

Mobile Trade Agent Security

Submitted by

Shaima Hameed Al-Khalifa

Supervisor

Prof. Mohammad Al- Haj Hassan

A Thesis Submitted in Partial Fulfillment of the Requirements for
the Degree of Master of Science in Computer Information System

Faculty of Information Technology

Department of Computer Information System

Amman - Jordan

August 2011

II

 جامعة الشرق ا�وسط

 نموذج تفويض

أفُوّض جامع�ة الش�رق ا"وس�ط بتزوي�د نس�خ م�ن رس�التي ورقي�ا ،هل خليفآشيماء حميد انا
والكترونيا للمكتبات، أو المنظم�ات، أو الھيئ�ات والمؤسس�ات المعني�ة با"بح�اث والدراس�ات

 .العلمية عند طلبھا

III

Middle East University

Authorization Form

I, Shaima Hameed Al-Khalifa, authorize the Middle East University
to supply copies of my Thesis to libraries or establishments or
individuals on request.

IV

V

Acknowledgments

This thesis owes a great deal to my supervisor, Professor Mohammad

Al- Haj Hassan. I sincerely thank him for his guidance, wisdom, and

encouragement. And I am grateful for his suggestions and comments

during every step of the project.

I would further like to acknowledge all of the Information Technology

faculty members at the Middle East University, for helping and

encouraging my efforts especially at the beginning of the thesis.

Above all, I would like to especially thank my parents for supporting

me during the time I was writing this thesis. Without them nothing of

this thesis would have been possible.

VI

Dedication

I want to thank Allah whom by his willing I was able to write this

thesis. This is dedicated to my father, for his support and care. To my

mother, without her prayers and encouragement I couldn’t finish my

thesis. And also to everyone who stands behind us all the time,

especially my brothers, friends and colleagues.

VII

Page Table of Contents

VIII ……………………………… List of Tables

IX ……………………………… List of Figures

X ……………………………… List of Abbreviations

XI ……………………………… Abstract

XII ……………………………… Abstract in Arabic

Chapter One: Introduction to Mobile Trade Agent System

2 ……………………………… 1.1 Introduction

4 ……………………………… 1.1.1 Agent Types

5 ……………………………… 1.1.2 Available Mobile Agents Examples

6 ……………………………… 1.1.3 Security threats of mobile agents

7 ……………………………… 1.2 Problem Definition

9 ……………………………… 1.3 Thesis Objectives

10 ……………………………… 1.4 Thesis Motivation

10 ……………………………… 1.5 Thesis Contribution

11 ……………………………… 1.6 Thesis Significance

11 ……………………………… 1.7 Thesis Organization

Chapter Two: Literature Review and Related work of Mobile Trade Agent System

13 2.1 Introduction ………………………………………………………………..

13 2.2 Literature Survey Related Mobile Agents Secure Migration ………………

15 2.3 Protecting Mobile Agents using public key technique …………………

VIII

18 2.4 Related studies on Protecting Mobile Agents ………………………………

22 ……………………………. 2.5 The Public-Key Cryptography Concept

22 2.5.1 Advantages and Disadvantages of Public-Key Cryptography ………..

24 2.5.2 Introduction to RSA and Elgamal algorithms ………………………..

Chapter Three: Mobile Trade Agent Architecture and the Proposed Model

26 3.1 Introduction ………………………………………………………………….

26 ……………………………… 3.2 Mobile Trade Agent Schema

29 ……………………………… 3.3 The Proposed Model

32 ……………………………… 3.4 The Algorithms Used in The System

32 ……………………………… 3.4.1 Generate keys

33 3.4.1.1 RSA Public and Private Keys Generation ………………………..

35 3.4.1.2 Elgamal Public and Private Keys Generation ……………………

36 ……………………………… 3.4.2 Encryption Phase

38 ……………………………… 3.4.3 Decryption phase

40 ……………………………… 3.5Worked Example

44 ……………………………… 3.6 System Application

49 ……………………………… 3.7 System Requirements

Chapter Four: Implementation and Evaluation of the Proposed Model

46 ……………………………… 4.1 Implementation of the Proposed Model

47 ……………………………… 4.1.1 Authentication

49 ……………………………… 4.1.2 Message Encryption

50 ……………………………… 4.1.3 Message Decryption

50 ……………………………… 4.1.4 The Application's Methods

IX

54 ……………………………… 4.2 Evaluation of the Proposed Model

58 ……………………………… 4.1.5 The Size of key

Chapter Five: Conclusion and Future Work

60 ……………………………… 5.1 Conclusion

61 ……………………………… 5.2 Future Work

62 ……………………………… References

64 ……………………………… Appendix

X

List of Tables

5 Table 1 : Available Mobile Agents Examples ……………………………..

24 Table 2: RSA key size and the predicated time to be breakable in it ……..

56 Table 3: The execution time of RSA & Elgamal algorithm………………

56 Table 4: The execution time of prime numbers ………………………….

XI

List of Figures

7 Figure 1.1 : Shopping Agent, sent out to find best airfare ………………..…..

15 Figure 2.1 : Agent migration using a central authority (trusted third party) ..…

18 Figure 2.2: The MTA Schema ……………………………………………..

22 Figure 2.4: Public key cryptograph …………………………………………

28 Figure 3.1: Mobile Trade Agent Architecture ……………………………

30 Figure 3.2 The Proposed Mobile Agent System Model ……..…………..

33 Figure 3.3: RSA & Elgamal keys generation scheme.………..…………..…

37 Figure 3.4: Two Phase Encryption ……………………….…………………

39 Figure 3.5: Two Phase Decryption ……………….…..….………………..

46 Figure 4.1 System Interface ………………………………………………..

47 Figure 4.2: Shows the user must enter the authentication key …….….……

48 Figure 4.3 The System Flow Chart ………………………………..….……

49 Figure 4.4: Message Encryption ………………………………….………..

50 Figure 4.5: Message Decryption ………………………………..………..

56 Figure 4.6: The execution time chart of RSA & Elgamal ……………...

56 Figure 4.7: The execution time chart of RSA & Elgamal (together)………..

58 Figure 4.8: The execution time chart of prime numbers …….……………..

XII

List of Abbreviations

Abbreviate Meaning

AD Agent Depositor y

AS Authorization Server

FIPA Foundation of Intelligent Physical Agents

FnC Function Composition technique

DES Data Encryption Standard

HES Homomorphic Encryption Scheme

MARISM Architecture for Mobile Agents with Recursive I tinerary and

Secure M igration

MASIF Mobile Agent Systems Interoperability Facilities Agents

MTA Mobile Trade Agent

PKI Public Key Infrastructure

RSA Rivest, Shamir and Adleman

SNMP Simple Network Management Protocol

SIAS Shopping Information Agent System

TTP Trusted Third Party

XIII

ABSTARCT

Mobile Trade Agent security

By

Shaima Hameed Al-Khalifa

Supervised by

Prof. Mohammad Al- Haj Hassan

Recently, e-commerce had been widely spread, and anyone can buy or

sell online a certain product or service anywhere. As a result, this

increased the need to find the best product with the best price. All of

these led to use mobile agent trade systems to perform this task. Such

systems should have the capability to act in behalf of the user and roam

sites to find the list of goods or products with best price.

 Unfortunately, a mobile agent system has some disadvantages, like being

attacked by malicious hosts who try to steal and sabotage the mobile

agent's data (the client credit card number for example).

Mobile agent system can be more successful and frequently used, if the

security problems had been solved. The security is the major concern for

Mobile agent system especially when the money is involved. Thus, we

need a protection mechanism to ensure the integrity and safety of agent

information.

In this thesis, an approach for protecting mobile agent had been designed,

and a two-phase encryption protection application had been built using

two cryptography algorithms: RSA & Elgamal. The proposed approach

has been implemented and tested.

XIV

ملخصال

 لامن الوكيل التجاري الجوأ

عدادإ
شيماء حميد آل خليفه

شرافإ

محمد الحاج حسن. د.أ

�خيرة، وأصبح بإمكان أي شخص أن يبيع لقد انتشرت التجارة ا�لكترونية في ا�ونة ا

ويشتري منتجاً ما أو يحصل على خدمة ما عن طريق ا/نترنت، وھذا أدى إلى إزدياد

 .الحاجة /يجاد السلعة ا�فضل و بأفضل سعر

ل �داء ھذه المھمة، ولھذه ا�نظمة اجولكل ھذا قاد إلى إستخدام أنظمة الوكيل التجاري ا

لنيابة عن المستخدم، وتصفح صفحات ا/نترنت من أجل ايجاد قائمة القدرة على التصرف با

 .بالمنتجات بأفضل ا�سعار

إR أن �نظمة الوكيل التجاري بعض المضار، مثل تعرضھا للھجوم من قبل المضيف، الذي

).مثV رقم بطاقة اRئتمان(يحاول تخريب وسرقة بيانات الوكيل التجاري

يمكن أن تصبح أكثر نجاحاً وأكثر إستخداما اذا تم حل المشاكل إن أنظمة الوكيل التجاري

المتعلقة با�منية، حيث تعد ا�منية ا/ھتمام الرئيسي �نظمة الوكيل التجاري خاصة عندما

يكون المال جزءاً من العملية، لذلك نحن بحاجة إلى آلية حماية من أجل ألتاكد من سVمة وأمن

 .بيانات الوكيل التجاري

ھذه الرسالة، تم تصميم طريقة لحماية الوكيل التجاري، وتم بناء تطبيق ذي مرحلتين لكل في

والجمل، وقد تم برمجة وتنفيذ الطريقة RSAمن التشفير و فك التشفير بإستخدام خورزميتي

 .المطروحة وإختبارھا

1

Chapter

One

2

Chapter One

Introduction to Mobile Trade Agent System

1.1 Introduction

 The Inter-networked environment, such as the Internet, has made

electronic commerce transactions more available than before, which

also cause the increase of information about goods or services on the

Internet.

 The amount of information that is available on the Internet is much

large that it becomes near impossible for humans to visit each site on

the internet, analyze this information and choose the best merchandise

to trade.

Therefore, there is a need for a trade agent that can roam sites,

evaluate and decide where it is best to buy or sell goods on behalf of

the user (Aqel, Aboud & Ahmed ,2007) .

 Agents are independent pieces of software capable of acting

autonomously in response to input from their environment. Agents

have different abilities, but typically possess the required functionality

to fulfill their design objectives.

Software agents should also have the ability to act autonomously

without direct human interaction, be flexible, and in a multi-agent

system, be able to communicate with other agents (being social).

Agents are, to various degrees, aware of their environment, which also

can be affected by the agents’ actions. A mobile agent is a particular

3

class of agents with the ability during execution to migrate from one

host to another where it can resume its execution. It has been

suggested that mobile agent technology, amongst other things, can

help to reduce network traffic and to overcome network latencies

(Borselius,2002) .

 In the future, agents will also be supplied with real money in some

form to pay for resources or services (Sonntag & Hörmanseder, 2000).

When the Mobile Trade Agent migrates to unknown merchant server,

there is a possibility of being attacked from that server (attacks on

mobile agents by malicious hosts). Security is very important in

mobile agent systems, both from the perspective of the agent as well

as of the host. As mobile agents move to foreign hosts (which may not

always be trusted or trustworthy), their data and code should be

protected from tampering (Noordende, Overeinde, Timmer, Brazier &

Tanbaum, 2007).

Confidentiality issues arise specially in the context of mobile agents

carrying data that must be accessible only to specific, authorized hosts

in their itinerary (Ametller, Robles & Ortega ,2004).

We focus on the security threats of a mobile agent. The mobile trade

agent surf many sites which make him vulnerable to many attacks

especially by malicious hosts. A malicious host is a system that tries to

manipulate agent results or violate agent privacy and capture private

information such as credit card number. So, the problem is how to

make the mobile trade agent secure and avoid the attacks caused by a

malicious host. We try to protect the agent by using cryptography

algorithms to eliminate the basic attacks. In this thesis, we propose a

4

solution based on combination of public key authentication techniques

and cryptography algorithms.

1.1.1 Agent Types

Now, we address some definitions and activities related to Mobile
Trade Agent and Agent Depository (AD).

The term Agent refers to one who acts on behalf of someone by his

authority and trust in dealing with the business and others,(wikipedia).

 Software Agent:

 It is a piece of software that acts for a user or other program in a

relationship of agency, which derives from the Latin agere (to do): an

agreement to act on one's behalf. Such "action on behalf of" implies

the authority to decide which (and if) action is appropriate. A

Software Agent comes on several types as follows,(wikipedia):

• Intelligent Agent: an Intelligent Agent is a software agent

that has some intelligence of learning and reasoning.

• Autonomous Agent: it is a type of agents which is capable of

modifying the way in which they achieve their objectives.

• Distributed Agent: it is a type of agents which is capable of

being executed on physically distinct computers.

• Multi-Agent Systems: these are distributed agents that do not

have the capabilities to achieve an objective alone and thus must

communicate.

• Mobile Agents: are agents that can relocate their execution

onto different processors.

5

Agent Depository (AD):

It is an agent holder, a depository, in which all agents are kept and

interiorly sustained and controlled. The mobile trade agent is, by no

means, stored at a user client computer, but the AD holds all Mobile

Trade Agents. The user of the mobile trade agent is not passing its

Mobile Agents straight to any server. It gives orders to the AD to

simulate the mobile agent and order it to visit sites on the internet

(Aqel, Aboud & Ahmed ,2007) .

1.1.2 Available Mobile Agents Examples:

In the following table, we summarize some of the Available Mobile
Agents Examples:

Table1: Available Mobile Agents Examples

6

1.1.3 Security Threats of Mobile Trade Agents :

Mobile Trade Agent security problems can be divided into two
categories:

(1) How can we protect agent against malicious host, and (2) how can
we protect host against agent.

In our proposed system we will concentrate on protection of mobile
agent against malicious host. Three fundamental problems of
executing mobile code in an untrusted environment (Sander&
Tschudin ,1998):

(i) Can a mobile agent protect itself against tampering by a malicious
host? (Code and execution integrity).

(ii) Can a mobile agent conceal the program it wants to have
executed? (Code privacy).

(iii) Can a mobile agent remotely sign a document without disclosing
the user’s private key? (computing with secrets in public).

A simple example often used to illustrate how a malicious host can

benefit from attacking a mobile agent is the shopping agent as shown

in Figure 1.1.

An agent is sent out to find the best airfare for a flight with a particular

route. The agent is given various requirements, such as departure and

destination, time restrictions, etc., and sent out to find the cheapest

ticket before committing to a particular purchase. The agent will visit

every airline and query their databases before committing to a

purchase and reporting back to the agent owner (see Figure 1.1). A

malicious host can interfere with the agent execution in several ways

in order to make its offer appears most attractive.

7

For example, a malicious host could try to (Borselius,2002) :

(1) Erase all information previously collected by the agent – in this
way the host is guaranteed at least to have the best current offer.

(2) Change the agent’s route so that airlines with more favorable
offers are not visited.

(3) Terminate the agent to ensure that no competitor gets the business
either.

(4) Make the agent execute its commitment function, ensuring that the

agent is committing to the offer given by the malicious host (if the

agent is carrying electronic money, it could instead take it from the .In

addition to this, the agent might be carrying information that needs to

be kept secret from the airlines (e.g. maximum price).

Figure 1.1 Shopping Agent, sent out to find best airfare.

8

1.2 Problem Definition

Mobile agent technology has not become popular due to some

problems such as security. The fact that computers have complete

control over all the programs makes it very hard to protect mobile

agents from untrusted hosts (Flocchini and Santoro ,2006).

Among the severe security threats faced in distributed mobile

computing environments, two are particularly troublesome: harmful

agent (that is the presence of malicious mobile processes), and

harmful host (that is the presence at a network site of harmful

stationary processes), (Lee, Alves & Harrison, 2004).

It is necessary to protect the mobile agent in terms of privacy and

integrity against malicious-host.

There is no universal solution to the malicious host problem, but some

partial solutions have been proposed. Many of the security

mechanisms are aimed for detecting, rather than preventing,

misbehaving hosts (Borselius,2002) .

Our security requirements can be attained via public key cryptography

authentication techniques and cryptography algorithms, to make a

secure mobile trade agent that can roam merchants' sites safely

without the fear of host sever attacks.

9

1.3 Thesis Objectives

• Our goal is to create a new technique in protecting mobile trade

agent based on public key authentication techniques and

cryptography algorithms such as RSA and Elgamal, which are

known to be powerful algorithms.

• We also want to ensure that the mobile trade agent is secure

enough to roam merchants’ sites safely without the fear of host

severs attacks.

• To make trade in mobile trade agent systems more efficient,

secure, and attractive, allow the transactions to be accomplished

in easy and safe way.

• This thesis provides a broader range of protection for mobile

agents data, this work can serve as a contribution towards the

security of e-commerce world.

10

1.4 Thesis Motivations

• A mobile trade agent has many advantages such as overcoming

network latency and reducing the load on the network.

• In spite of mobile trade agent system benefits, we found it's not

frequently used because of the security problem related to

malicious hosts' attacks, so we thought that the mobile trade

agent system will attract a large number of users if the system

becomes more protected.

• To add new ideas and approaches in protecting mobile trade

agent, using public key authentication techniques and

cryptography tools to prevent the agent system's and the user's

information from being reveled by the attackers.

1.5 Thesis Contribution

• This thesis proposed a mechanism that protects the information
of mobile trade agent system from the malicious attacks and a
two-phase encryption method, using public key encryption tool
to ensure the information integrity. We believe that by
encrypting the message into two phases; namely RSA
encryption algorithm first and Elgamal second, the security
level in mobile agent system will be increased.

• Truth to be said there is no guarantee that the system is secure
enough from being attacked and keys never would been broken,
but we see that our system is secure, since we used the most two
powerful algorithms (RSA and Elgamal) it will cost the attacker
long time to break our system protection mechanism and try to
intercept and decipher the message sent by the agent.

11

• By increasing the security level in mobile agent system, a wide
range of people would be attracted to use the mobile trade agent
system. This would be a contribution to the security of e-
commerce world.

1.7 Thesis Significance

The significance of this thesis summarized by the following:

• Previous studies focused on protecting the host against hostile
agent while our work tries to protect the mobile agent data against
malicious host.

• Our work is analyzing the harmful host attacks on mobile agent
and proposes solution to this problem based on public key
authentication techniques and cryptography algorithms.

• User privacy and data integrity will be accomplished.

Thesis Organization 61.

This thesis consists of five chapters. The first chapter speaks of the
thesis introduction and the objectives, also the reasons and motivation
behind this work. The second chapter describes the related work and
the previous studies of mobile agent system security.

The third chapter shows mobile-agent technology, discusses the
architecture of mobile agent and how to prevent host attacks on
mobile agent using RSA and Elgamal encryption algorithm .

 The fourth chapter discusses the implementation of our proposed
protection model mobile agents and the proposed scheme and how it
works. Finally the last chapter summarizes the conclusion and the
future work.

12

Chapter

Two

13

Chapter Two

Literature Review and Related Work of Mobile
Trade Agent Systems

2.1 Introduction

This chapter describes previous studies of mobile agent system
security and provides an overview of related work and identifies the
fundamental weaknesses in their approaches. The related works had
been discussed first and related studies second.

2.2 Literature Survey Related to Mobile Agents Secure Migration

Warnier, Oey, Timmer & Brazier (2007), introduced a mechanism to

ensure that breach of integrity in migration paths of mobile agents in

large scale distributed agent systems will be detected. This approach

distributes trust over three hosts during each migration step. The

combination of sequence numbers with signatures guarantees that one

or more hosts can detect if part of the migration path, including cycles,

has been removed.

Their approach assumes that a secure distributed mobile agent system

provides the following basic properties: an agent runs on one single

host at a time, is aware of its current host, and has the ability to

migrate to other hosts in the system.

In addition the environment provides a public-key infrastructure for

agents and hosts that they can be authenticated. The host, on which an

agent is initialized, is assumed to be trusted by the agent’s owner.

This host can be traced by all other hosts at any arbitrary moment in

time. Agents preferably only migrate to trusted hosts. An agent’s

migration path provides means to detect breaches of integrity.

14

The simplest form of migration in a secure agent system requires

sending and receiving hosts to mutually authenticate themselves using

a PKI (Public Key Infrastructure), where PKI is method of using

public and a private cryptographic key pair for message authentication

or encrypting. The integrity of a migrating agent is ensured by having

the sending host create a (digital) signature of an (hash of the) agent’s

code. This signature is transmitted together with an agent’s code, and

data (including state). The receiving host can then verify the integrity

of an agent’s code before re-initializing the agent process. If agents

tend to disappear on one specific host, then this host is known to be

unreliable, possibly malicious. A centralized trusted third party may

prevent agents from migrating to untrusted and/or unreliable hosts

(simply by not authorizing the migration).

The steps1 below give a more detailed explanation of a migration step,

using a TTP(Trusted Third Party), by an agent from host A to host B ,

see Figure 2.1:

1. host A suspends and signs agent x: [x]A

2. host A reports to the trusted third party (TTP) that agent x will

migrate from A to B. A sends [x]A along with the report.

3. host A sends agent x to host B

4. host B receives x and computes [x]B which it sends to the TTP.

5. The TTP verifies that A and B have both signed the same agent. If

the verification passes, the TTP notifies both A and B that the

1 A,B,C, denote hosts, small letters x,y,z, denote agents, arrows (→) represent

migration steps between hosts and [x]A denotes the signature of agent x by host

A.

15

migration has succeeded, and adds this migration step to the migration

path it keeps for agent x.

6. host B starts the suspended agent.

Figure 2.1. Agent migration using a central authority (trusted

third party).

The integrity of the migration path (item 1, above) is the basis for

detecting malicious hosts and/or preventing them from doing any

harm. Confidentiality (item 3) can be ensured by using encryption of

sensitive data. Their main focus is the detection of breaches of

integrity in migration paths of mobile agents and did not directly

address the general problem of protection. Briefly, the algorithm

works as follows: Suppose agent x migrates along the path A → B →

C. Each migration step is recorded with the agent. Each step is signed

by the host from which it’s originated. When agent x migrates from B

to C, host B asks host A to sign the migration step (B → C). The

resulting signature is stored with the agent.

When host C receives the agent and the signatures, it confirms receipt

to host A.

2.3 Protecting Mobile Agents using public key technique.

Sameh and Fakhry (2002) present a three-tier approach which is a

combination of code mess-up, encryption and limited lifetime of code

and data (timing), that protect the agent code from malicious hosts'

16

attacks. The encryption algorithm used in the implementation is the

DES algorithm. This algorithm is proved to have a reasonable key

length, and is supported by the Java Security Classes. The goal of

using encryption is to protect agent’s important information which is

stored in the list of prices that the agent collects from host to host. But,

encryption alone does not guarantee a full protection for the agent.

If an agent expires, it can either be killed or recharged. Killing the

agent will end its task completely. Sometimes an agent is delayed due

to network problems, so killing an agent when its time expires will

prevent it from performing its intended task. The problem with this

approach is that the agent has to be assigned with a new expiration

date and signed digitally by a party that the agent trusts.

Lee , Alves and Harrison (2004) proposed a security hybrid approach

for mobile agents, which protect mobile agents from malicious hosts.

The approach is mobile cryptography that encrypts mobile agents.

Their approach implements mobile cryptography by proposing a

hybrid method that merges a function composition technique (FnC)

and some types of cryptosystem called homomorphic encryption

scheme (HES), which allows direct computation on encrypted data.

They produced a practical method of implementing mobile

cryptography by extending Sander and Tschudin's idea2 and developed

a homomorphic encryption scheme. The biggest problem of Sander

and Tschudin's approach was that there have been no published

homomorphic encryption schemes to use in mobile cryptography. The

2Sander and Tschudin propose an approach based on the use of encrypted
functions in which user encrypts a function s, then executed by the host, without
the host having access to s .Although their approach is very promising, there is no
secure implementation has been proposed as yet .

17

approach encrypts both code and data including state information in a

way that enables direct computation on encrypted data without

decryption. Their approach solves mobile agents’ security problems

like integrity and privacy. It prevents many types of privacy and

integrity attacks, but, it cannot prevent blind modification attacks,

which are a type of denial of service.

Aqel, Aboud and Ahmed (2007) introduced a scheme for mobile trade

agent (MTA) that uses a combination of public key cryptosystem and

distributed object technology. This distributed object technology

makes MTA have possibility to roam the sites in the internet and

protected within the defensive environments of the Agent Depository

(AD). The Authorization Server (AS) is used for authorized

transactions and pays the merchandise purchased by the MTA. They

developed a scheme in which the MTA can supply a merchant the user

smart card number. The merchant uses this data to demand payment

from the Authorization Server (AS) which plays the bank role. The

user smart card number is encrypted using a public key encryption

scheme. The AS ensures that merchants only reclaim payment for

merchandise purchased by the MTA and confirms that merchants

receive the funds when the MTA purchases merchandise from them.

Figure 2.2 illustrates the role of both AS and AD in the program. This

MTA has more security prospects by using public key encryption

schema to cipher the messages between entities and other agents on

the internet. They introduce MTA that has the ability to act in behalf

of the user, visiting internet sites, gathering related information of

trade goods and where is best of them and their merchants. The MTA

18

has ability to make the e-commerce more open to market changes and

increase profits.

Figure 2.2: The MTA schema

2.4 Related Studies on Protecting Mobile Agents

Fischmeister (2000), conducted a study to discuss the mobile agent

might steal resources, confidential data or use the server as starting

point for a new attack. Accordingly many researchers devote their

19

time to this area. However, another main problem of mobile agent

security is nearly neglected: the attack of a malicious server against a

mobile agent. The server can steal resources and confidential data, too.

Due to the fact that the server has in general no access restrictions, this

problem is even harder to attack. The study presents a solution for this

particular aspect of mobile agent security: the Supervisor-Worker

Framework. The evaluation of the framework and the case study

application showed that the framework effectively prevents tampering

and eavesdropping and, additionally, boosts several other key aspects

of mobile agents.

Singh (2000), conducted a study titled “Security of Mobile Agent”,

suggests itself about the work emphasized in this thesis. The main area

of discussion is the security of mobile agents on malicious host. Here

a malicious host refers to a system in a network which can take

advantage of the vulnerabilities of a mobile agent that has come to the

host machine to get its work done. The study discusses about the

mobile-agent, the various security threats that can be posed by

malicious host and consequently the solutions. The study proposed a

solution by combining few solutions and distilling the best from the

solutions so that it can provide a better solution. Finally the study

concludes with implementing the solutions and the results obtained by

the experiments using trading example.

Chan (2000), conducted a study that discussed that Mobile software

agents are emerging as a major trend of distributed systems in the near

future. Different mobile agent frameworks are being actively

developed in the research community. Looking forward, electronic

commerce and information retrieval are two prospective directions for

20

application of mobile agents. Nevertheless, security and reliability are

two crucial concerns for such systems, especially when they are to be

used to deal with money transaction. In spite of some more classical

reliability and security problems, attacks to agents by malicious hosts

are a new and the most challenging part of the problem unsolved. The

study showed that security and reliability issues of mobile agents,

particularly in an electronic environment, are discussed. Models for

mobile agent security and reliability have been developed, and a

Shopping Information Agent System (SIAS) is built based as an

experimental mobile agent application. Possible security attacks by

malicious hosts to agents in the system are discussed, and specific

solutions to prevent these attacks are devised. Security of the solutions

is analyzed, and the performance overhead introduced is measured.

Reliability problems of the system have been identified, and solutions

implemented

Robles (2002) conducted a study to discuss agent technology, and

showed that agents provide a further step in this direction and make

possible new types of application, such as sea-of-data applications or

specific pervasive computing. Nerveless, the drawback of the new

capabilities featuring this technology is the arising of new branches of

security issues. It results hard to design security solutions for

applications using mobile agents, especially in sea-of-data

applications. There is not a definitive platform in which these

applications are implemented and still offering security and ease to

program. They present the start of the development of MARISM-A,

Architecture for Mobile Agents with Recursive I tinerary and Secure

M igration. This platform intends to observe commonly accepted agent

standards FIPA(Foundation of Intelligent Physical Agents) and

21

MASIF (Mobile Agent Systems Interoperability Facilities Agents),

while providing flexibility to design secure sea-of-data applications.

The study trusts to find out the requirements of these new applications

and presents a novel model of a methodology to achieve security

solutions. The study applies the model to some scenarios of

MARISM-A application. The same idea of using trust in sea-of-data

applications can also be used to solve security issues in pervasive

computing.

Koliousis (2005) conducted a study that discussed that the Mobile

agents have several advantages over the traditional Client-Server,

SNMP (Simple Network Management Protocol) -based approach in

network management systems. However, the adoption of mobile

agents in network management entails a number of security risks.

They have developed a Java-based mobile agent infrastructure that

enables the safe integration of mobile agents with the SNMP protocol.

The Ajanta mobile agent environment has been used as the core

component of our network management infrastructure, primarily

because of its security model. The security of the system has been

evaluated under agent to agent platform, and agent to agent attacks in

order to prove the trustworthiness of mobile agents. A set of

performance management scenarios have been simulated in order to

show the correct workings of the system, but also to evaluate its

performance.

22

2.5 The Public-Key Cryptography Concept

Cryptography is the most popular way to achieve the data security, in
which the plain text is encrypted into cipher text before being
transmitted. The cryptography systems can be divided into two types:
symmetric key and asymmetric key cryptography.

The symmetric key cryptography uses one key for data encryption and
decryption. Asymmetric key cryptography also called public key
cryptography that uses two keys (see Figure 2.3), one of the keys, a
public key is used for the plain text's encryption that is known to every
one, the other key is a private key, which is used for cipher text's
decryption, private key is hidden and kept secret from every one and
only the receiver has it,(wikipedia).

Figure 2.3 Public key cryptography

2.5.1 Advantages and Disadvantages of Public-Key Cryptography

- The main advantage of public-key cryptography is increasing

security since the private keys never need to be revealed to anyone. In

a secret-key system, by contrast, the secret keys must be transmitted

(either manually or through a communication channel), and there may

be a chance that an enemy can discover the secret keys during their

transmission, (Arnaud, 1997).

23

- Another advantage of public-key systems is that they can

provide a method for digital signatures. Authentication via secret-key

systems requires the sharing of some secret and sometimes requires

trust of a third party as well. As a result, a sender can repudiate a

previously authenticated message by claiming that the shared secret

was somehow compromised, by one of the parties sharing the secret.

Public-key authentication, on the other hand, prevents this type of

repudiation; each user has sole responsibility for protecting his or her

private key. This property of public-key authentication is often called

non-repudiation.

- A disadvantage of using public-key cryptography for encryption

is speed: there are popular secret-key encryption methods that are

significantly faster than any currently available public-key encryption

method. Nevertheless, public-key cryptography can be used with

secret-key cryptography to get the best of both worlds. For encryption,

the best solution is to combine public- and secret-key systems in order

to get both the security advantages of public-key systems and the

speed advantages of secret-key systems. The public-key system can be

used to encrypt a secret key which is used to encrypt the bulk of a file

or message. Such a protocol is called a digital envelope.

- Public-key cryptography may be vulnerable to impersonation,

however, even if users' private keys are not available. A successful

attack on a certification authority will allow an adversary to

impersonate whomever the adversary chooses to by using a public-key

certificate from the compromised authority to bind a key of the

adversary's choice to the name of another user,(Arnaud, 1997).

24

2.5.2 Introduction to RSA and Elgamal algorithms

Today, RSA and Elgamal are popular algorithms in public key

cryptography system.

RSA stands for the initial of the last names of its inventors: Rivest, Shamir

and Adleman, who first developed it in 1978. RSA security strength

depends on the mathematical measures: the factoring problem and key

size, choosing long key will increase the security by making it difficult to

be reveled, RSA key size is between 1024 and 2048,(wikipedia).

RSA Keys Length The predicted Time

1024 bit 2006-2010

2048 bit 2010-2030

3072 bit beyond 2030

Table 2 : RSA key size and the predicated time to be breakable in it

 Elgamal algorithm had been developed by Taher Elgamal in 1984,and

named after him. Elgamal is based on the Diffe_Hellman key exchange

concept, which allows two parties (sender & receiver) to establish a shared

secret key over an insecure communication channel.

Elgamal is probabilistic, in which a single plain text can be encrypted

to many possible cipher texts, producing a cipher text that has the

double size of the original plain text. Elgamal security strength

depends on the difficulty of computing district logarithms.

25

Chapter

Three

26

Chapter three

Mobile Trade Agent Architecture and the Proposed
Model

3.1 Introduction

This chapter shows and discusses the architecture of mobile gent and

how to prevent attacks on mobile agent's information by using

encryption tools.

3.2 Mobile Trade Agent Architecture

Mobile Trade Agent is one of the important features of e-commerce

world. When a person wants to buy some product or service online, he

or she may has no idea about the best product and where to buy it and

there are many Internet sites to determine that. That is why the user

sends his mobile agent to roam different sites for that purpose.

Mobile Trade Agent architecture can be thought as client-server

model, the mobile agent can act as server send out by the user as a

client to surf the Internet sites in order to get the requested information

a bout a certain product.

The mobile trade agent can be viewed as a program that has the

capability to make the right decisions, where to move on the Internet,

collect and examine information about the visited merchants' sites.

Mobile Trade Agent system (as shown in Figure 3.1) works as
follows(Aqel, Aboud & Ahmed ,2007) :

27

A. User sends order to the Mobile Trade Agent to roam internet sites
and find information about product with best prices.

B. Mobile Trade Agent makes queries to Agent Depository about the

possible sites to roam (ask about the server address that provides

information about the product that the user asking for).

C. Agent Depository sends a list about the possible sites to roam to
Mobile Trade Agent

D. Mobile Trade Agent roams server's sites and collects information
and offers about the product.

E. Mobile agent gathers information and offers about the product
from the visited sites.

F. After the Mobile Trade Agent evaluates the offers and product
information, it sends evaluation report to the user.

The user receives the evaluated offer report and chooses the
reasonable one. The user orders the mobile trade agent to purchase the
product or goods.

28

Figure 3.1: Mobile Trade Agent Schema

Server 1

Mobile Trade Agent

Agent Depository

Server n

A F

C B

E

D

E

D

29

3.3 The Proposed Model

When the mobile trade agent visits the merchant site and purchases the

requested product on behalf of the user, the mobile agent supplies the

merchant with the user credit card number.

Such important information like: credit card number, payment amount

and products information without protection mechanism, could be

vulnerable and in danger of being attacked by malicious host for

example, who can manipulate and modify the agent's information

about product and sites, tricks the gent by making him decide to buy

such product (car, ticket ...etc) from the attacker's website.

 We want for such sensitive information that is the mobile agent

tries to hide it from the intruders, to be protected and make it

venerable. In other words, we want to achieve data integrity and

privacy. By integrity we mean the agent's information must not be

manipulated and modified, on other hand, achieving the privacy

means that the transmitted information must be kept from

unauthorized person, which could be handled by using cryptography

tools.

We add a protection mechanism in the mobile trade agent system

(Figure 3.2), which is Encryption/Decryption, so when MTA roams

sites and gets results and tries to send it to the client, this information

encrypted using encryption algorithms before being send, the client

decrypt the received information using decryption algorithms.

30

We will speak briefly about our proposed system which is much the

same old mobile agent system in addition to the protection mechanism

(Encryption/Decryption) that can be used for both sides: the sender

(the mobile trade agent) and the receiver (the client). The system

works as follows:

A. The client asks the Mobile Trade Agent to visit internet sites and
find information about product with best prices.

B. Mobile Trade Agent roams server's sites and collects information
and offers about the product.

Figure 3.2 The Proposed Mobile Agent System Model

31

C. Mobile agent gathers information and offers about the product
from the visited sites.

D. After the Mobile Agent evaluate the offers and product
information, encrypt this information using the system application
(Encryption/Decryption).

E. The agent gets the encrypted information from the system
application.

F. The agent sends the encrypted results to the client.

G. The client decrypts the received message using the system
application (Encryption/Decryption).

H. The client gets the original message and read it and decides
whether to buy the product or not, then the client sends his or her
decision to the agent.

We believe that protection system will prevent attackers from

knowing the agent's and client's information since it uses two

algorithms, namely RSA and Elgamal in the encryption process.

Our proposed protection model has three major processes:

1) Key Generation : Public and Private Keys

2) Encryption: Two Phase Encryption, using RSA and Elgamal

algorithms, in order encrypt the message to be sent to the client.

3) Decryption: Two Phase decryption, using Elgamal and RSA

algorithms, in order to decrypt the message been received.

32

3.4 The Algorithms Used in The System

In our system mobile agent's information is encrypted using

asymmetric encryption algorithms; sometimes called Public Key

encryption. It uses two keys, public key to encrypt the message, and

private key to decrypt the message.

These algorithms used in the system are: RSA and Elgamal, these

algorithms had been proven secure on the basis of the mathematical

problem hardness that is difficult and time consuming to perform,

such as : integer factoring and discrete logarithms. RSA is considered

secure because of the hardness to find the factors of large prime

numbers. For example the value of n = 923, it would take time to find

the factors value for p = 71 and q = 13. In fact, the larger value of n

means the longer time to find the factors p and q.

Elgamal is considered secure because of the discrete logarithm, like

the factoring problem, it's believed to be hard and difficult to compute.

3.4.1. Generate keys

RSA and Elgamal both have two key sets: public and private keys

(Figure 3.3), so we need to generate two public keys of RSA &

Elgamal and two private keys of RSA & Elgamal ,(wikipedia).

33

Figure 3.3: RSA & Elgamal keys generation scheme

3.4.1.1. RSA Public and Private Keys Generation

RSA Public Key consists of two values: e and n, where n is a modulo,

that is generated by multiplying large random prime numbers p & q,

on the other hand, e is the public exponent, e and Φ(n) are relatively

prime, that is:

gcd (e , Φ(n)) = 1 and 1 < e < Φ (n).

 n = p * q (1)

34

 Φ (n) = (p-1) * (q-1) (2)

 ed ≡ 1 mod Φ(n) (3)

 d = e-1 mod Φ (n) (4)

RSA Private Key consists of two values: d and n, where d is the

private exponent, where d is kept secret and 1 < d < Φ (n). For this

example, the keys were generated as follows,(wikipedia):

1. Select two random prime numbers, p = 13 and q = 7.

2. Calculate n = p * q = 13 × 7 = 91.

3. Calculate Φ(n) = (p-1) * (q-1) = 12 * 6 = 72.

4. Select e such that e is relatively prime to Φ(n) and less than Φ(n); in
this case, e = 5.

5. Calculate ed ≡ 1 mod Φ(n),such that

d = e-1 mod Φ (n) = 5-1 mod 72

d = 29.

RSA Public Key (5, 91)

RSA Private Key (29,91)

35

3.4.1.2. Elgamal Public and Private Keys Generation

Elgamal Public Key consists of three values: pA, g and b, where pA is

a large prime random number, g is a primitive root of pA and b is

calculated by g ^ x mod pA.

 b = g ^ x mod pA (5)

Elgamal Private Key consists of two values: x and pA, where x is the

secret random number and 1 < x < pA -1. For this example, the keys

were generated as follows,(wikipedia):

1. Select random prime number, pA = 23.

2. Choose a primitive root of pA, g = 11 .

3. Choose a secret random number x=6, 1<x<30.

4. Calculate b, such that b = g ^ x mod pA .

 b = 11 ^ 6 mod 23 = 9

Elgamal Public Key (23,11,9)

Elgamal Private Key (23, 6)

36

3.4.2. Encryption Phase

In our approach the information or message to be sent to the client

must be encrypted in two phases: use RSA first, and then use Elgamal

second (Figure 3.4).

First we must represent the plaintext message as a positive integer and

convert it using ASCII Code.

 Before sending the message to the client, we must do the following:

1. Use RSA public key (e , n) to encrypt the original message.

m1 = m0 ^ e mod n ……. (6)

2. Then use Elgamal public key (pA, g, b) to encrypt the result

message after RSA encryption, m1.

The final form of the message after the encryption is m2, which has

two values y1and y2. We can calculate those by the steps below:

a) Select a random number r such that 1<r< pA-1

 y1 = g^r mod pA (7)

b) Find the value of y2

y2 = (m1*b ^ r) mod pA (8)

m2 = (y1, y2)

3. Send the m2 to the client

37

Figure 3.4 Two Phase Encryption

38

3.4.3. Decryption phase

The decryption mechanism is the reverse of the encryption

mechanism. In order to decrypt the recevied message, the user or the

client has two private keys (RSA & Elgamal) and he or she uses these

for decrption process to have the original message as a result.

The client already has the encrypted message and attempt to decrypt it

to retreive the original message, This meassge for example may

contain the agent information about best sites with the desired product.

The decryption phase works as follows (Figure 3.5):

1. Use Elgamal private key (pA, x) to decrypt the message

m2(y1,y2).

m1 = y2 * (y1) ^ -x mod pA (9)

2. Then use RSA private key (d , n) to decrypt the result message

after Elgamal decryption, m1.

m0 = (m1 ^ d) mod n (10)

The final form of the message after the decryption is m0, which

previously had been converted into ASCII code character, after

reversing this operation; the user has the original message. He or she

can read it and decided what to do next, buy a certain good or refuse to

buy it.

All of this shows the clear benefit of our approach, since we use two

private keys, if the intruder intercept the message and attempt to

39

discover one of the private keys, how can he or she find the other

private key. That will take along time and a lot of effort.

 Figure 3.5 Two Phase Decryption

40

3.5 Worked Example

Here is an example that uses our encryption and decryption system.
The parameters used here are small. To encrypt the massage 'EADI'
using the proposed security system, we must go through the following
steps:

• First generate Keys

Step1: Generate RSA algorithm Keys:

1. Choose two different prime numbers, such as

p = 11 and q = 7.

2. Compute n

n = 11 * 7 = 77.

3. Compute Φ (n)

Φ (n) = (11 − 1) (7 − 1) = 10 * 6 = 60

4. Choose e that: 1 < e < n and gcd (e, φ (n)) = 1.

e = 43.

5. Compute d, that d = e–1 mod Φ (n) and (d*e) mod Φ (n) = 1

d = 7 since e (43) * d (7) mod φ (n) (60) = 1.

The RSA public key is (e = 43, n = 77).

The RSA private key is (d = 7 ,n = 77).

41

Step2: Generate Elgamal algorithm Keys:

1. Choose prime number

pA = 71

2. Select a primitive root of pA, g.

g=7.

3. Select a value x such that 0 < x < pA -1.

 Let x= 11, where 0 < 11 < 70.

4. Calculate b = g ^ 11 mod pA

b = 7 ^ 11 mod 71 = 31.

The Elgamal Public key is (pA= 71, g = 7, b =31)

The Elgamal Private Key is (pA= 71, x = 11).

• Second The Encryption phases

The system encrypts the message using the public keys of RSA and
Elgamal.

Plaintext = EADI in ASCII code ('E' = 69,'A' = 65,'D' = 68, 'I'= 73)

The encryption has been done letter by letter:

-Step 1: encrypt the message using RSA public keys

RSA encryption (Message) = (Message ^ e) mod n

RSA encryption (E) = (69 ^ 43) mod 77=27

RSA encryption (A) = (65^ 43) mod 77= 65

RSA encryption (D) = (68^ 43) mod 77= 19

42

RSA encryption (I) = (73^ 43) mod 77= 24

-Step 2: encrypt the RSA encryption results using Elgamal public
keys

Elgamal encryption:

 (Message) y2 = (Message*b ^ r) mod pA

Encrypted message = (y1, y2)

-Select a random number r such that 1< r < pA -1.

Let r=3, where 1 < 3 < 70.

y1 = g^r mod pA

y1 = 7^3 mod 71 = 59

Elgamal encryption (27)=(27* 31^ 3) mod 71 = 69

Encrypted message (59, 69)

- r = 4.

y1 = 7^4 mod 71 = 58

Elgamal encryption (65) = (65* 31^ 4) mod 71 = 69

Encrypted message (58, 69)

- r = 5.

y1 = 7^5 mod 71 = 51

Elgamal encryption (19) = (19* 31^ 5) mod 71 = 7

Encrypted message (51, 7)

- r = 6.

y1 = 7^6 mod 71 = 2

43

Elgamal encryption (24) = (24* 31^ 6) mod 71 = 20

Encrypted message (58, 20)

The final form of the message after encryption is {(59, 69), (58, 69),
(51, 7), (2, 20)} and the system will send it to the user.

• Third The Decryption phases

The user receives the encrypted message and decrypts it using his or
her private keys.

Step 1: First decrypts the message using the Private key of Elgamal
algorithm

Elgamal decryption (Message) = y2 * (y1) ^-x mod pA

(59, 69) � Elgamal decryption (Message)

= 59 *(69) ^ -11 mod 71

 = 69*59 ^ (71-1-11) mod 71 = 27

(58, 69) � 69*58 ^ (59) mod 71 = 65

(51, 7) � 7*51 ^ (59) mod 71 = 19

 (2, 20) � 20*2 ^ (59) mod 71= 24

Step2: decrypt the results using RSA Private Key

RSA decryption (Message) = (Message ^ d) mod n

Decryption (27) = (27 ^ 7) mod 77 = 69

Decryption (65) = (65^ 7) mod 77 = 65

44

Decryption (19) = (19^ 7) mod 77 = 68

Decryption (24) = (24^ 7) mod 77= 73

The final form of the message after decryption is EADI.

3.6 System Application

We have chosen C# programming language for our system

implementation of the protection mechanism of our proposed model.

C# is modern, high level, object oriented programming language. We

saw that most current mobile trade agent systems had been

implemented Using Java, but after we studied the features that C# is

offering, we chose C# as our programming language.

3.7 System Requirements

We have implemented the system using a modern computer that is

capable of running Microsoft Visual Studios.Net 2008 and .NET

Framework 3.5, that has some features which enable us write a simple

and expressive code.

45

Chapter

Four

46

Chapter Four

Implementation and Evaluation of The Proposed
Model

4.2 Implementation of the Proposed Model

In this chapter the researcher discuss the implementation of our

proposed protection system, how it works and evaluates it. And also

we speak our system methods.

The system interface is one Form/Screen which represents the

different processes and functions in the system. The system form is

used for sides; sender and receiver (see the figure 4.1).

We implemented our proposed system using C#, modern, scalable and

simple programming language.

C# is a high level programming language based on C++, gathers

programming eases of Visual Basic and the computing power of C++

and has the similarities of java features.

C# is simple but is a powerful language that enables the programmer

to build a secure application.

Figure 4.1 System Interface

47

C# is chosen as our programming language for our system

implementation because of its portability features.

4.2.1 Authentication

 Authentication is the most important issue of building a secure

application; we need to be sure of the identity of the people with

whom we will communicate and deal.

When you use the system interface, you identify yourself using

authentication key (figure 4.2), a secret key that only you and the

system know. By authentication key technique we will prevent

unauthorized person from login to the application and use it.

 After the user enters the authentication key, the system will check if

the user is an authorized person to use the system .When the user has

been authenticated, he or she will be allowed to use the system(figure

4.3).

Figure 4.2: shows the user must enter the authentication key

48

Figure 4.3 The System Flow Chart

49

4.2.2 Message Encryption

When the system user wants to encrypt the message before sending it

to the receiver, he or she must do the following steps:

- The message should be printed in "Value to Encrypt" box.

- Click the button" Encrypt using Reg Key".

- The encrypted message will be appeared in "Encrypted Value" box.

See Figure 4.4 which shows that the message "EADI" is encrypted to:

"q5MXSiViaz1A01yvHfmlnf9FvQo18cRHOMNr01NEWRYsGxBx7

ZJxZeuJgU4IQLX2xoaC3ZqOcyZlAKbVRyvJjchEO6iKSLImZdJ0J

Ae++KU3omxC/rja/WfNjyMJFEKJ70+HsMIdV+I/Gb2n3Y1NRbMK

HRxoWanH4zdFAr4NfpY=".

After the message being encrypted, it will be sent to receiver.

Figure 4.4 Message Encryption

50

4.2.3 Message Decryption

When the receiver has the encrypted message, he or she will decrypt

the message by doing the following steps:

- Take the encrypted message and print it in "Encrypted Value" box.

- Click the button" Decrypt using Reg Key".

- The original message will be appeared in "Decrypted Value" box.

See Figure 4.5 which shows that the encrypted message

(q5MXSiViaz1A01yvHfmlnf9FvQo18cRHOMNr01NEWRYsGxBx7

ZJxZeuJgU4IQLX2xoaC3ZqOcyZlAKbVRyvJjchEO6iKSLImZdJ0J

Ae++KU3omxC/rja/WfNjyMJFEKJ70+HsMIdV+I/Gb2n3Y1NRbMK

HRxoWanH4zdFAr4NfpY=) had been decrypted to the original

message "EADI".

Figure 4.5 Message Decryption

4.2.4 The Application's Methods

Our system application has many programming methods. We will

concentrate on the most important procedures such as:

- Generating the keys for RSA and Elgamal algorithms.

- Encryption processes.

- Decryption processes.

51

1. Generating the Keys

a) First Generate RSA Key

The method below creates a key pair for you.

b) Second Generate ElGamal Key

52

3. Encryption Process

Now that we have a key pair, we are ready to encrypt using RSA then

Encrypt Using Elgamal. In the example below, we use a public key to

encrypt a byte sequence.

53

4. Decryption Process

 Now from this procedure the application should decrypt the message

using ElGamal Algorithm first using ElGamal's private key, then

decrypting the results using RSA using RSA's private key.

54

4.3 Evaluation of the Proposed Model

The system application behavior had been tested among sets of

scenarios. There are some reasons that led us to believe in our system

efficiency, how it provides and increases security level in mobile trade

agent system.

• First, our system uses the authentication technique, in which

unauthorized person will be prevented from using it.

• Second, the system uses the most two powerful cryptography

algorithms: RSA and Elgamal. Both algorithms are based on

complexity of its mathematical computations. As we know that the

factorization (factoring large numbers) problem is the security strength

basis of RSA algorithm as well as the Discrete Logarithm Problem is

the security basis of Elgamal.

• Third, the system has two public keys (RSA and Elgamal) and

two private keys, so if the attackers attempted to discover the private

keys, he or she would face difficulty in reveling two important private

keys, that he or she needs it decrypt the message which the mobile

agent had sent it to the user. The attacker may be revel one of the two

private keys but there is a difficulty in finding two private keys.

In the context of this system, we focused on the security issues related

to how to keep the information that the mobile agent tries to send it to

the user from being manipulated or stolen by the system's attackers.

Since our protection system is based on using these two algorithms:

RSA and Elgamal, we discussed some security issues related to these

55

algorithms, such as the key size that has a huge effect on message

encryption and decryption process.

The execution time is also an important issue, since we use two

algorithms together, this will affect on the execution time, the

encryption process using RSA and Elgamal together increases the

execution time and it's longer than using each one alone (see table 3),

but we focus on the agent protection and security terms, so we tried to

ignore that fact (see figure 4.6 & 4.7)

Algorithm Bit Length Time in Millisecond Time in Second

RSA 4 5657 5.657

RSA 5 68057 68.057

RSA 6 509477 509.477

Elgamal 4 8491 8.491

Elgamal 5 95966 95.966

Elgamal 6 741218 741.218

RSA & Elgamal 4 10501670 10501.670

RSA & Elgamal 5 65401436 65401.436

RSA & Elgamal 6 99953320 99953.320

Table 3: The execution time of RSA & Elgamal algorithm

56

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700

4 5 6

Prime number length

T
im

e RSA

Elgamal

 Figure 4.6 :The execution time chart of RSA & Elgamal

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 5 6

Prime number length

T
im

e

RSA & Elgamal

 Figure 4.7: The execution time chart of RSA & Elgamal (together)

57

4.3.1 The Size of key

The importance of increasing the key length has important reflection

on the security, which means increasing the difficulty for the message

and private keys to be broken and decrypted.

In Elgamal, changing the size of prime number PA (part of Elgamal

public key) will affect the size of the encrypted message (y1, y2). So

when the size (length) of PA has been increased, it means increasing

the value of y1 and y2 of the encrypted message. As a result, the

encrypted message size will be increased, and that makes it more

difficult for the attacker to obtain original message.

In RSA, increasing the length of module n (n is generated by

multiplying two random prime numbers p and q) which is part of

the public key means increasing the complexity of decomposing it into

its factors (p and q). This will result in increasing the values of the

public, private key and the encrypted message. The larger value

selection for n means larger size of encrypted message and makes it

harder for the attacker to find the private key.

We also found that increasing the prime number length will affect in

the execution time (see table 4), after using five different prime

number in length , we saw that increasing in the prime length will

increase the execution time(figure 4.7).

58

Prime number value Bit Length Time in Millisecond Time in Second

1153 4 14487522 14487.522

14951 5 37661651 37661.651

101183 6 64241831 64241.831

1365071 7 72793339 72793.339

12657901 8 95967468 95967.468

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 5 6 7 8

Prime number length

T
im

e

Table 4: The execution time of prime numbers

Figure 4.8 : The execution time chart of prime numbers

59

Chapter

Five

60

Chapter Five

Conclusion and Future Work

5.1 Conclusion

• Mobile agent systems can be more successful if the

security problems had been solved. As a result of

studying previous studies and related works, we saw that

no one had came up with the perfect approach that can

protect mobile agent, but on the other had no one had said

that this is unsolved issue. As more attempts are being

tried in this domain, we believed that the problem can be

solved and simplified.

• This thesis had attempted to enhance the security and

integrity aspects of mobile trade system. The agent's

security problems had been discussed first, the mobile

agent architecture had been studied and a protection

mechanism had been designed and implemented.

• In the context of this thesis, we focused our attention on

securing the agent's information, RSA had been chosen

because of the factoring problem, and on the other hand

Elgamal had been chosen because of the discrete

logarithm problem.

• We think that our security system is a very promising

approach, using a two-phase encryption/decryption

mechanism.

61

• We tried to provide a better secure mobile agent system

by using two cryptography algorithms RSA & Elgamal,

which increase the security of mobile agent's transferred

information, and make it harder to the attackers who try

to steal and modify it. We showed that this is no longer

easy to the attackers, because we join together the two

properties of the two techniques, RSA and Elgamal, in

order to make the attacking mission more difficult.

5.2 Future Work

Our future works flow into two sections:

• In this thesis we used a two-phase encryption/decryption model,

using RSA & Elgamal (see figure 3.4 & figure 3.5), and we

suggest using the same used algorithms in our system but in the

reverse order in both processes: encryption and decryption.

• Our future direction moves towards using a multiphase

encryption/decryption model, using other algorithms, such as

DES. We suggest studying the possibility of the multiphase

encryption/decryption approach to discover the advantages of

such approach and to see if that is possible to be applied or

executed.

62

References

 Ametller J., Robles S., Ortega J. A. , (2004). Self-protected mobile
agents, Third International Joint Conference on Autonomous
Agents and Multiagent Systems , Volume 1 (AAMAS'04).

Aqel M.M., Aboud S.J. and AL-Fayoumi A. M., (2007). Secure
mobile trade agent, Journal of Computer Science, 3(5): 329-334.

 Borselius N., (2002). Mobile agent security , Electronics &
Communication Engineering Journal , Volume 14, no 5, pp 211-
218.

Chan H., (2000).Mobile agent security and reliability issues in
electronic commerce,(A master dissertation), The Chinese
University of Hong Kong.

Fischmeister S.,(2000).Building secure mobile agents, ,(A master
dissertation), Technical University of Vienna, Vienna.

 Flocchini P. and Santoro N. ,(2006). Distributed security algorithms
by mobile agents , In Proc. 8th International Conference in
Distributed Computing and Networking, (ICDCN 2006). LNCS
4308, pp. 1-14.

Freeman A. & Jones A., (2003). Programming .NET security, (1st
ed.) USA: O'Reilly.

 Koliousis A. K., (2005).A trustworthy mobile agent infrastructure
for network management, (A master dissertation), University of
Glasgow, Glasgow.

Lee H., Alves J.and Harrison S. , (2004).The use of encrypted
functions for mobile agent security , In :Proceedings of the 37th
Hawaii International Conference on System Sciences, pp 10 .

Mohamd A. S. and Fakhry D. ,(2002) .Security in mobile agent
systems, In Proceedings of SAINT, IEEE, PP. 4-5.

 Noordende G.J., Overeinder B.J. , Timmer R. J., Brazier F. M., and
Tanbaum A.S. ,(2007). A common base for building secure mobile
agent middleware systems , In: Proceedings of the International

63

Multi conference on Computer Science and Information
Technology ,Volume 2, pp. 13-25.

Robles s., (2002).Mobile agent systems and a combined view toward
secure sea of data application, (A doctoral dissertation), The
Autonomous University of Barcelona,Spain.

 Sander T. and Tschudin C. F. ,(1998). Protecting mobile agents
against malicious hosts, International Computer Science Institute,
In Proceedings of Mobile Agents and Security, pp.44-60 .

Singel´ee D., Preneel B.,(2004).Secure e-commerce using mobile
agents on untrusted hosts, Computer Security and Industrial
Cryptography (COSIC). article199 ,COSIC internal report 33 pages.

Singh Prabhat S., (2000). Security of mobile agent,(A master
dissertation), Allahabad, Indian Institute of information Technology,
Allahabad.

 Sonntag M., Hörmanseder R. , (2000).Mobile agent security based
on payment , ACM Operating Systems Review, v.34 n.4, p.48-55.

Warnier M., Oey M.A. , Timmer R.J. and Brazier F.M.,
(2007).Secure migration of mobile agents based on distributed trust,
In: Proceedings of the Tenth International Workshop on Trust
in Agent Societies.

Arnaud D.,(1997)." What are the advantages and disadvantages of
public-key cryptography over secret-key cryptography?" ,
http://ec.eurecom.fr/~arnaud/zds/appendix/node8.html.

http://en.wikipedia.org/wiki/Agent ,the page was last modified on
30 July 2011 at 19:24.

http://en.wikipedia.org/wiki/Cryptography , the page was last
modified on 28 July 2011 at 20:18.

http://en.wikipedia.org/wiki/RSA , the page was last modified on
25 July 2011 at 15:08.

http://en.wikipedia.org/wiki/ElGamal_encryption , the page was
last modified on 22 May 2011 at 21:03.

64

Appendix
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using ExtensionMethods;

namespace ExtensionSample
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 /// <summary>
 /// Responds to user clicking the radio buttons to
enable/disable needed buttons
 /// </summary>
 private void RadioButtonHandler(object sender, EventArgs e)
 {
 btnEncryptUsingRegKey.Enabled = !rdoUseXml.Checked;
 btnDecryptUsingRegKey.Enabled = !rdoUseXml.Checked;

 btnEncryptUsingXml.Enabled = !rdoUseRegistry.Checked;
 btnDecryptUsingXml.Enabled = !rdoUseRegistry.Checked;
 }

 /// <summary>
 /// Responds to user clicking one of the encrypt buttons
 /// </summary>
 private void EncryptButtonHandler(object sender, EventArgs e)
 {

 // General validation
 if (string.IsNullOrEmpty(txtValueToEncrypt.Text))
 {
 MessageBox.Show("You must enter a value to encrypt");
 return;
 }

 // General validation
 if (string.IsNullOrEmpty(txtKeyInfo.Text))
 {
 MessageBox.Show("You must enter a value for
Authentication Key");
 return;
 }

 if (rdoUseXml.Checked)
 // User wants to use a xml file value for the RSA key
 txtEncryptedValue.Text =
txtValueToEncrypt.Text.EncryptStringUsingXMLFile(txtKeyInfo.Text);
 else
 // User wants to use a registry value for the RSA key

65

 txtEncryptedValue.Text =
txtValueToEncrypt.Text.EncryptStringUsingRegistryKey(txtKeyInfo.Te
xt);

 }

 private void DecryptButtonHandler(object sender, EventArgs e)
 {
 // General validation
 if (string.IsNullOrEmpty(txtEncryptedValue.Text))
 {
 MessageBox.Show("You must have encrypted a value before
you can decrypt");
 return;
 }

 // General validation
 if (string.IsNullOrEmpty(txtKeyInfo.Text))
 {
 MessageBox.Show("You must enter a value for Authentication
Key");
 return;
 }

 try
 {
 // Make sure user has not messed with the encrypted value
string
 byte[] testConversion =
Convert.FromBase64String(txtEncryptedValue.Text);
 }
 catch
 {
 MessageBox.Show("The encrypted value does not appear to be
in a valid format");
 return;
 }

 if (rdoUseRegistry.Checked)
 txtDecryptedValue.Text =
txtEncryptedValue.Text.DecryptStringUsingRegistryKey(txtKeyInfo.Te
xt);
 else
 txtDecryptedValue.Text =
txtEncryptedValue.Text.DecryptStringUsingXMLFile(txtKeyInfo.Text);
 }

 private void Form1_Load(object sender, EventArgs e)
 {

 }

 }
}

using System;
using System.IO;
using System.Security.Cryptography;

66

namespace ExtensionMethods
{

 public static class StringExtensionMethods
 {

 /// <summary>
 /// </summary>
 /// <param name="encryptValue"><see cref="System.String"/>
value to encrypt</param>
 /// <param name="publicKey"><see cref="System.String"/>
registry key name that contains the public key</param>
 /// <returns></returns>
 public static string EncryptStringUsingRegistryKey(this string
encryptValue, string publicKey)
 {
 string encryptedValue = string.Empty;

 if (string.IsNullOrEmpty(publicKey))
 throw new ArgumentNullException("You must provide the name
of the registry key for the public key");

 CspParameters csp = new CspParameters(1);

 csp.KeyContainerName = publicKey;

 // Supply the provider name
 csp.ProviderName = "Microsoft Strong Cryptographic
Provider";

 try
 {
 //Create new RSA object passing our key info
 RSACryptoServiceProvider rsa = new
RSACryptoServiceProvider(csp);

 // Before encrypting the value we must convert it over to
byte array
 byte[] bytesToEncrypt =
System.Text.Encoding.UTF8.GetBytes(encryptValue);

 byte[] bytesEncrypted = rsa.Encrypt(bytesToEncrypt,
false);

 // Extract our encrypted byte array into a string value to
return to our user
 encryptedValue = Convert.ToBase64String(bytesEncrypted);
 }
 catch (CryptographicException cex)
 {
 Console.WriteLine(cex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

 return encryptedValue;

 }

67

 /// <summary>
 /// Encrypts the specified string value using RSA encryption
 /// </summary>
 /// <param name="encryptValue"><see cref="System.String"/>
</param>
 /// <param name="publicKeyPath"><see cref="System.String"/>
key</param>
 /// <returns></returns>
 public static string EncryptStringUsingXMLFile(this string
encryptValue, string publicKeyPath)
 {
 string encryptedValue = string.Empty;

 string pubKey;
 if (string.IsNullOrEmpty(publicKeyPath))
 throw new ArgumentNullException("You must provide the path
to a xml file for the public key");

 // Read public key from xml file
 using (StreamReader reader = new
StreamReader(publicKeyPath))
 {
 pubKey = reader.ReadToEnd();
 }
 CspParameters csp = new CspParameters(1);

 try
 {
 //Create new RSA object passing our key info
 RSACryptoServiceProvider rsa = new
RSACryptoServiceProvider(csp);

 // Load our public key data
 rsa.FromXmlString(pubKey);

 // Before encrypting the value we must convert it over to
byte array
 byte[] bytesToEncrypt =
System.Text.Encoding.UTF8.GetBytes(encryptValue);

 byte[] bytesEncrypted = rsa.Encrypt(bytesToEncrypt,
false);
 encryptedValue = Convert.ToBase64String(bytesEncrypted);

 }
 catch (CryptographicException cex)
 {
 Console.WriteLine(cex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

 return encryptedValue;

 }

 /// <summary>
 /// </summary>

68

 /// <param name="decryptValue"><see cref="System.String"/>
value to decrypt</param>
 /// <param name="publicKey"><see cref="System.String"/>
key</param>
 /// <returns></returns>
 public static string DecryptStringUsingRegistryKey(this string
decryptValue, string privateKey)
 {
 // This is the variable that will be returned to the user
 string decryptedValue = string.Empty;

 // Make sure user supplied a value for the registry key
 if (string.IsNullOrEmpty(privateKey))
 throw new ArgumentNullException("You must provide the name
of the registry key for the public key");

 CspParameters csp = new CspParameters(1);

 // Registry key name containing the RSA private/public key
 csp.KeyContainerName = privateKey;

 // Supply the provider name
 csp.ProviderName = "Microsoft Strong Cryptographic
Provider";

 try
 {
 //Create new RSA object passing our key info
 RSACryptoServiceProvider rsa = new
RSACryptoServiceProvider(csp);

 byte[] valueToDecrypt =
Convert.FromBase64String(decryptValue);

 byte[] plainTextValue = rsa.Decrypt(valueToDecrypt,
false);

 decryptedValue =
System.Text.Encoding.UTF8.GetString(plainTextValue);

 }
 catch (CryptographicException cex)
 {
 Console.WriteLine(cex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

 return decryptedValue;
 }

 /// <returns></returns>
 public static string DecryptStringUsingXMLFile(this string
decryptValue, string privateKeyPath)
 {
 // This is the variable that will be returned to the user
 string decryptedValue = string.Empty;

69

 // Variable to hold contents of private key xml
 string privateKey;

 // Make sure user supplied a value for the registry key
 if (string.IsNullOrEmpty(privateKeyPath))
 throw new ArgumentNullException("You must provide the name
of the registry key for the public key");

 // Read public key from xml file
 using (StreamReader reader = new
StreamReader(privateKeyPath))
 {
 privateKey = reader.ReadToEnd();
 }

 CspParameters csp = new CspParameters(1);

 // Supply the provider name
 csp.ProviderName = "Microsoft Strong Cryptographic
Provider";

 try
 {
 //Create new RSA object passing our key info
 RSACryptoServiceProvider rsa = new
RSACryptoServiceProvider(csp);
 rsa.FromXmlString(privateKey);

 byte[] valueToDecrypt =
Convert.FromBase64String(decryptValue);
 byte[] plainTextValue = rsa.Decrypt(valueToDecrypt,
false);

 decryptedValue =
System.Text.Encoding.UTF8.GetString(plainTextValue);

 }
 catch (CryptographicException cex)
 {
 Console.WriteLine(cex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

 return decryptedValue;
 }

 }

70

}

