hougill §jaiJldie gl 2
MIDDLE EAST UNIVERSITY

A New Technique to Protect the Ownership of Images in
Social Network using Encryption and Steganography
Algorithms

il j) i aladiialy Lo L) Gl A) guall Aasle dlead Sayan 4485
Cila glaal) ¢l84) g padilil)

Prepared by

Imad Shafi Khuffash

Supervisor

Dr. Hebah H. O. Nasereddin

A Thesis Submitted in Partial Fulfillment of the Requirements for Master Degree in
Computer Information System

Department of Computer Information System
Faculty of Information Technology
Middle East University
Amman- Jordan

January, 2016

Authorization Statement

I, Imad Shafi Wadi Khuffash, authorize the Middle East University to supply a
copy of my thesis to libraries, establishments or individuals upon their request.

Name :Imad Shafi Wadi Khuffash
Date s SLLL20L%...... .

Signature: 5 AN SR

Middle East University

Examination Committee Decision

This is to certify that the thesis entitled ""A New Technique to Protect
the Ownership of Images in Social Networks using Encryption and
Steganography Algorithms" was successfully defended and approved in

2016.

Examination Committee Members Signature

Dr. Hebah H. O. Nasereddin (Supervisor & Member)

Middle East University (MEU)

Dr. Mudhafar Al-Jarrah (Chairman) R
Assistant Professor, Department of Computer Science &\
Middle East University (MEU)

Dr. Hisham Abu-Saymeh (External Member)

Associate Professor.

Applied Science University

Acknowledgment

My special appreciation and thanks are to my supervisor Professor. Hebah H. O. Nasereddin
who has been a tremendous mentor for me. | would like to thank him for supervising my
research and for allowing me to grow as a researcher. His comments, guidance, and advice on

my research have been helpful.

Special thanks also are given to my parents. Words cannot express how grateful I am to my

parents for all the sacrifices that they have made on my behalf.

Dedication

To my father and my mother
To my brothers and my sister
To my friends

No words can make me express my gratitude and love.

To the martyrs' souls of Palestine.

PAKY- Y

auall dia a8 e b
& eyl ey
)
b Aally 00 Bale daad) |,] Lo 5 ST L e)
gl agaa Y diaa g 8 8 andiS) Laa g g3 (4 ()

SQAJ\L,.\MLQMMJGL}AUJ\
a-.\:\,\ﬂ‘gd

(Baual s (5 5a1) n by s () Ady sl (o gl g 4538 0 5 jaldall o181)

Cr) clnle Bdla g Ule 5 cra) cala¥)) daall g S5 Lale e)
Gkl Lile cuma Ladie Uadla) i
Call el Cpan da 3y giSAl)
:Ms@ﬁﬁ‘&m&‘dedéﬂ‘ﬁeL@dﬂgﬂ‘
oAl Gl alaa e g sladd ¢ pladd) (A pudallg e anl) 8 cigald) o)

\

VI

ABSTRACT

A New Technique to Protect the Ownership of Images in Social
Network using Encryption and Steganography Algorithms

Prepared By:
Imad Shafi Wadi Khuffash
Supervised By:
Dr. Hebah H. O. Nasereddin

Steganography is the science of data embedding, through embedding data in other
multimedia in such that no one could know the embedded data, thus hiding the existence of
the secret data, usually ,steganography used to embed data into multimedia (images, audio
or video), one of the used algorithm in steganography is the Least significant bit (LSB) .which
sometimes can be detected by robbers, where this will affect privacy of the hidden data, thus,
this thesis will enhance the security of the embedding data by using LSB with secure hash

function family (SHA) and advanced encryption standard (AES) which is known as Rijndael.

Secure Hash Algorithm (SHA) Advance encryption standard (AES) will be used to enhance the
privacy of images in online social network (OSN), The implemented technique includes two
stages, signature encryption and embedding; in signature encryption the (SHA / AES)
algorithm will encrypt signature of the user to obtain encrypted value, while embedding will
embed the encrypted value into the image, that’s how the technique will guarantee that no
signed images could be re-upload by other users

the results of the proposed methods have been compared with other study, the results
indicates that the noise caused by embedding the encrypted signature is too small, this can
be viewed in higher PSNR values and lower RMSE, this observation is caused by the fact that

lower significant of bits are needed to be replaced in order to hide the encrypted signature.

Keywords: Steganography, Least Significant Bit, Secure Hash Algorithm, Advanced

Encryption Standard, Online Social Network.

Vil

uidlall
il)) A aladiinly Lo L) Gl A) guall 4asle dlead Sayan 4485
e glaal) o84 g pudilil)

UREA a9 aaad dlae ; dlae)

el palh ldie Cpas doa 2; al)

(sl) geall | gaall cildle) adwiall Jailus ol cilile Jals il £AY steganography s
Ll I Jgea sl o5 28 EYAN any A S, s sed) (LSB 1l J8Y) dall) daalsa iai s
£AY 3aaa A8 e) 81 Al cda g kY1 s () UL s3] dpa padll g 5% Laa | Blis)
, sl pals Als je) Ol ils je Cenatio 3aaal) AN) gall JA12 3 pall Calia a6
&8sl (3) Al ya g

&8s il (SHA) Axa)losa 5l (AES) dae)_l s aladinl b (a5l 5all) SV dls el (8
e laia ¥ Jual sill CS0E 85) gaal) 481 LAY ardin 3 jedie dad Lo Jpanll s puall Calia
sl (3,5 (LSB 1li JBY) dadll) daa)58 aladial i (e sl (3laf) Al dls yal) 8 Laiy
5y sall JAla

Laxdtuall geall o Caida o e J geandl ziliill ¢ jelal Cua | Hiil A 3 ge il A3 e
2205 5 Lt lall(PSNR) JI gl I (e SlId i) (S | 5y sl J2a aiall w6l (3ld) das
Gl Adee 8 (180 JBY) Aall) el 58 pladind o) A8 I as s 108y ALY (RMSE) JI
L DSl e 8l Al 5 i gl Cam o Jumdl) il e geaall Ja1s lild)

L eelia) daal il cilSud)l JEY) dadll | bl plia) ; dpalidall i)

Table of content

claaY) Vv
Dedication VI
Abstract VII
Ao) pmdle VI
List of Figures XI
List of Tables X1
List of Abbreviations XM
Chapter one :Introduction 1
1.1 Introduction 1
1.2 Problem Statement 6
1.3 Objectives 7
1.4 Questions 7
1.5 Problem Motivation 7
Chapter two: Literature Review 8
Chapter three : Methodology 15
3.1 User Registration 17
3.2 Signature Creation 17
3.2.1 Using SHA-2 (256) 18
3.2.2 Using (AES 256 CBC) 19
3.3 Image Uploading and Date Embedding 20
3.4 Signature Embedding 20
3.5 Others Technique for More Secure 22
3.5.1 Embedding Into Pixels 22
3.5.2 (x_Destandy_ Dest) Random Generation 24
3.5.3 Reduce Noise Technique 24
3.6 In Case Of Re-Uploading the Embedding Image(Protected Image) 26
3.6.1 Hash Algorithm Method 26

3.6.2 Rijndeal Algorithm Method

27

Chapter 4 : Experimental Results 28
4.1 Image Quality Test 28
4.1.1 Standard Deviation (SD) 28
4.1.2 Root Mean Squared Error (RMSE) 29
4.1.3 Peak Signal to Noise Ratio (PSNR) 29
4.2- Quality Test on The Signed Images 30
4.3 Histograms for Proposed Method 34
4.4 Performance Test 36
Chapter 5 : Conclusion and Future Work 38
References 40
Appendix A : Software Code 44

List of Figures

Xl

Figure 1 Least Significant Bit 5
Figure 2 Description of Relationships in (OSN) 9
Figure 3 Main Process of Facetrust Architecture 10
Figure 4 Process of Information Access 11
Figure 5 the Proposed System Architecture for Yuan 12
Figure 6 Faceclock Architecture 13
Figure 7 Percentage of Access Information for Nagy Sample 14
Figure 8 Flow Chart of the Used Technique 16
Figure 9 Registration Interface 17
Figure 10 Code for Signature Creation Using Sha2 18
Figure 11 Code for Signature Creation Using Aes 19
Figure 12 Using X_Dest to Determine the Destination in X-Axis. 21
Figure 13 Using Y_Dest to Determine the Unused Rows Between Each 2- 21
Used Rows.
Figure 14 Code for Generating X_Dest and Y_Dest 22
Figure 15 Pixel Embedding Technique 23
Figure 16 Code for Embedding Into the 2nd and 3rd (Lsb) 23
Figure 17 (Privacy-Warning) Window in Case of Property Violation 26
Figure 18 Baboon Image Before and After Embedding 30
Figure 19 Pappers Image Before and After Embedding 31
Figure 20 Lena Image Before and After Embedding 31
Figure 21 Histogram for Baboon Signed Image Using the Proposed 34
Method.
Figure 22 Histogram for Ceiling Signed Image Using the Proposed 35
Method.
Figure 23 Histogram for Peppers Signed Image Using the Proposed 36

Method

Table 1
Table 2
Table 3
Table 4

Table 5
Table 6
Table 7
Table 8

List of Tables

x_Dest , y_Dest and Generation Time
Cases of Replacing 0 with 1

Cases of Replacing 1 with 0

Retrieve Data According to Generation
Time

Standard Deviation of the Signed Images
RMSE Results

PSNR Results

Uploading Time Results

24
25
25
26

33
33
37

Xl

Abbreviations

List of Abbreviations

Meaning

X

LSB
MD5
OSN
SHA
AES
VIP

Least Significant Bit
Merkle—-Damgard Hash Function
Online Social Network

Secure Hash Algorithm
Advanced Encryption Standard
Very Important Person

CHAPTER ONE

Introduction

1.1 Introduction

Online Social networks (OSN)s such as MySpace, Facebook, Cyworld, and Bebo
have attracted many users who use these sites into their daily events , which offers various

technological and support a wide range fields of interests and activities. (Boyd et al., 2007)

Millions of users worldwide share, everyday, astronomical amounts of their private

information through blogs, wikis and OSNs (Squicciarini et al.2010)

Therefore, web communities, companies and governments try to provide more
security and privacy and adjust these services by taking the advantages of technological
evolution in big data storage, cloud computing, semantic web, mobile services, which

facilitates the design and development of new social web services. (Patsakis et al., 2014).

Nowadays, technology enables us to use the Internet as a best communication tool.
Users can transfer secret data over the Internet as part of the proper communication, but we
cannot ignore the danger of hackers and sniphers if the secret data are sent unshielded through
the internet. (Niimi et al., 1999).

The problem of authentication of published information and who can see and share it
and the risk of the unwanted malicious users represents a real privacy problem for the user,

therefore OSNSs try to manage users’ privacy by using “privacy settings” for the services in

many cases, but in fact new violations ranging from identity theft up to personal information
exposure are disclosed daily with the ease of re-uploading and re-publishing a user’s images,

without informing the real owner. (Patsakis et al., 2014).

Ownership for those who use OSNs, should not be considered in terms of copyright,
but rather it should be considered as a fundamental right of user privacy, some users think
that by uploading their own photos on OSNs, they can allowing access only to the users that
they want, in fact the uploaded images are part of their privacy and users should be able to
selectively introduce themselves to others or not. (Patsakis et al., 2014).

Information could be provided with more security by using cryptography or
steganography, Cryptography focuses on the encoding of the information, while the presence
of information is obvious on the other side, and steganography aims to hide the presence of
the information. (Por et al., 2008).

e Steganography

The goal of steganography is to hide secret text inside other files, usually multimedia.
The secret message will be embedded inside the target file, in other words the sender writes

a message and conceals a secret message on the same envelope. (Niimi et al., 1999).

In ancient ages they used tricks to hide their information, such as using invisible inks,
tiny pin punctures on target characters, pencil marks on typewritten characters, grilles which

cover most of the message except for a few characters, and so on. (BrahmaTeja et al., 2012).

Steganography is a term of Greek origin which means ‘concealed writing’ from the
Greek words steganos (stegano’) which mean ‘protected’, and graphein (grawein) meaning

‘to write’, Nowadays, using modern computers the encrypted letter can be decrypted more

easily than before, the embedded message which is hidden with steganography might be
discovered and read it easily. (Kim et al., 2010)

Nowadays both cryptography and steganography are mostly related to electronic data
(multimedia), while in the past steganography was presented using invisible ink that is still
used rarely, while the message being invisible with a naked eye, using chemical materials to
disclose color upon special lighting or chemical equation , but the limitation of using
chemical invisible ink that is all kinds of invisible ink could be discovered with application

of modern techniques (Kishimura et al., 2005).

e Hash Functions

Hash function is a special kind of one-way function which may be categorized into
two types: un-keyed and keyed hash function, the un-keyed hash function may be also simply

classified as a keyed hash function if it uses one secret key. (Xiao et al., 2005)

The MD5 algorithm was developed by Ronald Rivest at MIT University, by taking a
message input of undefined lengths and producing a 128-bit hash code value, it has been one
of the most widely-used hash algorithms, but it has been discovered that there is a security
threat in the MD5 algorithm. (Walia et al., 2014)

e MD5 Hash Function

The hash function MD5, which have been designed by Ronald Rivest in 1992, is a
strengthened version of MD4, although some weakness has been found by B. den Boer, A.
Bosselaers and H. Dobbertin since its publication. MD5 was widely used in cryptography
field, not too long ago it was used in such fields like digital signatures, data integrity, user
authentication, key agreement, e -cash , protocols, and also in commercial security systems
and products (Liang et al., 2007)

The MD5 algorithm is the next generation of the MD4 hash algorithm; its operation
and performance is slower than MD4, but it offers more security, because MD4 focuses on

speed rather security (Karamjeet et al., 2014).

e Secure Hash Algorithm (SHA)

The Secure Hash Algorithm (SHA) is called secure because it is theoretically
impossible to find the encrypted message which it’s origin to the parent message, or to find
different messages which produce the same encrypted hash value ,and any tiny change to a

message will produce a totally different hash value in return (Eastlake et al., 2001).

Among all the hash functions there is the SHA type, which shares the same functional
structure with some other types in the internal operations, message block size, word size,
message size, number of security bits and message hash size. They are all mostly used in the
same way and use one-way functions that input a value and output a hashed value (Badillo
etal., 2012).

¢ Rijndeal Algorithm

In 2000 the US National Institute of Standards and Technology selected the Rijndael
algorithm as a new Advanced Encryption Standard (AES). Rijndael is a cipher that offers a
combination of security, performance, efficiency, implementability and flexibility. It has

already attained considerable popularity and acceptance.

All operations in Rijndael are defined in terms of arithmetic. Apart from Rijndael,
there are several other instances of the use of Galois Field arithmetic in cryptography and

coding theory. (Daemen et al.,2002)

¢ Least Significant Bit

The simplest method that is used in steganography is the ‘least significant bit” (LSB)
technique, or LSB embedding. The image consists of a matrix of pixels and each pixel is
usually represented by 3 bytes with each byte of an image representing a color. The bits on
the right do not represent too much of hue the first, “therefore, two bytes that only differ in
the last few bits can represent two colors that are virtually indistinguishable to the human
eye”. For example, 00100100 and 00100101 are theoretically two different color, and by
changing the last bit it is very hard for the human eye to notice any change in the color. LSB
embedding alters these last bits by hiding a message within them as shown in figure 1. (Liu
et al., 2008)

Figure 1: Represent of Least Significant Bit

Least significant bit (LSB) insertion is a common, simple approach to embed information in
a cover image on the image domain. The least significant bit (in other words, the 8th bit) of
some or all of the bytes inside an image is changed to a bit of the secret message. When using
a 24-bit image, a bit of each of the red, green and blue (RGB) color components can be used,
since they 8

are each represented by a byte. In other words, one can store 3 bits in each pixel. An 800 x
600 pixel image, can thus store a total amount of 1,440,000 bits or 180,000 bytes of
embedded data. For example a grid for 3 pixels of a 24-bit image can be as follows: (Falih et
al., 2013)

(00101101 00011100 11011100)
(10100110 11000100 00001100)

(11010010 10101101 01100011)

1.2 Problem Statement:

Many people who use the OSN are photographers or designers that consider the
(OSN) as a place where they can share their fantasy without any consideration of the owner’s
privacy. Some people try to misuse, download and re-upload images of others, finally these

images are shared around the (OSN) without the real owner being identified.

This research will propose 2 different new methods to protect the images’ privacy for
users across (OSN) using steganography to store a unique signature encrypted by hash
algorithm or Rijndael algorithm, taking into consideration that hash algorithm or Rijndael
algorithm is required to encrypt the user’s signature and then embed that signature inside the

image.

1.3 Objectives

The main objective of this research is to create two different new methods that use
encrypted signatures using hash algorithm or Rijndael algorithm, after embedding the
signature inside the image by using (LSB). This technique will detect and recognize the
privacy of the uploaded image, embed the signature inside an image, and detect and recognize
if any uploaded image has privacy or not. The technique will reject uploading the image if it

has an assigned privacy.

1.4 Questions

1. Can the proposed technique provide more privacy for images users in (OSN) s?
2. What is the effect of using hash algorithm in this technique?
3. What is the effect of using Rijndeal algorithm in this technique?

4. Will the proposed technique prevent sniffers from re-uploading the protected images?

1.5 Problem Motivation

The research addresses the images privacy in (OSN) using steganography technique,
since steganography is an old technique that is sometimes used to protect privacy in
multimedia by embedding a signature to verify the ownership.

Until now research has shown that there are no adopted techniques by (OSN)s that
use both steganography and encrypted signature to protect the image privacy, so images will

be the main concern of this research.

The new technique aspires to minimize users’ privacy violation through automated
procedures ,the novelty of the proposed scheme is the ability to enforce a user’s privacy
policies across the (OSN) without using a third party even if the technique is not applied to
all (OSN) s.

CHAPTER TWO

Literature Review

This section describes some previous works in privacy in (ONS) s. Many techniques

and studies have been produced to improve the protection of images privacy

The first related work, by Boyd et al. (2013), describes the architecture and the
relationship in (OSN)s. This architecture is depicted as a line graph among users in Figure 2,
which shows the relationships among users (A, B, C. D, E. F. G, and H) in an OSN
architecture. The relationships between users are direct connections among users in the
graph, (A, B). (B. C), and (G. D). Non-friend relationships are shown as indirect connections
to a user in the graph. Thus, non-friend relationships are connected through a friend. (B. E:
B—A—E) and (D. C: D—B—C)

The research shows that it is possible to express the overall (OSN) architecture via
users as a single chart, and it is also possible to analyze the relationships between users based

on the distance of separation in the object.

Figure 2: description of relationships in (OSN)

Patsakis et al. (2014) suggest an automated procedure that guarantees the copyright
of multimedia for users across multiple (OSNs). (OSN) will not interact with any solution to
protect the copyright of users” multimedia because, like any other company its’ focus is to
have a bigger share in the market and rules and constraints will encourage customers switch
to other companies. The idea of redesigning all the (OSN) from scratch is bad idea, but all
(OSN) should cooperate with each other to avoid the sniphing of multimedia and protect the
copy right of their users. (OSN) should avoid using external players like governmental rules.
The solution is to invent an option for the users that can be used to protect their multimedia
that they share on (OSN), for example a technique which uses a watermark with encryption
algorithm on the multimedia. This watermark would later be published on other (OSN) so
that no one can re-upload that content on any (OSN). While Shilbayeh et al., (2014) propose
a new secure architecture to find an effective solution to reduce fake pages and possibility of

recognizing VIP pages on (OSN)s by the logo method which appears inside the profile photo.

10

This is limited to serve only the VIPs which have an effective website, apply this on
Facebook, which are the most famous social-networking sites and also flexible to use a third
party. Service on the FaceTrust will reports the number of fans who joined to VIPs pages that
use the FaceTrust application, but the researcher suggests to depend on a third party. Figure

3 represents the main processes of FaceTrust.

e

\.,-:
r—r"f-
Il
=

:I! :

FaceTrust | ~
S 0L+
v FACe iU =!' session .
) d secret
=80 _
UserVIPs Actrvation Databoes

Figure 3: the main process of Facetrust architecture

Jang et al., (2013) proposed a secure tickets generator using a secure hash function.
Both the Information Creator and the Information Holder validate a ticket. The users with
legible tickets are allowed to access information. The Information Holders and Information
Creator on both sides of the ticket validation process were configured to control access to
different Information Creators and Information Holders. This prevented information leakage
via authorized users. This thesis will not suggest the use of an embedded signature for any

information

Figure 4 represents the process of information access.

11

User C read

information requests

NO

Friend ? {Reje(tion of request]

b

NO

Ticket
ificati

-
-
-

- -
-

{ Count, master hash ‘l
)

oo _=2HMH) ___) e

Figure 4: the process of information access

Yuan et al, (2014) implement a privacy-preserving image-centric social discovery
system to expand user’s friends with common interests securely, by deploying a system
which uses the ‘cloud’ as an image storage back end, the system consists of secure and
compact index to enable fast and scalable searches over millions of user image profiles, the
evaluation demonstrates that the system is practical and efficient under a huge image dataset

with 1 million users.

Figure 5 represents the proposed system architecture, but this implementation will

prevent others from previewing other images and used a database and index.

12

Users

% u ﬁl. Encrypted images {Img} _ e

Storage: encrypted
images, profiles

Secure discovery
via secure index |

o
Off-premise cloud back end

Build secure index [,
encrypt profile {§*}

R————

On-premise social service front end

Figure 5: the Proposed System Architecture for Yuan et al, (2014)

Luo et al (2009) Developed FaceClock, which is a solution to provide more protection
for users privacy in (OSN) s, it should be shielded from the social networking site. By
allowing to the user to be selective of which information he wants to safeguard and which to
leave as it was, based on his own judgment of the value of privacy, the implementation can
be general enough to be applied to other (OSN)s. Using digital rights managements (DRM)

in OSN, figure 6 represents the architecture of FaceClock.

13

2 fake information

/ S
// Publisher
/ b ~~ Facebook
keys | 1 encrypted reai"'\ " fake information
information - 4
\ F e
\ P . 9
\ rd “\\
X ‘N/ \\
k4 3 er]crypted_real
T e information Third party

Figure 6 :FaceClock Architicture

Qin-long et al., (2014) said that the best solution to provide more secure is to use
cipher text policy attribute-based encryption (CP-ABE) instead of the regular cryptography.
Considering that the security techniques of (OSN) have no credibility, (OSN) should be only
a mediator and a third party should handle the security and privacy.

The object of Nagy et al., (2009) work is to analyze social networks as a modern
communication medium that can be misused by technique of social engineering. By taking a
sample of people from Europe and America, one of the conclusions from the sample is that
there is no coherence between the amount of information provided in the profile account and
number of friends to the success of gain new contacts. There is also another finding which
shows that it is easier to gain contacts with women than to make contact with men in the
(OSN). But this finding is not a general conclusion as they tested only a small sample. The

solution of privacy and security for the user by increase the awareness of using the (OSN)

14

what the user can share and what should not share. Figure 7 show the percentage of the
revealed data among the sample.

Requested Successfulness Successfulness
information (USA) (]—:um[:'ﬁ‘.}1
Birthday 72%/89% (day and month) 84%
Residence 22% T8%
Phone number 28% 23%
E-mail 04% 2%
IM contact T8% 26%
Career 44% 87%
Education 100% 87%

T Results from the study of Sophos, which tested Facebook users
behaviour in Europe

Figure 7: the Percentage of Access Information for Nagy Sample

The researchers R. Gross et. al., (2005) present a survey of more than 4,000 Carnegie
Mellon University Facebook users, the researchers have quantified individuals’ willingness
to provide large amounts of personal information in an online social network, and show how
unconcerned social network users appear in regards to privacy risks: “while personal data is
generously provided, limiting privacy preferences are hardly used; only a small number of
members change the default privacy preferences, which are set to maximize the visibility of
users pro- files.”

According to the researcher, the information that users have provide online exposes
users to various physical and cyber risks, and makes it extremely easy for third parties to
create overall reports of their behavior.

15

CHAPTER THREE

Methodology

This thesis introduces a new technique to protect the privacy of images in online
social networks by using signature encryption and LSB, The new technique will use a user
signature which will be encrypted by either (SHA 2 algorithm or AES algorithm). This
encrypted signature value will be distributed in the target image according to the uploading

time if the owner wants to apply privacy on his uploaded images.

In case of any re-uploading by others, the technique will stop and prevent the

operation of re-uploading.

The research will present two methods

. Using Hash algorithm (SHA2 256 bit) which is used in Facebook and Snapchat
. Using Rijndeal algorithm (AES 256-CBC bit) which is used in Hotmail

Figure 8 represent the flow chart of the used technique

if the signature exist
in the database

it means the image belongs to

someone else

retrieve
(x_Dest and y_Dest) that have been
created in that period

yes

A

according to x_Dest and y_Dest , retrieve
the encrypted signature from the image

is the retrieved
encrypted signature exist
in the database ?

uploaded fail

no

user regesteration

v

create a unique
signature for the user

v

signature will be
encrypted using
SHA-2(256)

v

store original
signature and the
encrypted signature
in database

v

user chose an image to upload

retrieve data from the first 64 pixel to
create a (date and time)formula

is the retrieved
date and time are exist within existing store
period ??

no

y

current date and time will turned to binary

and stored at the begging of the image

he encrypted owner signatures will turn to
binary and stored according to x_Dest
and y_Dest in the image

uploaded successful

end

16

17

Figure 8: Flow Chart of the Used Technique

The main steps of the new technique are demonstrated below:
3.1- User Registration

Like any (OSN), registration is compulsory, the user will provide the
(OSN) with his personal information in addition to a unique signature chosen by

the user, as shown in figure 9

Full Name

Sex @ Female @ Male

signature

Password
Mobile Number Optional)

Email

| accept. Create my account.

Figure 9: Registration Interface

3.2- Signature Creation

After registration, the user signature will be encrypted using either
SHA-2(256) algorithm or AES (256-CBC) algorithm, the signature,
which will be embedded into the target image, will be used to apply
privacy on the image.

18

3.2.1- Using SHA-2 (256)

The signature will be encrypted using SHA-2(256 bit) algorithm

and a fixed-length of 64 hexadecimal letters will be created.

Example: encrypt user signature where the signature is “hebah
nasereddin”

595ad0ae2afObfd0533aad9e48f5¢1d7c7f71d951b800c5d8f3410bf0ab31b35

Both (original signature) and (fixed-length encrypted signature)
will be stored in the database, figure 10 represent the process of

signature creation using SHA256.

{// generate sha2 and save the ecrypted signature
var user = en.Users.FirstOrDefault(x =» x.UserName == User.Identity.Name});
byte[] data = new byte[User.Identity.Name.Length];

5HA256 sha = SHA256Managed.Create();
byte[] shl = sha.ComputeHash(data);

var value = Convert.ToBase®d45tring(shl);
if (savelt == true)

1

user.Hashsignature = value;
en.SaveChanges();

¥

return value;

Figure 10 :Code for Signature Creation Using SHA2

19

3.2.2- Using (AES 256 CBC)

After registration, the user signature will be encrypted using Rijndeal (AES-256-

CBC) algorithm, a fixed-length of 64 letter will be created.

Example: encrypt user signature where the signature is “imad” and the AES key is

“Khuffash”

The result is : KPektxOSpIfFKkCSdxv7hVztnu+usG6IXyDglCKd4edl=

The AES key was chosen to be “MEU” which will be encrypted using SHA256 to

generate encrypted value which will be used to encrypt and decrypt the owner signature, then,

the encrypted signature will be embedded into the image.

Figure 11 show the process of creating signature using AES encryption algorithm .

private string getAESHashData(string original, bool saveIt = false)

{

using (Aes myhes = Aes.Create())

1

byte[] bytesToBeEncrypted = Encoding. UTF3.GetBytes(original);// string to byte
byte[] passwordBytes = Encoding.UTFB.GetBytes("MEU™);

// Hash the password with SHA256

passwordBytes = SHA256.Create().ComputeHash(passwordBytes);

byte[] bytesEncrypted = AES_Encrypt(bytesToBeEncrypted, passwordBytes);

string result = Convert.ToBaseB45tring(bytesEncrypted);
if (savelt == true)
{
var user = en.Users.Where(x => x.UserName == User.Identity.Name).FirstOrDefault();

user.EASHash = result;
en.SaveChanges();

}

return result;

Figure 11:Code for Signature Creation Using AES

20

3.3- Image Uploading and Date Embedding

Like any (OSN), the user can upload any image on his profile.
Date, time and encrypted signature are important inputs for image uploading,
which will be discussed below.
Whilst uploading, the image will be split into series of pixels (x columns and
y rows), and the date, time and encrypted signature will be embedded into the

image.

e Date and Time Embedding for Both Methods:
The uploading date and time (of the image) will be transferred into binary formula.

Example: if the user uploads the image at 15/10/24; 23:17:03, the date and time will be

transferred as follows

15/10/24; 23:17:03=> 00001111 00001010 00011000 00010111 00010001 00000011
The technique will reserve the first row of the image to store the uploading time and

date (of the image) using (LSB) which will be discuss later in details in 3.5.1 .

After embedding date and time The new technique will use user signature which has been

encrypted by either (SHA 2 algorithm which will be discussed 3.6.1 or Rijndeal algorithm

which will be discussed in section 3.6.2).

3.4- Signature Embedding

The technique will embed the (the encrypted signature) which have been encrypted
by either (SHA algorithm or AES algorithm)

The encrypted signature, will be stored into the image, each value will be stored in

separated line according to (x_Dest and y_Dest).

21

(x_Dest) determine the first used pixel in storing hash value as shown in figure 12.

x_Dest

Figure 12: Using x_Dest to Determine the Destination in x-axis.

While (y_Dest) determine the number of the unused rows between each two used

rows (unused rows have no embedding values). As shown in Figure 13.

BE

y_Dest
represent the number
of the unused rows

Figure 13: Using y_Dest to Determine the Unused Rows Between Each 2-Used Rows.

Both (x_Dest and y_Dest) will be stored in the database.

Figure 14 represent the used code to generate x_Dest and y_Dest

22

vold startTimer()

i
Timer tm = new Timer();
tm.Interval = 3 * 68 * &0 *180@;
tm.Enabled = true;
tm.Elapsed += itm_Elapsed;
tm.Start();

H

void tm_Elapsed(object sender, ElapsedEventargs e)
{ generateMewXandy () ; ¥

public void generateNewXandy()

{
Entities en = new Entities();
var gen = new Generatediandy();
Random r = new Random(};
gen.Id = en.Generatediandies.Count() + 1;
gen. Value = r.Mext(1, 578);
gen.YValue = r.Mext(l, 7);
gen.StartTime = DateTime.Now;
gen.EndTime = DateTime.Now.AddHours(3);
RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();
byte[] buff = new byte[128];
rng.GetBytes (buff);
gen.EASKey = Convert.ToBasesd5String(buff);
en.Generatediandies . Add(gen);
en.saveChanges(];

Figure 14:Code for Generating x_Dest and y_Dest

3.5- Others Technique for More Security

The technique will use extra techniques to improve security of the embedded data
3.5.1 Embedding Into Pixels

For both (date and time embedding) and (encrypted signature embedding), the technique
will use only 1-bit from (blue) channel for each chosen pixel, according to the following:

e If the sum of (location x and location y) of the pixel, is odd, the third (LSB) will be used.
o If the sum of (location x and location y) of the pixel, is even, the second (LSB) will be

used

23

Figure 15 show an example of the used technique ,while figure 16 show the code the

used technique .

| 20
1 1
4 the sum of location x and y for
y =2 the first pixel is
. 2+5 is 7 (odd)
. so the third pixel will be used for storing

[TTTT 77

8 76 5 4 8 2 1

while the second pixel
will use the second bit for storing
where 3+9 is 12 (even)

/8/7////E

6 6 4 8 2

Figure 15 : Pixel Embedding Technique

if ((x +y) %2 ==0)

ffif x + y is even stor in the second bit

if (Thits[i] != Rbits[1])

{// if the original one is not the same as the new one then change the second and the first bits to be like the original
Rbits[@] = Rbits[1];

}
Rbits[1] = Thits[i];
}
else
{
// store in the thired bit with the changes as the second one
if (Thits[i] != Rbits[2])
Rbits[@] = Rbits[2];
Rbits[1] = Rbits[2];
}
Rbits[2] = Thits[i];
}

Figure 16:Code for Embedding Into the 2" and 3" (LSB)

24

3.5.2 (x_Destandy_Dest) Random Generation

Every fixed amount of time (the technique used 3-hours interval, to reduce the load
on server, this period could be minimized or maximized according to the server storage and
performance) a new random (x_Dest) and (y_Dest) values will be generated , x_Dest ,

y_Dest and generation time will be store in database as shown in table 1

Table 1: x_Dest, y_Dest and Generation

genTime X_Dest y Dest
2015/9/28 15:25:00 54 5
2015/9/28 18:25:00 23 2
2015/9/28 21:25:00 276 7

While uploading, the technique will use the latest generated (x_Dest and y_Dest)
values, these values will determine the destination of x and y for embedding data as described
before.

3.5.3 Reduce Noise Technique

This technique will try to reduce the possible noise of embedding using
steganography techniques.

Tables below show the reduction of noise after using “reduce noise technique”.

In case of placing 0 with 1 as shown in table 2

Table 2: Cases of Placing 0 with 1

001 101 4 100 3
010 110 4 100 2
011 111 4 100 1

Table 3: Cases of Placing 1 with 0

101 001 4 011 2

110 010 4 011 3

111 011 4 011 4

26

3.6 in case of re-uploading the embedding image (protected image)

If others try to re-upload the protected image, the new technique will do the following:

While re-uploading , the technique will retrieve the first 64 pixels in the image, which
represent the uploading date and time , a date format will be retrieved as follows (year /
month / day , hour: minute: second) to use it to check the retrieved date and time from the

database.
3.6.1 Hash Algorithm Method :

If the retrieved date and time exist within any existing stored period, then (x_Dest and

y_Dest) will be retrieved.

By retrieving x_Dest and y_Dest, the map destination of the stored (encrypted signature) will
be retrieved to create the hashed signature.

If the retrieved encrypted signature exists in the database, the upload will fail, unless the
signature belongs to the owner.

Table 5: Retrieve x_Dest , y_Dest According to Generation Time

genTime x_Dest y_Dest
2015/9/28 15:25:00 54 5
2015/9/28 18:25:00 23 2
2015/9/28 21:25:00 276 7
[PRIVACY WARNING 23] |

warning

/L, Violation of property rights
You are trying to upload an image that belongs to someone else
This image have prvacy and cannot be upload

27

Figure 17 : (Privacy-Warning) Window in Case of Property Violation

3.6.2 Rijndeal Algorithm Method:

If the retrieved date and time are exist within any existing stored period, then (x_Dest ,
y_Dest and AES key) will be retrieved.

By retrieving x_Dest , y_Dest , the map destination of the stored (encrypted signature)

will be retrieved to create the encrypted signature.

The AES key will be used to decrypt the retrieved signature to produce the original owner

signature

28

CHAPTER FOUR

Experimental Results

This chapter will discuss the result of the new technique , a tool have been developed using
visual C# 2013, it will be used to evaluate the performance of the proposed technique on
images, and the effect of embedding process on the secret image , the research is performed

on 3 different images with different sizes .

4.1 Image Quality Test

The image quality test is a measure to test the quality of the images compared to the original
images. Several images have been used to measure the performance of the new technique,
this test has used Difflmg tool version 2.0.1 to compare both the original and the signed

image.

Here are some statistical differences between embedding signatures that have been
encrypted using either (hash algorithm or Rijendeal algorithm). This data will expose the
standard deviation (SD) of Peak Signal to Noise Ratio (PSNR) and Root Mean Squared Error
(RMSE) .

4.1.1 Standard Deviation (SD)

Standard deviation is a statistical equation used to represent the variation or
dispersion in a set of values from the average. The standard deviation have been measured

for images after signature embedding, as described in the tables below.

29

Standard deviation is calculated according to the following equation

SD:\/l/n n(X—X")2

Where:

N: the size of the sample.
X: the observed values of the sample items.

X': the mean value of these observations.

4.1.2 Root Mean Squared Error (RMSE)

The root mean square error is an equation which is usually used to measure the
differences between variables that can be predicted, in our case the RMSE variables are
discussed for signature embedding into an image.

4.1.3 Peak Signal to Noise Ratio (PSNR)

PSNR is used to measure the quality metric, the PSNR here is being reviewed for

embedding a signature.

255
RMSE

PSNR=20.log,

30

4.2 Quality Test on the Signed Images

The study is performed on 3 different images with different sizes , each image have

been used but the new technique

The following tables show the effect of the signed images after being embedding ,
the change of quality have been measured using 3 statistical equations , Standard deviation
(SD), Root Mean square error (RMSE) and Peak Signal to Noise Ratio (PSNR)

The following figures are sample images before signed and after

a) Baboon Before Embedding b) Baboon After
Embedding

Figure 18 :Baboon Image Before and After Embedding

31

a) Peppers Before Embedding b) Peppers After Embedding

Figure 19: Peppers image before and after embedding

a) Ceiling Before Embedding b) Ceiling After Embedding

Figure 20 :Ceiling Image Before and After Embedding

32

The lack of quality after embedding will be relatively low when using the proposed
technique

4.2.1 Standard Deviation

Standard deviation is an equation to describe the variation, as shown below in the

tables, the standard deviation have been measured for images after being signed

Table 5: standard deviation of the signed images

Using SHA method Using AES method
Ceiling 0.00639 0.00756
Baboon 0.00111 0.00126
pappers 0.00764 0.00981

The results of standard deviation are very small which means that images are very
similar, however, the Standard Deviation (SD) for the new technique was too low which
provided a better quality after embedding the signature into the target image.

4.2.2 Root Mean Squared Error

The root mean square error is an equation which is usually used to measure the
differences between variables that can be predicted, in our case the RMSE variables are
discussed for signature embedding into an image, in this section the (RMSE) have been

discussed for the signed images.

(Wang, et al., 2003).

Table 6 : the RMSE Results

33

Using SHA method

Using AES method

Ceiling 0.00640 0.00760
Baboon 0.00111 0.00137
Pappers 0.00670 0.00789

The values of (RMSE) are preferred to be low which indicate that images are more similar,

the RMSE with the new technique was too low which provide better quality.

4.2.3 Peak Signal to Noise Ratio:

Peak signal to Noise Ratio is used to measure the quality metrics that describe the

quality of the image (Wang, et al., 2003).

Table below show the PSNR values of the signed image after embedding the encrypted

signature, in addition to comparison with kaur technique (kaur, et al. 2013).

Table 7 the PSNR Results

Using SHA method Using AES method Using Kaur
technique
Lena 76.21 75.12 45.3672
Baboon 60.07 59.93 42.9277
Pappers 61.85 60.64 42.4288
Ceiling 65.65 60.54

34

Peak Signal to Noise Ratio (PSNR) values are preferred to be higher which indicates that
image quality is better, however, the PSNR for both methods were high

4.3 Histograms for Proposed Method

The following histograms represent the distribution difference between stegoimages

before and after the embedding of the encrypted signature.

Figure 21 shows that there is no visual effect on the values of RGB channels for the

Baboon im

b) Baboon Before Embedding b) Baboon After Embedding

Figure 21 : Histogram for Baboon Signed Image Using the Proposed Method.

35

Figure 22 shows that there is no visual effect on the values of RGB channels for the ceiling

image

.
A_

A

a)Ceiling Before Embedding b) Ceiling After Embedding

Figure 22: Histogram for Ceiling Signed Image Using the Proposed Method.

36

Figure 23 shows that there is no visual effect on the values of RGB channels for the ceiling

image

. aad

MM

a) Peppers Before Embedding b) Peppers After Embedding

Figure 23 : Histogram for Peppers Signed Image Using the Proposed Method

4.4 Performance Test

The performance test of the technique will represent the measures of the needed time
for operations, as mentioned before , the technique will create a unique encrypted signature
using either (SHA algorithm or Rijendal algorithm) and embed that signature into the image ,

the overall operation will surely consume more time .

This section will represent the statistical values (time differences) between the regular
upload and the proposed technique

Table 8 : Uploading Time Results

Using SHA | AES method | Regular upload
upload upload

ceiling 9.956 10.320 1.442

Baboon 8.91 8.95 1.39

pappers 9.59 11.86 2.14

37

38

CHAPTER FIVE

Conclusion and Future Work

5.1 Overview:

This chapter summarizes the conclusion of this thesis, the main objective of the thesis was to
focus on the ownership of images in online social network, several studies were conducted
to provide more ownership opportunities of images in social networks, Thus, this chapter
was organized as section 5.2 to discuss the main conclusions, and section 5.3 to preview the
future research works in the field of ownership of images in social network

5.2 Conclusion

In this thesis , a new technique have been proposed which suggests that the images in (OSN)
are protected by embedding unique signature , that signature will be encrypted using either
SHA-2(256) algorithm or AES (256-CBC) algorithm ,In case of any try to re-upload the

protected image by others, the technique will prevent up-loading.

To increase PSNR value, the technique assigned some enhancement on the embedding
technique, the enhancement will try to reduce the possible noise that caused by signature

embedding.

The results of the proposed methods (AES and SHA) have been compared, the results
indicates that the noise caused by embedding the encrypted signature is too small, this can
be viewed in higher PSNR values and lower RMSE, this observation is caused by the fact
that lower significant of bits are needed to be replaced in order to hide the encrypted

signature.

39

5.3 Future work

In this thesis a new technique have been proposed for embedding encrypted signature inside
image, this method can be the base for which other studies can emerge, the following list

present some ideas for further studies:

1- Using different type of encryption algorithm
2- Using different embedding techniques

3- Apply the technique on different multimedia in social network(video or audio)

40

References

e Abdullah, Y., and Nassereddin, H., (2013). “Proposed Data Hiding Technique —

Text under Text” American Academic and Scholarly Research Journal, 243- 248 .

e Ahmad, F., and Nassereddin, H. (2013). “New method color image inside image
steganography”.

e Algredo-Badillo, I., Feregrino-Uribe, C., Morales-Sandoval, M., and Cumplido, R.
(2012). “FPGA-based implementation alternatives for the inner loop of the Secure

Hash Algorithm SHA-256. Microprocessors and Microsystems.

e Boyd, D., and Ellison, N. (2007). “Social Network Sites: Definition, History, and

Scholarship”. Journal of Computer-Mediated Communication, 210-230.

e Kaur, S. and Jindal, S. (2013). “Image Steganography using Hybrid Edge Detection
and First Component Alteration Technique”. International Journal of Hybrid

Information Technology.

e Khufash, I., and Nassereddin, H. (2015) “New Technique to Protect the Privacy of
Images in Social Network by Using Hash Algorithm and Least Significant Bit”
international journal of advanced research in computer science and software
engineering (ijarcsse) 672-677

e Nassereddin, H., (2011). "Digital Watermarking A Technology Overview "

International Journal of Research and Reviews in Applied Sciences 89- 93.

http://ijarcsse.com/docs/papers/Volume_5/11_November2015/V5I11-02211.pdf
http://ijarcsse.com/docs/papers/Volume_5/11_November2015/V5I11-02211.pdf

41

Nassereddin, H., Farzaeai, M., (2010). “Proposed Data Hiding Techniqie Text image
Inside Image” International Journal of Research and Reviews in Applied Sciences
183- 193.

Patsakis, C., Zigomitros, A., Papageorgiou, A., and Galvan-Lopez, E. (2014).
“Distributing Privacy Policies Over Multimedia Content Across Multiple Online

Social Networks”. Computer Networks.

BrahmaTeja, K., Madhumati, G., and Rao, K. (2012). “Data Hiding Using EDGE
Based Steganography”. International Journal of Emerging Technology and
Advanced Engineering, 285-290.

Eastlake, D., and Jones, P. (2001). “US Secure Hash Algorithm 1 (SHA1)”.
Network Working Group.

Jang, Y., and Kwak, J. (2013). “Access-control-based Efficient Privacy Protection
Method for Social Networking Services”. International Journal of Security and Its

Applications.

Kim, K., Bocharova, V., Halamek, J., Oh, M., and Katz, E. (2010). “Steganography
and Encrypting Based on Immunochemical Systems”. Biotechnology and

Bioengineering.

Liang, J., and Lai, X. (2007). “Improved Collision Attack on Hash Function MD5”.

Journal of Computer Science and Technology.

Liu, Q., Sung, A., Ribeiro, B., Wei, M., Chen, Z., and Xu, J. (2008). “Image
complexity and feature mining for steganalysis of least significant bit matching

steganography”. Information Sciences, 21-36.

42

Luo, W., Xie, Q., and Hengartner, U. (2009). “FaceCloak: An Architecture for User

Privacy on Social Networking Sites”. Cheriton School of Computer Science, 26-33.

Niimi, M., Noda, H., and Kawaguchi, E. (1999). “Steganography Based on Region

Segmentation with a Complexity Measure”. Systems and Computers in Japan.

Por, L., and Delina, B. (2008). “Information Hiding: A New Approach in Text
Steganography”.Advances on Applied Computer and Applied Computational
Science, 685-695.

Rivest, R. (1992). “The MD5 Message-Digest Algorithm”. MIT Laboratory for

Computer Science.

Schneier, B. (2015). Applied Cryptography Protocols, Algorithms and Source Code
in C, 20th Anniversary Edition. S.I.: John Wiley & Sons.

Shilbayeh, N., Khuffash, S., Allymoun, M., and Al-Saidi, R. (2014). “Protecting
the Privacy and Trust of VIP Users on Social Network Sites”. World Academy of
Science, 1488-1498.

Singh, K., and Goel, C. (2014). “Using MD5 AND RSA Algorithm Improve
Security in MANETSs Systems”. International Journal of Advances in Science and
Technology (IJAST), 48-54.

Squicciarini, A., Shehab, M., & Wede, J. (2010). “ Privacy policies for shared content
in social network sites”. The International Journal on Very Large Data Bases.

43

Vanitha, T., Souza, A., Rashmi, B., and DSouza, S. (2014). “A Review on
Steganography - Least Significant Bit Algorithm and Discrete Wavelet Transform
Algorithm”. International Journal of Innovative Research in Computer and

Communication Engineering, 89-95.

Walia, P., and Thapar, V. (2014). “Implementation of New Modified MD5-512 bit
Algorithm for Cryptography”. International Journal of Innovative Research in
Advanced Engineering (IJIRAE), 87-97.

Xiao, D., Liao, X., and Deng, S. (2005). “One-way Hash function construction
based on the chaotic map with changeable-parameter”. Chaos, Solitons and
Fractals, 65-71.

Yadav, R., Saini, R., and Deep, K. (2011). “Cyclic combination method for digital
image steganography with uniform distribution of message”. Advanced Computing:

An International Journal (ACIJ)

Yuan, X., Wang, X., Wang, C., Squicciarini, A., and Ren, K. (2014). “Enabling
Privacy-preserving Image-centric Social Discovery”. IEEE 34th International
Conference on Distributed Computing Systems, 198-207.

44

Appendix A : Software Code

The used code for the proposed technique

using System;

using System.Collections;

using System.Collections.Generic;
using System.Data.SqglClient;
using System.Drawing;

using System.Drawing.Imaging;
using System.IO;

using System.Lingq;

using System.Net;

using System.Security.Cryptography;
using System.Text;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

namespace ImageSignature

{
public class postion
{
public int x { get; set; }
public int y { get; set; }
}

public partial class _Default : Page
{

Entities en = new Entities();

string spliter = "_";

protected void Page_Load(object sender, EventArgs e)

{
}

private List<postion> getPositions(string currentDate, int
maxWidth, int maxHight, int length)
{
string preDate = currentDate;
var date = DateTime.ParseExact(currentDate,
"yyyymmddHHMMss", null);

value });

45

var generatedXandY = getXandY(date);
while (currentDate.Length < length)

{
}

int i = 1;
List<postion> positions = new List<postion>();

currentDate += preDate;

int prevY = generatedXandY.XValue.Value;

foreach (var item in currentDate)

{
var itemInt = int.Parse(item.ToString());
itemInt++;
int key = prevY + (int)Math.Abs(((i + 2) * 2.5));
prevY += 1 % generatedXandY.YValue.Value;
int value = i;
while (key >= maxHight)
{
key /= 2;
}
if (key == 0)
{
key++;
}
while (positions.Select(x2 => x2.x).Contains(key))
{
key++;
}
for (int j = 0; j < 8; j++)
{
while (value >= maxWidth)
{
value /= 2;
}
positions.Add(new postion() { x = key, y =
value++;
}
i++;
}

return positions;

46

private string GetSHAlHashData(string str, bool savelt =
false)
{
var user = en.Users.FirstOrDefault(x => x.UserName ==
User.Identity.Name);
byte[] data = new byte[User.Identity.Name.Length];

SHA256 sha = SHA256Managed.Create();
byte[] shl = sha.ComputeHash(data);

var value = Convert.ToBase64String(shl);
if (saveIlt == true)

{

user.HashSignature = value;
en.SaveChanges();

}

return value;

private string getAESHashData(string original, bool savelt

{

= false)

using (Aes myAes = Aes.Create())
{
byte[] bytesToBeEncrypted =
Encoding.UTF8.GetBytes(original);
byte[] passwordBytes =
Encoding.UTF8.GetBytes("MEU");

passwordBytes =
SHA256.Create().ComputeHash(passwordBytes);

byte[] bytesEncrypted =
AES_Encrypt(bytesToBeEncrypted, passwordBytes);

string result =
Convert.ToBase64String(bytesEncrypted);

if (savelt == true)

{

47

var user = en.Users.Where(x => x.UserName
User.Identity.Name).FirstOrDefault();

user.EASHash = result;

en.SaveChanges();

}

return result;

}

public byte[] AES_Encrypt(byte[] bytesToBeEncrypted,
byte[] passwordBytes)

{

byte[] encryptedBytes = null;

byte[] saltBytes = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8
¥

using (MemoryStream ms = new MemoryStream())

{

using (RijndaelManaged AES = new

RijndaelManaged())

{
AES.KeySize = 256;
AES.BlockSize = 128;
var key = new
Rfc2898DeriveBytes(passwordBytes, saltBytes, 1000);
AES.Key = key.GetBytes(AES.KeySize / 8);
AES.IV = key.GetBytes(AES.BlockSize / 8);
AES.Mode = CipherMode.CBC;
using (var cs = new CryptoStream(ms,
AES.CreateEncryptor(), CryptoStreamMode.Write))
{
cs.Write(bytesToBeEncrypted, 0,
bytesToBeEncrypted.Length);
cs.Close();
}
encryptedBytes = ms.ToArray();
}
}

return encryptedBytes;

48

protected void Encrypt_Click(object sender, EventArgs e)

{

var timeStamp = DateTime.Now;
if (User.Identity.IsAuthenticated == false)

{
}

var date = DateTime.Now;

Bitmap imagel = new Bitmap(FileUploadl.FileContent);
string currentDate = date.ToString("yyyymmddHHMMss");
Bitmap newbitmap = new Bitmap(imagel.Width,

Response.Redirect("Account/Login.aspx");

imagel.Height);

System.Text.

System.Text.

byte blue = 0, temp = 0;
int x =0, y = 0;

string text = "";
Button source = (Button)sender;
if (source.Text == "AES")
{
text = getAESHashData(User.Identity.Name, true);
}
else
{
text = GetSHAlHashData(User.Identity.Name);
}

var signature =
Encoding.Unicode.GetBytes(text);

byte[] bytearray =
Encoding.Unicode.GetBytes(currentDate + spliter +

imagel.Width + spliter + imagel.Height + spliter +
signature.Count() + spliter);

var positions = getPositions(currentDate,

imagel.Width, imagel.Height, signature.Count());

foreach (byte b in bytearray)
{

49

for (int 1 = @; 1 < 8; i++)
{
Color pixelColor = imagel.GetPixel(x, y);

blue = pixelColor.B;

temp = Convert.ToByte(b >> i);

temp = Convert.ToByte(temp & 0x01);
blue = Convert.ToByte(blue & Oxfe);
blue = Convert.ToByte(blue | temp);

Color newColor = Color.FromArgb(blue,
pixelColor.G, pixelColor.B);
newbitmap.SetPixel(x, y, newColor);
X++;
}
}
X =0;y=1;
int count = 0;

string bitsval = "";
foreach (byte b in signature)
{

for (int 1 = 0; 1 < 8; i++)

{
var position = positions[count++];
X = position.x;
y = position.y;

Color pixelColor = imagel.GetPixel(x, y);
blue = pixelColor.B;
BitArray Rbits = new BitArray(new byte[] {

blue });
BitArray Tbits = new BitArray(new byte[] { b
}s
if ((x +y) %2 ==20)
{
if (Tbits[i] !'= Rbits[1])
{
Rbits[@] = Rbits[1];
}
Rbits[1] = Tbits[i];
}

else

{
if (Tbits[i] != Rbits[2])
{
Rbits[@] = Rbits[2];
Rbits[1] = Rbits[2];
¥
Rbits[2] = Tbits[i];
¥

byte[] bytes = new byte[1];

Rbits.CopyTo(bytes, 0);

blue = bytes[9];

Color newColor = Color.FromArgb(pixelColor.R,
pixelColor.G, blue);

newbitmap.SetPixel(x, y, newColor);

X++;
}
}
X = 0;
y =1;

for (; y < imagel.Height; y++)
{

for (; x < imagel.Width; x++)

{
var pos = positions.Where(item => item.x == X
&& item.y == y).FirstOrDefault();
if (pos == null)

{
Color pixelColor = imagel.GetPixel(x, y);
newbitmap.SetPixel(x, y, pixelColor);
}
}
X = 0;

encSig.Text = User.Identity.Name;

50

string imageName = "~/Images/" + FileUploadl.FileName;

string savePath = Server.MapPath(@"Images\" +
FileUploadl.FileName);

newbitmap.Save(savePath,
System.Drawing.Imaging.ImageFormat.Jpeg);

51

Imagel.ImageUrl = imageName;

encTime.Text = (DateTime.Now -
timeStamp).TotalSeconds.ToString();

}

protected void Decrypt_Click(object sender, EventArgs e)
{

var timeStamp = DateTime.Now;

string filename = FileUpload2.FileName;

Bitmap imagel = new Bitmap(FileUpload2.FileContent);

byte[] bytarray = new byte[imagel.Width];

int x =0, y = 0;

byte blue = 0, temp = 0;

for (int 1 = @; i < imagel.Width; i++)

{
blue = 0;
for (int z = 0; z < 8; z++)
{
if (x == imagel.Width)
{
break;
}

Color pixelColor = imagel.GetPixel(x, y);
temp = pixelColor.B;

temp = Convert.ToByte(temp & 0x01);
blue = Convert.ToByte(blue |
Convert.ToByte(temp << z));

X++;

}

bytarray[i] = blue;

if (x == imagel.Width)

{

}

break;

}

string text =
System.Text.Encoding.Unicode.GetString(bytarray.ToArray());

string[] separator = new string[] { spliter };

string[] info = text.Split(separator,
StringSplitOptions.RemoveEmptyEntries);

52

var positions = getPositions(info[@],
int.Parse(info[1]), int.Parse(info[2]), int.Parse(info[3]));

byte[] signetureArray = new byte[int.Parse(info[3])];

int count = 9;

X = 0;

y =1;

for (int i = @; i < signetureArray.Length; i++)
{

blue = 0;

BitArray Rbits = new BitArray(8);

for (int z = 9; z < 8; z++)
{
var pos = positions[count++];
X = pOS.X;
y = pos.y;
Color pixelColor = imagel.GetPixel(x, y);
BitArray Tbits = new BitArray(new byte[] {
pixelColor.B });
if ((x +y) %2 ==20)

{
Rbits[z] = Tbits[1];
}
else
{
Rbits[z] = Tbits[2];

}
byte[] bytes = new byte[1];
Rbits.CopyTo(bytes, 0);
blue = bytes[0];
signetureArray[i] = blue;
}
string res =
Encoding.Unicode.GetString(signetureArray);
var user = en.Users.FirstOrDefault(val => val.EASHash

== res || val.HashSignature == res);
if (user != null)
{

signature.Text = user.UserName;

}

string imageName = "~/Images/" + FileUpload2.FileName;

string savePath = Server.MapPath(@"Images\" +
FileUpload2.FileName);

imagel.Save(savePath,
System.Drawing.Imaging.ImageFormat.Jpeg);

Image2.ImageUrl = imageName;

decTime.Text = (DateTime.Now -
timeStamp).TotalSeconds.ToString();

}

public GeneratedXandY getXandY(DateTime date)

{
return en.GeneratedXandies.FirstOrDefault(x =>
x.StartTime <= date && x.EndTime >= date);

namespace ImageSignature

{
public class Global : HttpApplication

{
void Application_Start(object sender, EventArgs e)
{
// Code that runs on application startup
BundleConfig.RegisterBundles(BundleTable.Bundles);
AuthConfig.RegisterOpenAuth();
startTimer();
generateNewXandY();
}
void startTimer()
{
Timer tm = new Timer();
tm.Interval = 3 * 60 * 60 *1000;
tm.Enabled = true;
tm.Elapsed += tm_Elapsed;
tm.Start();
}
void tm_Elapsed(object sender, ElapsedEventArgs e)
{
generateNewXandY();
}

public void generateNewXandY()

53

Entities en = new Entities();

var gen = new GeneratedXandY();

Random r = new Random();

gen.Id = en.GeneratedXandies.Count() + 1;
gen.XValue = r.Next(1l, 570);

gen.YValue = r.Next(1, 7);

gen.StartTime = DateTime.Now;

gen.EndTime = DateTime.Now.AddHours(3);

RNGCryptoServiceProvider rng = new
RNGCryptoServiceProvider();

byte[] buff = new byte[128];

rng.GetBytes(buff);

gen.EASKey = Convert.ToBase64String(buff);

en.GeneratedXandies.Add(gen);

en.SaveChanges();

}

void Application_End(object sender, EventArgs e)

{

// Code that runs on application shutdown

void Application_Error(object sender, EventArgs e)

{

// Code that runs when an unhandled error occurs

