi); 
8.    if (Ωx = ø)  
9.    break; 
10.    else                 
11.    CreateCFD (Ωx, x, vi); 
12. return Ωx; 
} 

 

 

Figure 3.6: ObtainCFDs Algorithm. 

 

Where, 

 

x+ : The closure of the element x, i.e. the element that x contains it.   

Ωx : Variable to store the share partition between two elements in two levels. 

 
 
IntersectPartitions (x, xvi) 
{ 
1. n, m = ø; 
2. for each part[n] ∈ x 
3.  for each part[m] ∈ xvi 
4.   if((part[n] = part[m] )&&(part_size ≥r)) 
5.   Ωx = Ωx ∪ part[m] ; 
6.   break; 
7. return Ωx.   
} 
 

 

Figure 3.7: IntersectPartitions Algorithm. 
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Where, 

 

n, m :  Numeric values present the index to the partitions in each Candidate. 

part : Array of tuples, which represent the partitions. 

part_size : Number of tuples in each group. 

r  : Threshold value. 

 
 
CreateCFD (Ωx, x, vi) 
{ 
1. for each h ∈  x do 
2.  if Ωx ⊆ h then  
3.   q = q  ∪ h; 
4.  else 
5.   p = p ∪ h;   
6.  if Ωx ⊆ vi then 
7.  CF=CF ∪ ⱷ= [q = value of dom (x), p] → [vi = value of dom (vi)]; 
8.  else 
9.  CF=CF ∪ ⱷ= [q = value of dom (x), p] → [vi]; 
10. return CF; 
}  
 

 

Figure 3.8: CreateCFD Algorithm. 

 

Where, 

q : variable to store the Conditional Attributes.   

p : variable to store the Variable Attributes.   
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3.1.4 Pruning the Discovered CFDs 

 

Our algorithm contains many pruning phases; these phases reduce the 

number of CFDs to be checked and have an effect on the performance of the 

algorithm as we will see later. 

 

3.1.4.1 Stripped Partitions 

 

As we mentioned early, the partition with one element size is removed from 

the search space for the following reasons: 

  

1. Reduce the search space for finding the CFDs,  

2. Prevent CFD comes from single tuple to appear in the final rules and this 

means that there is no CFD Rule that has constant values in all of its attributes of 

the Rules, which means that the static rules are pruned. 

 

Example 3.9: 

 

Let‟s suppose we want to find the CFDs between a Candidate at fourth 

level such as (Color, Size, Act, Inflated) and a Candidate at fifth level like     

(Color, Size, Act, Age, Inflated).  

 

we have all of these equivalence classes shared between them 

{{3},{4,5},{8},{9,10},{13},{14,15},{18},{19,20}}, but we care only for 

partitions that have more than or equal two tuples (stripped partitions) 

{{4,5},{9,10},{14, 15},{19, 20}}. 

 

3.1.4.2 Merge Similar CFDs 

 

In our approach we added the idea of merge CFDs Rules based on the 

similarity between their attributes, and this idea is presented in the third inference 

rules in [Wenfei et al., 2008 (1)]. 
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Example 3.10: 

 

Between (Color, Inflated) and (Color, Act, Inflated), we have two 

equivalence classes {4, 5, 9, 10} and {14, 15, 19, 20}, and each one of these 

classes gives a distinct CFD. 

 

 Ωx = {4, 5, 9, 10} produces: 

φ1: [Act = "STRETCH", Color = "YALLOW"] → [Inflated = "T"]. 

 Ωx = {14, 15, 19, 20} produces: 

φ2: [Act = "STRETCH", Color = "PRUPLE"] → [Inflated = "T"]. 

 

If you applied our Dataset on another approach for discovering Conditional 

Functional Dependencies you will see these two CFDs rules, but in our approach 

you will not see it because we merge it into a single CFD. 

 

 φ: [Act = STRETCH, Color] → [Inflated=T]. 

 

The idea of merging rules based on finding the attributes which have the 

same value and make it Condition such as Act = STRETCH and Inflated = T, are  

equal between φ1 and φ2 ,but Color has different values between φ1 and φ2 so we 

make it as Variable in the CFD rule. 

     

3.1.4.3  Minimal Cover for CFDs 

 

Before exploring the Modified algorithm for finding the minimum CFD, 

we will study the inference Axioms for CFD and their relations with CFD_Mine.  
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Figure 3.9: Inference Rules for CFDs [Wenfei et al., 2009]. 

 

FD1: Extends Armstrong‟s Axioms of Reflexivity, because CFD_Mine 

algorithm finds the CFD between two adjacent levels and because it discovers the 

nontrivial CFD, then this inference rule doesn‟t have any effect in our algorithm. 

 

Example 3.11: 

 

In our case there is no Trivial CFD between the Candidates for the reason 

shown above, as follows. 

 

 φ: [Act = "STRETCH”] → [Inflated="T”]. 

 

 φ: [Age = "ADULT”] → [Inflated="T" ]. 

 

 φ: [Inflated="F”] → [Act = "DIP”]. 

 

 φ: [Inflated="F”] → [Age = "CHILD”]. 

 

FD2 Extends Armstrong‟s Axioms of Transitivity, and to cope with pattern 

tuples which are not found in FDs, it employs an order relation , is defined as 

follows: For a pair ( η1, η2 ) of constants or „- ‟, we say that η1  η2 if either       

η1 = η2 = a where a is a constant, or η2 =„-‟.  
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The  relation naturally extends to pattern tuples. For instance,                   

(a, b)  (- , b). Intuitively, the use of  in FD2 assures that (t1 [A1] . . . tk [AK]) is 

in the “scope” of tp [A1… AK], (i.e.), the pattern tp [A1.  . .A] is applicable.  

Example 3.12: 

 

Transitive CFDs between the Candidates 

 

 φ = [Act=STRETCH] → [Inflated=T]. 

 

 φ = [Inflated=F] → [Act=DIP]. 

 

FD3 Tells us that for a CFD ϕ = (R: [B, X] → A, tp), if tp [B] = „-‟ and tp 

[A] is a constant „a‟, then ϕ can be simplified by dropping the B attribute from the 

LHS of the embedded FD. To see this, consider an instance I of R such that I |= ϕ, 

and any tuple t in I. Note that since tp [B] = „-‟, if t[X] ≍ tp[X] then t [B, X] ≍ tp 

[B, X] and t [A] has to be „a‟ regardless of what value t [B] has. Thus ϕ entails (R: 

X → A, tp), and I |= (R: X → A, tp).  

Example 3.13: 

 

 Suppose you have this CFD, which have Variable attributes and Condition 

or constant attributes,  

 

  φ = [Age=ADULT, Color] → [Inflated=T]. 

  

If we remove the variable attribute from the previous CFD it will produce: 

 

  φ = [Age=ADULT] → [Inflated=T]. 

 

FD4 deals with attributes of finite domains, which are not an issue for 

standard FDs since FDs have no pattern tuples. They are given w.r.t. a set Ʃ of 

CFDs. More specifically, to use this rule one needs to determine, given Ʃ on a 

relation schema R, an attribute B in attr(R) with a finite domain and a constant      

b ∈ dom (B), whether or not there exists an instance I of R such that        I |= Ʃ 

and moreover, there is a tuple t in I such that t [B] = b. We say that (Ʃ, B = b) is 

consistent if and only if such an instance I exists. That is, since the values of B 
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have finitely many choices, we need to find out for which b ∈ Dom (B), Ʃ and    

B = b make sense when put together. 

Already this inference rule implied in our merge algorithm, but we add 

some modification on this rule, as the definition on the CFD suppose, there is no 

CFD available without having at least one attribute constant,   

 

Example 3.14: 

 

Suppose you have these CFDs, which have Variable attributes in both sides 

LHS and RHS, 

 

 φ = [Color = PURPLE, Inflated = F, Size = LARGE] → [Act = DIP] 

 φ = [Color = PURPLE, Inflated = F, Size = LARGE] → [Age = CHILD] 

 

Merging these two CFDs produce: 

 

 φ = [Color = PURPLE, Inflated = F, Size = LARGE]→[Age] 

 

Now, as an application of consistency and implication analyses of CFDs, 

we present a modified algorithm for computing a minimal cover MCF of a set CF 

of CFDs based on the Intersect Partitions between the Candidates which produce 

the Rules that can be reduced and eliminated from the CF set. 

 

The cover MCF is equivalent to CF but does not contain redundancies, and 

thus is often smaller than ∑. Since the costs of checking and repairing CFDs are 

dominated by the size of the CFDs to be checked along with the size of the 

relational data, a non-redundant and smaller MCF typically leads to less validating 

and repairing costs. Thus finding a minimal cover of input CFDs serves as an 

optimization strategy for data cleaning. 

A minimal cover MCF of a set Σ of CFDs is a set of CFDs such that:  

 

1. Each CFD in MCF is of the form (R : X → A, tp) as mentioned earlier, 

2. MCF ≡ CF. 

3. No proper subset of MCF implies MCF, and  

4. For each ϕ = (R: X → A, tp) in MCF, There exists no φ = (R: X → A, tp 

[X∪A]) in MCF such that X ⊂ X. Intuitively, MCF contains no redundant CFDs, 

attributes or patterns. 
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Now, if we applied the inference Axioms for finding the minimum cover 

set of CFDs , we will see that the FD1 , doesn‟t have any effect on CFD_Mine , 

because already the finds the nontrivial CFDs between adjacent levels. 

 

About the second Axiom FD2, maybe there is an equivalence set of 

attributes  between the discovered CFDs, and as proposed in [Yao et al., 2002] the 

equivalence Rules are removed, for instance,  

 

 [Act=STRETCH] → [Inflated=T]. 

 

 [Inflated=T] → [Act=STRETCH]. 

 

Then the second one will be removed from the set of the discovered CFD 

Rules. 

 

While as the third Axiom FD3, will remove any variable value from the 

LHS of the CFD Rules; this will make the discovered Rules have only constant 

attributes on the RHS. 

 

And finally the fourth Axiom FD4 will cause merging similar CFDs that 

have the same RHS and LHS and the idea of the merge illustrated above. 

 

After applying these Axioms on a set of CFDs, and applying the Minimum 

Cover algorithm proposed by the authors in [Wenfei et al., 2008 (1)], we will have 

a minimum set of CFDs.   

 

      We have a mixed up   all the above Axioms and Minimum Cover 

algorithm, because our approach mainly depends on the intersect partitions 

between the Candidates; we will use the idea of this partitions for finding the 

minimum set MCF of CFDs. 
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PartitionMinimalCover algorithm works as follow, the algorithm chooses 

all the CFDs that have the same intersect partitions , and  then chooses between 

them the CFDs that have the same RHS and have some intersect LHS attributes 

between them, after that the algorithm applies the inference Axioms which will 

produce the Minimum set of CFDs. 

 
PartitionMinimalCover (CF) 
{ 
1. for each i=1 to CF_size 
2.         for each j=2 to CF_size 
3.               If ((Ωx CFD[i]= Ωx CFD[j])&& 
4.                   (RHS CFD[i]= RHS CFD[j])&& 
5.                   (LHS CFD[j] ⊆ LHS CFD[i])) 
6.                    
7.                   MCF= MCF  ∪ IR (CFD); 
8. return MCF; 
} 

 
Figure 3.10: PartitionMinimalCover algorithm. 

 

Example 3.15: 

 

In Figure 3.15, If we choose  all the discovered CFDs which have the same  

intersect partition equal  Ωx = {4,5,9,10,14,15,19,20} , and choose between them 

the Rules that have the same LHS ( all of them ) and some RHS (Inflated, 

available between all of them again ) and applying the inference Axioms (FD3). 

Then the algorithm will produce single CFD as a minimum between them. 

 

 φ = [Inflated=F] → [Age=CHILD]. 

 φ = [Inflated=F, Size] → [Age=CHILD]. 

 φ = [Color, Inflated=F] → [Age=CHILD]. 

 φ = [Color, Inflated=F, Size] → [Age=CHILD]. 

 

After applying PartitionMinimalCover algorithm, the algorithm will produce:   

 

 φ = [Inflated=F] → [Age=CHILD]. 

 

Figure 3.11: Choose implies CFD. 
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CHAPTER FOUR 

 

 

EXPERIMENTAL EVALUATION 
 

 

4.0  Overview  

 

In this section, we present an experimental study of CFD_Mine algorithm 

and implementation software. We investigate the Utility, Correctness and 

Accuracy, Scalability for our program to find out the most correct CFD and FD in 

a suitable time. 

 

4.1 The Utility of the Approach 
 

We mentioned earlier that the FD used mainly for schema design purpose 

and CFD founded for cleaning the data relations from erroneous entering  , but we 

can‟t ignore the important role that the FD approaches have been playing  in data 

cleaning too, so as our approach discovers both minimum set of Conditional 

Functional Dependencies which may differ from another set of CFD discovered 

by another approach but they are equivalent , and set of Functional Dependences , 

we can – in future - design a complete system for cleaning the relation based on 

both FD and CFD  . 

 

Almost all of the relations located on the UCI have inconsistencies; this 

leads the other approaches for discovering the FD to use what we called 

Approximate Functional dependency (AFD) which is Functional dependency that 

almost holds. Our approach sometimes can‟t find any Functional Dependences in 

the relation, because the relation has some errors. 

 

Let us think differently. If we apply the discovering of CFD Rules, and 

then modify the data relation according to these Rules, the relation will not have 

any inconsistencies; this manner will produce a set of real Functional 

Dependences FD, not Approximate Functional Dependencies (AFD). 
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So, CFD_Mine function for cleaning data will be finding the most rules 

agreed on the relation and then modify the spurious tuples which disagree with the 

discovered rules and help the data entries to insert correct entities which agree 

with the rules later on. 

 

4.2 Accuracy of Discovered Rules 

 

 [Golab et al., 2008] present a definition to the problem of optimal pattern 

tableau generation (CFD) based on natural criteria, it might seem that a good 

tableau should choose patterns to maximize the number of tuples, they think that a 

good tableau should apply to at least some minimal subset of the data and should 

allow some of the tuples to cause violation. They present two main variables 

called support (tuples should match) and confidence (tuples should violate). 

 

Because our approach discovers all possible CFDs, this may seem conflict 

to what the authors in [Golab et al., 2008] come in, but we deal with this criterion 

in a different manner; we put a variable called threshold r, which presents the 

percentage of the tuples that the Discovered CFD Rules covered, this value has 

two main benefits: 

 

1. It lets the algorithm produce only the Rules that have this value and above, 

2. It reduces the search time for finding the Rules. 

 

If the user identifies threshold r, then the approach will filter the discovered 

rules according to this threshold, all the rules above the value of threshold are 

support and all the rules under the value of threshold are confidence. 

 

Because our algorithm for finding the CFDs based on finding the intersect 

partitions between the Candidates, and each partition has its own cardinality (the 

number of tuples in that partition), and because we need to increase the speed of 

the search for finding CFDs, we identify an equation to connect the percentage of 

the discovered CFDs with the cardinality of the partitions. 

  

For instance, if we have a relation with 400 tuples, and we need to find 

only the CFDs that agree only on 20% and above of the relation dataset, so we set 

the value of the threshold on this equation: 
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g =  (the ratio r * number of tuples in relation t) / 100.  

 

g =  (20 * 400)/100= 80 (tuple/partition). 

 

Now , the value of g means that only partitions that have the cardinality 

equal 80 and above are added to the create Rules phase  , while the other partitions 

are removed , so they will not be included in the search space. 

 

Example 4.1: 

 

In Table 3.1, suppose that we want to find only the CFDs that covered 40 

% of the relation, 

 

The value of the threshold  r = 40. 

 

The number of the tuples in the relation  t = 20. 

 

g  = (r * t) / 100 = (40 * 20)/100 = 8  

 

So, only the partitions that have 8 and above number of tuples in the 

partition are included in the phase of producing CFDs; if there are Rules covering 

this percentage. 

 

Act = {1,2,6,7,11,12,16,17},{3,4,5,8,9,10,13,14,15,18,19.20}. 

 

Act, Inflated = {1,2,6,7,11,12,16,17},{3,8,13,18},{4,5,9,10,14,15,19,20}. 

 

Intersect Partition   Ωx  = {1,2,6,7,11,12,16,17} . 

 

Cardinality of Ωx = | Ωx | = 8. 

  

The discovered CFD is: φ: [Act = “STRETCH”] → [ Inflated=” T”] 

Now, if you set the value of r = 0, then the algorithm will discover all 

possible CFDs, this means that if there is intersect partition with cardinality =1, 

the algorithm will discover CFD to it. 
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Example 4.2:  

 

Between these two Candidates we have two intersect partitions and each 

one produces its own CFD, but each one has different percentage. 

 

Age, Inflated ={1,3,6,8,11,13,16,18},{2,7,12,17},{4,5,9,10,14,15,19,20}. 

 

Act, Age, Inflated   ={1,6,11,16},{2,7,12,17},{3,8,13,18},{4,5,9,10,14,15,19,20}.  

 

Intersect Partition   = Ωx  = {2,7,12,17},{4,5,9,10,14,15,19,20}. 

 

 {2, 7, 12, 17}: produces  : 

 

 φ = [Age=CHILD, Inflated=T] → [Act=STRETCH] 

 

With 20% of the tuples in the relation.  

 

{4, 5, 9, 10, 14, 15, 19, 20}: produces: 

 

 φ = [Age=CHILD, Inflated=F] → [Act=DIP] 

 

With 40% of the tuples in the relation.  

 

Now any other tuples between the Candidates (Age, Inflated) and (Act, 

Age, Inflated) don‟t agree on one of these Rules are Confidence, while as any 

tuples agree on these Rules are Support. 

 

If you need to discover the Functional Dependencies FD that the dataset set 

holds in, you have to set the value of the threshold r=0, to prevent the algorithm 

delete any partition with any size, because the mechanism of finding FD as TANE 

propose is to compare to partition set to two Candidate, if its identical then there is 

a functional dependency between them.  
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4.3  Scalability Experiments 

 

4.3.1 Parameters 

 

CFD_MINE was applied on a datasets obtained from the UCI Machine 

Learning Repository [UCI, 2008]. Our experiments were run using a Dual T2350 

INTEL Processor 1.86 GHz (1.86 GHz) with 3GB of memory; we used the Adult 

dataset and agaricus-lepiota dataset, and varied the parameter of interest to test its 

effect on the discovery running time.  

 

 

4.3.2  Scalability on the Number of Tuples 

 

For the purpose of study the behavior of our algorithm when increasing the 

number of tuples was examined by fixing  the number of attribute a = 8  , and 

giving  three different values to the threshold r , the values are r = 1 ,2 , and 3 , 

and starting  the number of tuples  from t =1k  to t = 8k . 

 

 
 

 

Figure 4.1: Scalability per Tuples (Adult). 
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When increasing the number of tuples , as we saw in Figure 4.1 and Figure 

4.2, the algorithm behave semi Linearly,   To expound this  phenomenon , we 

talked that our algorithm mainly divided into two main complexity issues .the first 

one is finding the partition of the Candidates, and because we didn‟t change the 

number of Candidates in all of the cases (2
9
 = 512 Candidates) , then there is no 

added time to find it , but the little increase of time is because finding more 

number of partition to each Candidate, which mean more time for find the 

intersect partitions and more time to generate the CFDs Rules . 

   

But we have other variable effects on the scalability, it is the attribute size, 

for example the size of the attribute for Adult dataset is much larger than the 

attribute size of the agaricus-lepiota dataset. 

 

Because the attribute size of the Adult dataset is larger than the attribute 

size of the agaricus-lepiota, and because we deal with the data as String data type, 

then when the size of String increased the time for merging and separation and 

other operations on the string done, the time is also increased. So the time for the 

same number of tuples and attribute for Adult data set as shown in Figure 4.1 is 

larger than the time for agaricus-lepiota as shown in the Figure 4.2, but the 

algorithm still behaves linearly. 

 

 

 
 

Figure 4.2: Scalability per Tuples (agaricus-lepiota). 
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4.3.3  Scalability on the Number of Attributes 

 

For the purpose of study the behavior of our algorithm when increasing the 

number of attributes, was examined by fixing the number of tuples t = 1k, and 

giving three different values to the threshold r, the values are r = 1, 2, and 3, and 

starting  the number of attributes from a =5 to a = 15. 

 

 

 

 

 

 

Figure 4.3: Scalability per Attributes (Adult). 

 

 

When increasing the number of attributes as we saw in Figure 4.3 and 

Figure 4.4,   the algorithm behaves Exponentially,   to expound this phenomenon, 

we explain that the time that the algorithm need it to find the partition for dataset 

with 3 attribute (2
3
 = 8 Candidates) is much less than the time needed to calculate 

the partitions for dataset with 15 attributes (2
15

 = 32768 Candidates). 

 

These results are identical to what the TANE comes in, because the idea of 

calculating the partition presented in TANE, and TANE is one of the most 

efficient approaches for finding the Traditional Functional Dependence. 
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If we assume that we deal directly with existing partitions and we want to 

only discover the Rules the time that will be taken is very small, but the time for 

finding the partitions is large, so when increasing the number of attributes the 

number of Candidates increases too. 

 

 

Figure 4.4 confirms the effect of the attribute size on the time of 

discovering the CFD Rules. 

   

 

 
 

 

 

Figure 4.4: Scalability per Attributes (agaricus-lepiota). 
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CHAPTER FIVE 

 

 

CONCLUSIONS AND FUTURE WORK 
 

 

5.1 Conclusions 

 

We present a new approach to the discovery of both Functional and 

Conditional Functional Dependencies. The major innovations is a novel way of 

discovering all possible Rules and determining minimal set on these Rules and use 

the Modified inference Axioms for CFD, The idea is to maintain information 

about which rows agree on a set of attributes. Formally, the approach can be 

described using equivalence classes and partitions. A major advantage of the use 

of partitions is that it allows efficient discovery of Conditional dependencies and 

traditional dependencies. 

 

The algorithm is based on the levelwise search algorithm that has been used 

in many data mining applications. It starts from dependencies with a small left-

hand side, i.e., from the ones that are not very likely to hold. The algorithm then 

works towards larger and larger dependencies, until the minimal dependencies that 

hold are found. 

 

The worst case time complexity of the algorithm with respect to the number 

of attributes is exponential, but this is inevitable since the number of minimal 

dependencies can be exponential in the number of attributes. However, if the 

number of rows increases, the set of dependencies stays the same, the time 

increases only linearly in the number of rows.  

 

The linearity makes the algorithm especially suitable for relations with 

large number of rows. Experimental results show that the algorithmic effective in 

practice, and that it makes the discovery of Functional and Conditional Functional 

Dependencies feasible for relations with even hundreds of thousands of rows.  
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5.2 Future Work 

 

For future work a lot of work still needs to be done in Data Cleaning and 

Data Mining to make it integrated and solid. About my area I think there are a lot 

of modifications that need to be done too. 

 

 First of all our contribution on discovering the Rules needs a second phase 

of finding the violated tuples, which violate the discovered Rules. 

 

 The other idea is making a complete system for cleaning the relation 

dataset based on both CFDs and FDs, and modifying the error tuples step by step 

after discovering the CFD rule. 
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