

An Enhanced Boyer- Moore Algorithm

��ر - ����
 ��ارز��� ����

By

Mu'ath Mousa Al-Mahasneh

Supervisor

Dr. Maamoun K. Ahmad

Submitted in Partial Fulfillment of the Requirements for the Master

Degree in Computer Science

Department of Computer Science

Faculty of Information Technology

Middle East University

June, 2014

I

II

 III

IV

Acknowledgements

)��������� 	
���
�� ���� ���������� �������� ���������
� !�� ���������� ������ ����"��� ���
 !�� #
����
�رة إ��اه��))7(

 First and foremost, all the praises and thanks be to Allah, Almighty, Who has

taught man that he knew not and gave me the strength to complete this work.

 I would like to express my sincere thank to Dr. Maamoun Ahmad for his

continuous support, efforts, and dedication.

 I also would like to thank the Information Technology Faculty members at the

Middle East University .

V

Dedication

I would like to express my thanks to my lovely parents who

supported in my masters and in all academic stages of my life.

They are the light in my path.

&

My beloved Wife

&

My sons

&

My brothers and family and patience for their love and support.

VI

Table of contents

AUTHORIZATION STATEMENT ERROR!

BOOKMARK NOT DEFINED.

EXAMINATION COMMITTEE DECISION ERROR!

BOOKMARK NOT DEFINED.

ACKNOWLEDGEMENTS IV

DEDICATION V

TABLE OF CONTENTS VI

LIST OF TABLES VIII

LIST OF FIGURES IX

ABSTRACT XIV

CHAPTER ONE

CHAPTER ONE INTRODUCTION 1

1.1PREFAC --------------------------- 1

1.2PATTERN MATCHING --- 2

1.3ALGORITHMS TECHNIQUES ----------------- 5

1.4NEED OF PATTERN MATCHING -------- 5

1.5BASIC DEFINITIONS ------------------- 6

1.6PROBLEM DEFINITION ------------------ 7

1.7MOTIVATION ----------------------- 10

1.8OBJECTIVES OF THE THESIS ----------------- 11

1.9QUESTIONS: ------------------------ 12

1.10ORGANIZATION OF THE THESIS ----------------- 13

CHAPTER TWO

STRING SEARCHING ALGORITHMS 15

2.1. BACKGROUND ---------------------- 15

2.2. THE COMPLEXITY THEORY OF THE ALGORITHM.-- 16

2.3. ANALYSIS OF ALGORITHMS (ASYMPTOTIC NOTATIONS) -- 16

2.4. BRUTE FORCE ALGORITHM (BF) -- 19

2.4.1. The main features. --- 19

2.4.2. Description --- 20

2.4.3. Pseudo code of the BF algorithm --- 21

2.4.4. An Example of (BF) Algorithm -- 21

2.5. BOYER MOORE ALGORITHM. -- 24

2.5.1. Main features. --- 25

2.5.2. Description. -- 25

2.5.3. An example of BM algorithm --- 30

2.6. QUICK SEARCH ALGORITHM QS. --- 31

2.6.1. Main features. --- 32

2.6.2. Description --- 32

VII

2.6.3. An Example on QS Algorithm --- 33

2.7. RABIN KARP STRING SEARCH ALGORITHM --- 34

2.8. KNUTH–MORRIS–PRATT ALGORITHM --- 34

2.9. BIDIRECTIONAL EXACT OF PATTERN MATCHING --- 35

CHAPTER THREE

LITERATURE SURVEY 37

3.1. THEORETICAL BACKGROUND --- 37

3.2. STAGES OF DEVELOPMENT THE STRING MATCHING ALGORITHM -- 37

3.3. RELATED WORKS --- 39

3.4.. EXACT PATTERN MATCHING ALGORITHMS. --- 40

CHAPTER FOUR

THE PROPOSED ALGORITHM 49

BIDIRECTIONAL BOYER MOORE AND QUICK SEARCH (BBQ) 49

4.1. OVERVIEW --- 49

4.2. DESCRIPTION OF BBQ ALGORITHM --- 50

4.3. BASIC IDEA --- 50

4.4. PRE-PROCESSING PHASE: -- 53

4.4.1. The pre-processing of pattern from left window: ------------------------------------- 54

4.4.2. The pre-processing of pattern from right window: ------------------------------------ 60

4.4.3. The work of BBQ algorithm from right side is described in the following steps: ------- 63

4.5. SEARCHING PHASE: -- 64

4.5.1Searching from left side -- 65

4.5.2. Searching from right side --- 65

4.6. WORKING EXAMPLE: --- 66

CHAPTER FIVE

EXPERIMENTAL RESULTS 73

5.1. ENVIRONMENT -- 73

5.2. TOOL USED: -- 74

5.3. TESTS WITH THE PLANT GENOME (ARABIDOPSIS THALIANA) --- 75

5.4. PROTEIN SEQUENCE -- 79

5.5. TESTS WITH AN ENGLISH TEXT AND A RANDOM PATTERN: -- 82

5.6. TEST WITH DIFFERENT LENGTH OF THE TEXT -- 84

5.7. THE ASYMPTOTIC ANALYSIS: --- 88

CHAPTER SIX

CONCLUSION AND FUTURE WORK 90

6.1. CONCLUSION-- 90

6.2. RECOMMENDATIONS AND FUTURE WORK -- 91

REFERENCES 92

APPENDICES ... 95

APPENDIX 98

VIII

List of tables

Number Title Page

1-1 String matching algorithms 5

2-1 Notations used for algorithms 17

2-2 The most important of function 19

2-3 Bad character and good suffix 30

2-4 Bad character of QS algorithm 33

4-1 Pre-processing phase 63

4-2 Comparison of the right window 64

4-3 Example of pre-processing phase from the left side 67

5-1 The running time and speed (planet genome) 76

5-2 The running time and speed (planet genome) to

find the first occurrence

78

5-3 The running time and speed (protein sequence) 80

5-4 The running time and speed (English text) 82

5-5 The running time and speed (English text) to find

first occurrence

83

5-6 The running time between BBQ and BM 84

5-7 The running time between BBQ and BM to find

the first occurrence

85

5-8 Number of shift and comparisons between BM and

BBQ

86

IX

List of figures

Number Title Page

1-1 Application of pattern matching 6

1-2 String searching algorithm 8

1-3 Worst case of BM 9

2-1 Relations of Big O, Omega Ω and Theta Ө 18

2-2 algorithm of BF 21

2-3 Example of BF algorithm 24

2-4 Bad character rule 26

2-5 Good suffix rule 27

2-6 The Boyer–Moore string matching algorithm 28

2-7 Algorithm Suffixes 28

2-8 Example of BM algorithm 31

2-9 Example of QS algorithm 34

2-10 comparison order of pattern's character with text 35

4-1 Comparison order between the text and pattern from

both sides

51

X

4-2 Good suffix shift u reappears preceded by a character

different from b.

55

4-3 Good suffix shift only a prefix of u reappears in x 55

4-4 bad – character – shift a appears in x 56

4-5 bad – character – shift a does not appears in x 56

4-6 shifting of the BM 58

4-7 The Boyer-Moore string-matching algorithm. 58

4-8 Computation of the bad-character shift. 59

4-9 Computation of the good-suffix shift. 60

4-10 Computation of the shift for right window. 62

4-11 quick search inverse 66

4-12 Pre-processing phase from the right window: 69

5-1 speed of the algorithms 77

5-2 running time of the algorithms 77

5-3 speed of the algorithms 79

5-4 speed of the algorithms

81

5-5 comparing between the algorithms 83

XI

5-6 time to find the first occurrence for the algorithms 84

5-7 Comparison between BM and BBQ for different lengths

of text (all occurrences)

85

5-8 Comparison between BM and BBQ for different lengths

of text (Finding First Occurrence)

86

5-9 comparing No. of shifts and Comparisons between BM

and BBQ

87

5-10 comparing Total time and First appearance time between

BM and BBQ

87

XII

��ر -����� ��ارز��� ����

 ���� ا�

��
 �"�ذ ��
 ا����

 ا��$�ف

ا+�' ���' �*��ن: ا�'آ%�ر

) ا�����(

���ص ��
 إ/�&ؤ1 و��0 /.- ا��,���&ت و!(د ا��'&%$ ا���#�"� !� �����7 ��&�6 �5&ت ا�,&�- /(ا 4 ���و4 , �

 ا�7<=> �&��(ا�;ي 9(���� ?=@7�� Aإ�� �� ,=Bوأ D97&ج ا� و�� �%&Fا� -�
 �,���� �,�<� وHI ه;ا ا�! J�=ا� ����! D�

� ����I J,� و��N �@��(�� ��7(م ه;ا ا��5ض . آ=��%&Iإ�.&د و OP7@� ورة�Pه<& 6&ن ا�
� ,
� �وا�O7 �,�7(!� !(د ��9

 .وا�@#Vات ا��=��ة ا�F��.� O7& !� ا�<� أ'<&ء !���� ا�=�J, ا��@&ر�&ت �T/�ف

 O6 ادت O7ا������ ا� �@�&W� �7ح ��ارز���@� &>�Y6 ، �Iا� ه;1 ا�(را �@�&W� ارز��&ت��
����

�&6;1 ���7ي �
 ا�<�ا6; آ�

 O6 وD9 وا/(�&�7I(ام ا'<��=�ا�<��ص،ا���ارز��� ا��@�7/� �@�م �#�� ا�<� �
 آ? ا�.&

� ��7
 /7 �7- ا�,\�ر !� !(د �
 ا4/�ف O6 ا�<� ا���&و�� ��Wل ا�<�H ، �@�م آF.ا�

 ا�<&6;��
 �&���7ك !� ا�<� �

��H أو /7 ��� إ� �<�7^ ا�<� أ

 ا� ي!� ا��7ا`(ا_ول ��� ab&@7
، آ� !���� O6 ه;1 ا���ارز��� ا��@�7/� ا�<&6;��

J�=��6 ا'<&ء ا�&� .�,�7(!� ��/�� ا�V�F.7ات ا��W,� O7<& ا��,���&ت ا�

�<& –ز��� ا��@�7/� !� ��ارز��� ا�=��� �,O6)�7 ه;1 ا���ار&6
��ر �&�<�=� ��<&6;ة ا����ى وا�& �
 `�F ا����

 Quick-Searchا!�7(�& !� ���e ا�=�J ���ارز���

 O7ت ا�&���Fg ا�<f%&7 ا�7.��=�� أن ا���ارز��� ا��@V! �/�7زت !���� �W&�@� ا������ �
 �?ل �@��� !(د ا��@&ر

� ه;ا ا�<�ع �
 ا���ارز��&ت و�<,�k ذ�i !� أداء و6,&��� ��(ث و�F(ف ه;ا\�� ��%&@7�ا����7
 إ� ا����ل !� ز�&دة ا4

J�=ا� ����! O6 A�P@� ا�;ي D9ا��
� � .ا�=�J آ�& �@�

XIII

 ا���ارز��&ت � ����� /�J �- �9&س ا��D9 ا���F"4 ,! O6 ;#>7&ر ا�<c# f%&7وا!�7&د �O6 �5 ه;1 ا�(راD�� �I ���.� آ

 O7ارز���� a� &F7� . QSو BMا�=�J دا�� ا�<��ص و�- ا/�7&ب �I!� ا���ارز��� ا'<&ء ا�=�J و�@&ر

XIV

An Enhanced Boyer- Moore Algorithm

by

Mu'ath Mousa Al-Mahasneh

Supervised by

Dr. Maamoun K. Ahmad

Abstract

The volume of information and the number of computer documents has been increasing over

the last years. Thus, there is an urgent need for finding new fast efficient and non-traditional

searching methods. The fastest known traditional searching algorithm is the Boyer Moore algorithm,

which depends on a small number of character comparisons, and large shifts that are performed on

the text during search.

In this study, we propose a string matching algorithm which made an improvement on the

pattern matching technique, the algorithm scans the text from both sides simultaneously using two

windows; each window has a size that is equal to the pattern length. Both windows move in parallel

over the text until the first occurrence of the pattern is found or until both windows reach the middle

of the text or intersection between both of the windows, all the process in this algorithm depend on

the preprocessing phase in the Boyer Moore algorithm BM and Quick Search QS algorithm on the

left window and the right window respectively over the text. The experimental results show that the

proposed algorithm BBQ algorithm has enhanced the process of pattern matching by reducing the

number of comparisons performed. The best time case is calculated where m is the length of the

pattern and n is length of the text.

All previous enhancements aims to getting increase the selectivity of the algorithm and it

affects the performance and effectiveness as reduces the time spent in the search process.

XV

The BBQ algorithms and some traditional algorithms were implemented and compared. The

result shows that the performance of the BBQ algorithms is much better than of the traditional

algorithms, including the Boyer-Moore algorithm.

II

Chapter one

1

Chapter One

Introduction

1.1 Preface

The algorithms are defined as a series of steps to resolve the problems ,some

problems may take a long time to be solved, while others get solved in fractions of a

second depending on many factors that affect the operations of the algorithms. On the

other hand, analysis of algorithms is one of the hot topics in computer science because

the complexity of an algorithm is the cost measured in running time, storage, or

whatever units are relevant (Wilf, H, S, (1994) .

The string, whose occurrences are searched for is called the pattern; it can be a

word, partial word, or even a text fragment. The document, which is examined during

the search, is called the text. It commonly consists of some natural language, but it

can be any kind of binary data in a computer. In computer science string matching

algorithms, are an important class of string algorithms that try to find a place where

one or several strings (patterns) are found within a larger string or (text). In other

words; the goal of any string matching algorithm is to determine whether or not a

match of a particular string exists within another (Zhang, M, et al, (2013)).

The string matching problem is to find all the occurrences of a given pattern

(P) in a large text (T). One approach to string matching is linear searching, which

means the text is not preprocessed. Thus these algorithms need to scan the text when

searching, the second approach, indexed searching, tries to speed up searching by

preprocessing the text and building a data structure that allows searching.

The search problem in the written texts for all occurrence of pattern are

classical problem, and the string matching process used in many areas of computer

science including text editing, data retrieval and symbol manipulation. Also it's

2

important to a number of fields including computational biology, computer science,

and mathematics (Wilf, H, S, (1994)). This problem has emerged clearly in the

seventies of the last century, when the companies programming began produces

software word processing, clerical and programming languages , and increased the

need to find quick and effective solutions to this problem. It is also clear that the

search for text of the basics of the process of retrieval of information in many fields,

such as databases , especially when the database is irregular , or if the cost of indexing

database of high Consuming in both time and space from the hard drive or memory

(yamashita, et al, 1996, Hoffman and McCullough, 1971)

In computer science, the "search process" has been the subject of discussion

and debate. There have been many research studies carried out by researchers that

focus on the development and improvement of algorithms used in this area. Much of

the recent research has focused on developing algorithms to increase the efficiency of

using software tools and programs; algorithms design and analysis are the core of

developing a successful computer programs.

1.2 Pattern matching

Pattern matching is one of the most important areas which have been studied

in computer science, and it is generally divides into multiple pattern matching and

single pattern matching algorithms(Bhukya et al, 2011).

In a standard problem, we are required to find all occurrences of the pattern in

the given input text, known as single pattern matching. Suppose, if more than one

pattern are matched against the given input text simultaneously, then it is known as,

multiple pattern matching. Whereas single pattern matching algorithm is widely used

in network security environments. In network security the pattern is a string indicating

a network intrusion, attack, virus, and snort, spam or dirty network information, etc.

3

Multiple pattern matching can search multiple patterns in a text at the same time. It

has a high performance and good practicability, and is more useful than the single

pattern matching algorithms.

Many existing pattern matching algorithms are reviewed and classified in two

categories Exact string matching algorithm and Inexact/approximate string matching

algorithms. in exact pattern matching algorithm will find that whether the probability

will lead to either successful or unsuccessful search. The problem can be stated as:

Given a pattern p of length m and a string Text T of length n (m ≤ n). Find all the

occurrences of p in T. The matching needs to be exact, which means that the exact

word or pattern is found. Some exact string matching algorithms are Naïve Brute

force algorithm, Boyer-Moore algorithm, KMP Algorithm. Inexact/Approximate

pattern matching is sometimes referred as approximate string matching or matches

with k mismatches/ differences. This problem in general can be stated as: Given a

pattern P of length m and string/text T of length n (m ≤ n). Find all the occurrences of

sub string X in T that are similar to P, allowing a limited number, say k different

characters in similar matches. The Edit/transformation operations are insertion,

deletion and substitution.

In many cases most of the algorithm operates in two stages (Raju et al 2011),

depending upon the algorithm some of the algorithm uses preprocessing phase and

some algorithm will search without it. Some pattern matching algorithm concentrates

on pattern itself. Other algorithm compare the corresponding characters of the patterns

and text from the left to right and some other perform the character from the right to

left. The performance of the algorithm can be measured based upon the specific order

they are compared. Pattern matching algorithms has two different phases: Pre-

processing phase or study of the pattern and Processing phase or searching phase. The

4

pre-processing phase collects the full information and is used to optimize the

number of comparisons. Whereas searching phase finds the pattern by the information

collected in pre-processing. Pattern analysis plays a major part for various analysis

like discrimination of the cancer from gene expression, mutation evolution, data

analysis, feature extraction, searching, disease analysis, structural and functional

analysis, e-books, text processing, linguistic translation, data compression, search

engine, speech reorganization, information retrieval, genomic data, protein-protein

interaction in cellular activities, computer virus detection, network intrusion detection,

parsers, spam filters, digital libraries, screen scrapers, word processors, natural

language processing and computational biology.

5

1.3 Algorithms Techniques

Every algorithm uses some special techniques to find pattern matching;

following table shows the different techniques used by different algorithms:

 “Table (1-1): string matching algorithms summary” (bhukya and somayajulu,

2010).

Algorithms Author Comparison

Order

Preprocessing Searching

time

Complexity

Boyer Moore R.S.Boyer And

J.S.Moore

From right to left Yes O(mn)

Horspool Nigel Horspool Is not relevant Yes O(mn)

Brute Force - Is not relevant No O(mn)

Kunth Morris

Pratt

 Donald

Knuth and Vaughan

Pratt

From left to right

Yes O(n+m)

Independent

from the

alphabet size

Quick Search Sunday Is not relevant Yes O(mn)

Karp Rabin Michael O Rabin

And Richard M

Karp

From left to right Yes O(mn)

Zhu Takaoka R.F.Zhu And T

Takaoka

From right to left Yes O(mn)

Index Based IFBMPM Model From left to rig Yes O(mn)

1.4 Need of Pattern Matching

Pattern matching is the process of checking a perceived sequence of string for

the presence of the constituents of some pattern. Pattern matching concept is used in

many applications, the following figure shows the different applications. Such that

web search engine amongst others application. Now a day’s almost every people use

the web application to get the desire results. But it is not necessary that peoples will

6

only searching for text every time. They may want different type of data like audio,

image and video. To handle such kind of data we need better method for searching.

Pattern matching will help to find right and appropriate result. There are many

algorithms used to find patterns matching (Diwate , Alaspurkar, 2013).

Figure (1-1): Applications of Pattern Matching

1.5 Basic definitions

Assume here that the alphabet that are elements (or characters) of both the text

and the pattern. Any string or (pattern) will be represent P of length m, and represent

the input text y of length n , and assume that all of the text and the string are based on

the group finished the letters of the alphabet and denoted by the symbol (Σ) and the

length of the symbol(ϭ), then we can build the following definitions :

� String (pattern): an ordered set of a single character or more, like (abc), and

will consider the pattern as to be searched for in this research (Makinen, 2003).

� Text: an ordered set is made up of a string or more, such as: (abcabadfdsdsd).

� The word U: is the prefix of the word W if and only if there is a word that V

W = UV.

7

� The word V: is suffix for the word W if and only if there is a word that U

W = UV.

� Σ: alphabet, a set of characters here (ASCII).

� P: the string or pattern of length m.

� Y: a text of length n.

� Window: a subtext (any part of the text) and equal to Yi ... Yi+m, where o ≤ i < n.

� Σ € Pi for each i.

� Σ € Yi for each i.

All the algorithms in this study aims to Find one or all occurrences of the

pattern in the text, the match will happen if there was a subtext (window) Y: Yi ...

Yi+m, where: o ≤ i < n and Pi ... Pm equal Yi ... Yi+m for each i (Charras and Lecroq,

2004).

1.6 Problem Definition

String matching is a problem of finding occurrence(s) of a pattern string

within another string or body of text. The problem is also known as exact string

matching, string searching, and text searching. The input pattern of p with size m and

text body of y with size n where m ≤ n.

Matching problem appears in many areas, for example the problem of finding

occurrence(s) of a string in an english text, is the set of english alphabet; for the

problem of finding occurrence(s) of a nucleotide in a DNA sequence in the area of

genetic engineering, Σ = {a, c, t, g}; for the problem of finding occurrence(s) of an

amino acid in a protein sequence, the problem is transformed to the binary matching,

which is commonly used in the area of computer security. In general, string searching

algorithms represented as the follow:

8

Figure (1- 2): string searching algorithms

The BM relies on searching text from right to left and building a table that

contains a set of characters. The BM pattern matching algorithm depends on found the

first occurrence in the large text to do match between them and this algorithm will be

repeating the comparison between character in the pattern and text.

 The worst case scenario of this algorithm is when it matches all the

characters in the pattern from right to left with the text except the last character (the

first character in the pattern) it will lead to increase the number of comparisons that

will also waste the time spent on the search process.

Algorithm string – searching

//find all occurrences of Pat [0, m-1] in Text [0, n-1]

{

Preprocessing phase;

Search phase;

Align Pat [0] with Text [0]

While (end of text is not reached)

{

Checking step;

Candidate checking phase;

Detailed comparison phase;

If an occurrence of pat has been found then

Report occurrence;

End if

Skipping step;

Move forward;

}

}

(Moh’d Mhashi, Alwakeel 2010)

9

Here; we have a simple example which explains the worst-case scenario in the BM

algorithm

� Example of worst case scenario:

� T =aaa … a

� P = baaaaa

Figure (1-3): worst case scenario of BM

 From the previous example we observed match all characters except the first

character in the pattern, this led us to think about an efficient algorithm in this case, in

this research and after analysis algorithms of string matching, we have to make some

attempts to overcome the failed comparisons in the text to get a fewer comparisons

also have improvement on the search process i.e. We are searching at both sides of

the text at the same time by adopting the concept of Bidirectional search algorithm.

1 1

1

a a a a a a a a a

23456

b a a a a a

b a a a a a

b a a a a a

b a a a a a

7891 01 2

1 31 41 51 61 71 8

1 92 02 12 22 32 4

10

1.7 Motivation

Since the early times of computing , the researchers and developers have been

giving attention to string matching algorithms and trying to find a new approach to get

an efficient algorithm while preserving less complexity because the string matching

algorithms which have become important in several applications. The amount of

information available on the internet has grown enormously, thus making the

extraction and location of information more laborious. Compared to the images and

videos, searching for textual information is relatively painless. However, search for

occurrences of given string is most common task, and therefore the solutions should

be efficient. Good solutions were already devised several decades ago. On the other

hand, development of hardware offers opportunities and causes needs for better

solutions. Therefore new methods for string matching are still being developed. String

matching is a very important subject in the domain of text processing and it has been

one of the most extensive problems in computer technologies during past two

decades.

This has motivated us to start thinking to find a new method for searching in

texts to get better results

11

1.8 Objectives of the Thesis

The main objectives of this research are to enhance the string matching

technique, by enhancing the searching algorithm. This study aims to improve the

search of algorithms in the text, because this is important topic and increases with the

passage of time due to the increase in the quantity and quality of information,

especially through the Internet.

This study aims to reduce the time of searching within the text by using the idea of

searching from both sides based on combining between BM and QS algorithms; we will

focus on the number of comparisons and number of shifts in our research. In this

research, we will make some changes to the preprocessing phase to get better results in the

search process, and will be based on reducing the time; we need to find any pattern in the

text.

 In this research will be study of the algorithms and the proposed algorithm

previously to solve this problem in this area, and comparing them through the

programming of all the algorithms and their implementation in the same environment

and under the same conditions and to study the best and worst cases, and also studied

in the normal position when the text is real , and when shapes are variable-length and

number , taking into account both the consumer time and memory space reserved for

all algorithms.

12

1.9 Questions:

This research will try to answer the following questions:

1. How the worst-case scenario affects in the string matching algorithms

performance?

2. How the proposed search algorithm can improve the searching process by

reducing the number of comparisons?

3. How the proposed search algorithm can improve the searching process by

reducing the number of attempt to find all occurrences of the pattern in the text?

4. How the proposed search algorithm can improve the searching process by

increasing of the number of displacement?

5. How can we combine the bidirectional algorithm with the proposed algorithm

in order to reduce the time in the string matching process?

6. What are the main challenges in enhancing the string matching process?

7. How can we compare the enhanced proposed string matching process with the

original one and what is the appropriate way of validation?

13

1.10 Organization of the Thesis

In the first chapter defined the search problem in written texts also clarifies

some of the important definitions in this study. We also identify and describe the

search problem and identify the questions and hypotheses in the search and we are

describing set of goals that we want to achieve from this study.

 Chapter 2 contains an explanation of the degree of complexity of the

algorithm also contains a description of some of the string matching algorithms Brute

Force algorithm (BF) , Boyer More algorithm BM and Quick Search algorithm QS

through mention the most important characteristics and implement the algorithm

using C++ program .

 Chapter 3 presents the related work, and indicates the most important

improvements that received the best algorithms and discuss the results of this

research.

Chapter 4 presents the proposed model and the process of preprocessing and

searching phase. It also describes the details of our approach .This chapter talking

about the mechanics of the comparison in the proposed algorithm and compares it

with the previous algorithms.

Chapter 5 discusses the results and presents the experimental results. Finally;

Chapter 6 presents a discussion of the thesis, conclusion and future work.

Chapter Two

15

Chapter Two

String searching algorithms

2.1. Background

The string matching algorithms include Brute Force algorithm (BF), Knuth

Morris Pratt algorithm (KMP), and Boyer Moore algorithm (BM) since we'll talk

briefly about the degree of the complexity theory algorithms and display some of the

most famous search algorithms (charras and lecroq, 2004) all of these algorithms

work as the follow:

1- The algorithms scan in the text by the window; each window is equal length of

pattern to be searched and it is equal m.

2- Start of the search by compared to characters window with characters of

pattern this process is called an attempt.

3- These algorithms are shifting the window to the right to search for matching

may be found elsewhere on the length of the text.

4- Repeated all these steps until you reach the end of the text, because the goal of

these algorithms is to find all the matches in the text, if it's found, or declaration about

not having pattern in the text.

In case of comparing the pattern with the window to make sure the match or

not (during the search process) , the algorithm must be built on the basis of quick

rejection and return the match does not exist as soon as possible , without to compare

all the characters (baker, 1991). in other words, when comparing the characters of

pattern with the characters of window during the search process must be carried out

this process quickly, that means we should be look for the characters that are not

16

similar, because one character is not similar means no match, since we are interested

in full match in this study exact matching not approximate matching.

2.2. The complexity theory of the algorithm.

commonly used function called O() to express complexity of the algorithm

during execution , also called code landau (Landau's Symbol) and this code is used in

(complexity theory) , computer science and mathematics to describe the behavior of

functions an approximation , and mainly shows the rapid growth or decline functions .

The name landau came from the name of the German Scientist -Edmund Landau- who

created this symbols, uses the character (O) of the expression of growth functions

because the rate of growth of the association called arranged functions (order), this

growth or regression is used to express the sources that used by functions such as time

or reserved space from computer memory (naps and pothering, 1992). For example,

when analyzing a specific algorithm can be a time (or the number of steps) necessary

to resolve the problem of size n gives the form:

T (n) = 4n
2

 - 2n + 2.

If ignored constants (and this makes sense because it depends on the computer that is

being used to implement the vary program from one computer to another), then we

can say that: T (n) grows n
2
 and writes:

T (n) = o (n)
2

2.3. Analysis of algorithms (asymptotic notations)

We have discussed Asymptotic Analysis, and Worst, Average and Best Cases

of Algorithms (Boissonnat and Mariette.1998). The main idea of asymptotic analysis

is to have a measure of efficiency of algorithms that doesn’t depend on machine

specific constants, and doesn’t require algorithms to be implemented and time taken

17

by programs to be compared. Asymptotic notations are mathematical tools to

represent time complexity of algorithms for asymptotic analysis. The following

asymptotic notations are mostly used to represent time complexity of algorithms:

Notation Used for

N the length of the text

M the length of the

pattern (string)

C the size of the alphabet

*

Table (2-1): notations used for algorithms

1. Omega Ω Notation:-

The big O notation gives only upper bound on the function. If we are

interested in lower bound values of the function then we have Ω notation. Let f(n) and

g(n) be function whose domain as a subset of the positive integer, if there exists a

positive constant c for all n>n0 where n0 is threshold integer such that, f (n)>=C* g(n),

Then we write it as f (n) =Ω (g (n)), Read as “f of n equals omega of g of n”

2. Big-O Notation:-

Let f(n) and g(n) be functions whose domain is subset of the positive integers,

if there is exists a positive constant c for all n>=n0 ,Where n0 is threshold integer such

that,

f (n) <= C*g (n), then we write it as

f (n) <= O(g (n)), and read as “f of n equals big O of g of n”

18

3. Theta (Ө) Notation:-

In some cases the time for an algorithm f(n) will be as, f (n)=Ω(g (n)) and

f(n)=O(g(n)) i.e. f and g have same order of magnitude and it is expressed

 f (n) = (Ө) (g (n))

 f (n)= (Ө) (g (n)) if and only if there exits positive constant C1,C2 and n0

such that for all n >= n0, C1*g (n)<=f (n) <= C2*g (n)

Figure (2-1): Relations of Big O, Omega Ω and Theta Ө

19

The following table represents the most important associations that we face during the

analysis of the work of algorithms (naps and pothering, 1992).

Name Function

 (constant) O(1)

 (logarithmic) O(log(n))

 (linearithmic) O(n log(n))

 (polylogarithmic) O((log(n))
c
)

 (linear) O(n)

 (quadratic) O(n)
2

 (geometric) O(n)
c

 (exponential) O(c)
n

 (factorial) O (n!)

Table (2-2): the most important of functions that could accommodate most of the

algorithms

3.1. Brute Force Algorithm (Bf)

The BF approach is easy to understand and implement but it can be too slow

in some cases. If the length of the text is n and the length of the pattern m, in the worst

case it may take as much as (n * m) iterations to complete the task.

3.1.1. The main features.

This algorithm is characterized by the following characteristics:

(charras and lecroq, 2004)

� There is no preprocessing phase.

20

� Need additional fixed space.

� The pattern moved to the right only by one.

� The process of comparison make in any order

� The time of complexity is o (mn).

� The numbers of comparisons are expected to average in the (2n) characters.

3.1.2. Description

In BF no pre-processing phase is performed. It compares the pattern with the

text from left to right. After each attempt, it shifts the pattern by exactly one position

to the right. And again the algorithm re- comparisons all until you reach the end of the

text (charras and lecroq, 2004).

 The displacement is always constant and equal to one, because this

algorithm does not have the mechanisms to assist them in determining the length of

the jump (shift), and make one shift when matching to make sure that non-

overlapping pattern.

21

3.1.3. Pseudo code of the BF algorithm

Figure (2-2): algorithm of BF (Boyer and J. Strother 1977)

3.1.4. An Example of (BF) Algorithm

First attempt:

G S A T G A S A T A T G A G A G A S G S T A S G text

 4 3 2 1

 G A G A G A S G Pat

Second attempt:

G S A T G A S A T A T G A G A G A S G S T A S G text

 1

 G A G A G A S G Pat

Void BF (char *x, int m, char *y, int n) {

/* x: characters of pattern

Y : characters of text

M: length of pattern

N: length of text */

Int i , j;

/* Searching */

For (j=0;j<=n-m; ++j) {

 For (i=0; i<m && x[i] == y[i+j]; ++i);

 If (i >m)

OUTPUT (j);

22

Third attempt

G S A T G A S A T A T G A G A G A S G S T A S G Text

 1

 G A G A G A S G pat

Fourth attempt:

G S A T G A S A T A T G A G A G A S G S T A S G Text

 1

 G A G A G A S G Pat

Fifth attempt:

G S A T G A S A T A T G A G A G A S G S T A S G Text

 1

 G A G A G A S G pat

Sixth attempt

Seventh attempt:

G S A T G A S A T A T G A G A G A S G S T A S G text

 1

 G A G A G A S G pat

Eighth attempt:

G S A T G A S A T A T G A G A G A S G S T A S G text

 1

 G A G A G A S G pat

G S A T G A S A T A T G A G A G A S G S T A S G text

 8 7 6 5 4 3 2 1

 G A G A G A S G pat

23

Ninth attempt:

G S A T G A S A T A T G A G A G A S G S T A S G text

 2 1

 G A G A G A S G pat

Tenth attempt:

G S A T G A S A T A T G A G A G A S G S T A S G text

 1

 G A G A G A S G pat

Eleventh attempt:

Twelfth attempt:

G S A T G A S A T A T G A G A G A S G S T A S G text

 1

 G A G A G A S G pat

Thirteenth attempt:

G S A T G A S A T A T G A G A G A S G S T A S G text

 2 1

 G A G A G A S G pat

Fourteenth attempt:

G S A T G A S A T A T G A G A G A S G S T A S G text

 2 1

 G A G A G A S G pat

G S A T G A S A T A T G A G A G A S G S T A S G text

 1

 G A G A G A S G pat

24

Fifteenth attempt:

G S A T G A S A T A T G A G A G A S G S T A S G text

 1

 G A G A G A S G pat

Sixteenth attempt:

Seventeenth attempt:

G S A T G A S A T A T G A G A G A S G S T A S G text

 1

G A G A G A S G pat

Figure (2-3): example of (BF) algorithm

We note from the previous example, the algorithm executed by (30) comparisons for

the characters and the amount of displacement in the each stage are (1)

3.2. Boyer Moore algorithm.

This algorithm - and until the date writing of this study – more effectiveness

and speed in normal applications in this area, this algorithm is used as a reference for

comparison for most researchers in this area (Hume and Sunday, 1991; Lovis, 2000);

this algorithm for finding substrings, BM algorithm a widely known search algorithm

G S A T G A S A T A T G A G A G A S G S T A S G text

 1

 G A G A G A S G pat

25

for a single pattern and is easy to understand. It was developed by Bob Boyer and J

Strother Moore in 1977.

3.2.1. Main features.

This algorithm is characterized by the following characteristics:

(Charras and lecroq, 2004)

1- Implement compared to characters from right to left.

2- The complexity for the time and the reserved space O (m +∑).

3- The complexity of the search time O (mn).

4- The best performance of this algorithm is O (n / m).

3.2.2. Description.

The BM algorithm scans the characters of the pattern from right to left

beginning with the rightmost one and performs the comparisons from right to left. In

case of a mismatch (or a complete match of the whole pattern) it uses two pre-

computed functions to shift the window to the right. BM algorithm uses good-suffix

function and bad-char function to calculate the new comparing position, shifting

rightward P by taking maximum of these two values. BM Algorithm is fast in the case

of larger alphabet. It uses the information gained from that attempt to rule out as many

positions of the text as possible where the string could not match. Its basic idea is:

First P and T align left in an attempt window. From right to left characters in P

compare with corresponding characters in T. If all characters are matched, then the

algorithm successfully exits. If mismatching, then the algorithm calculates the

distance of P to right shift. Pattern string P right shifts and starts a new round of match

attempt, at the time of pattern matching.

26

1) Bad character rule

Let function Skip (x) is the distance of P right shift, Skip (x) is defined as follows:

 M if character x does not appearing in the p

Shift (x) =

 M - Max(x) if character x does appearing in the p

Here m is the length of pattern string P, and max(x) is the nearest right location

character x appears in P. In the process of scanning from right to left, if finding a

mismatching character x, then shifts P according to the following two situations:

T

P

 P

(a): character x does not occurs in p in an attempt

T

P

 P

(b): character x occurs in p in an attempt window

Figure (2-4): Bad Character Rule

 X U

 A U

 X U

 A U

 X

27

 T

P

p

 (a): suffix u repeated occurrence in p

T

P

 P

(b): suffix u only a occurrence in p

Figure (2-5): Good Suffix Rule

 X U

 A U

 B U

 X U

 A U

U

28

Pseudo code of Boyer-Moore algorithm (x, m, y, n)

Figure (2-6): The Boyer–Moore string matching algorithm(Boyer and J. Strother

1977).

Suffixes(x,m)

 Figure (2-7): Algorithm Suffixes(Boyer and J. Strother 1977).

1- suf [m− 1] ← m

2- g ← m − 1

3- for i ← m− 2 downto 0

4- do if i > g and suf [i + m − 1 − f] 6= i − g

5- then suf [i] ← min{suf [i + m− 1 − f], i − g}

6- else g ← min{g, i}

7- f ← i

8- while g ≥ 0 and x[g] = x[g + m− 1 − f]

9- do g ← g − 1

10- suf [i] ← f − g

11- return suf

1- j ← 0

2- while j ≤ n − m

3- do i ← m − 1

4- while i ≥ 0 and x[i] = y[i + j]

5- do i ← i − 1

6- if i < 0

7- then Report(j)

8- j ← j +Match(0, y[i + j])

9- else j ← j + max(Match(i, y[i + j]), occ[y[i + j]] − m+ i + 1)

29

(1) good-suffix function

The algorithm looks up string u leader character is not b in P from right to left. If

there exist such segment, shift right P to get a new attempt window. If there exists no

such segment, the shift consists in aligning the longest suffix v of T[i+j+1 .. j+m- 1]

with a matching prefix of P.

(2) bad-char function

The bad-character shift consists in aligning the text character T [i+j] with its

rightmost occurrence in P [0 ... m- 2]. If T[i+j] does not occur in the pattern P, no

occurrence of P in T can include T[i+j], and the left end of the window is aligned

with the character immediately after T[i+j], namely T[i+j+1]

• Advantages

- The both good-suffix and bad-char combined provides a good shift value as

maximum of two is taken as shift value.

• Disadvantages

- The preprocessing of good-suffix is complex to implement and understand.

- Bad-char of mismatch character may give small shift, if mismatch after many

matches.

30

3.2.3. An example of BM algorithm

In the beginning the algorithm is preprocessing two table of the pattern as showing the

following table:

T G S A C

8 2 6 1 BMbc[C]

Bad character table

7 6 5 4 3 2 1 0 I

G A G A G A S G X[i]

8 0 4 0 2 0 0 1 Suff[i]

1 7 4 7 2 7 7 7 bmGs[i]

Goode suffix table

Table (2-3): bad character and good suffix

The first attempt:

Shift by (1)

Second attempt:

G S A T G A S A T A T G A G A G A S G S T A S G text

 1 2 3

 G A G A G A S G pat

Shift by (4)

Third attempt:

Shift by (7)

G S A T G A S A T A T G A G A G A S G S T A S G text

 1

 G A G A G A S G pat

G S A T G A S A T A T G A G A G A S G S T A S G text

 1 2 3 4 5 6 7 8

 G A G A G A S G pat

31

Fourth attempt:

Shift by (4)

Fifth attempt:

Shift by (7)

Figure (2-8): example of BM algorithm

We note from the previous example, the algorithm executed by (17) comparisons for

the characters.

3.3. Quick Search algorithm QS.

It is a simplification of the BM algorithm and it is considered the easiest and it is very

fast for short pattern and large alphabet(Sunday, 1990).

G S A T G A S A T A T G A G A G A S G S T A S G text

 1 2 3

 G A G A G A S G pat

G S A T G A S A T A T G A G A G A S G S T A S G text

1 2

G A G A G A S G Pat

32

3.3.1. Main features.

This algorithm is characterized by the following characteristics (Sunday, 1990):

� Simplification of the [BM] algorithm.

� Uses only the bad-character shift.

� Easy to implement and programming.

� Preprocessing phase in O(m+) time and O() space complexity;

� Searching phase in O(mn) time complexity;

� Very fast in practice for short patterns and large alphabets.

3.3.2. Description

Daniel Sunday has proposed an algorithm related to the Boyer–Moore –

Horspool algorithm, he called it Quick Search algorithm QS. The Quick Search

algorithm uses only the bad-character shift table, after an attempt where the window is

positioned on the text factor y[j .. j+m-1], the length of the shift is at least equal to

one. So the character y [j+m] is necessarily involved in the next attempt. In QS, the

shift is based on the text character immediately following the current alignment

instead the last text character of the alignment.

 Because the pattern is moved in any case at least one position, thus the shift

for Sunday’s Quick Search algorithm is one position longer than for the Boyer –

Moore –Horspool algorithm on other characters except possibly for the last character

of the pattern:- if the last two characters of the pattern are the same, then the shift for

that character is the same equal (1). Otherwise, the shift for the last character of the

pattern in Sunday’s Quick Search algorithm is 1, and thus shorter obviously.

33

3.3.3. An Example on QS Algorithm

In the beginning the algorithm is preprocessing the bad character table of the

pattern as shown in the following table:

T G S A A

9 1 7 2 qsBc[a]

Table (2-4): bad character of quick search algorithm

The first attempt

Shift by (1)

Second attempt:

G S A T G A S A T A T G A G A G A S G S T A S G text

 1

 G A G A G A S G pat

Shift by (2)

Third attempt

Shift by (2)

G S A T G A S A T A T G A G A G A S G S T A S G text

 4 3 2 1

 G A G A G A S G pat

G S A T G A S A T A T G A G A G A S G S T A S G text

 1

 G A G A G A S G pat

34

Fourth attempt

G S A T G A S A T A T G A G A G A S G S T A S G text

 8 7 6 5 4 3 2 1

 G A G A G A S G pat

Shift by (9)

Fifth attempt

G S A T G A S A T A T G A G A G A S G S T A S G text

 1

 G A G A G A S G pat

Shift by (7)
Figure (2-9): example of QS algorithm

The number of shift are reached to the maximum (n – m), thus the algorithm

stopped. We note from the previous example, the algorithm executed by (15)

compared for the characters.

3.4. Rabin Karp String Search Algorithm

It is a string searching algorithm that uses hashing to find any one of a set of

pattern strings in a text. For text of length n and p patterns of combined length m, its

average and best case running time is O (n+m) in space O (p), but its worst-case time

is O (nm)(Karp, R. M., & Rabin, M. O. 1987).

3.5. Knuth–Morris–Pratt algorithm

KMP string searching algorithm searches for occurrences of a "word" W

within a main "text string" T by employing the observation that when a mismatch

occurs, the word itself contains sufficient information to determine where the next

match could begin, thus bypassing re-examination of previously matched characters

(Xian-feng, Yu-bao, 2010).

35

3.6. Bidirectional Exact of Pattern Matching

The bidirectional algorithm compares a given pattern with any input text from

both sides simultaneously on another word, this algorithm using two pointer (left and

right pointer) for compare each character of the pattern with corresponding character

in the text one character at time with text (Hussain, I., Kazmi, S. Z. H., Khan, I. A., &

Mehmood, R. (2013) , a complete match will be found when the both left and right

pointers cross each other at the middle of the pattern , the comparison order of

pattern's characters with selected text window is shown in fig(2-10)

Figure (2-10): comparison order of pattern's character with text

Chapter Three

37

Chapter Three

Literature Survey

This chapter presents theoretical background about the string matching

algorithm. There are two main processes that are directly related to our work; the first

is to build the initial preprocessing phase and searching phase.

3.1. Theoretical Background

In literature, many exact string searching and pattern matching algorithms

were introduced and their performance were investigate against classical exact string

searching algorithm such as BF algorithm and Boyer-Moore-Horsepool (BMH)

gorithm, some of these algorithms preprocess both the text and the pattern while

others need only to preprocess the pattern. (Moh’dMhashi, M & Alwakeel, M 2010).

3.2. Stages of development the string matching algorithm

In computer science, the BM algorithm is a particularly efficient string

searching algorithm. And it has been the standard benchmark for the practical string

search literature. It was developed by Bob Boyer and J Strother Moore in 1977. The

algorithm preprocesses the pattern string that is being searched in the text string.

After BM algorithm was proposed there were some algorithms are proposed to

improve it. In 1980, Horspool simplified BM algorithm and proposed BMH algorithm

although it only used the information of the table Right, BMH algorithm acquired no

bad efficiency. In 1990 Sunday proposed BMHS algorithm that improved the BMH

algorithm. In 2010, Lin quanXie, Xiao mingliu proposed BMHS2, which is strictly

based on the analysis of BMHS algorithm to improve is in the match fails, the text

38

string matches last bit characters to participate in the next match, a character string in

the case appear to increase the last bit character and appear in the character string

matching the first characters of a position if there is consideration.

In 2010 BMI algorithm is proposed by Jingbo Yuan, JisenZheng, Shunli Ding

which is improvement of BM algorithm. The BMI algorithm combines with the good

suffix function and the advantages of BMH and BMHS at the same time the BMI

algorithm also takes into account the singleness and combination features of the Next-

Character and the Last- Character. There are two important factors which influence

the efficiency and speed of pattern matching and they are the cost to find the

mismatching character in the text string and the shift distance to right, on basis of the

two factors, an improved algorithm called Improved BMHS algorithm which is given

by Yuting Han, GuoaiXu in 2010. Another improved algorithm called composite

Boyer- Moore was proposed in 2010 by ZhengdaXiong. The key issue of the

composite Boyer-Moore algorithm is how to utilize the history comparison

information achieved at previous iteration. So a new concept of two-dimensional table

Jump[m][m] is introduced.

There are many other researchers are worked to enhance the string matching

algorithms to be fully adopted to work with many researchers have introduced various

algorithms to find the exact pattern matching by making use of windowing technique

whose length is equal to the pattern length. Al-Emery and Japer, proposed an

algorithm to improve the search process (El emery and Jaber, 2008). In the

preprocessing phase, they split the unchangeable text into n equal parts depending on

the length of the text and then construct n tables. Each table consists of two columns

for each part of the text, the first one is the words’ length and the second one is the

39

start position of each word in the text classified by the same length. The algorithm

searches for the words that consist of the same length in each table.

Devaki-Paul algorithm (DP), results in better performance and efficiency.

Before starting the search, the algorithm requires a preprocessing of the pattern which

prepares a table of occurrences of the first and the last characters of the pattern in the

given input text. The search phase uses the table to find the probability of having an

occurrence of a pattern in the given input text and find if the probability will lead to

successful or unsuccessful search. The time complexity of the preprocessing phase of

the DP algorithm is O (m) while the time complexity of the search phase is directly

proportional to the total number of occurrences of the first and the last characters of

the pattern in the given input text (Pendlimarri, D., Petlu, P., & Satrasala, R. 2011).

3.3. Related works

Several pattern matching algorithms have been developed with a view to

enhance the Searching processes by minimizing the number of comparisons

performed, to reduce the number of comparisons. The matching process is usually

divided into two phases. The pre-processing phase and the searching phase. The pre-

processing phase determines the distance (shift value) that the pattern window will

move. The searching phase uses this shift value while searching for the pattern in the

text with as minimum character comparisons as possible.

This section presents some of studies that have contributed to improvement of

the search algorithms and Classified as follows:

40

3.4. Exact pattern matching algorithms.

A)-Searching from one side

• (Hasan & Rashid, 2012) The Internet users are wildly spread besides; the

intrusion activities are also increased, the IDS depends on string matching algorithms

to perform its detection, this paper introduced hash function HBMH to enhance the

BMH algorithm whereas; BMH spends a long time in character comparison in each

attempt. Therefore, it considers faster than the original BMH algorithm, the hash

function is really reduced the number of character comparison thus, the HBMH is

faster in its performance and can be very useful in network security applications such

IDS.

• The comparison of BM and its relative algorithm is performed on the basis

two factors; one is number of comparison performed and second is search time. BM

algorithm is standard benchmark of string matching algorithm so this paper explain

the BM algorithm and then explain its improvement as BMH (Boyer-Moore-

Horspool), BMHS (Boyer-Moore-Horspool-Sundays), BMHS2 (Boyer-Moore-

Horspool-Sundays 2), improved BMHS(improved Boyer- Moore-Horspool-Sundays)

,BMI (Boyer-Moore improvement) and CBM (composite Boyer-Moore), also analyze

and compare them using an example and find which one is better in which conditions

The performance of algorithm depends on two factors, first on Input, number of

inputs and type of inputs, Second is Methodology of algorithm, so there may be

possible that some variation in performance occur as input changes.(Choudhary, R et

al , 2012).

41

• Rasool and Khare introduced an enhanced algorithms based on BMH and

BMHS algorithms this work has developed improved algorithms EBMH (Enhanced

BMH) and EBMHS (Enhanced BMHS). This algorithm uses the newly introduced

PDJ (possible double jump) and MValue (Match Value) concepts. While searching

these concepts helps to provide longer jump of characters. The algorithm EBMH

emphasize on BMH algorithm with the inclusion of PDJ and MValue and the

algorithm EBMHS emphasize on BMHS algorithm with the inclusion of PDJ and

MValue. Through these algorithm the number of comparison of characters between

text and pattern are reduced to a significant amount. In this paper PDJ, MValue,

EBMH and EBMHS are described and analyzed. Experimental results show that in

the algorithms searching time is reduced as compared to BM, BMH, and BMHS. The

algorithms are analyzed on the basis of time requirement in best, worst and average

case (Rasool & Khare, 2013).

• (Mhashi & Alwakeel 2010),In this paper, a new Enhanced Checking and

Skipping Algorithm (ECSA) is introduced. The new algorithm enhance the classical

string searching algorithms by converting the character-comparison into character-

access, by using the condition type character-access rather than the number-

comparison, and by starting the comparison at the latest mismatch in the previous

checking, which in turn increases the probability of finding the mismatch faster if

there is any. The results of the experiment show that the performance of the enhanced

algorithm is outperform the performance of the introduced algorithms. On the other

hand, in the skipping phase ECSA focuses on increasing the shift distance. The search

clock time criteria were used in an experiment to compare the performance of ECSA

against Naïve, and BMH.

42

• (Senapati, KAdhikary, D & Sahoo, G. 2012) proposed an algorithm, for

finding motif in DNA sequence. This algorithm is based on preprocessing of the

pattern string(motif) by considering four consecutive nucleotides of the DNA that

immediately follow the aligned pattern window in an event of mismatch between

pattern(motif) and DNA sequence. Theoretically, found the proposed algorithms work

efficiently for motif identification in the same way, the proposed algorithm is

implemented method of searching in the searching phase of Berry-Ravindran

algorithm to get the Improved Berry- Ravindran algorithm. This paper based on

preprocessing of the pattern string by considering four consecutive characters of the

text. The concept of searching from both sides makes the algorithm efficient when a

mismatch present at the end of the pattern with that of align text window. This work

proves that the proposed algorithms faster than other compared algorithms.

• (Rawan A. Abdeen ,2011) proposed an improvement of the brute force

searching algorithm. The algorithm is named Start to- End Algorithm. This paper has

proposed a string searching algorithm without the need to preprocess neither the

pattern nor the text. The improvement that this algorithm has offered over the brute-

force algorithm is that it does not allow performing character by character matching

between the segment taken from the text and the pattern only after it checks that the

first and last characters in the pattern match the first and last characters in the segment

taken from the text.

• Based on text segmentation this paper proposed a fast pattern matching

algorithm based on text segmentation by slicing the text in to segments each equal to

size of the pattern. The idea is to perform preprocessing of both text and pattern

43

strings before beginning to search for the pattern in the text so as to achieve

substantial speed up in the search process. The experimental results show that the

proposed algorithm is superior to other algorithms even when the pattern is in the

end of the text. The algorithm uses the idea of preprocessing both the text and pattern

strings as against to other existing algorithms which either pre-process text or pattern

or does no preprocessing such as BF algorithm (Radha , Sravya & Anji , 2011).

• This paper presented a new method to improve the (avg-case) performance of

the BM , The basic idea is to utilize two character for a recomputed table instead of

one character as in the original BM whenever a mismatch occurs, they can the slide of

pattern to the right a longer distance than in the original version .In their work the

solution preserved all good properties of the original BM (Feng, Z. R., & Takaoka, T.

1988) .

B) - Searching from both sides (bidirectional)

• This research presents a new idea to compare pattern with selected text

window from both sides of the pattern simultaneously by using right and left pointers,

Bidirectional(Exact Pattern Matching) EPM algorithm is basically based on the bad

character rule of Boyer-Moore algorithm where only one character is used to identify

the shifts. Bidirectional EPM algorithm has number of cases to shift the pattern

maximum to right of text window. Suppose T(1…n) is the text string and P(1…m) is

the pattern and we compare P(1…m) with T(i…i+m-1) from both sides of the pattern,

one character at a time, start from right side of the pattern , the time complexity of

44

preprocessing phase of BD exact pattern matching is O (m) and searching phase takes

O (mn/2) (Hussain, I. et al,2013).

• This algorithm enhances the performance of the Two Sliding Windows

(TSW) algorithm. Both ETSW and TSW algorithms employs the main idea of BR by

maximizing the shift value and using two sliding windows rather than using one

sliding window working in parallel, to scan all text characters. In both algorithms, two

arrays are used to store the calculated shift values for the two sliding windows. Each

array is a one dimensional array of length (m-1). The experimental results show that

the ETSW algorithm has enhanced the process of pattern matching by reducing the

number of comparisons performed (Suleiman,D.et al , 2013).

• This paper proposed a new algorithm ERS-A, that made enhancements on

both two sliding windows (TSW) and Fast Pattern Matching (RS-A) algorithms. In

ERS-A and TSW algorithms two sliding windows are used to scan the text from the

left and right simultaneously, but while TSW utilizes the idea of Berry Ravindran bad

character shift function (BR), ERS-A adds an improvement by using the shift

technique provided by RS-A algorithm . RS-A algorithm uses four consecutive

characters in the text immediately following the pattern window, instead of using two

consecutive characters as in BR. In this paper ERS-A is implemented and ERS-A

improves the performance by reducing the number of comparisons and the number of

attempts needed to search for a particular pattern (Suleiman,D.et al , 2013).

45

• This paper proposed an Improved-Bidirectional (IBD) exact pattern matching

algorithm based on window sliding method of exact pattern matching which will be

helpful in various needs of pattern matching and searching. The basic idea of

Improved-Bidirectional EPM algorithm is scans partial text window of the text string

for leftmost character of pattern and pattern for the rightmost character of the partial

text window. Improved-Bidirectional EPM algorithm compares a given pattern

character wise with selected text window from both sides simultaneously as

Bidirectional algorithm does. The worst case time-complexity of Improved-

Bidirectional EPM algorithm is O (mn/2) in searching phase and O (m) in

preprocessing phase. Comparison results show that the Improved-Bidirectional EPM

algorithm is quite efficient than the existing algorithms, when the pattern length is

short as well as on long pattern’s lengths (Hussain, I. et al, 2013).

• (Hussain, I. et al, 2013).This research, presents an improved version of

Bidirectional (BD) algorithm to solve the problem of exact pattern matching. Fastest-

Bidirectional (FBD) exact pattern matching algorithm introduced a new idea of

scanning partial text window (PTW) as well with the pattern by taking Berry-

Ravindran (BR) consecutive characters to take decision of moving pattern to the right

of PTW. FBD algorithm compares the characters of pattern to selected text window

from both sides simultaneously as BD. The time complexity of preprocessing phase of

FBD algorithm is O (m+ |Σ|) and searching phase takes O (mn/2).In other hand the

Searching Phase of FBD algorithm runs at most 'm/2' times so, its worst case time-

complexity is O (m/2) because two pointers are used. FDB algorithm requires O (2m)

extra memory space in worst case to execute in addition with the text and pattern

string.

46

• This research presents a new idea of comparing the pattern with text string

from both sides of the pattern simultaneously. After analysis the BD algorithm

shows the Bidirectional algorithm is better than exiting algorithms, it takes O(mn/2)

time in searching phase The worst case time complexity of preprocessing phase of

Bidirectional algorithm is O(m), because only one loop is used to scan the pattern to

find the characters. The total time complexity of searching phase is O (mn/2), because

O (n) takes to shift pattern to right of the text and O (m/2) to search pattern in text

string. Bidirectional algorithm requires O (m) extra memory space in worst case in

addition with the text and pattern string.

C) - In exact pattern matching algorithms (approximate)

• (Wu, S., &Manber, U,(1992)) proposed a new tools , called A-GREP, for

approximate pattern matching A GREP is based on a new efficient and flexible

algorithm for approximate string matching A-GREP is also competitive with other

tools for exact string matching; it include many options that make searching more

powerful and convenient . This paper discussed errors in the text or in the query can

result from misspelling or from experimental error (e.g, when the text is a DNA

sequence).

D) - Indexed searching

• This paper proposed a new algorithm with a simple logic which is very

easy to implement. This method can be use for pattern matching in protein sequences

and also for English Text (Devi, S. N, et al. 2013). This method depends on the pre-

47

processing phase which retrieves the index based on the frequent character of the

pattern and it is suitable for unlimited size of input sequence. This approach provides

good performance related to DNA and protein sequence dataset, this algorithm is

decreasing the number of comparisons.

• Pendlimarri, D., Petlu, P., & Satrasala, R. (2011), this paper presented a new

algorithm for string matching called, DP algorithm (Devaki – Paul algorithm). In case

of unsuccessful search, the DP algorithm has zero character comparisons, irrespective

of the sizes of the text and pattern, provided if either the first or the last character was

not present in the given input text. Whereas, the BM and QS algorithms will do search

as usual. The algorithm also doesn’t require any pre-processing phase, if the search is

on the same given input text and with different patterns, provided the first and the last

characters are same as in the case of first pattern. The time complexity of the

preprocessing phase of the DP algorithm is O (m), which is less than the BM and QS

algorithms. The time complexity of the search phase of the DP algorithm is directly

proportional to the total number of occurrences of the first and the last characters of

the pattern in the given input text.

Chapter Four

49

Chapter Four

The Proposed Algorithm

Bidirectional Boyer Moore and Quick Search (BBQ)

4.1. Overview

By studying the described algorithms in the previous chapter, we have noticed

that the best algorithm is making shift as much as possible in every attempt (the

largest displacement of the window to the right) also whenever comparisons are

decreasing, so that's leads to increase the speed of the algorithm. In order to make

these jumps should be available advance information (are obtained through an initial

processing) which are used to determine how much the jumps without exceeding any

part of the text, the omission of any part of the text is possible, because some of the

patterns in the text are overlapping with each other (overlapped).

For example, if the text "babab" and search for the pattern "bab", the number

of occurrences of this pattern in the text (with consideration the overlap) is a two-

time, first "babab", and the second "babab". And the advance information is taken by

processing the pattern or processing of the text itself. Most of the algorithms were

mentioned above, as well as most of the other algorithms that are looking for strings

in the text, The main idea of the work algorithms are processing of the pattern, and the

best jump can be achieved in these algorithms are (m); the length of the pattern

because the pattern does not have the longest of (m) as an information to offer to the

algorithm to be used in determine how much shift.

This chapter presents our approach for string matching algorithm which

combined two techniques; BM and QS algorithms resulting an enhanced algorithm

50

that we named BBQ (for Bidirectional Boyer-Moore and Quick Search) algorithm.

Our approach will be affect the comparison and search processes between the text and

the pattern .This chapter explains the architecture of BBQ algorithm and presents the

process of building the pre-processing phase and also presents the process of

searching phase technique and computing the complexity then programming by using

the C# language. BM and QS are the two core concepts in our approach.

4.2. Description of BBQ algorithm

 The BBQ algorithm based on scans the text from both sides simultaneously. It

uses two sliding windows; the size of each window is m which is the same size as the

pattern. The two windows search the text in parallel. The text is divided into two

parts: the left and the right parts, each part is of size (n/2). The left part is scanned

from left to right using the left window and the right part is scanned from right to left

using the right window. Both windows slide in parallel which makes the algorithm

suitable for parallel processors structures. The BBQ algorithm stops when one of the

two sliding windows finds all occurrences of the pattern or the pattern is not found

within the text string at all. Also if the pattern is exactly in the middle of the text, the

BBQ algorithm can find it easily.

 The BBQ algorithm utilizes the idea of BM and QS to get better shift values

during the searching phase. BM algorithm provides a maximum shift value in most

cases without losing any characters.

4.3. Basic Idea

The BBQ algorithm of pattern matching compares a given text character wise

from both sides simultaneously as Bidirectional algorithm. The difference between

51

work of the existing algorithms and the BBQ algorithm is that the search process will

be the beginning of the text using an BM algorithm and shift pattern to the right , from

the other side and at the same time be searching from the end of the text and shift

pattern to the left using an QS algorithm ; The process of search will be reduce the

number of attempts needed to find a pattern in the text and thus reduce the number of

comparisons of characters i.e. we move the pattern over the text from both sides

simultaneously . A complete match will be found when left window cross right

window at middle of the text.

In our work we used two algorithms for search the pattern in the text as shown

in the following figure:

Figure(4-1) : Comparison order between the text and pattern from both sides

 The following steps details our approach implementation:

1- We will be using the text as input

2- We will search for any pattern found or not found in the text

3- The text is divided into two parts: the left and the right parts, each part is of size (n/2)

where n is length of text.

52

4- The BBQ algorithm combines two algorithms; every shift to right or shift to left based

on pre-processing phase before the searching process.

5- The left part is scanned from left to right using the left window and the right part is

scanned from right to left using the right window.

6- The left parts based on the idea of BM bad character shift function and good suffix

function to get better shift values during the searching phase.

7- The right parts based on the idea of QS bad character shift function to get better shift

values during the searching phase.

8- Both windows move in parallel.

9- The search process continues until the algorithm finds all the positions of pattern

within the text.

10- If not found the algorithm return " the string is not found in the text".

 The main differences between BBQ algorithm and BM algorithm are:

- BBQ uses two algorithms.

- The search process in BBQ from both sides instead of one side over the text.

- The shift values are calculated only for the pattern characters; while the original BM

algorithm is calculated the shift values for all the alphabets, therefore reduces the

search processing time and at the same time reduces the memory requirements needed

to store the shift values.

53

4.4. Pre-processing phase:

The pre-processing phase is used to divide the text in two parts then make pre-

processing for the pattern. The values of the left window are calculated according to

BM algorithm with two functions (bad character and good suffix rule) without

change. The left window contains the shift values needed to search the text from the

left side. To calculate the shift values, the algorithm preprocessing the pattern only.

On the other hand, the values of the right window are calculated by another

algorithm to make comparisons from the other side which called QS algorithm; the

right window contains the shift values needed to search the text from the right side, to

calculate the shift values, the algorithm preprocessing the pattern only

The maximum shift can we show in this algorithm is (m) from right window

and (m+1) from left window, where m is the length of pattern.

 The only thing we want to do is to construct a formula as follows. Let(x) be a

character in the alphabets. We record the position of the characters x where x is the

first character previous of the window (left of window), if it exists in P; we are

calculating the amount of displacement. If x does not exist in P, we record it as (m+1)

as shown in the following:

 m+1 if character x doesn’t occurs in pattern

Shift [R window] =

 m-((m-1)-j) if p[j] = x

 Character x does occurs in pattern

The first step is align the right ends of the pattern on the text from both sides,

then compare the characters of the text aligned with the characters of the pattern this

54

specific work is called an –attempt- and after a whole match of the pattern or after a

mismatch ;shift the pattern to the right from left side and to the left from right side

according of bad character table. Then repeat the same procedure again.

The pre- processing that we do is important to calculate the amount of jumps

during the search process The following explains briefly the pre-processing that occur

on the left side using the BM and the other side using QS.

4.4.1. The pre-processing of pattern from left window:

Here we are using The BM algorithm because it’s considered as the most

efficient string-matching algorithm in usual applications the algorithm scans the

characters of the pattern from right to left beginning with the rightmost symbol. In

case of a mismatch (or a complete match of the whole pattern) it uses two pre-

computed functions to shift the pattern to the right. These two shift functions are

called the bad-character shift and the good-suffix shift. Assume that a mismatch

occurs between the character x [j] = b of the pattern and the character y [i+j] = a

of the text during an attempt at position I . Then y [I + j + 1 …I + m -1]= x [j+ 1

…m -1] = u and y [I + j] ≠ x [j], The good-suffix shift consists in aligning the

segment y [I + j + 1 ….i + m -1] = x [j + 1….m – 1] with its rightmost occurrence

in x that is preceded by a character different from x [j]. If there exists no such

segment, the shift consists in aligning the longest suffix v of y [I + j + 1 ….i + m – 1]

with a matching prefix of x as shown in the following figures:

55

Figure (4-2): Good suffix shift u reappears preceded by a character different

from b.

Figure (4-3): Good suffix shift only a prefix of u reappears in x

Example 1:

Y = a b b a a b b a b b a

X = a b b a a b b a b b a

X = a b b a a b b a b b a

56

The shift is driven by the suffix abba of (x) found in the text. After the shift, the

segment abba of (y) matches a segment of (x) the same mismatch does not recur.

Figure (4-4) : bad – character – shift a appears in x

Figure (4-5) : bad – character – shift a does not appears in x

57

Example 2:

y = ... a b b a a b b a b b a b b a . .

x = b b a b b a b b a

x = b b a b b a b b a

The segment (abba) found in (y) partially matches a prefix of (x) after the shift.

The bad-character shift consists in aligning the text character y [I + j] with its

rightmost occurrence in x [0 …m – 2]. if y [I + j] does not appear in the pattern x ,

no occurrence of x in y can include y [I + j] and the left end of the pattern is

aligned with the character immediately after y [I + j] , namely y [I + j + 1]

Example 3:

Y = a b c d

X = c d a h g f e b c d

X = c d a h g f e b c d

The shift aligns the symbol (a) in (x) with the mismatch symbol (a) in the text.

Example 4:

y = a b c d

x = c d h g f e b c d

x = c d h g f e b c d

The shift positions the left end of (x) right after the symbol (a) of y.

The BM algorithm is shown in (Figure 4-6). For shifting the pattern, it applies

the maximum between the bad-character shift and the good-suffix shift. More

formally the two shift functions are defined as follows. The bad-character shift is

58

stored in (bc) of size α and the good-suffix shift is stored in a table (gs) of size (m –

1). For a € Σ:

Figure (4-6): shifting of the BM

Figure (4-7): The Boyer-Moore string-matching algorithm.

void BM(char *y, char *x, int n, int m)

{

int i, j, gs[XSIZE], bc[ASIZE];

/* Preprocessing */

PRE_GS(x, m, gs);

PRE_BC(x, m, bc);

/* Searching */

i=0;

while (i <= n-m) {

j=m-1;

while (j >= 0 && x[j] == y[i+j]) j--;

if (j < 0) OUTPUT(i);

i+=MAX(gs[j+1], bc[y[i+j]]-m+j+1); /* shift */

}

} // (Boyer, Robert S., and J. Strother Moore,1977)

Bc [a] = min { j / 1 ≤ j < m and x [m – 1 -j] = a } if a appears in x

 M other wise

Let us define two conditions:

Cond 1(j ,s): for each k such that j < k < m , s ≥ k or x [k-s]= x [k]

Cond 2 (j ,s) : if s < j then x [j –s] ≠ x [j]

Then for 0 ≤ I < m

Gs[i+1] = min { α > 0 / cond 1 (I , s) and cond 2 (I , s) hold }

// (Boyer, Robert S., and J. Strother Moore,1977)

59

 Tables bad-character and good suffix can be recomputed in time O (m + α)

before the search phase and require an extra-space in O (m + α). The worst-case

running time of the algorithm is quadratic. However, on large alphabets (relatively to

the length of the pattern) the algorithm is extremely fast. Slight modifications of the

strategy yield linear-time algorithms the algorithm makes only O (n / m) comparisons,

which is the absolute minimum for any string-matching algorithm in the model where

the pattern only is preprocessed.

Figure (4-8): Computation of the bad-character shift.

Void PRE_BC (char *x, int m, int bc[])

{

int j;

For (j=0; j < ASIZE; j++) bc[j] =m;

For (j=0; j < m-1; j++) bc[x[j]] =m-j-1;

}// (Boyer, Robert S., and J. Strother Moore,1977)

60

Figure (4-9): Computation of the good-suffix shift.

4.4.2. The pre-processing of pattern from right window:

Here we are using The idea of QS algorithm because The bad-character shift

used in the BM algorithm is not very efficient for small alphabets, but when the

alphabet is large compared with the length of the pattern, as it is often the case with

the ASCII table and ordinary searches made under a text editor, it becomes very

useful. Using it alone produces a very efficient algorithm in practice.

void PRE_GS (char *x, int m, int gs[])

{

int i, j, p, f[XSIZE];

For (i=0; i <= m; i++) gs[i] =0;

F[m] =j=m+1;

For (i=m; i > 0; i--) {

While (j <= m && x [i-1]! = x [j-1]) {

If (! gs[j]) gs[j] =j-i;

j=f[j];

}

F [i-1] =--j;

}

p=f [0];

For (j=0; j <= m; j++) {

If (! gs[j]) gs[j] =p;

If (j == p) p=f[p];

}

}// (Boyer, Robert S., and J. Strother Moore,1977)

61

 The first attempt where a right end of pattern is aligned with right ends of the

text, the length of the shift is at least equal to one. So, the character that previous of

window in each attempt is necessarily involved in the next attempt, and thus can be

used for the bad-character shift of the current attempt. The bad-character shift of the

present algorithm is slightly modified to take into account the last symbol of x as

follows:

 min { j / 0 ≤ j < m and x [m-((m-1)-j]= α if α appears in x

 bc [α] = m+1 otherwise

The comparisons between text and pattern characters during each attempt can

be done in any order. The algorithm of Figure (4-10) performs the comparisons from

right to left. The algorithm is based on idea of QS algorithm.

Example 5:

y = s t r i n g - m a t c h i n g

x = i n g

x i n g

x = i n g

x = i n g

Quick Search algorithm makes 8 comparisons to find the two occurrences of(ing)

inside the text of length 15.

62

Figure (4-10): Computation of the shift for right window.

void QS (char *y, char *x, int n, int m)

{

int i, j, bc[ASIZE];

/* Preprocessing */

For (j=0; j < ASIZE; j++) bc[j]=m+1;

For (j=m-1; j > 0; j--) bc[x[j]]= m-((m-1)-j);

/* Searching */

i=n-1;

while (i >= m-1) {

j=m-1;

while (j >0 && x[j] == y[i]) j - -

i--;

if (j < 0) OUTPUT(i);

i-= bc[y[i-m]]; /* shift */

}

}

63

4.4.3. The work of BBQ algorithm from right side is described in the

following steps:

1. Make pre-processing before begin of search for the character of pattern.

2. Using one dimensional array to fill the value of character

3. Using the formula (m – ((m-1)-j) to find amount of jumps for each character in the

pattern where m Where m length of the pattern and j position of character in the

pattern.

4. The algorithm scans the characters of the pattern from right to left beginning with the

rightmost symbol

5. Start of comparison In case of a mismatch (or a complete match of the whole pattern)

it uses shift functions are called the bad-character shift as the following :

Table (4-1): pre-processing phase

Index (j) 0 1 2 3 Another

character

*
Pat F R F D

F (x) m-((m-1)-j)

4-((4-1)-0)=

1

m-((m-1)-j)

4-((4-1)-1)=

2

m-((m-1)-j)

4-((4-1)-2)=

3

m-((m-1)-j)

4-((4-1)-3)=

4

m + 1

4+1 = 5

Since the character is repeated in the pattern always we take

at least

For (j=m-1; j > 0; j--)

bc[x[j]]= m-((m-1)-j)

64

Table (4-2): comparisons of the right window

4.5. Searching phase:

In this phase, the text string is scanned from two directions, from left to right

and from right to left According to the text. In mismatch cases, during the searching

process from the left, the left window is shifted to the right, while during the

searching process from the right; the right window is shifted to the left. Both windows

are shifted until the pattern is found or the windows reach the middle of the text (n/2).

Step1: Compare the characters of the two windows with the corresponding text

characters from both sides:

1- If there is a mismatch during comparison from both sides, the algorithm goes

to step2.

2- Otherwise, the comparison process continues until a complete match is found.

3- The algorithm stops and displays the corresponding position of the pattern on

the text string.

 Shift 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Text Q W S F R F D E T F R f d s

Attempt 1 1 F R F D

Attempt 2 5 F R F D

Attempt 3 1 F R F D

Attempt 4 5 stop F R F D

This character

detected number of

jump by its value in

the pre-processing of

BC table

Start of

compari

son from

end s of

pattern

and text

65

4- If we search for all the pattern occurrences in the text string, the algorithm

continues to step2.

Step2: In this step, we use the shift values from the left and right arrays of windows

depending on the characters which make mismatch with pattern after pre-processing

of pattern. The corresponding windows are shifted to the correct positions based on

the shift values, the left window is shifted to the right and the right window is shifted

to the left. Both steps are repeated until the first occurrence of the pattern is found

from either sides or until both windows are positioned beyond (n/2). If the first

occurrence of the pattern exists in the middle of the text, the algorithm continues

comparing pattern characters with text characters.

4.5.1. Searching from left side

The searching algorithm compares the character of the pattern from right to

left with the text. After a complete match the pattern is shifted according to how much

its widest border allows. After a mismatch the pattern is shifted by the maximum of

the values given by the good-suffix and the bad-character heuristics.

4.5.2. Searching from right side

The searching algorithm compares the character of the pattern from right to

left with text. After a mismatch the pattern is shifted to the left depending on the value

of the character that precedes the current window in the bad-character shift table the

length of the shift is at least equal to one.

Suppose that P1 is aligned to Ts now, and we perform a pair-wise comparing

between text T and pattern P from right to left. Assume that the first mismatch occurs

when comparing character [y] with [z].

66

Since(y ≠ z), we move the pattern P to left such that the position j in the left

of P is equal T [n-m-1] We can shift the pattern at least (m-((m-1)-j)) positions to the

left.

Figure (4-11): quick search inverse

4.6. Working example:

In this study we will present an example to clarify our algorithm. In this

example we will explain the pre-processing phase for each side then we will scan for

the pattern from both side as parallel.

Given pattern (p): BAOBAB, m = 6

 Text (t): B E S S _ K N E W _ A B O U T _ B A O B A B S C G C A G B A O B A B G

A G A G T A C G, n = 43

 Text

 x y t

 Mismatch

x z t

 Pattern shift to left

x z t

67

1- Pre-processing phase:

Initially, the shift values are obtained in two algorithms BM and QS since the

pre-processing only be on the pattern; here we explain briefly the preprocessing for

each algorithm as the follow:

• Pre-processing phase from the left window (shift value):

Step 1: Fill in the bad-character shift table

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z -

1 2 6 6 6 6 6 6 6 6 6 6 6 6 3 6 6 6 6 6 6 6 6 6 6 6 6

Step 2: Fill in the good-suffix shift table

K Pattern Gs-shift

1 B A O B A B 2

2 B A O B A B 5

3 B A O B A B 5

4 B A O B A B 5

5 B A O B A B 5

Table (4-3): example of pre-processing phase from the left side

68

• Pre-processing phase from the right window:

Step1: Fill in the bad-character shift table

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z -

2 1 7 7 7 7 7 7 7 7 7 7 7 7 3 7 7 7 7 7 7 7 7 7 7 7 7

2- Searching phase:

The searching process for the pattern p is illustrated through the working

example as shown in Fig (4-13). At the beginning of the algorithm, in each window,

the character of the pattern is compared with the corresponding character of the text

while at the same time the right window also compared the character of the same

pattern with the corresponding character of the text from right to left. This primary

step will reduce the number of comparisons done later in the left and the right

windows. We will discuss searching by the left and right windows as the following

steps:

- Align the pattern against the beginning of the text

- Align the pattern against the end of the text

- Compare the corresponding characters right to left from left window:

- If no characters match, retrieve entry t1(c) from the bad-symbol table for the text’s

character C causing the mismatch and shift the pattern to the right by t1(c).

- If 0 < k < m characters are matched, retrieve entry t1(c) from the bad-symbol table

for the text’s character C causing the mismatch and entry d2(k) from the good- suffix

table and shift the pattern to the right by

d = max {d1, d2}

 where d1 = max {t1(c) - k, 1}.

69

- Compare the corresponding characters right to left from right window:

- If no characters match, retrieve entry t1(c) from the bad-symbol table for the text’s

character C causing the mismatch and shift the pattern to the right by t1(c)

First attempt: In the first attempt (Fig4-12a), we align the first sliding window with

the text from the left. In this case, a mismatch occurs between text character (k) and

pattern character (b), therefore we take the value of characters from the bad character

table in BM so the window is shifted to the right by 6.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B E S S - K N E W - A B O U T - B A O B A B S………….

B A O B A B

 d1 = t(K) = 6 B A O B A B Pattern after shift

(a)

Second attempt: In the second attempt (Fig4-13b), we align the second sliding

window with the text from the right. In this case, a mismatch occurs between text

character (G) and pattern character (B), therefore, we will rely on the value of the

character G at index of 42 to move the pattern to the right so we move the pattern to

the right 7 steps.

(b)

Third attempt: In the third attempt (Fig4-13c), after match it’s between character of B

and A the mismatch occurs from the left between text character (-) and pattern

character (B), therefore we take the maximum shift between two functions (bad-

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

C G C A G B A O B A B G A G A G T A C G

 B A O B A B B A O B A B

 Pattern after shift Bc [g] = 7

70

character, good-suffix) respectively, since, so the window is shifted to the right 5

steps.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B E S S - K N E W - A B O B A O B A B B A B S………….

d1 = t(_)-2 = 4

d2(2) = 5

 B A O B A B

 B A O B A B Pattern after shift

(c)

Fourth attempt: In the fourth attempt (Fig4-13d), a mismatch occurs from the right

between text character (A) and pattern character (D), therefore, we will rely on the

value of the character A at index of 35 to move the pattern to the right so we move the

pattern to the right 2 steps.

(d)

Fifth attempt: In the Fifth attempt (Fig4-13e), After match its between character of B

in the text and B in the pattern ,the mismatch occurs from the left between text

character (O) and pattern character (A), therefore we take the maximum shift between

two functions (bad-character, good-suffix) respectively, since, so the window is

shifted to the right 2 steps.

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

C G C A G B A O B A B G A G A G T A C G

 B A O B A B

Bc [a] = 2 B A O B A B Pattern after shift

71

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B E S S - K N E W - A B O B A O B A B B A B S………….

d1 = t(o)-1 = 2

d2(1) = 2

 B A O B A B

 B A O B A B Pattern after shift

(e)

Sixth attempt: In the Sixth attempt (Fig4-13f), and after compare all character the

pattern is found in the text from the right window at position 34(success matches).

(f)

Seventh attempt: In the seventh attempt (Fig4-13g), and after compare all character

the pattern is found in the text from the left window at position 13 (success matches).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B E S S - K N E W - A B O B A O B A B B A B S………….

 B A O B A B Pattern match I = 13

(g)

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

C G C A G B A O B A B G A G A G T A C G

 B A O B A B Pattern match I = 34

Chapter Five

73

Chapter five

Experimental Results

To assess the performance of my algorithm, we considered all the well-known

algorithms stated before for comparison with the BBQ algorithm. The algorithms are

compared with test cases and their corresponding results are discussed.

5.1. Environment

In the experiments we used a PC with Intel(R) Core(TM) i3 CPU m 370 @

2.40 GHz, with 3GB of RAM. The host operating system is windows 7 ultimate and

the operating system type of 32-bit. The source codes were compiled using the C#.

We are using of different types of texts and group of comparisons to prove the

following assumptions:

- The comparison of the characters, which are consumes most of the time in the

search process.

- Make a long jumps on the text reduces the comparisons and thus reduces the

time spent during the search, but it is not be if the pre-processing phase does

not exist to determine the length of these jumps.

- The pre-processing phase on the pattern does not provide more than the length

of the pattern (m) as information’s to the algorithms.

- Using the idea of search from both sides has led to reducing the time required

for the search process.

- Using the BM and QS algorithms, led to increase the speed of search because

both of the algorithms rely on analysis of pattern using the bad-character-table.

The speed of the algorithm was calculated by the following equation:

74

Speed = (number of examined of character * number of pattern) / time spent where:

- The number of character in the text that are examined = noy.

- The number of pattern = nox.

- Execution time = T.

We are note by the results in the table (5-1) there is a difference in the execution of

time and speed of algorithm between the BBQ algorithm, QS and BM.

5.2. Tool used:

C# (pronounced as see sharp) is a high-level language and multi-paradigm

programming language encompassing strong typing, imperative, declarative,

functional, procedural, object (class-based), and component-oriented programming

disciplines. It was developed by Microsoft within its .NET initiative; C# is one of the

programming languages designed for the Common Language Infrastructure. C# is

built on the syntax and semantics of C++, allowing C programmers to take advantage

of .NET and the common language runtime.

75

5.3. Tests with The plant genome (Arabidopsis thaliana)

“In this section we present several experiments comparing our algorithm to the

existing algorithms on different pattern sizes the below DNA sequence dataset has

been taken from IBSPC for testing IPMAFC algorithm. The DNA biological sequence

S of size n = 1024 and pattern P of different sizes are taken. Let S be the following

DNA sequence” (Devi, et al2013).

“AGAACGCAGAGACAAGGTTCTCATTGTGTCTCGCAATAGTGTTACCAACTCGGGT

GCCTATTGGCCTCCAAAAAAGGCTGTTCAACGCTCCAAGCTCGTGACCTCGTCACT

ACGACGGCGAGTAAGAACGCCGAGAAGGTAAGGGAACTAATGACGCGTGGTGAAT

CCTATGGGTTAGGATCGTGTCTACCCCAAATTCTTAATAAAAAACCTAGGACCCCCT

TCGACCTAGACTATCGTATTATGGACAAGCTTTAACTGTCGTACTGTGGAGGCTTCA

AAACGGAGGGACCAAAAAATTTGCTTCTAGCGTCAATGAAAAGAAGTCGGGTGTAT

GCCCCAATTCCTTGCTGCCCGGACGGCCAGGCTTATGTACAATCCACGCGGTACTA

CATCTTGTCTCTTATGTAGGGTTCAGTTCTTCGCGCAATCATAGCGGTACTTCATAA

TGGGACACAACGAATCGCGGCCGGATATCACATCTGCTCCTGTGATGGAATTGCTG

AATGCGCAGGTGTGAATACTGCGGCTCCATTCGTTTTGCCGTGTTGATCGGGAATG

CACCTCGGGGACTGTTCGATACGACCTGGGATTTGGCTATACTCCATTCCTCGCGA

GTTTTCGATTGCTCATTAGGCTTTGCGGTAAGTAAGTTCTGGCCACCCACTTCGAGA

AGTGAATGGCTGGCTCCTGAGCGCGTCCTCCGTACAATGAAGACCGGTCTCGCGCT

AAATTTCCCCCAGCTTGTACAATAGTCCAGTTTATTATCAAAGATGCGACAAATAAA

TTGATCAGCATAATCGAAGATTGCGGAGCATAAGTTTGGAAAACTGGGAGGTTGCC

AGAAAACTCCGCGCCT”.

We have implemented and tested the BBQ technique using C# and the

experimental Results for the BBQ algorithm for different pattern sizes which has been

chosen from the above DNA sequence, the execution time for (QS , BM and BBQ

algorithm), speed of these algorithms and the ratio compare with the BM is shown in

Table (5-1).

76

Table (5-1): the maximum number of running time and speed between three

algorithms to find all position of the pattern:

Pattern Size of

pattern

Q S time

(ms)

Speed

QS (ms)

BM time

(ms)

Speed

BM(ms)

 (BBQ)

algorithm

(ms)

Speed

BBQ

(ms)

Ratio

compared

with the BM

(ms)

CAT 3 0.398 21595.6 0.465 18481.5 0.384 22383.0 17%

AACG 4 0.397 21658.1 0.149 57552.0 0.125 68679.1 16%

AAGCG 5 0.189 45529.1 0.170 50719.5 0.011 773381.3 93%

AAGCGA 6 0.134 64337.5 0.079 108544.7 0.019 456960.7 76%

AAGCGA

A

7 0.005 1682974.6 0.235 36528.9 0.006 1341653.7 97%

AAAAAAG

G

8 0.079 108640.7 0.018 489192.3 0.009 925726.6 47%

AAGCGA

ACG

9 0.031 281413.6 0.142 60465.4 0.008 1068323.0 94%

CCTTTTC

CGG

10 0.002 3706896.6 0.087 98510.9 0.007 1207865.2 92%

AAGCGA

ACGAC

11 0.012 706075.5 0.132 65112.1 0.008 1140583.6 94%

AAGCGA

ACGACC

12 0.042 203694.9 0.045 189135.7 0.006 1329211.7 86%

77

 Figure (5-1): speed of the algorithms

Figure (5-2): running time of the algorithms

78

Table (5-2): the maximum number of running time and speed between three

algorithms to find the first occurrence of the pattern:

Pattern Size BM

 (*10
3
)

speed-BM QS (*10
3
) speed-QS BBQ

(*10
3
)

speed-BBQ

CAT 3 39.1 219.9488491 0.0034 2529411.765 0.0102 843137.2549

AACG 4 34.1 252.1994135 0.0248 346774.1935 0.0226 380530.9735

AAGCG 5 54 159.2592593 0.0185 464864.8649 0.0166 518072.2892

AAGCGA 6 30 286.6666667 0.0119 722689.0756 0.0089 966292.1348

AAGCGAA 7 6.93 1240.981241 0.0149 577181.2081 0.0153 562091.5033

AAAAAAGG 8 0.0072 1194444.444 0.0064 1343750

AAGCGAACG 9 30.3 283.8283828 0.0119 722689.0756 0.0145 593103.4483

CCTTTTCCGG 10 44.1 195.0113379 0.0171 502923.9766 0.0094 914893.617

AAGCGAACGA

C

11 7.94 1083.123426 0.0158 544303.7975 0.0115 747826.087

AAGCGAACGA

CC

12 23.8 361.3445378 0.0149 577181.2081 0.0153 562091.5033

79

Figure (5-3): speed of the algorithms

5.4. Protein Sequence

“The below Protein Sequence dataset has taken from NCBI site Full Sequence

in Fasta Format. (http://www.ncbi.nlm.nih.gov/protein/269849759?report=fasta)

(Devi, et al 2013).

“MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLS

PDDIEQWFTEDPGPDEAPRMPEAAPPVAPAPAAPTPAAPAPAPSWPL

SSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKMFCQLAKTC

PVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHERCSDSDG

80

LAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYN

YMCNSSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRR

TEEENLRKKGEPHHELPPGSTKRALPNNTSSSPQPKKKPLDGEYFTL

QIRGRERFEMFRELNEALELKDAQAGKEPGGSRAHSSHLKSKKGQST

SRHKKLMFKTEGPDSD”

Table (5-3): the maximum number of running time and speed between three

algorithms to find all occurrence of the pattern:

Pattern Size Occur BM

(ms)

speed –

BM(ms)

QS

(ms)

speed –QS

(ms)

BBQ

(ms)

speed-

BBQ(ms)

Ratio

P 1 45 2.520 1286.94 2.443 1286.94 0.290 10826 88%

LP 2 8 0.136 23151.69 0.055 57111.72 0.011 289236 92%

WKL 3 2 0.041 77134.45 0.008 416148.25 0.006 526633 85%

PPPG 4 2 0.026 122764.5 0.004 789949.75 0.005 646914 81%

PAPAA 5 2 0.030 105503.3 0.004 861369.86 0.008 419200 75%

HHELPP 6 2 0.048 65760.30 0.004 880672.27 0.005 660504 90%

GTAKSVT 7 2 0.033 94414.41 0.004 885633.80 0.006 566895 83%

QETFSDLWKLLPENN 15 2 0.021 153365.8 0.003 1107042.25 0.005 696346 78%

81

Figure (5-4): speed of the algorithms

Table (5-5) shows the experimental result of IPMAFC for the above sequence

S of 393 protein characters and different pattern sizes. The number of occurrences,

speed of these algorithms and the speed of the algorithm is shown in figure (5-6).

82

5.5. Tests with an English Text and a Random Pattern:

Let us assume, the given input text as,

“patternmatchingisoneofthebasicandmostimportantissuesi

ntheresearchareasofcomputersciencethemeaningofthepatte

rnmatchingisthatfindingtheoccurrencesofagivenpatterninth

egiventext”,

And the random patterns as “a”, “of”, “and”, “most”,, “pattern”, “matching”,

of sizes, 1, 2 …8, respectively. The results were compared with the BM and Quick

Search algorithm and were shown in table (5-6):

Table (5-4): the maximum number of running time and average between three

algorithms to find all occurrence of the pattern:

Pattern Size Occur QS(ms) BM(ms) Max

BBQ (ms)

Average

BBQ (ms)

A 1 14 0.02867 0.44192 0.0249 0.0219

OF 2 4 0.00643 0.00944 0.0065 0.0056

AND 3 2 0.00349 0.00516 0.0050 0.0042

MOST 4 2 0.00268 0.005011 0.0030 0.0025

PATTERN 7 2 0.003042 0.00512 0.0046 0.0036

MATCHING 8 2 0.002923 0.00535 0.0050 0.0040

83

Figure (5-5): comparing between the algorithms

Table (5-5): the maximum number of running time between three algorithms to find the first

occurrence of the pattern:

Pattern Size Occur QS(ms) BM(ms) BBQ(ms)

A 1 14 0.000004 0.0453 0.000003

OF 2 4 0.000004 0.0010 0.000004

AND 3 2 0.000002 0.0007 0.000001

MOST 4 2 0.000004 0.0012 0.000004

PATTERN 7 2 0.000005 0.0010 0.000004

MATCHING 8 2 0.000004 0.0011 0.000003

84

Figure (5-6): time to find the first occurrence for the algorithms

5.6. Test with different length of the text

Table (5-6): the maximum number of running time between BM algorithms and

our (BBQ) of algorithm to find all occurrences of the pattern:

TEXT (SIZE) Occur BM(ms) BBQ algorithm(ms)

1463 11 0.17 0.03

1872 16 0.50 0.05

2179 15 0.59 0.04

2527 16 0.61 0.05

5054 32 0.80 0.28

8778 60 1.50 0.66

85

Figure (5-7): Comparison between BM and BBQ for different lengths of text (all

occurrences)

Table (5-7): the maximum number of running time between BM algorithms and

our BBQ of algorithm to find the first occurrence of the pattern:

TEXT (SIZE) OCCURE BM(ms) BBQ(ms)

1463 11 0.0200680 0.0000016

1872 16 0.0305630 0.000002

2179 15 0.0011100 0.0000101

2527 16 0.0434000 0.0000044

5054 32 0.0668560 0.0000028

8778 60 0.0517160 0.0000016

86

Figure (5-8): Comparison between BM and BBQ for different lengths of text

(Finding First Occurrence)

Table (5-8): the maximum number of running time between BM algorithms and

our BBQ of algorithm, number of shifts and comparisons:

Algorithm Pattern no.comp no.shift Time(ms) First

appearance

BM 7 53 32 0.007580 0.001005

 8 41 27 0.005530 0.000980

12 93 89 0.009163 0.001046

BBQ 7 26 15 0.005700 0.000002

 8 21 14 0.004800 0.000005

12 38 38 0.006190 0.000003

87

Figure (5-9): comparing No. of shifts and Comparisons between BM and BBQ

Figure (5-10): comparing Total time and First appearance time between BM and

BBQ

88

5.7. The Asymptotic Analysis:

 The BBQ was proposed to divide the searching time of the BM by two, in

other words, by searching from both sides of the text simultaniusly the time of

searching a full length text should be theoritcially divided by two. Therfore, the

complexity of the BBQ can be given as follows:

A- Worst Case Time Complexity:

Worst case complexity is what matters when comparing algorithms when measuring

their performance. For the BM and QS, the worst case complexity is O(nm) where m

is the length of the pattern, and n is the length of the text, and since the BBQ -

theortically – uses half of the time the BM or the QS use, its worst case complexity

should be O(nm)/2, therefore, by neglecting the constant multiplier, the worst case

time complexity is O(nm)

B- Space Complexity:

Similar to space complexity of the QS and BM, which is O(m+|Σ|), where ∑ is the

alphabet. The BBQ’s space complexity is O(m+|Σ|) because the BBQ uses the extra

space that the BM uses for pre-processing phase (constructing the bad-character and

good-suffix tables) plus the extra space used by the QS algorithm for the same reason,

hence by neglecting the constant multiples, the space complexity of the BBQ is

O(m+|Σ|)

Chapter Six

90

Chapter six

Conclusion and Future Work

6.1. Conclusion

 The BBQ algorithm for pattern matching was proposed as a combination

between two efficient algorithms BM and QS. The BBQ utilizes the pre-processing

and searching mechanisms used by the BM and QS algorithms to search from both

sides of the text simultaneously. On the one hand, the BBQ searches bidirectional for

match in the text, on the other hand it utilizes BM and QS to implement the

bidirectional phase of the search process.

The BBQ was evaluated using 3 testing benchmarks, one for matching a

pattern with a DNA sequence, then matching a pattern with a protein sequence;

finally, the BBQ was tested to match a pattern with a normal text.

In terms of complexity, the BBQ algorithm has shown similar worst case time

complexity and space complexity to BM and QS, the worst case time complexity is

O(nm) and the space complexity is O(m+∑)

The concept of searching the text from both sides simultaneously gives the

BBQ algorithm a preference over other algorithms in the number of comparisons and

attempts especially if the pattern searched exists at the end of the text because when

the BM fails to find it quickly, the QS will find it immediately utilizing the

Bidirectional search property,

91

6.2. Recommendations and Future work

In future research, we intend to implement our approach on real parallel

processors to minimize the number of comparisons and attempts. Also we intend to

implement the idea of search from both sides on the pattern and text rather than on the

text alone.

92

References

 Boyer, Robert S., and J. Strother Moore. "A fast string searching algorithm."

Communications of the ACM 20.10 (1977): 762-772.

Choudhary, R., Rasool, A., & Khare, N. Variation of Boyer-Moore String Matching

Algorithm: A Comparative Analysis.

Crochemore, M., & Lecroq, T. (2008). A fast implementation of the Boyer-Moore

string matching algorithm. submitted for publication.

Devi, S. N., Rajagopalan, S. P., & Anuradha, V. (2013). Index Based Multiple Pattern

Matching Algorithm Using Frequent Character Count in Patterns. International

Journal, 3(5).

Diwate, M. R. B., & Alaspurkar, S. J. (2013). Study of Different Algorithms for

Pattern Matching. International Journal, 3(3).

Franek, F., Jennings, C. G., & Smyth, W. F. (2007). A simple fast hybrid pattern-

matching algorithm. Journal of Discrete Algorithms, 5(4), 682-695.

Hasan, A. A., & Rashid, N. A. A. (2012). Hash-Boyer-Moore-Horspool String

Matching Algorithm for Intrusion Detection System. International Proceedings of

Computer Science & Information Technology, 35.

Hasan, A. A., & Rashid, N. A. A. (2012). Hash-Boyer-Moore-Horspool String

Matching Algorithm for Intrusion Detection System. International Proceedings of

Computer Science & Information Technology, 35.

93

Hussain, I., Ali, I., Zubair, M., & Bibi, N. (2010, June). Fastest approach to exact

pattern matching. In Information and Emerging Technologies (ICIET), 2010

International Conference on (pp. 1-5). IEEE.

Hussain, I., Kazmi, S. Z. H., Khan, I. A., & Mehmood, R. Improved-Bidirectional

Exact Pattern Matching.

Itriq, M., Hudaib, A., Al-Anani, A., Al-Khalid, R., & Suleiman, D. (2012). Enhanced

Two Sliding Windows Algorithm For Pattern Matching (ETSW). Journal of

American Science, 8(5).

 Karp, R. M., & Rabin, M. O. (1987). Efficient randomized pattern-matching

algorithms. IBM Journal of Research and Development, 31(2), 249-260.

Moh’d Mhashi, M., & Alwakeel, M. (2010). New Enhanced Exact String Searching

Algorithm. IJCSNS, 10(4), 193.

 Papanicolau, G., A. Bensoussan, and J-L. Lions. Asymptotic analysis for periodic

structures. Elsevier, 1978.

Pendlimarri, D., & Petlu, P. B. B. (2010). Novel Pattern Matching Algorithm for

Single Pattern Matching. International Journal on Computer Science & Engineering.

 Pendlimarri, D., Petlu, P., & Satrasala, R. (2011). Novel Devaki-Paul Algorithm for

Multiple Pattern Matching. International Journal of Computer Applications, 13(3), 37-

42.

Rasool, A., & Khare, N. (2013). Performance Improvement of BMH and BMHS

using PDJ (Possible Double Jump) and MValue (Match Value). International Journal

of Computer Applications, 72.

Sedgewick, R., & Flajolet, P. (2013). An introduction to the analysis of algorithms.

Addison-Wesley.

94

 Senapati, K. K., Adhikary, D. D., & Sahoo, G. (2012). An Application of Pattern

Matching for Motif Identification. International Journal of Biometrics and

Bioinformatics (IJBB), 6(5), 135.

Suleiman, D., Hudaib, A., Al-Anani, A., Al-Khalid, R., & Itriq, M. (2013). ERS-A

Algorithm for Pattern Matching. Middle East Journal of Scientific Research, 15(7).

 Xian-feng, H., Yu-bao, Y., & Lu, X. (2010, August). Hybrid pattern-matching

algorithm based on BM-KMP algorithm. In Advanced Computer Theory and

Engineering (ICACTE), 2010 3rd International Conference on (Vol. 5, pp. V5-310).

IEEE.

Yuan, J., Yang, J., & Ding, S. (2012, October). An Improved Pattern Matching

Algorithm Based on BMHS. In Distributed Computing and Applications to Business,

Engineering & Science (DCABES), 2012 11th International Symposium on (pp. 441-

445). IEEE.

Yuan, J., Zheng, J., & Ding, S. (2010, April). An Improved Pattern Matching

Algorithm. In Intelligent Information Technology and Security Informatics (IITSI),

2010 Third International Symposium on (pp. 599-603). IEEE.

95

Appendices

Appendix A:

Programming the algorithm of BM using C++

Void preBmBc(CHAR * X , INT m ,INT BmBc []) {
IntI ;
for (i=0 ; I < ASIZE ;++I)
bmBc[i] = m ;

for (i= 0 ; I < m-1 ; ++I)

bmBc[x[i]] = m-i-1 ;
}

)Voidsuffixes)char *x ,int m ,int *suff
{

Int f, g,I;

Suff [m-1] = m ;

G = m-1 ;
For (I =m-2 ; i>=0 ; --I) {

if (i>g &&suff[i+m-1-f]<i-g)
suff[i]=suff[i+m-1-f];

else {

if (i<g)

g=I;

f=i

while (g>=0 && x[g]== x[g+m-1-f])

--g;

Suff[i]=f-g;

 }

 }

}

Void preBmGs(char *x, int m, intbmGs[]) {

Int I, j, suff[XSIZE];

Suffixes(x, m, suff);

for (i=0; i<m; ++i)

bmGs[i]=m;

96

j=0;

for (i=m-1;i>=-1; --1)

if (i==-1 ||suff[i] ==I +1)

for (; j <m-1-I; ++j)

if (bmGs[j] ==m)

bmGs[j] = m-1-I;

for (i=0; i<=m-2; ++i)

bmGs[m-1-suff[i]] = m-1-I;

}

Void BM(char *x, int m, char *y, int n) {

int I, j, bmGs[XSIZE], bmBc[ASIZE];

/* preprocessing */

preBmGs(x, m, bmGs);

preBmBc(x, m, bmBc);
/* searching */

J=0;

While (j<= n-m) {

for (i=m-1;i>=0 && x[i] == y[i+j]; --i);

if (i<0) {

OUTPUT(j);
J+=bmGs[0];

}

else
J+= MAX(bmGS[i], bmBc[y[i+j]]-m+1+i);}}

Appendix B

Programming the algorithm of QS using C++

Void preQsBc(char *x, int m, intqsBc[]) {

Int I;

for (i=0; i<ASIZE; ++i)

qsBc[i]=m+1;

for (i=0; i<m; ++i)

qsBc[x[i]]=m-I;

}

Void QS(char *x, int m, char *y, int n) {

Intj ,qsBc[ASIZE];

/* preprocessing */

preQsBc(x, m, qsBc);

97

/* Searching */

J=0;

While (j<=n-m) {

If (memcmp(x, y+j, m)==0)

OUTPUT(j);

j+=qsBc[y[j+m]]; /*shift*/

 }

98

Appendix d

The following figure represents the main screen of the program shows where the

search process from both sides by the division of the text .

99

The following figure represents the partitioning process that occurs during the search,

as shown in shades of red and blue and the program gives a set of specific information

such as the number of comparisons and the amount of displacement.

