

Modified Random Early Detection (RED)

Technique Using Various Congestion Indicators

 çä̠ ƪˑǄ ýä˕˱˭ƨƌȸ ˗ɚˬ˶ǁä ǏƏäˤ˳ƴǁä ɂ˳ḥǁä ƕ˹˷ƾƗ ǍǂƳ Ʉǐ˕ƴ˭ǁä
 ƕƻǂ˭˱˶ǁä ɔƺ˕˭ǁä

Student

Mohammad Ramez Abbas Ali

Supervisor

Dr. Ahmad Adel Abu-Shareha

 Thesis Submitted in Partial Fulfilment of the Requirements of

the Degree of Master of Computer Information Systems

Department of Computer Information Systems

Faculty of Information Technology

Middle East University

January - 2017

http://www.google.jo/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCP_Cm9-2jskCFcGyFAod8PwLoA&url=http://rapco-jo.com/main/index.php?option=com_content&view=article&id=151&Itemid=404&lang=en&psig=AFQjCNH_EogpNyAGp2HSfk3pJ5jXxyCiag&ust=1447539418521706

II

III

IV

Acknowledgments

In the first, my thanks are hereby extended to my God, then to Dr. Ahmad

Adel Abu-shareha for his supportive and helpful supervision, as well as for

assisting a student in every step of the project, and for providing important

information and basics, which was very important for the successful

implementation of the project. Further thanks are extended to everyone who

helped me develop my understanding of the various nuances of the project

and for everyone who believes that the knowledge is right for everyone

V

Dedication

 I would like to exploit this opportunity to dedicate this project to my father,

mother, my wifes, my Daughters, sun, brothers and sisters, without whose

invaluable support. I would have ot been able to have achieved this in my

lifetime.

 May God bless them

VI

TABLE OF CONTENTS
Title I

Authorization Statement II

Examination Committee Decision III

Acknowledgment IV

Dedication V

List of Contents VI

List of Figures VIII

List of Tables X

List of Abbreviations XI

Abstract XII

ϣуϠϽЛЮϜ ϣПЯЮϝϠ ЉϷЯгЮϜ XIV

Chapter One: INTRODUCTION 1

1.1 The Router Buffer and The Congestion Problem 3

1.2 Random Early Detection (RED) 5

1.3 Problem Statement 6

1.4 Problem Statement Questions 7

1.5 Objective 7

1.6 Motivation 7

1.7. Methodology 8

Chapter Two: BACKGROUND and RELATED WORK 9

2.1 Introduction 9

2.2 Active Queue Management and RED 9

2.3 Related Work 14

2.3.1. Average-Queue based Methods 17

2.3.2. Packet-Loss based 17

2.3.3. Queue and Average-Queue based Methods 21

2.4 Summary 28

Chapter Three: PROPOSED WORK 29

3.1. Introduction 29

3.2. presents the proposed methods 30

VII

3.2.1. Queue Length 31

3.2.2. Load Rate 31

3.2.3. Delay 33

3.3. The Proposed Sub-Methods 34

3.3.1. Sub-Method 1 35

3.3.2. Sub-Method 2 36

3.4. Summary 48

 Chapter Four : THE EXPERIMENTAL RESULTS 49

4.1 Introduction 49

4.2 Environment 50

4.3 Experimental Setup 51

4.4 Results 53

4.4.1 Queue-based Proposed Methods 54

4.4.2 Delay-based Proposed Methods 59

4.4.3 Load-based Proposed Methods 64

4.4.4 Best of the Proposed Methods 70

4.5 Summary 75

Chapter Five : CONCLUSIONS and FUTURE WORKS 76

5.1 Conclusion 76

5.2 Future Work 77

References 79

VIII

LIST OF FIGUERS

Figure 1.1 Data Transmission Intermediated by Routers 6

Figure 1.2 The Router Location between Networks 2

Figure 1.3 The Router Buffer 3

Figure 1.4 The packets dropping 4

Figure 1.5 Flow chart for Random Early Detection 6

Figure.2.1 Buffer Queue and RED Parameters 13

Figure 2.2 Flowchart of Blue Algorithm 19

Figure. 2.3 WRED drops packets probability 24

Figure 2.4 FRED processing arriving packet 25

Figure 2.5 Flow chart for Basic CHOKe 27

Figure 4.1 Flowchart of the Experiments 53

Figure 4.2 Delay Comparison for the Proposed Queue-based Methods 55

Figure 4.3 Drop Comparison for the Proposed Queue-based Methods 56

Figure 4.4 Loss Comparison for the Proposed Queue-based Methods 57

Figure 4.5 Drop and Loss Comparison for the Proposed Queue-based Methods 59

Figure 4.6 Delay Comparison for the Proposed Delay-based Methods 60

Figure 4.7 Drop Comparison for the Proposed Delay-based Methods 61

Figure 4.8 Loss Comparison for the Proposed Delay-based Methods 62

Figure 4.9 Drop and Loss Comparison for the Proposed Delay-based Methods 64

Figure 4.10 Delay Comparison for the Proposed Load-based Methods 65

IX

Figure 4.11 Drop Comparison for the Proposed Load-based Methods 66

Figure 4.12 Loss Comparison for the Proposed Load-based Methods 68

Figure 4.13 Drop and Loss Comparison for the Proposed Load-based Methods 69

Figure 4.14 Delay Comparison for the Best of the Proposed Methods 71

Comparison for the Best of the Proposed Methods 72

Figure 4.16 Loss Comparison for the Best of the Proposed Methods 73

Figure 4.17 Drop and Loss Comparison for the Best of the Proposed Methods 74

X

LIST OF TABLES
Table 2.1: comparison of mechanisms indicator 28
Table 3.1 The Modified-RED Sub-Methods 34

Table 4.1 Parameter settings 51

Table 4.2 Delay Comparison for the Proposed Queue-based Methods 54

Table 4.3 Drop Comparison for the Proposed Queue-based Methods 56

Table 4.4 Loss Comparison for the Proposed Queue-based Methods 67

Table 4.5 Drop and Loss Comparison for the Proposed Queue-based Methods 58

Table 4.6 Delay Comparison for the Proposed Delay-based Methods 60

Table 4.7 Drop Comparison for the Proposed Delay-based Methods 61

Table 4.8 Loss Comparison for the Proposed Delay-based Methods 62

Table 4.9 Drop and Loss Comparison for the Proposed Delay-based Methods 63

Table 4.10 Delay Comparison for the Proposed Load-based Methods 65

Table 4.11 Drop Comparison for the Proposed Load-based Methods 66

Table 4.12 Loss Comparison for the Proposed Load-based Methods 67

Table 4.13 Drop and Loss Comparison for the Proposed Load-based Methods 69

Table 4.14 Delay Comparison for the Best of the Proposed Methods 70

Table 4.1 Drop Comparison for the Best of the Proposed Methods 72

Table 4.16 Loss Comparison for the Best of the Proposed Methods 73

Table 4.17 Drop and Loss Comparison for the Best of the Proposed Methods 74

XI

List of Abbreviations

 Abbreviations Meaning

 RED Random Early Detection

 ERED Effective Random Early Detection

 SFB Stochastic Fair Blue

 GRED Gentle Random Early Detection

 WRED weighted Random Early Detection

 RRED Robust Random Early Detection

 FRED Flow Random Early Detection

 TCP Transmission Control Protocol

 FDPS Flow-state-dependent dynamic priority

 AVG Average queue size

 QOS Quality of service

 DP Dropping Probability

XII

Modified Random Early Detection (RED) Technique Using

Various Congestion Indicators

Prepared By

Mohammad Ramez Abbass Ali

Supervised By

 Dr. Ahmad Adel Abu-Shareha

Abstract

In this thesis, modified Random Early Detection (RED) algorithm is proposed by

including various selected congestion indicators. First, the best congestion indicators to

be used for queue management are chosen. Then, these indicators, Queue length, load

rate and Delay, are integrated with RED algorithm. Subsequently, nine different proposed

methods were developed.

The proposed approach, as similar to the existing AQM method, preserves the

core of the RED technique embodied in calculating Dp with each arrival packet, drop

packets based on the calculated Dp and divide Dp calculation into categories. Existing

AQM methods have taken different approaches in modifying RED. However, the overall

trends in these approaches are changing both, the congestion indicator and the utilized Dp

calculation procedure, building on the assumption that different indicators required

different calculation procedure. Unlike the existing AQM methods, the proposed

approach changes the REDôs utilized congestion indicator and preserves the RED

calculation. The proposed approach uses novel indicators in the RED framework. These

indicators will be discussed accordingly.

XIII

The evaluation and comparison of the proposed methods shows that the proposed

methods gain the best delay and best loss. However, ERED provides the best results to

the dropping values. Subsequently, each of the proposed methods can be used according

to the type of the network.

 Keywords: Congestion control , Random Early Detection , Average queue size ,

Dropping Probability , Traffic control , Active Queue Management .

XIV

 ɔƺ˕˭ǁä çä̠ ƪˑǄ ýä˕˱˭ƨƌȸ ˗ɚˬ˶ǁä ǏƏäˤ˳ƴǁä ɂ˳ḥǁä ƕ˹˷ƾƗ ǍǂƳ Ʉǐ˕ƴ˭ǁä
 ƕƻǂ˭˱˶ǁä

ìä˕Ƴä
ǏǂƳ ðƑˬƳ ˘Ǆäî ˕˶˰Ǆ

 ùä̠ ƪä
ǈ˰ɀ˗ƪ ˤƓä üìƑƳ ˕˶Ɵä îˤ˭Ḩ˕ǁä

˛˱ǂ˶ǁä
 Ɨ˻ǆðïå˦Ƥ Ɇǒ˗ƶƙ ë̇ ˯ƿå ˗ǀǃ , ƗǃƓƪ̇ ǃå ǉ˘ǋ ǑƼ(RED) ɖƼ˗˯ǃå èå̇ Ƭ˓ǆ ïƓ˻˯Ƥå ýǚƤ ˥ǆ

 ǉ˘ǋ ǑǃƓ˯ǃƓɁā. ïƓˢ˯ǈǙå Ɨ˸ƑƓƿ çïåíǗ ǉïƓ˻˯Ƥå ˤƙ ɖƼ˗ƙ ˙Ƭ˓ǆ Ɇ˷Ƽá þ˗˳˯ƪå ˗ǀǃ , Ǚāå . ûƓ˹˯ƤǙå āá

 Ɨ˻ǆðïå˦Ƥ ƴǆ ɆǆƓḧ˯ƙ . ˙˻ƤƋ˯ǃåā Ɇ˻˸˲˯ǃå ý˗ƶǆā , ïƓˢ˯ǈǙå Ɨ˸ƑƓƿ ý˦˟ā , èå̇ Ƭ˓˸ǃå(RED) .

.ƗƽǄ˯˳ǆ û̇ ˟Ɨƶ˴ƙ ƴưā ʕ˯ƪ˻ ɖơǙ ̞ƿā ǑƼā

Ɲǌ˹ǃå æ˦ǄƪǕ ƗǌƕƓ˵ǆ Üë̇ ˯ǀ˸ǃåAQM Ɨ˻˹ǀƙ ˙ǋ˦ƞ ǏǄƵ ɌƼƓ˲Ȼ Üí˦ƞ˦ǆ(RED) ç˗˴˱˸ǃå

 æƓ˴ơ ǑƼDp ñƓƪá ǏǄƵ þ̊ ˲ǃå ɉƓǀƪã Üý˦Ʈ˦ǃå Ɨǆ̊ ơ ɆḪ ƴǆæƓ˴ơ Dp āˤ˻˴ǀƙ Ɨ˻ƕƓ˴˲ǃå Ɨ˻Ǆ˸ƶǃå

Dp .èƓ˭Ƽ Ǐǃã û̇ ˟ÿåAQM ǉí˦ƞ˦˸ǃå Ɇǒ̠ƶƙ ǑƼ ƗƽǄ˯˳ǆ ĄƓ˱ǌǈ è̆ ƙ˳å(RED) .

 Ɲǌ˹ǃå ǉ˘ǋ ǑƼ ƗǆƓƶǃå èƓǋƓ˱ƙǙå ˙˻˻ƺƙ Üˣǃî ƴǆā Ɠ˸ǋǚḧǃ ˙˻ƺ˯ǆÿå, þƓơíðǙå ˙Ƭ˓ǆ

 æƓ˴ơ èåßå̇ ƞɀāDp æƓ˴ơ ßå̇ ƞã ˔Ǆˠ˯ƙ èå̇ Ƭ˓˸ǃå ɄǄ˯˳ǆ ÿá ôå̇ ˯Ƽå ǏǄƵ ßƓ˹ƕ ÜƗǆ˗˳˯˴˸ǃå

 ˔˻ǃƓƪǕ ƓƼǚƤ .Üßå˦ ƪ ˗ơ ǏǄƵ ƗƽǄ˯˳ǆAQM Ɨǆ˗˳˯˴˸ǃå þƓơíðǙå ˙Ƭ˓ǆ ˙˻ƺ˯ǒ Üçí˦ƞ˦ǆ ǑƼ

(RED) Ǆǃë̇ ˯ǀ˸ǃå Ɲǌ˹ æƓ˴ơ ǏǄƵ ɌƼƓ˲ɂā(RED) . ÿå ˖˻ơ èå̇ Ƭ˓ǆ þ˗˳˯˴Ȼ ë̇ ˯ǀ˸ǃå Ɲǌ˹ǃå

 ïƓ˟ã ǑƼ ç˗ǒ˗ƞ(RED)èå̇ Ƭ˓˸ǃå ǉ˘ǋ ˜ƿƓ˹˯ƪā . .ˣǃ˘ǃ ƓǀƼā

XV

 Ɨơ̇ ˯ǀ˸ǃå ˔˻ǃƓƪǕå ÿá Ɨơ̇ ˯ǀ˸ǃå ˔˻ǃƓƪǕå ƗǈïƓǀǆā ˤ˻˻ǀƙ ˥˻ˮɂāɆ˷Ƽåā ˙˻ƤƋƙ Ɇ˷Ƽá ˔˴ḧƙ çïƓ˴Ƥ .

 ˙Ƽ˦ǒ Üˣǃî ƴǆāERED ˔˻ǃƓƪǕå ˥ǆ ɆḪ þå˗˳˯ƪå ˥ɜ˸Ȼ Üˣǃî ˗ƶȺ .ˤ˻ǀǃå ɉƓǀƪǗ ƝƑƓ˯˹ǃå Ɇ˷Ƽá

.Ɨɜˮ˵ǃå ÷˦ ˹ǃ ƓǀƼā Ɨơ̇ ˯ǀ˸ǃå

 èƓ˸ǄǂƗ˻ơƓ˯ƽ˸ǃå : þƓơíðǙå ǑƼ ˤɜ˲˯ǃå ,˙ɜˮ˸ǃå ǑƑå˦˵ƶǃå Ʉ˵ḧǃåïƓˢ˯ǈǙå Ɨ˸ƑƓƿ ˤ˱ơ Ɋƪ˦˯ǆ , ,

 , ûƓ˹˯ƤǗƓȺ ˤɜ˲˯ǃå , ɉƓǀƪǙå ýƓ˸˯ơåƗˠ˵˹ǃå ïƓˢ˯ǈǙå Ɨ˸ƑƓƿ çïåíã .

1

CHAPTER ONE

 INTRODUCTION

Internet is enormous small networks that are linked together to form the global

network for human being over this planet. Over the years, Internet has become an

essential part of human needs, as more and more people are surfing the Internet

continuously as part of their daily lives. Through the Internet, people are reading

electronic news, searching information, watching videos, playing online games, and talk

to each other via p2p telephone services. The traditional circuit-switched telephone

networks are now evolving into packet-switched networks. This is because packet

switched networks can provide extra and a variety of communication services as well as

reducing the cost of running and maintaining these services.

Data communication through the global network, or what so called the Internet,

is transmitted from a source device to a destination and passing by cables, routers and

other intermediate devices and carrier medium, as illustrated in Fig 1.1. These devices,

which form the communication medium, consist of a set of hardware (physical

equipment) and software (programs). Router is one of the most important, yet hardly

handled device in the communication channels.

2

Fig 1.1: Data Transmission Intermediated by Routers (Dobbins,1998)

The router, as illustrated in Fig 1.2, is connected to at least two networks,

commonly two LANs or WANs or a LAN and it is responsible for directing the data

between the connected networks. Router mission is to keep the data flowing between

networks and maintain the networks connectivity with the global network. The routers

making the Internet work by re-directing data based on a uniform addressing scheme.

Information could be sent to anywhere in the world as long as the site has an IP address

(Pirenne, 2015).

Fig 1.2 :The Router Location between Networks (Lammle,2013)

3

1.1. The Router Buffer and The Congestion Problem

All Internet routers contain storage space to hold packets that are arrived to the

router. Arrival packets are accommodated in the router buffer to be processed and then

transmitted into their destination, as illustrated in Fig. 1.3 (Spalink et al.,2001). The

storage space also absorbing bursty traffic to avoid loss of packets. However, it leads to

puts delay on the transmitted packets, which raises an important question about the

optimal size of these storage. Notably, small storage leads to the data loss, as the

transmitted packets in bursty traffic leads to over flow the routers quickly and all the

following packets will be forced to be lost as it cannot be entered to the router. Packet

loss affects the performance of applications badly. On the other hand, the large router

storage increase latency, complexity and cost required .

Fig. 1.3: The Router Buffer (Spalink,2001)

Congestion is a problem that occurs on shared networks when many users try to

gain access to the same resources (bandwidth, stores, and queues). For example,

congestion at the highway where many cars continuously intervened regardless of

existing of high traffic. With the entry of more cars on the highway, the congestion

increased and leads to bad consequences in the end, such as ramps back up, preventing

vehicles from getting at all. Congestion at the router occurs when the number of arrived

4

packets exceeded the capacity of the router buffer and eventually leads to buffer overflow

and packet loss (Baklizi et al., 2014).

Congestion control techniques and mechanisms at the router can prevent

congestion before it happens, or remove the tension, after it happened. Overall congestion

control techniques can be divided into two categories, one category prevents congestion

from happening while other category removes congestion as it occurred. The first one is

using open loop control traffic, and the second uses a closed loop congestion control in

an attempt to remove the congestion after it occurs (Lim, 2015).

The congestion prevention technique implements packets dropping, as illustrated

in Fig. 1.4, when the number of packets in the router storage reachs a specific critical

limit prevent packet loss. Low packet dropping in critical cases may lead to packet loss

and high drop in non-critical case degrade the network performance.

Fig. 1.4 : The Packets Dropping (Chua,2007)

Subsequently, the goal of the congestion control mechanisms is to achieve the best

packet dropping rate to avoid packet loss without degrading the performance of the

network by adding more delay.

5

1.2. Random Early Detection (RED)

Random early detection (RED) algorithm, which was proposed by Floyd and

Jacobson in 1993 (Floyd et al., 1993) was designed with the objectives to minimize packet

loss and queuing delay, avoid global synchronization of sources, maintain high link

utilization and remove biases against bursty sources. The basic idea behind RED queue

management is to detect congestion early and to convey congestion notification to the

end-hosts, allowing them to reduce their transmission rates before queues in the network

overflow (Feng et al., 2002).

Random early detection algorithm (RED) was recommended later in the IETF.

The RED's goal is to avoid global synchronization of flows in TCP and then maintain

high productivity. RED has been suggested to reduce delays and achieve a fair

distribution despite the number of connections in TCP (Floyd et al., 1993).

 RED computes a weighted average queue length in a router to determine when

congestion is occurring. When the average queue length is below minth (minimum

threshold), no packets are marked. While, when the average is between minth (minimum

threshold) and maxth (maximum threshold), RED marks incoming packets with

probability p (where p varies linearly between 0 and maxp). When the average is above

maxth, all incoming packets are dropped (p=1) as illustrated in Fig 1.1.(Balkas et al.,

2002).

6

Fig 1.1: Flow chart for Random Early Detection (Misra,2010)

RED uses the average queue length as a congestion indicator, which forms a

critical part of the RED algorithm. While, several other algorithms were proposed, such

as Weighted Fair Queue (Homg et al.,2001), RED remains the most utilized and well-

known method for its simplicity, consistency and acceptable performance (Rosolen et

al.,1999). However, the congestion indicator of the REDôs algorithm was not criticized.

1.3. Problem statement :

The major problem is to investigate how the modify on RED algorithm through

congestion indicators are adjusted so that the flow of the algorithm RED

indicator while maintaining the key equation where you must determine the

best probability of dropping depending on different situations at the router

buffer so that it can be a no-congestion, pre-congestion, light-congestion and

heavy congestion. The researcher also chooses congestion indicators, which

will be replaced by the previous studies are then replaced the indicator's

7

original algorithm and then work experiences and evaluation of this algorithm,

after the amendment to the indicators and the preservation of the main

equation.

1.4. Problem Statement Questions :

¶ How to determine and criticize of best dropping probability with different

situations at the router buffer, which are: no-congestion, pre-congestion, light-

congestion and heavy congestion ?

¶ How to choose the best congestion indicators to be used for queue management?

¶ How to modify RED algorithm by including the selected congestion indicators ?

¶ How to implement, test and evaluates the modified RED algorithm ?

1.5. Objective:

 The main objective of this research is to define the best dropping probability while

having a different with situations at the router buffer, which are: no-congestion, pre-

congestion, light-congestion and heavy congestion , and select the best congestion

indicators, by reviewing and criticizing the previous work in the field of active queue

management .Then modify RED algorithm by modifying both, the main dropping

calculation in RED and the REDôs dropping categories , and implement, test and

evaluates the modified RED algorithm.

1.6. Motivation :

 In this study, several methods proposal in order to reduce and prevent the

congestion of data through the modification to the congestion indicators of

RED algorithm, which is still so far used in some organizations

8

while maintaining the original equation indicators and thus can use these

methods suggested in the different types of networks to prevent the congestion

of data before they occur thus reducing delays in data and improve data

network .

1.7. Methodology :

The adopted methodology approach in this research is experimental, which

involved the following main steps:

We must define the best dropping probability while having a different with situations at

the router buffer, which are: no-congestion, pre-congestion, light-congestion and heavy

congestion .

1. Then select the best congestion indicators, by reviewing and criticizing the previous

work in the field of active queue management.

2. After that modify RED algorithm by replace indicator with another indicator, the

main dropping calculation in RED and the REDôs dropping categories .

3. Last thing make implement, test and evaluates the modified RED algorithm.

.

9

Chapter Two

Background and Related Work

2.1. Introduction

As mentioned earlier, congestion is a problem that occurs on shared networks

when many users try to gain access to the same resources (bandwidth, stores, and queues).

Congestion control techniques and mechanisms can prevent congestion before it happens,

or remove the tension, after that it happened. This chapter gives a brief review on these

mechanisms with the focus on the Active Queue Management (AQM) methods.

2.2. Active Queue Management and RED

There are mainly two ways to deal with congestion: Active and Passive. The early

method for congestion control was passively act after congestion occur with the aim to

reduce the bad consequences that results from the congestion occurrences. Active Queue

Management (AQM) is a term that are given for the congestion control methods that

manage, detect and prevent congestion actively. These set of methods use a set of

indicators to predict and prevent congestion in the early stage (De Vos,2012).

Random Early Detection (RED) algorithm was proposed by Floyd and Jacobson

in 1993 as the first Active Queue Management (AQM) mechanism, which was, later on,

standardized as a recommendation in the IETF. The goal of RED was to avoid global

synchronization of TCP flows and maintain high productivity. Moreover, RED was

proposed to reduce delay and achieve fair allocation though multiple TCP connections

(Li, 2008).

10

RED calculates the average queue size using a low pass filter with an exponential

weighted moving average. The calculated average queue size is compared with two

thresholds: a minimum and a maximum threshold.

When the average queue size is less than the minimum threshold, no packets are

marked, because this is indicating that the buffer is of fair size and no congestion would

occur at this stage. While, when the average queue size is greater than the maximum

threshold, every arriving packet is marked and dropped. This is because at this stage, the

buffer is about to be overflowed by the influence of a congestion state and packets are

about to be lost. Thus, dropping packets will reduce the number of packets in the buffer

and prevent buffer overflowing. When the average queue size is between the minimum

and maximum thresholds, each arriving packet is marked and dropped with probability

Dp, where Dp is a function of the average queue size (avg). The probability that a packet

is marked from a particular connection is roughly proportional to that connectionôs share

of the bandwidth at the router.

RED algorithm implements its process in two stages: One is for computing the

average queue size, which determines the degree of burstiness in the router buffer. It

takes into account the period when the queue is empty (the idle period) by estimating the

number m of small packets that could have been transmitted by the router during the idle

period and the number of packets resides in the buffer over a period of time. RED

algorithm is given in Algorithm 2.1 .

11

Algorithm 2.1: RED

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

 INITIALIZATION:

 avg:= 0

 count:= -1

 FOR EACH arrival packet

 CALCULATE new avg as follows:

 IF q==0 THEN avg:=(1-w)f(time- q_time) * avg

 IF q != 0 THEN avg:= (1-w)* avg + wq *q

 CALCULATE Dp and its related parameters, and implements packet dropping, as:

 if (minth Ò avg < maxth)

 increase count

 Dp'= Dmax* (avg-minth)/(max th-min th)

 Dp = Dp'/ (1-count* Dp') + wd(D)

 with probability Dp

 drop and mark packet

 count := 0

 else if (avg > maxth)

 drop and mark packet

 Count = 0

 else

 Count = -1

 When q==0

 q_time=time

12

 Saved Variables:

 avg: average queue size

 q_time: start of the queue idle time

 count: packets since last marked packet

 Pre-Initialized Parameters:

 wq : queue weight

 minth: minimum threshold for queue

 maxth: maximum threshold for queue

 Dmax: maximum value for Dp

 Other:

 Dp: current packet-marking probability

 Time: current time

As avg varies from minth to maxth, the packet-marking probability Dp varies

linearly from 0 to Dmax. The final packet-marking probability Dp increases slowly as the

count increases since the last marked packet, to prevent, to some extent, consequent

dropping of packets. Fig. 2.1 illustrates a queue buffer with RED supported queue

management.

The problem with RED is the pre-initialized parameters, maxth, minth, Dmax and

wq that should be given a certain value in-order to give a satisfactory QoS.

13

Fig.2.1: Buffer Queue and RED Parameters (Bonald,2000)

Active Queue Management (AQM) methods have been developed to monitor,

detect and prevent congestion in early stage. These methods have been designed to keep

queue at the router buffer as small as possible and to provide early notification of

congestion. The main technique of these methods is to drop packets when necessary in-

order to prevent router overflowing. At the same time, this technique avoids dropping

packets unnecessarily (Mohamed et al., 2010) .

Active Queue Management (AQM) methods help TCP to carry out links

utilization properly. Active queue management determines routers quantitative and

qualitative packets dropping. Subsequently, AQM methods reduce the number of packets

loss in routers. By keeping the average queue size small, AQM methods provide greater

capacity to absorb naturally occurring bursts without dropping packets and provide lower-

delay interactive service by keeping the average queue size small, queue management

will reduce the delays seen by flows (Baker et al., 2015) .

Among many methods, the most prominent method is the random early detection

(RED), which was proposed in the early nineties. RED controls the queue length so it is

used in a lot of routers webserver (Xie et al., 2008).

14

2.3. Related Work

This section reviews the proposed techniques for AQM, such as FRED (

Silberschatz et al.,2006), BLUE (Dhodapkar et al.,2002), SFB (Thiruchelvi et al. 2008),

and CHOKe (Thiruchelvi et al, 2008) . A survey on active queue management

mechanisms. International Journal of Computer Science and Network Security, 8(12),

130-145. and compares some of these techniques with RED Lee et al., (2008) and Drop

Tail (Floyd et al.,2000) , which are considered the base line for congestion control. The

review and comparison focus on the utilized indicators, performance and simulation

results. The characteristics of these techniques are also discussed and compared.

In the efforts to achieve high Quality of Service (QoS), many several congestion

control approaches were developed. Floyd and Jacobson (1993) proposed Random Early

Detection (RED) approach with the aim at detecting and preventing congestion in the

packet-switched. Gateway detects congestion status with the reference to the average size

of the queue in the buffer. The average number of packets in the queue determins whether

to drop or mark packets by placing a bit in the header of the packet to notify the sender

about congestion.

When the average queue size exceeds a predetermined threshold, RED drops or

marks every arriving packet with a certain probability, where the probability is a function

of the average size of the queue. Subsequently, Red maintains a fair average size of the

queue while allowing Bursts every now. RED was designed to accompany congestion

control with no bias against irregular senders and to avoid global synchronization of the

many connections decreasing their window at the same time. Overall, RED is relatively

simple and easy to be implemented in an existing networks or with a newly established

high-speed networks.

15

Since RED was proposed, many AQM methods and algorithms were proposed

with reference to RED and with the aim to overcome some of the expected limitations in

its procedure.

Feng et al. (2002), proposed BLUE algorithm with the aim to address the problem

of solely depends on the average queue size as congestion indicator to calculate Dp, as

given in RED. Blue uses history of packet loss to manage congestion in the buffer. In

addition to BLUE, SFB, a novel algorithm for scalable flows in a large aggregate was

proposed. Using SFB, all the connected flows are denied from exceeding its limited rate

and by increasing Dp for such flows. Using both simulation and controlled trials, BLUE

was proved to give better performance compared to RED, both in terms of packet loss

and the size of the over time.

Siew (2005), proposed Flow-state-dependent dynamic priority scheduling

(FDPS), a new mechanism that depends on building a scheduling and traffic monitoring.

FDPS depends on the queue size as indicator of the buffer states. The proposed

mechanism drops packets of specific source when the source exceed the limits allocated

and there is no space to accommodate the exceeded packets. The results show that FDPS

can differentiating services and prevent congestion.

Lee et al. (2008) proposed congestion control based on servo control structure

based on Linear Quadratic, servo-LQ. The implemented approach uses the traditional

control mechanism with an input variable that represents the queue size. The simulation

results have shown that the proposed controller gives satisfactory performance balance

between the queue size and packet loss.

16

Abbasov et al., (2009) proposed an extension to RED algorithm, called HERED.

The proposed algorithm used a dropping function that is similar to the one used in RED,

but it drops less packet when the load is light and more aggressive dropping, compared

to RED, is implemented when the load is heavy. The simulation shows that it achieves

better QoS compared to RED and the state-of-art algorithms.

Chen et al., (2010) proposed RED- restraint algorithm, which aims to keep the

queue around a stable target value. The RED-restraint algorithm stabilize the queue size

by adjusting the dropping probability value as the value of the current queue length shifted

away from the target value. RED-restraint differs from RED by using the actual queue

length instead of the average queue length in RED. Moreover, RED-restraint stabilize q

around target value, which is not presented in RED. The simulations show that RED-

restraint gives better results compared to RED in packet loss and dropping rate.

As experimental studies, (Wang, Y. C. et al 2004) conducts a statistical analysis of

the behaviour of RED. According to the experiments, RED shows weakness dealing with

heavy congestion, where many packets are lost due to the slow response of the avg. When

the number of packets arrived to the queue increased with the status of heavy congestion,

the calculated (avg) increases slowly, because it depends strongly on the previous value

of avg besides the new value of the queue size. Subsequently, avg takes time to cope with

the increase of packets resides in the buffer.

Ren et al., (2011) conducted a comparative study of the different congestion

control schemes based on some key performance metrics. By comparing different

algorithms, it was proven experimentally that there is no mechanism that can efficiently

control congestion and all of the congestion control mechanisms required large number

of parameters tuning, which affect the system. In addition, it also concludes that in today's

17

high-speed network, and the nature of congestion is not really known, which suggest to

use different types of congestion control.

Subsequently, there is a need to propose new congestion control that does not

depend on manual tuning of parameters. Moreover, there is a need to have a congestion

control that does not concern about pre-assumptions about the nature of congestion that

faces the network. The utilization of machine learning can solve both of the problems if

congestion control problem can be reformulated in away to suits the available machine

learning algorithms.

2.3.1. Average-Queue based Methods

RED (Wang, B. et al 2005) uses the average queue length as the indicator to

estimate the state of the buffer and decide about the dropping probability. RED was the

first technique in AQM and many other methods has follow the same concepts in buffer

management and congestion control. When the link is congested, RED randomly drops

arriving packets even if they would fit into the queue, to signalize congestion to the end

nodes. The probability of the packet dropping is a function of the average queue length,

while RED is adequate in situations with moderate congestion levels, it has been shown,

that ï depending on its parameters ï the queue length either oscillates, or the technique

reacts to the changes in traffic very slowly (Brazio et al.,2006).

2.3.2. Packet-Loss based Methods

BLUE (Dhodapkar et al.,2002) uses packet loss as congestion indicator. BLUE

is one of the newly proposed techniques for congestion control ï either using ECN-

marking or packet dropping.

18

If the queue losses packets due to queue overflows, the probability is increased. If

the link is underutilized, the probability is decreased. To avoid oscillations, it freezes the

probability after every change for a fixed time interval, Note that RED cannot achieve

this if the queue length is oscillating.

 Using both simulation and experimentation, BLUE is shown to overcome

many of REDôs shortcomings. RED has been designed with the objective to (1) minimize

packet loss and queuing delay, (2) avoid global synchronization of sources, (3) maintain

high link utilization, and (4) remove biases against bursty sources, and BLUE either

improves or matches REDôs performance in all of these aspects (Dhodapkar et al., 2002).

The key idea behind BLUE is to perform queue management based directly on

packet loss and link utilization rather than on the instantaneous or average queue lengths.

This is in contrast to other active queue management schemes which use some form of

queue occupancy in their congestion management.

BLUE maintains a single marking probability, which it uses to mark or drop

packets. If the queue is continually dropping packets due to buffer overflow, BLUE

increments marking probability, thus increasing the rate at which it sends back

congestion notification. Conversely, if the queue becomes empty or if the link is idle,

BLUE decreases its marking probability. This effectively allows BLUE to (learn) the

correct rate it needs to send back congestion notification. The BLUE technique, which

the marking probability is updated when the queue length exceeds a certain value as

illustrated in Fig 2.2.(Feng et al., 2006).

19

 Fig 2.2 : Flowchart of Blue Algorithm (Feng, 2006)

This modification allows room to be left in the queue for transient bursts and

allows the queue to control queuing delay when the size of the queue being used is large.

Besides the marking probability, BLUE uses two other parameters which control how

quickly the marking probability changes over time. The first is freeze time, which

determines the minimum time interval between two successive updates of marking

probability. This allows the changes in the marking probability to take effect before the

value is updated again. Freeze time is initialized as a constant, this value should be

randomized in order to avoid global synchronization. The other parameters used, (d1 and

d2), determine the amount by which marking probability is increased when the queue

overflows or is decreased when the link is idle. The parameter d1 is set significantly larger

20

than d2, this is because link underutilization can occur when congestion management is

either too conservative or too aggressive, but packet loss occurs only when congestion

management is too conservative. By weighting heavily against packet loss, BLUE can

quickly react to a substantial increase in traffic load. Note that there are a myriad of ways

in which marking probability can be managed, experiments with additional parameter

settings and algorithm variations have also been performed with the only difference being

how quickly the queue management algorithm adapts to the offered load. While BLUE

seems extremely simple, it provides a significant performance improvement even when

compared to a RED queue which has been reasonably configured (Feng et al., 2006) .

Another technique that uses packet loss as congestion indicator is Stochastic Fair

Blue (SFB) (Thiruchelvi et al. 2008). SFB is a novel technique for protecting TCP flows

against non-responsive flows, which was built based on BLUE. SFB is a FIFO queuing

algorithm that identifies and rate-limits non-responsive flows based on accounting

mechanisms similar to those used with BLUE. SFB maintains accounting bins that are

organized in L levels with N bins in each level. In addition, SFB maintains L independent

hash functions, each associated with one level of the accounting bins. Each hash function

maps a flow into one of the accounting bins in that level. The accounting bins are used to

keep track of queue occupancy statistics of packets belonging to a particular bin. As a

packet arrives at the queue, it is hashed into one of the N bins in each of the L levels. If

the number of packets mapped to a bin goes above a certain threshold (i.e., the size of the

bin), the packet dropping probability marking probability for that bin is increased. If the

number of packets in that bin drops to zero, marking probability is decreased. The

observation is that, a non-responsive flow quickly drives marking probability to 1 in all

of the L bins it is hashed into. Responsive flows may share one or two bins with non-

responsive flows, however, unless the number of non-responsive flows is extremely large

21

compared to the number of bins, a responsive flow is likely to be hashed into at least one

bin that is not polluted with non-responsive flows and thus has a normal value. The

decision to mark a packet is based on Pmin the minimum marking probability value of all

bins to which the flow is mapped into. If Pmin is 1, the packet is identified as belonging to

a non-responsive flow and is then rate-limited.

2.3.3. Queue and Average-Queue based Methods

Gentle Random Early Detection (GRED) (Sally et al., 2000), was proposed in

order to increase throughput and reduce the undesired oscillation in buffer size of router

by enhancing parameter settings of RED. GRED was evaluated using same simulation

as it used in RED.

GRED aims to solve some of REDôs problems using technique that is similar to

RED, but the main difference is in parameter setting in order to be optimized and have a

better performance regarding to Packet loss and throughput. In GRED another parameter

was introduced namely, Effective Random Early Detection (ERED) (Freed et al., 2006)

was proposed to reduce packet loss rates in a simple and scalable manner. ERED modifies

the packet drop function of RED scheme by controlling packet dropping function both

with average queue size and instantaneous queue size. Simulations demonstrate that

ERED achieves a highest throughput and lowest packet drops than RED and it performs

better than RED due to lowest packet drops .

RED probability is dropped by a mechanism dependent on queue length of buffer

and TCP senders are informed before congestion. The mechanism monitors average

queue length at a router and a drop probability is calculated accordingly, if the average

length of waiting increased, congestion will happen and therefore the dropping

probability should also increase to prevent congestion (Wang, B. et al 2005).

22

At light traffic load when the average queue size exceeds the maximum threshold

(maxth), RED drops all packets even though current queue size is small or queue is empty.

When the load is getting heavy and the current queue size quickly approaches the queue

limitðan indicator that the queue size may soon get out of control, but the average queue

size is not big enough to make random drops; ERED allows more aggressive packet

dropping to quickly back off from it.

The disadvantage of RED is if congestion is sufficiently heavy that the gateway

cannot control the average queue size. ERED proposed to control average queue size

when connections immediately reduce their sending rate in the case of no congestion

(Janevski et al.,2003).

 When the average queue size is between the minimum and the maximum

threshold, each arriving packet is dropped with probability , even though current queue

size is small or queue is empty. ERED proposed to calculate packet dropping probability

according to instantaneous queue size when queue size increases immediately and

exceeds queue limit, but average queue size is below the minimum in the case of

congestion, and drop each arriving packet with probability (Xu et al.,2005) .

ERED has higher throughput and lower packet loss rate than other AQM

algorithms. ERED has highest throughput value between simulated algorithms when

comparing throughput values of AQM algorithms and the Router buffer of ERED

algorithms newer overflows and reduces to zero during simulation. Router buffer

frequently reduces to zero in RED because RED is aggressive when traffic load is light

and not aggressive when traffic load is heavy. ERED forwarded the most packets to

destination nodes and has lost the least packets among rest techniques (Abbasov et

al.,2009).

23

Weighted random early detection (WRED) (May et al.,1999) is a congestion

avoidance mechanism and drops them when queues are full , WRED depends on the value

of precedence in measuring the size of the waiting lists and starts to drop packets when

the wait between the minimum and maximum threshold list and arranging will decide

that 1 in every N packets are dropped . WRED helps to prevent TCP synchronization and

TCP starvation but when TCP loses packets it will go into slow start and if all TCP

sessions lose packets at the same time they could become synchronized (Wurtzler et

al.,2002).

Random early detection (RED) is a mechanism to avoid congestion which takes

advantage of the control mechanism in the congestion of the TCP. By randomly dropping

packets before high congestion occurs, RED reduces the source packet transmission rate,

WRED drops packets on a selective basis on the IP precedence. Edge routers set the IP

precedence to packets as they enter the network. WRED is useful on any output interface

where you expect it to be crowded. However, WRED is usually used in the core routers

for the network, and not on the edge. WRED uses these precedence to determine how to

deal with different traffic (Odom et al., 2004).

When a packet arrives, the average is less than the minimum queue threshold, the

arriving packet is queued. But if the average is between the minimum queue threshold for

that type of traffic and the maximum threshold for the interface, the packet is either

dropped or queued, depending on the packet drop probability for that type of traffic. But

if the average queue size is greater than the maximum threshold, the packet is dropped as

illustrated in Fig 2.3.

24

Fig. 2.3: WRED drops packets probability (May,1999)

The packet drop probability is based on the minimum threshold and maximum

threshold, and mark probability denominator. But when the average queue depth is upper

the minimum threshold then RED starts dropping packets. The average of packet drop

increases linearly as the average queue size increases until the average queue size reaches

the maximum threshold. The mark probability denominator is the part of packets dropped

when the average queue depth is at the maximum threshold , and when the average queue

size is upper the maximum threshold, all packets are dropped (Wurtzler et al.,2002).

Robust random early detection (RRED) (Zhang et al., 2010) is a queuing

correction for a network scheduler. RRED technique was suggest to improve the TCP

throughput against LDoS attacks. The main idea behind RRED is to detect and filter out

attack packets before a normal RED algorithm is applied to incoming flows. RRED

algorithm can significantly improve the performance of TCP under Low-avrage negation-

of-service attacks , and the basic idea behind the RRED is to detect and filter out LDoS

attack packets from incoming flows before they feed to the RED algorithm (Braden et

al.,1998) .

25

Flow Random Early Drop (FRED) (Silberschatz et al., 2006) aims to reduce the

effects of injustice in RED. Instead of indicating congestion to randomly selected contacts

through a drop packets relatively speaking, that generates a unique responses of the

selective action of a group that has filtered of connections that have a large number of

packets in the queue. FRED is able to isolate the non-passage of greed adapt more

effectively (Pan et al., 2000).

FRED is like RED, but with some additions. FRED introduces the parameters

minq and maxq, they aims for the minimum and maximum number of packets each flow

should be allowed to buffer, and FRED maintains a variable strike for each flow, which

counts the number of times the flow has failed to respond to congestion notification.

FRED held to account for the presence of flows with high values of strike (Kidambi et

al.,2000).

FRED is modified version of the RED, providing selective dropping on the basis

of an active share of the flow of the charges buffer. FRED keeps this only extra state for

flows that have packets stored in each gateway (Alemu et al.,2004), which is compatible

with existing FIFO queue architectures.. FRED processes arriving packets using the

following flow chart of the algorithm illustrated in Fig 2.4.

New flow?

Calculate avg & maxq

Non-adaptive?

N

Y

minth<avg<maxth

Drop

N

Y

Robust
RED

avg<minth Accept

N

Drop Tail

New state

Fragile

N

Fig 2.4: FRED processing arriving packet (Stoica, 1998)

26

CHOKe as a queue management algorithm, CHOKe basicly will detect all the

non-responsive and unwanted flows using pre-existing queue buffer occupancy

information of each flow. The RED usually used a certain existing technique in order to

calculate the average occupancy and it works, and that was the same used by CHOKe (

Bergmeyer et al., 2012).

 It also marks two thresholds on the buffer, a minimum threshold minth and a

maximum threshold maxth. Depending on the Queue size the outcome will change: If the

average queue size is less than minth, each arriving packet is being automatically queued

and waited into the FIFO buffer. If the collected arrival rate is less than the output link

capacity, the average queue size should not build up to minth very often and packets are

not dropped frequently. If the average queue size is more than maxth, each arriving

packet is dropped (Pan, R., Prabhakar, B., 2000).

 This will take the queue occupancy back to below maxth. When the average

queue size is bigger than minth, each arriving packet is compared with a another packet

this is done randomly , named as drop candidate packet, from the FIFO buffer. If they

have the same flow ID, they are both dropped. Otherwise, the randomly chosen packet is

kept in the buffer (in the same position as before) and the arriving packet is dropped with

a probability that depends on the average queue size. The drop probability is computed

exactly as in RED. In particular, this means that packets are dropped with probability 1 if

they arrive when the average queue size exceeds maxth. And in order to bring the queue

occupancy back to below maxth as fast as possible. A flow chart of the algorithm is given

in Fig 2.5 (Pan et al.,2000) .

27

qvag < minth

Admit new packet

end

Draw a packet randomly

from the queue

Both packet from

the same queue

qvag < maxth Drop both packets

end

end
end

Admit packet with

probability p

Drop the new packet

 Fig 2.5 : Flow chart for Basic CHOKe (Pan,2000)

The following table 2.1 shows the comparison brief review on these mechanisms

indicator :

 Table 2.1: comparison of mechanisms indicator

In
d

ic
at

o
r

A
vo

id
 G

lo
b

al

Sy
n

ch
ro

n
iz

at
io

n

P
re

d
ic

t
C

o
n

ge
st

io
n

 in

Ea
rl

y
st

ag
e

R
es

p
o

n
se

 t
o

su
d

d
en

C

o
n

ge
st

io
n

A
vo

id

u
n

n
ec

e
ss

ar
y

p
ac

ke
t

d
ro

p
p

in
g

N
o

 d
el

ay

A
vo

id

P
ar

am
et

e
ri

za
ti

o
n

RED avg Yes Yes No Yes No No

FRED avg Yes Yes No Yes No No

RRED avg & q Yes Yes No Yes No No

WRED avg & q Yes Yes No Yes No No

GRED avg & q Yes Yes No Yes No No

CHOKe avg Yes Yes Yes No No No

ERED avg & q Yes Yes Yes Yes No No

BLUE PL Yes No No Yes Yes No

SFP PL Yes No No Yes Yes No

AVQ Arrival rate Yes Yes Yes No Yes No

FDPS q Yes Yes Yes No No No

AFRED avg avg Yes Yes No Yes Yes

28

2.4. Summary

Several queue management algorithms (RED, FRED, BLUE, SFB, CHOKe)

based on comparison result and algorithm characteristics. Itôs still hard to conclude which

algorithm is better in all aspects than another, especially considering the deployment

complexity. But the major trends are: (1) all these algorithms have in common that they

do provide high link utilization, (2) RED and BLUE do not usually identify and drop the

non-responsive flow, but the other three algorithms FRED ,SFB and CHOKe maintains

equal sharing among different traffic flows, (3) the equality maintained by the three

algorithms is achieved by using different methods, FRED record per-active-flow

information, SFB statistically multiplex buffers to bins, but it requires to achieve this is

to have a large number of non-responsive flows, CHOKe correlates dropping rate with

corresponding flowôs incoming rate, and is able to drop large number of non-responsive

flows adaptively, (4) all of the algorithms has computation overhead per incoming packet,

they do require a different space.

29

Chapter Three

Proposed Work

This Chapter presents the proposed approach for AQM. The proposed approach

operates in the router buffer in order to control the number of packets presents in the

router and drop the packets randomly before buffer overflow, it calculates a dropping

probability with each arrival packet and it avoids the problem of global synchronization

phenomena. Overall, the proposed approach contributes by using different indicators with

RED, as will be discussed in this chapter.

This chapter is organized as follows: Section 3.1. is an introduction. Section 3.2

presents the proposed methods. Section 3.3. is the summary of the chapter3.

3.1. Introduction

 RED, the first and most well-known AQM methods is influenced by the

utilized congestion indicator. The congestion indicator in RED, the average queue length,

has two main roles, these are:

¶ Selecting Dp category.

¶ Calculating the actual Dp value in likelihood dropping category [0-1].

Subsequently, the proposed approach and the other existing AQM methods use

different indicators to play these roles, accordingly.

The proposed approach, as similar to the existing AQM method, preserves the

core of the RED technique embodied in calculating Dp with each arrival packet, drop

30

packets based on the calculated Dp and divide Dp calculation into categories. Existing

AQM methods have taken different approaches in modifying RED. However, the overall

trends in these approaches are changing both, the congestion indicator and the utilized Dp

calculation procedure, building on the assumption that different indicators required

different calculation procedures. Unlike the existing AQM methods, the proposed

approach changes the REDôs utilized congestion indicator and preserves the RED

calculation. The proposed approach uses novel indicators in the RED framework, these

indicators will be discussed accordingly.

3.2. The proposed methods

 RED uses Average Queue Length as single and sole congestion indicator.

Average Queue Length is an intelligent indicator of the number of packets within the

buffer zone. It is a reflection of the queue length, an indicator of the actual number of

packets in the router buffer.

 Diff erent indicators rather than AVG-Queue are investigated. The utilized

indicators are calculated in a way to fit in the RED procedure. Subsequently, different

calculation process than those founds in the literature is implemented. The investigated

indicators are: Queue Length, Load Rate and Delay.

As noted and proven in the experiments, we found out that whenever the number

of arrival queue increase, the indicators will increase their number .

The indicators were used in order to replace the parameters in the equation of

original RED in order to have different proposed methods than the original RED .

31

3.2.1. Queue Length

 Queue length is the number of the packets that reside in the router buffer

simultaneously at a specific time. It is simply calculated by counting the number of

packets that reside in the buffer. Queue length was previously used in an extended-RED

AQM method, called ERED. The utilization of this factor along with the average queue

length, as given in ERED work, has shown an improvement in the overall results.

However, in the work, Queue length is used as in different way that is simpler compared

to ERED.

3.2.2. Load Rate

 Load Rate is an indicator of the ratio between the packet arrival rate and packet

departure rate that formulate the load on the router. The load rate is calculated based on

four scenarios as given in Algorithm 1.

Algorithm 1: Lode Rate Calculation

1. if(QueueLength==0)

2. LoadRate = 0

3. else if (QueueLength==BufferSize)

4. LoadRate = 1

5. else if(DepartureRate>ArrivalRate)

6. LoadRate =0

7. else

8. LoadRate = ArraivalRate-DepartureRate

In Line 1 and Line 2, the load rate is set to zero if there is no packets queued in

the buffer. In another case, in Line 3 and Line 4, if the buffer is full, by other means if the

number of queued packets is equal to the buffer capacity, then the load rate is set to one,

32

which is the maximum loade rate value. In such a case, the load cannot be determined

precisely, as no arrival packets can occur in this case. However because buffer can only

be overflowed with heavy load, it is given the maximum load rate value.

In Line 5 and Line 6, if the departure rate is greater than the arrival rate, no load

will be added on the buffer because the departed packet are larger than those arriving.

Thus, the load rate is set to zero. Finally, the major load rate calculation is implemented

in Line 7 and Line 8. This case refers to arriving packets greater than departing; buffer is

neither empty nor full. In such a case the load rate will be given a value in the range [0-

1] and it will be calculated as the difference between the arrival rate and departure rate.

The arrival rate is calculated as given in Equation 3.1.

ArraivalRatet = w * Arrival t + (1-w) * ArraivalRatet-1 (3.1)

where, ArraivalRatet is the arrival rate calculate at the current time denoted as t.

ArraivalRatet is calculated as low filter pass of the average arrival packets at the current

time, Arrival t, and the old arrival rate calculated at time (t-1), ArraivalRatet-1. This

averaging process is similar to the way of calculating the average queue length proposed

by Floyd. The advantage of such low pass filter as mentioned before is to avoid false

calculation in burst traffic or short ideal link. The weight w is set to a value less than 0.5

to ensure the low pass filtering of the old and new values.

Arrival t, the arrival at time t is calculated as the inverse difference between the

current time, which is the time of a newly arrived packet, and the time of the last arrived

packet, as given in Equation 3.2. Note that Timecurrent is a time of newly arrived packet

implicitly understood as all calculations in any AQM method is implemented with packet

arrivals only.

33

Arrival t = 1/(Timecurrent - TimePrevious) (3.2)

The departure rate is calculated differently from the arrival because the calculation

is not implemented with each packet departure, thus, the AQM has no control on the

packet departing process. The departure at time t, DepartureRatet, is calculated as the

difference between the arrival rate and the packet queuing rate, which is estimated as

AVG/BufferSize, as given in Equation 3.3.

DepartureRatet = arrivalRate - (AVG/BufferSize) (3.3)

Note that, the values of LoadRate, ArraivalRatet and DepartureRatet are updated

with each packet arrival, by other means with each AQM triggered for action.

3.2.3. Delay

Delay is an indicator of the average time the packets will be waited in the queue.

The delay is calculated based on Equation 3.4.

Delay = LoadRate * QueueLength (3.4)

Generally, these indicators are the most common indicators used by the existing

active queue management methods. It is used with different calculations rather than given

here.

34

3.3. The Proposed Sub-Methods

The proposed approach extends RED by maintaining the overall structure of the

underlying process in RED while modifying the major indicators used to produce the final

Dp value. In the proposed work, the process is divided into three stages: which are:

 The investigated Modified-RED Sub-methods are listed in Table 3.1.

Table 3.1: The Modified-RED Sub-Methods

Investigated Trial

For Categorization For [0-1] Category

Calculation

Comments

RED AVG-Queue AVG-Queue Original RED

1 AVG-Queue Queue-Length Proposed

Variation 1

2 Queue-Length AVG-Queue Proposed

Variation 2

3 Queue-Length Queue-Length Proposed

Variation 3

4 AVG-Queue Load-Rate Proposed

Variation 4

5 Load-Rate AVG-Queue Proposed

Variation 5

6 Load-Rate Load-Rate Proposed

Variation 6

7 AVG-Queue Delay Proposed

Variation 7

8 Delay AVG-Queue Proposed

Variation 8

9 Delay Delay Proposed

Variation 9

35

3.3.1. Sub-Method 1

 The first variation uses the original RED indicator average queue length (AVG)

for categorization and the queue length for the main calculation. The proposed variation

is given in Algorithm 1.

Algorithm 2: Proposed Sub-Method-1

1. QueueAverage:= 0

2. count:= -1

3. with packet arrival

4. If QueueLenth==0 THEN QueueAverage:=(1-w)f(time- q_time) * QueueAverage

5. If QueueLenth<> 0 THEN QueueAverage:= (1-w)* QueueAverage + w *q

6. If (minthÒ QueueAverage<maxth)

7. Count ++

8. Dp'= Dmax* (QueueLenth -minth)/(maxth-minth)

9. Dp = Dp'/ (1-count*Dp')

10. with probability Dp

11. drop and mark packet

12. count:= 0

13. Else If (QueueAverage>maxth)

14. drop and mark packet

15. count = 0

16. Else

17. count = -1

18. If QueueLenth ==0

19. q_time=time

In Line 1 and Line 2, the parameters required to run the algorithm, are setting up

to their initial values. The queue management process start at Line 3. The average queue

length is calculated according to one of three scenarios, similar to the scenarios given in

the original RED, in Line 4 and Line 5. In Line 6 to Line 12, the first calculation category

36

is represented, the likelihood category. As given in Line 8, the calculation of the dropping

probability has been modified to include the QueueLength parameter in the place of the

AverageQueue, which was used in the original RED. The new calculation of Dp is given

in Equation 3.5.

Dp'= Dmax* (QueueLenth -minth)/(maxth-minth), Dp = Dp'/ (1-count*Dp') (3.5)

In Line 13 to Line 15, the second calculation category is represented, which is the

full dropping category. This scenario for calculating Dp value is followed when

AverageQueue is above the value of maxth. In Line 16 and Line 17, the third calculation

category is represented, which is zero dropping category. This scenario for calculating

Dp value is followed when AverageQueue is below the value of minth. Finally, the value

of ideal time is updated if the queue is getting full. The ideal time is used to calculate the

AverageQueue.

3.3.2. Sub-Method 2

The second variation uses the queue length for categorization and the original

RED indicator, average queue length (AVG), for the main calculation. This variation is

given in Algorithm 2.

Algorithm 3: Proposed Sub-Method-2

1. QueueAverage:= 0

2. count:= -1

3. with packet arrival

4. If QueueLenth==0 THEN QueueAverage:=(1-w)f(time- q_time) * QueueAverage

5. If QueueLenth<> 0 THEN QueueAverage:= (1-w)* QueueAverage + w *q

6. If (minthÒ QueueLenth<maxth)

7. Count ++

8. Dp'= Dmax* (QueueAverage -minth)/(maxth-minth)

9.Dp = Dp'/ (1-count*Dp')

10. with probability Dp

37

11. drop and mark packet

12. count:= 0

13. Else If (QueueLenth>maxth)

14. drop and mark packet

15. count = 0

16. Else

17. count = -1

18. If QueueLenth ==0

19. q_time=time

As before Line 1, Line 2 and Line 3 setting the parameters to their initial values

and initiate the queue management. The average queue length is calculated, similar to the

calculation in the original RED, in Line 4 and Line 5. Line 6 to Line 12 represent the first

calculation category, the likelihood category. As given in Line 6, the triggering of the

category depends on comparing QueueLength value to the thresholds, which replace the

AverageQueue, which was used in the original RED. The calculation of the Dropping

probability, in Line 7 and Line 8 is implemented as the original RED. Lines 13 to 15

represent the second calculation category, full dropping category, which is followed when

QueueLength is above the value of maxth, unlike original RED which uses AverageQueue

for this purpose. Line 16 and Line 17 represent the third calculation category, no dropping

category, which is followed when AverageQueue is below the value of minth. Finally, the

value of ideal time is updated if the queue is getting full. The ideal time is used to calculate

the AverageQueue.

38

Proposed Variation 3:

The third variation uses the queue length for categorization and for the main

calculation. This variation is given in Algorithm 3.

Algorithm 3: Proposed Variation 3

1. QueueAverage:= 0

2. count:= -1

3. with packet arrival

4. If (minthÒ QueueLenth<maxth)

5. Count ++

6. Dp'= Dmax* (QueueLenth -minth)/(maxth-minth)

7. Dp = Dp'/ (1-count*Dp')

8. with probability Dp

9. drop and mark packet

10. count:= 0

11. Else If (QueueLenth>maxth)

12. drop and mark packet

13.count = 0

14. Else

15. count = -1

As before, Line 1, Line 2 and Line 3 setting the parameters to their initial values and

initiate the queue management .Line 4 to Line 10 represent the first calculation category,

the likelihood category. As given in Line 4, the triggering of the category depends on

comparing QueueLength value to the thresholds, which replace the AverageQueue, which

was used in the original RED. The calculation of the Dropping probability in Line 5 and

Line 6 is implemented based on QueueLength. Line 11 to Line 13 represent the second

calculation category, full dropping category, which is followed when QueueLength is

above the value of maxth. Line 14 and Line 15 represent the third calculation category, no

dropping category, which is followed when AverageQueue is below the value of minth.

As noted there is neither. AverageQueue nor ideal time calculation in this variation.

39

Proposed Variation 4:

The fourth variation uses the original RED indicator average queue length (AVG)

for categorization and the load rate for the main calculation. The proposed variation is

given in Algorithm 4.

Algorithm 4: Proposed Variation 4

1. QueueAverage:= 0

2. count:= -1

3. with packet arrival

4. If QueueLenth==0 THEN QueueAverage:=(1-w)f(time- q_time) * QueueAverage

5. If QueueLenth<> 0 THEN QueueAverage:= (1-w)* QueueAverage + w *q

6. loadRate = LoadRateCalculation()

7. If (minthÒ QueueAverage<maxth)

8. Count ++

9. Dp'= Dmax* (loadRate -minth)/(maxth-minth)

10. Dp = Dp'/ (1-count*Dp')

11. with probability Dp

12. drop and mark packet

13. count:= 0

14. Else If (QueueAverage>maxth)

15. drop and mark packet

16. count = 0

17. Else

18. count = -1

19. If QueueLenth ==0

20. q_time=time

As before, Line 1, Line 2 and Line 3 setting the parameters to their initial values

and initiate the queue management. The average queue length is calculated, similar to the

calculation in the original RED, in Line 4 and Line 5. The load rate is calculated as given

in Algorithm 1 in Line 6. Line 7 to Line 13 represent the first calculation category, the

likelihood category. As given in Line 9, the calculation of the Dropping probability has

been modified to include the LoadRate parameter in the place of the AverageQueue,

40

which was used in the original RED. The LoadRate is calculated as discussed in

Algorithm 1. Line 14 to Line 16 represent the second calculation category, full dropping

category, which is followed when AverageQueue is above the value of maxth. Line 17

and Line 18 represent the third calculation category, no dropping category, which is

followed when AverageQueue is below the value of minth. Finally, the value of ideal time

is updated if the queue is getting full. The ideal time is used to calculate the

AverageQueue.

Proposed Variation 5:

The fifth variation uses the LoadRate for categorization and the original RED

indicator, average queue length (AVG), for the main calculation. This variation is given

in Algorithm 5.

41

Algorithm 5: Proposed Variation 5

1. QueueAverage:= 0

2. count:= -1

3. with packet arrival

4. If QueueLenth==0 THEN QueueAverage:=(1-w)f(time- q_time) * QueueAverage

5. If QueueLenth<> 0 THEN QueueAverage:= (1-w)* QueueAverage + w *q

6. loadRate = LoadRateCalculation()

7. If (minthÒ loadRate<maxth)

8. Count ++

9. Dp'= Dmax* (QueueAverage -minth)/(maxth-minth)

10. Dp = Dp'/ (1-count*Dp')

11. with probability Dp

12. drop and mark packet

13. count:= 0

14. Else If (LoadRate>maxth)

15.drop and mark packet

16. count = 0

17. Else

18. count = -1

19. If QueueLenth ==0

20. q_time=time

As before Line 1, Line 2 and Line 3 setting the parameters to their initial values

and initiate the queue management. The average queue length is calculated, similar to the

calculation in the original RED, in Line 4 and Line 5. The load rate is calculated as given

in Algorithm 1 in Line 6. Line 7 to Line 13 represent the first calculation category, the

likelihood category. As given in Line 7, the triggering of the category depends on

comparing LoadRate value to the thresholds, which replace the AverageQueue, which

was used in the original RED. The calculation of the Dropping probability, in Line 8 and

Line 9, is implemented as the original RED. Line 14 to Line 16 represent the second

42

calculation category, full dropping category, which is followed when LoadRate is above

the value of maxth. Unlike original RED which uses AverageQueue for this purpose. Line

17 and Line 18 represent the third calculation category, no dropping category, which is

followed when LoadRate is below the value of minth. Finally, the value of ideal time is

updated if the queue is getting full. The ideal time is used to calculate the AverageQueue.

Proposed Variation 6:

The sixth variation uses the load rate for categorization and for the main

calculation. This variation is given in Algorithm 6.

Algorithm 6: Proposed Variation 6

1. QueueAverage:= 0

2. count:= -1

3. with packet arrival

4. LoadRate = LoadRateCalculation()

5. If (minthÒ loadRate<maxth)

6. Count ++

7. Dp'= Dmax* (LoadRate -minth)/(maxth-minth)

8. Dp = Dp'/ (1-count*Dp')

9. with probability Dp

10. drop and mark packet

11. count:= 0

12. Else If (LoadRate>maxth)

13. drop and mark packet

14. count = 0

15. Else

16. count = -1

As before Line 1, Line 2 and Line 3 setting the parameters to their initial values

and initiate the queue management. The load rate is calculated as given in Algorithm 1 in

Line 4. Line 5 to Line 11 represent the first calculation category, the likelihood category.

As given in Line 5, the triggering of the category depends on comparing LoadRate value

to the thresholds, which replace the AverageQueue, which was used in the original RED.

43

The calculation of the Dropping probability, in Line 6 and Line 7 is implemented based

on LoadRate. Line 12 to Line 14 represent the second calculation category, full dropping

category, which is followed when LoadRate is above the value of maxth. Line 15 and Line

16 represent the third calculation category, no dropping category, which is followed when

LoadRate is below the value of minth. As noted there is neither AverageQueue nor ideal

time calculation in this variation.

Proposed Variation 7:

The seventh variation uses the original RED indicator average queue length

(AVG) for categorization and the delay for the main calculation. The proposed variation

is given in Algorithm 7.

Algorithm 7: Proposed Variation 7

1. QueueAverage:= 0

2. count:= -1

3. with packet arrival

4. If QueueLenth==0 THEN QueueAverage:=(1-w)f(time- q_time) * QueueAverage

5. If QueueLenth<> 0 THEN QueueAverage:= (1-w)* QueueAverage + w *q

6. LoadRate = LoadRateCalculation() DelayRate = LoadRate*QueueLength

7. If (minthÒ QueueAverage<maxth)

8. Count ++

9. Dp'= Dmax* (DelayRate -minth)/(maxth-minth)

10. Dp = Dp'/ (1-count*Dp')

11 with probability Dp

12. drop and mark packet

13. count:= 0

14. Else If (QueueAverage>maxth)

15. drop and mark packet

16. count = 0

17. Else

18.count = -1

19. If QueueLenth ==0

20. q_time=time

44

As before Line 1, Line 2 and Line 3 setting the parameters to their initial values

and initiate the queue management. The average queue length is calculated, similar to the

calculation in the original RED, in Line 4 and Line 5. The load rate and delay are

calculated as given in Algorithm 1 and Equation 4 in Line 6. Line 7 to Line 13 represent

the first calculation category, the likelihood category. As given in Line 9, the calculation

of the dropping probability has been modified to include the DelayRate parameter in the

place of the AverageQueue, which was used in the original RED. The DelayRate is

calculated as discussed in Equation 4. Line 14 to Line 16 represent the second calculation

category, full dropping category, which is followed when AverageQueue is above the

value of maxth. Line 17 and Line 18 represent the third calculation category, no dropping

category, which is followed when AverageQueue is below the value of minth. Finally, the

value of ideal time is updated if the queue is getting full. The ideal time is used to calculate

the AverageQueue.

Proposed Variation 8:

The eighth variation uses the DelayRate for categorization and the original RED

indicator, average queue length (AVG), for the main calculation. This variation is given

in Algorithm 8.

45

Algorithm 8: Proposed Variation 8

1. QueueAverage:= 0

2. count:= -1

3. with packet arrival

4. If QueueLenth==0 THEN QueueAverage:=(1-w)f(time- q_time) * QueueAverage

5. If QueueLenth<> 0 THEN QueueAverage:= (1-w)* QueueAverage + w *q

6. LoadRate = LoadRateCalculation() DelayRate = LoadRate*QueueLength

7. If (minthÒ DelayRate<maxth)

8. Count ++

9. Dp'= Dmax* (QueueAverage -minth)/(maxth-minth)

10. Dp = Dp'/ (1-count*Dp')

11. with probability Dp

12. drop and mark packet

13. count:= 0

14. Else If (DelayRate>maxth)

15. drop and mark packet

16. count = 0

17. Else

18. count = -1

19. If QueueLenth ==0

20. q_time=time

46

As before Line 1, Line 2 and Line 3 setting the parameters to their initial values

and initiate the queue management. The average queue length is calculated, similar to the

calculation in the original RED, in Line 4 and Line 5. The delay is calculated in Line 6.

Line 7 to Line 13 represent the first calculation category, the likelihood category. As

given in Line 7, the triggering of the category depends on comparing DelayRate value to

the thresholds, which replaces the AverageQueue, which was used in the original RED.

The calculation of the Dropping probability, in Line 8 and Line 9 is implemented as the

original RED. Line 14 to Line 16 represent the second calculation category, full dropping

category, which is followed when DelayRate is above the value of maxth. Unlike original

RED which uses AverageQueue for this purpose. Line 17 and Line 18 represent the third

calculation category, no dropping category, which is followed when DelayRate is below

the value of minth. Finally, the value of ideal time is updated if the queue is getting full.

The ideal time is used to calculate the AverageQueue.

Proposed Variation 9:

 The ninth variation uses the delay for categorization and for the main calculation.

This variation is given in Algorithm 9.

47

Algorithm 9: Proposed Variation 9

1. QueueAverage:= 0

2. count:= -1

3. with packet arrival

4. LoadRate = LoadRateCalculation() DelayRate = LoadRate*QueueLength

5. If (minthÒ DelayRate<maxth)

6. Count ++

7. Dp'= Dmax* (DelayRate -minth)/(maxth-minth)

8. Dp = Dp'/ (1-count*Dp')

9. with probability Dp

10. drop and mark packet

11. count:= 0

12. Else If (DelayRate>maxth)

13. drop and mark packet

14. count = 0

15. Else

16. count = -1

As before Line 1, Line 2 and Line 3 setting the parameters to their initial values

and initiate the queue management. The delay is calculated in Line 4. Line 5 to Line 11

represent the first calculation category, the likelihood category. As given in Line 5, the

triggering of the category depends on comparing DelayRate value to the thresholds,

which replaces the AverageQueue, which was used in the original RED. The calculation

of the dropping probability, in Line 6 and Line 7 is implemented based on DelayRate.

48

Line 12 to Line 14 represents the second calculation category, full dropping category,

which is followed when DelayRate is above the value of maxth. Line 15 and Line 16

represent the third calculation category, no dropping category, which is followed when

DelayRate is below the value of minth. As noted there is neither Average Queue nor ideal

time calculation in this variation.

 3.4. Summary

We replaced the existing original parameter code RED with new indicators

(Queue length , load rate and Delay) .As every time we do these replacements, we have

a proposed methods , that provided us with nine different proposed methods .Later on

in chapter four all these proposed methods will be tested and studied in order to find out

which one of the nine is going to be recognised as the best proposed methods .

49

CHAPTER FOUR

 THE EXPERIMENTAL RESULTS

This chapter presents, compares and discusses the results of the proposed

methods for congestion control that were built based on RED, as has been discussed in

Chapter Three. The proposed and compared methods are developed, executed and

compared in this chapter.

This chapter is organized as follows: Section 4.1 presents an introduction to this

chapter. Section 4.2 describes all the aspects that are related to the environment, in which

the experiments were conducted. Section 4.3 describes the parameters and settings that

are used in the experiments. The results are given in Section 4.4. Finally, Section 4.5

gives a summary of the chapter.

4.1 Introduction

The procedure of conducting the experiments consists of implementing the

proposed and compared methods, testing, and comparing the results. The implementation

is conducted using JAVA programming language. The code is developed in NetBeans 7.5

IDE. Multiple tests were conducted by changing the rate of incoming packets, which

provides different results in order to get variety of tests. The results are evaluated

according to the following measures: Delay, which is known as the average time that

packets will spend waiting in the queue. Loss usually happens when one or more packets

of data travelling across a computer network fail to be accommodated in the router buffer.

Dropping rate is the rate of packets that dropped by the AQM to the total number of

packets. Sum of dropping and losing reflects the total number of packets that were not

accommodated in the router buffer, either by loss or by dropping. Drop and loss were

50

aggregated, as each of them alone might not express the effectiveness of the compared

approach. This is because sometimes, drooping are necessary to avoid loss and in some

other times it is not necessary. In order to achieve a proper evaluation with the proposed

methods, these methods are compared with RED, which is the core of the developed

methods and ERED which is a unique AQM method that was proposed to overcome the

limitations of RED.

4.2 Environment

 The simulation of the network process is implemented using one of the well-

known approaches called discrete time queue (Alfa, 2010). The Discrete Time Queue

tracks measures and evaluates the status of the network and network resources at

specific time intervals known as SLOTS. At every slot, either a packet arrive event or

departed event separately or both events may occur at the same time .Where two

subsequent packets arrival without departure makes two time slots and so on. Several

methods have been introduced and tested using discrete-time queues. The other

approach, called continuous model, measures and evaluates the network performance

periodically with equal length periods. However, this approach does not properly

address the events of packet arrival and departures accurately. As the AQM is based on

calculating Dp with each arrival packets (event based), Discrete time queue was chosen

to verify the proposed work.

The discrete time queue, packet arrival and packet departure rates are established

as probability values. Probability for arrival, and similarly for departure, with 0 values,

means no packets will be arrived at any time slot. While, with probability of 1.0, a packet

will surely arrive at each time slot. For a value of 0.5, there is Probability for the packet

to arrive or not at each time slot.

51

4.3 Experimental Setup

The probability of the packet departure in the conducted test is set to 0.5. The

probabilities of packet arrival are set to the values of 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and

0.99. When the arrival probability is below the departure, no congestion is expected.

While, congestion or pre-congestion are expected when the arrival rate is higher than

the departure rate.

Two Million time slots were used in the experiments. This value allows sufficient

results. Part of these slots is used as a warm-up before the steady state, with total number

of 800000 slots, and the rest is for the experimental measures. A buffer size of 20 packets

was used (Baklizi, et 57 al., 2014). The parameters minth, maxth, maxp, and weight

values are set to 3, 9, 0.1, and 0.002, respectively, as recommended in RED (Floyd and

Jacobson, 1993). The parameters that are used in the experiments for the proposed and

compared method, given in Table 4.1, these parameters are as follows:

Table 4.1: Parameter settings

Parameter Values

Packet Arrival Probability 0.3-0.99

Packet Departure Probability 0.5

Number of Slots 2,000,000

Number of Slots for Warm-Up 800,000

Router Buffer Capacity 20

Queue Weight 0.002

maxp 0.1

minth 3

maxth 9

52

The experiments are conducted as follows: The parameters are initialized first to

values that are given in Table 4.1. Then, a packet is generated and sent to the queue,

based on the probability of packet arrival. If a packet is generated and sent to the router,

there is a probability for the packet to be lost if the queue is full, or it might be dropped

or queued as decided based on the calculated value for the drop probability Dp. DP is

calculated using the proposed AQM methods and the compared methods. Packet arrival

is simulated based on a pre-determined probability value called ñAlphaò that is in the

range between 0-1. A random number generation is used to generate a random number to

be compared with alpha. If the number generated is below alpha then the packet is arrived

to the buffer, else no packet is arrived. The properties of random number besides it is

random, it also generates a distributed number. When Alpha is 0.5 then for a 100 slots,

50 slots will allow packet arrival. Packet departure is simulated based on a pre-determined

value called ñBetaò and is happened in a similar way as the packet arrival and based on

random number generation. Congestion Control checks the statuses and decides whether

to drop the packet or to queue it. In the same time slot, a packet maybe departed. This

process is repeated for each time slot. This process is illustrated in Figure 4.1.

53

Fig 4.1: Flowchart of the Experiments

4.4 Results

The results of the proposed and compared methods are reported in this section.

Each group of the proposed methods is compared with RED and ERED using the

performance measures mentioned earlier. The results are collected under different

ALPHAôs values to provide a variety of tests.

Parameter
Initialization

Generate
Packet

Departed
Packet

Loss/Drop/
Queue-in

AQM Method
 Run

Finish
No

Results
Collection

Yes

54

4.4.1 Queue Length-based Proposed Methods

 In this sub-section, the three proposed methods, which was developed using

queue-length indicator, as discussed in Chapter Three, are evaluated and compared with

RED and ERED.

Table 4.2 shows the average delay for the proposed queue-length based methods

and compared methods. Table 4.2 is plotted in Figure 4.2. As demonstrated in Figure 4.2,

delay for RED, ERED and the proposed sub-methods at arrival probability 0.4 and below

is almost identical. Above this value, ERED getting more value for delay compared to

RED and the proposed sub-methods. As noted, for the values 0.3 and 0.4, the proposed

sub-method-2 and the proposed sub-method-3 have achieved the same best delay,

compared to the proposed sub-method-1, RED and ERED. However, at the value 0.5 and

above the proposed sub-method-2 achieved the best delay compare with the rest.

Table 4.2: Delay Comparison for the Proposed Queue-based Methods

Alpha RED ERED Sub-Method-1 Sub-Method-2 Sub-Method-3

0.3 260 169 41243 12375 4675

0.4 850 722 55617 2620 2620

0.5 3181 28653 13444 34573 32387

0.6 128606 124150 117175 126375 125052

0.7 237797 232512 234788 269303 269303

0.8 355110 340017 352669 360288 359901

0.9 473148 378621 472833 478906 478906

0.99 582929 518954 584232 587682 587682

55

Fig 4.2: Delay Comparison for the Proposed Queue-based Methods

Drop Comparison

 Table 4.3 shows the total dropping for the proposed queue-length based methods

and compared methods. Table 4.3 is plotted in Figure 4.3. As demonstrated in Figure 4.3,

the drop for RED, ERED and the proposed sub-methods2,3, at arrival probability 0.4 and

below is almost identical. Above this value, ERED and the proposed method-1 has

achieved the best results. However, the good result of the proposed method-1 was

maintained up to the value of 0.6.

0

100000

200000

300000

400000

500000

600000

700000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

D
el

ay

Alpha

RED

ERED

proposed sub-method-1

proposed sub-method-2

proposed sub-method-3

56

Table 4.3: Drop Comparison for the Proposed Queue-based Methods

Alpha RED ERED Sub-method-1 Sub-method-2 Sub-method-3

0.3 0 0 0 75 75

0.4 0 82 7 2620 2620

0.5 3181 28653 13444 34573 32387

0.6 128606 114150 117175 126375 125052

0.7 237797 202512 234788 244303 240057

0.8 355110 240017 352669 360288 359901

0.9 473148 278621 472833 478906 478906

0.99 582929 318954 584232 587682 587682

Fig 4.3: Drop Comparison for the Proposed Queue-based Methods

0

100000

200000

300000

400000

500000

600000

700000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

D
ro

p

Alfa

RED

ERED

proposed sub-method-1

proposed sub-method-2

proposed sub-method-3

57

Loss Comparison

 Table 4.4 shows the total loss for the proposed queue-length based methods and

compared methods. Table 4.4 is plotted in Figure 4.4. As demonstrated in Figure 4.4,

RED, ERED and the proposed sub-methods all have an equal loss at the value 0.3. At

value of 0.4, the proposed sub-method-2 and sub-method-3 achieve the best loss and

maintain it.

Table 4.4: Loss Comparison for the Proposed Queue-based Methods

Alpha RED ERED Sub-method-1 Sub-method-2 Sub-method-3

0.3 0 0 0 0 0

0.4 65 60 60 0 0

0.5 3122 3188 7989 0 0

0.6 8381 2592 15068 0 0

0.7 44842 13484 15206 0 0

0.8 117555 13087 15916 0 0

0.9 199617 12828 15026 0 0

0.99 268144 12103 13487 0 0

Fig 4.4: Loss Comparison for the Proposed Queue-based Methods

0

50000

100000

150000

200000

250000

300000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Lo
ss

Alpha

RED

ERED

proposed sub-method-1

proposed sub-method-2

proposed sub-method-3

58

Drop and Loss Comparison

Table 4.5 shows the total drop and loss for the proposed queue-length based

methods and compared methods. Table 4.5 is plotted in Figure 4.5. As demonstrated in

Figure 4.5, RED, ERED and the proposed sub-method-1 at the value 0.3 had recorded

the best drop and loss comparing to the proposed sub-method-2 and the proposed sub-

method-3. Then, the best drop and loss is recorded for the proposed sub-method-2 and

the proposed sub-method-3. However, the result clearly changed at the value 0.5

onward for sub-method-2 and maintained the best for the proposed sub-method-3. The

Proposed sub-method 3 has achieved and maintained the best drop and loss value till the

end.

Table 4.5: Drop and Loss Comparison for the Proposed Queue-based Methods

Alpha RED ERED Sub-method-1 Sub-method-2 Sub-method-3

0.3 0 0 0 21 22

0.4 13 2 14 55 55

0.5 6426 4785 3598 5735 5382

0.6 19009 16169 18248 17414 17317

0.7 29967 28584 30043 29083 28576

0.8 38402 37494 38588 37497 37494

0.9 45164 44388 45238 44388 44388

0.99 62142 61822 50222 49482 49482

59

Fig 4.5: Drop and Loss Comparison for the Proposed Queue-based Methods

 Overall, sub-proposed-3 and sub-method-2 have shown to give the best results

compared with the rest. ERED has also satisfactory results by the means of all the utilized

measures.

4.4.2 Delay-based Proposed Methods

In this sub-section, the three proposed methods, which was developed using delay

indicator, as discussed in Chapter Three, are evaluated and compared with RED and

ERED.

Table 4.6 shows delay for the proposed delay-based methods and compared

methods. Table 4.6 is plotted in Figure 4.6. As demonstrated in Figure 4.6, at value of

0.3, RED and ERED and the proposed sub-method-4 and proposed sub-method-6 give

the same delay value. The proposed sub-method-5 clearly gives a higher delay value.

Those results are not maintained at the value of 0.6 and above, as the proposed sub-

method-5 provides the best results.

0

10000

20000

30000

40000

50000

60000

70000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Lo
ss

 a
n

d
 D

ro
p

Alpha

RED

ERED

proposed sub-method-1

proposed sub-method-2

proposed sub-method-3

60

Table 4.6: Delay Comparison for the Proposed Delay-based Methods

Alpha RED ERED Sub-method-4 Sub-method-5 Sub-method-6

0.3 0 0 0 0 0

0.4 0 82 60 60 60

0.5 3181 28653 5334 2384 2290

0.6 128606 114150 13262 7476 7474

0.7 237797 202512 14416 10766 11104

0.8 355110 240017 12447 8845 8822

0.9 473148 278621 11680 7281 6842

0.99 582929 318954 10780 6175 6218

Fig 4.6: Delay Comparison for the Proposed Delay-based Methods

Drop Comparison

 Table 4.7 shows the drop for the proposed delay-based methods and compared

methods. Table 4.7 is plotted in Figure 4.7. As demonstrated in Figure 4.7, RED, ERED

and Proposed sub-methods have identical results at the value of 0.3. However, at the

value 0.4, sub-method-5 and the proposed sub-method-6 provide the best dropping

value compared with the rest, but not in a major manner. At value of 0.5, sub-method-6

gives the best results marginally. For the rest of the results, sub-method-5 gives the best

results.

0

100000

200000

300000

400000

500000

600000

700000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

D
el

ay

Alpha

RED

ERED

proposed sub-method-4

proposed sub-method-5

proposed sub-method-6

61

Table 4.7: Drop Comparison for the Proposed Delay-based Methods

Alpha RED ERED Sub-method-4 Sub-method-5 Sub-method-6

0.3 0 0 0 0 0

0.4 0 82 0 1 1

0.5 3181 28653 26536 32544 32498

0.6 128606 114150 120296 123870 124180

0.7 237797 202512 235261 235632 234681

0.8 355110 240017 354204 353406 354385

0.9 473148 278621 474731 473001 471612

0.99 582929 318954 583610 582540 582252

Fig 4.7: Drop Comparison for the Proposed Delay-based Methods

Loss Comparison

Table 4.8 shows the loss for the proposed delay-based methods and compared

methods. Table 4.8 is plotted in Figure 4.8. As demonstrated in Figure 4.8, RED, ERED

and all the proposed sub-methods provides the same loss value, at the value of 0.3. At the

value of 0.4, ERED provides the best loss but not with a significant margin, compares

with the rest. At the value of 0.5, ERED produces the best results. The proposed sub-

method-5 and the proposed sub-method-6 provide and maintain the best loss value

compare to the rest.

0

100000

200000

300000

400000

500000

600000

700000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

D
ro

p

Alfa

RED

ERED

proposed sub-method-4

proposed sub-method-5

proposed sub-method-6

62

Table 4.8: Loss Comparison for the Proposed Delay-based Methods

Alpha RED ERED Sub-method-4 Sub-method-5 Sub-method-6

0.3 0 0 0 0 0
0.4 18 60 60 60 60
0.5 122 3188 5334 2384 2290
0.6 2592 8381 13262 7476 7474
0.7 44842 13484 14416 10766 11104
0.8 117555 13087 12447 8845 8822
0.9 199617 12828 11680 7281 6842
0.99 268144 12103 10780 6175 6218

Fig 4.8: Loss Comparison for the Proposed Delay-based Methods

0

50000

100000

150000

200000

250000

300000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Lo
ss

Alpha

RED

ERED

proposed sub-method-4

proposed sub-method-5

proposed sub-method-6

63

Drop and Loss Comparison

Table 4.9 shows the drop and loss aggregation for the proposed delay-based

methods and compared methods. Table 4.9 is plotted in Figure 4.9. As demonstrated in

Figure 4.9, there is no margin differences in the results of all the compared and the

proposed methods. Overall, drop and loss for RED, ERED and the proposed sub-methods

at the value 0.3 are identical. At the value of 0.4, RED and the proposed sub-methods

provides a closely similar drop and loss value. At the other values, ERED and sub-

methods-6 give the best result.

Table 4.9: Drop and Loss Comparison for the Proposed Delay-based Methods

Alpha RED ERED Sub-method-4 Sub-method-5 Sub-method-6

0.3 0 0 0 0 0

0.4 32 13 12 12 12

0.5 6426 4785 5328 5771 575

0.6 19009 16169 1859 18229 18272

0.7 29967 28584 29513 29237 29262

0.8 38402 37494 38181 37702 37857

0.9 45164 44388 44976 44429 44449

0.99 50114 40482 49983 49469 49549

64

Fig 4.9: Drop and Loss Comparison for the Proposed Delay-based Methods

Overall, ERED has shown to give the best results compared with the rest. The

proposed sub-method-6 and RED have also satisfactory results by the means of all the

utilized measures.

4.4.3 Load-based Proposed Methods

In this sub-section, the three proposed methods, which was developed using load

indicator, as discussed in Chapter Three, are evaluated and compared with RED and

ERED.

Delay Comparison

 Table 4.10 shows delay for the proposed load-based methods and compared

methods. Table 4.10 is plotted in Figure 4.10. As demonstrated in Figure 4.10, at values

of 0.3 and 0.4, RED, ERED and the proposed sub-methods have the same delay value.

At the value of 0.5, the results of all the methods are also almost similar with slightly

0

10000

20000

30000

40000

50000

60000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Lo
ss

 a
n

d
 D

ro
p

Alpha

RED

ERED

proposed sub-method-4

proposed sub-method-5

proposed sub-method-6

65

better for ERED. At the value 0.6 and above the proposed sub-method-7 and ERED

give the best delay value compare with the rest.

Table 4.10: Delay Comparison for the Proposed Load-based Methods

Alpha RED ERED Sub-method-7 Sub-method-8 Sub-method-9

0.3 350773 350773 350773 30773 350773

0.4 584475 585111 585122 585119 585122

0.5 1240181 1389808 1780169 1054485 1834025

0.6 2054205 1821025 1956409 2022601 2394007

0.7 2090896 1926622 1957856 2332519 2634898

0.8 2040384 1949447 1948204 2542172 2682462

0.9 2035898 1902153 1939444 2651028 2730972

0.99 2007244 1953334 1931982 2690246 2266752

Fig 4.10: Delay Comparison for the Proposed Load-based Methods

66

Drop Comparison

Table 4.11 shows the drop values for the proposed load-based methods and

compared methods. Table 4.11 is plotted in Figure 4.11. As demonstrated in Figure 4.11,

the drop for RED, ERED and the proposed sub-methods are similar in arrival probability

of 0.3, which will be not maintained at the value 0.4. At the value of 0.6 to the value 0.9,

ERED provide the best drop value compared with the rest. The proposed sub-method-7

gives satisfactory results as well.

Table 4.11: Drop Comparison for the Proposed Load-based Methods

Alpha RED ERED Sub-method-7 Sub-method-8 Sub-method-9

0.3 0 0 0 0 0

0.4 0 82 0 0 0

0.5 3181 28653 14141 22925 18334

0.6 128606 114150 118853 122145 111513

0.7 237797 202512 238302 239580 240133

0.8 355110 240017 358842 360115 359903

0.9 473148 278621 477153 478910 478907

0.99 582929 318954 587209 587682 587682

Fig 4.11: Drop Comparison for the Proposed Load-based Methods

0

100000

200000

300000

400000

500000

600000

700000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

D
ro

p

Alfa

RED

ERED

proposed sub-method-7

proposed sub-method-8

proposed sub-method-9

67

Loss Comparison

Table 4.12 shows the loss values for the proposed load-based methods and

compared methods. Table 4.12 is plotted in Figure 4.12. As demonstrated in Figure 4.12,

RED, ERED and the proposed sub-methods, at the value 0.4, give similar loss and that

will be changed at the value 0.5, as only ERED will provide the best loss among all.

However from the value 0.7 and above, the proposed sub-method-8 and sub-method-9

provide the best loss.

Table 4.12: Loss Comparison for the Proposed Load-based Methods

Alpha RED ERED Sub-method-7 Sub-method-8 Sub-method-9

0.3 0 0 0 0 0

0.4 18 60 60 60 60

0.5 122 3188 7658 2005 3435

0.6 2592 8381 10660 1444 9

0.7 44842 13484 9341 1 0

0.8 117555 13087 7293 0 0

0.9 199617 12828 5998 0 0

0.99 268144 12103 5093 0 0

68

Fig 4.12: Loss Comparison for the Proposed Load-based Methods

Drop and Loss Comparison

Table 4.13 shows the aggregated loss and drop values for the proposed load-based

methods and compared methods. Table 4.13 is plotted in Figure 4.13. As demonstrated

in Figure 4.13, RED, ERED and the proposed sub-methods, at the value 0.4, give similar

loss and that will be changed at the value 0.5, as only ERED will provide the best loss

among all. However from the value 0.7 and above, the proposed sub-method-8 and sub-

method-9 provide the best loss.

69

Table 4.13: Drop and Loss Comparison for the Proposed Load-based Methods

Alpha RED ERED Sub-method-7 Sub-method-8 Sub-method-9

0.3 0 0 125 0 0

0.4 325 125 2355 254 125

0.5 6426 4785 5382 1575 3665

0.6 19009 16169 17317 18272 15581

0.7 29967 28584 28576 29262 28583

0.8 38402 37494 37494 37857 37494

0.9 45164 44388 44388 44449 44388

0.99 95014 49482 49482 49549 49482

Fig 4.13: Drop and Loss Comparison for the Proposed Load-based Methods

Overall, ERED has shown to give the best results compared with the rest. The

proposed sub-method-9 and sub-method-3 have also satisfactory results by the means of

all the utilized measures.

70

 4.4.4 Best of the Proposed Methods

In this sub-section, the best proposed sub-method from each category, queu-length

based, delay-based and load-based are compared in order to give a final conclusion about

the proposed work.

Delay Comparison

Table 4.14 shows the delay values for the best methods and compared methods.

Table 4.14 is plotted in Figure 4.14. As noted the sub-method-2 and sub-method-6

outperformed the compared methods.

Table 4.14: Delay Comparison for the Best of the Proposed Methods

Alpha RED ERED Sub-method-2 Sub-method-6 Sub-method-9

0.3 350773 340773 349861 350773 350773

0.4 585111 584475 536871 585103 585122

0.5 1089808 1040181 1085234 1041137 1434025

0.6 1818025 1554205 1305974 1362951 1394007

0.7 1626622 1590896 1536583 1584558 1634898

0.8 1649447 1540384 1660045 1696903 1682462

0.9 2219553 1735898 1773079 1797766 1730972

0.99 1953334 1807244 1268166 1294301 1766752

71

Fig 4.14: Delay Comparison for the Best of the Proposed Methods

Drop Comparison

Table 4.15 shows the drop values for the best methods and compared methods.

Table 4.15 is plotted in Figure 4.15. As noted, ERED outperformed the other methods.

72

Table 4.15: Drop Comparison for the Best of the Proposed Methods

Alpha RED ERED sub-method-1 sub-method-6 sub-method-7

0.3 0 0 0 0 0

0.4 0 82 7 1 0

0.5 3181 28653 13444 32498 14141

0.6 128606 114150 117175 124180 118853

0.7 237797 202512 234788 234681 238302

0.8 355110 240017 352669 354385 358842

0.9 473148 278621 472833 471612 477153

0.99 582929 318954 584232 582252 587209

Fig 4.15: Drop Comparison for the Best of the Proposed Methods

Loss Comparison

Table 4.16 shows the loss values for the best methods and compared methods.

Table 4.16 is plotted in Figure 4.16. As noted the sub-method-2 and sub-method-9

outperformed the compared methods.

0

100000

200000

300000

400000

500000

600000

700000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

D
ro

p

Alfa

RED

ERED

proposed sub-method-1

proposed sub-method-6

proposed sub-method-7

73

Table 4.16: Loss Comparison for the Best of the Proposed Methods

Alpha RED ERED Sub-method-2 Sub-method-6 Sub-method-9

0.3 0 0 0 0 0

0.4 18 60 0 60 60

0.5 122 3188 0 2290 2435

0.6 2592 1381 0 2474 9

0.7 14842 13484 0 1104 0

0.8 13555 13087 0 8822 0

0.9 13617 12828 0 6842 0

0.99 18144 12103 0 6218 0

Fig 4.16: Loss Comparison for the Best of the Proposed Methods

Drop and Loss Comparison

Table 4.17 shows the aggregated drop and loss values for the best methods and

compared methods. Table 4.17 is plotted in Figure 4.17. As noted, ERED outperformed

the other methods, and the best drop and loss is sub-method-7.

74

Table 4.17: Drop and Loss Comparison for the Best of the Proposed Methods

Alpha RED ERED Sub-method-2 Sub-method-6 Sub-method-9

0.3 0 0 0 0 0

0.4 130 200 130 130 130

0.5 6426 3585 3584 4129 3665

0.6 19009 15169 18145 17093 15581

0.7 29967 20584 29678 22843 28583

0.8 38402 37424 38284 37494 37494

0.9 45164 44311 44364 44388 44388

0.99 45014 43482 44991 49482 49482

Fig 4.17: Drop and Loss Comparison for the Best of the Proposed Methods

75

4.5 Summary

 This chapter evaluates and compares the proposed methods. In summary of

the findings, the one that provides the best delay is sub-method 6 and best loss is the

proposed sub-method 9. However, ERED provides the best results according to some

measurements. Overall, the proposed sub-method 6 is the provider of the best drop. Loss

and Drop rate as noted are best achieved by the proposed sub-method 7. Subsequently,

each of them can be used according to the type of the network.

76

CHAPTER FIVE

Conclusions and Future Works

 5.1 Conclusion

This thesis presents an approach for modifying and replacing the existing REDôs

indicator with new indicators (Queue length , load rate and Delay) .Every time we do

such replacement, we obtained a new method, which provided us with nine different

proposed methods. All these proposed methods were tested and studied in order to find

out which one of these nine is going to be recognized as the best method.

We compared the proposed methods with RED and ERED. In summary of the

findings, the one that provides the best delay and best loss is the proposed sub-method-2.

However, ERED provides the best results according to some measurements. Overall, the

proposed sub-method-6 is the provider of the best drop. Loss and Drop rate as noted are

best achieved by the proposed sub-method-2. Subsequently, each of them can be used

according to the type of the network.

77

 5.2 Future Work

In the future , We will experiment some future works :

1. We can Use different algorithm rather than Modified Random Early Detection (RED)

algorithm with various indicators and implement, test and evaluates the modified that

algorithm .

2. we can Use different indicators with Modified Random Early Detection (RED) and

other algorithms. Based on the previous solutions and implement, test and evaluates

the modified that algorithm.

3. we can propose algorithm that deal with two or multi-buffers in the router to prevent

congestion before it happens and reduce congestion.

78

References

79

References

- Abbasov, B., & Korukoglu, S. (2009). Effective RED: An algorithm to improve

RED's performance by reducing packet loss rate. Journal of Network and

Computer Applications, 32(3), 703-709.

- Alemu, T. (2004). Evaluation des Performances des Mécanismes de Qualité de

Service dans lôInternet. These de doctorat, Universit® de Montpellier II.

- Alfa, A. S. (2010). Queueing theory for telecommunications: discrete time

modelling of a single node system. Springer Science & Business Media.

- Baker, F., & Fairhurst, G. (2015). IETF Recommendations Regarding Active

Queue Management (No. RFC 7567).

- Balkas, Y. (2002). DELAY-BOUNDED RATE ADAPTIVE SHAPER FOR TCP

TRAFFIC IN DIFFSERV INTERNET (Doctoral dissertation, bilkent university).

- Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering, S., Estrin, D., ... &

Peterson, L. (1998). Recommendations on queue management and congestion

avoidance in the Internet (No. RFC 2309).

- Brazio, J., Tran-Gia, P., Akar, N., Beben, A., Burakowski, W., Fiedler, M., ... &

Wittevrongel, S. (Eds.). (2006). Analysis and Design of Advanced Multiservice

Networks Supporting Mobility, Multimedia, and Internetworking: COST Action

279 Final Report. Springer Science & Business Media.

- Chen, J., Hu, C., &Ji, Z. (2010).Self-tuning random early detection algorithm to

improve performance of network transmission.Mathematical Problems in

Engineering, 2011.

- Chua, K. C., Gurusamy, M., Liu, Y., & Phung, M. H. (2007). Quality of service

in optical burst switched networks. Springer Science & Business Media.

80

- Dhodapkar, A. S., & Smith, J. E. (2002). Managing multi-configuration hardware

via dynamic working set analysis. In Computer Architecture, 2002. Proceedings.

29th Annual International Symposium on (pp. 233-244). IEEEFeng, W. C., Shin,

K. G., Kandlur, D. D., & Saha, D. (2002).The BLUE active queue management

algorithms. IEEE/ACM Transactions on Networking (ToN), 10(4), 513-528.

- Feng, W. C., Kandlur, D., Saha, D., & Shin, K. (1999). BLUE: A new class of

active queue management algorithms. Ann Arbor, 1001, 48105.

- Feng, W. C., Kandlur, D., Saha, D., & Shin, K. G. (2001, January). Blue: An

alternative approach to active queue management. In Proceedings of the 11th

international workshop on Network and operating systems support for digital

audio and video (pp. 41-50). ACM.

- Feng, W. C., Shin, K. G., Kandlur, D. D., & Saha, D. (2002). The BLUE active

queue management algorithms. IEEE/ACM Transactions on Networking

(ToN), 10(4), 513-528.

- Floyd, S., & Jacobson, V. (1993). Random early detection gateways for

congestion avoidance. IEEE/ACM Transactions on networking, 1(4), 397-413.

- Floyd, S., Handley, M., Padhye, J., & Widmer, J. (2000). Equation-based

congestion control for unicast applications. ACM SIGCOMM Computer

Communication Review, 30(4), 43-56.

- Freed, M., & Amara, S. K. (2006). U.S. Patent No. 6,996,062. Washington, DC:

U.S. Patent and Trademark Office.

- Homg, M. F., Lee, W. T., Lee, K. R., & Kuo, Y. H. (2001). An adaptive approach

to weighted fair queue with QoS enhanced on IP network. InTENCON 2001.

Proceedings of IEEE Region 10 International Conference on Electrical and

Electronic Technology (Vol. 1, pp. 181-186). IEEE.

81

- Hu, N., Ren, L., & Chang, J. (2001).Evaluation of queue management

algorithms. Course Project report for Computer Networks, 1-14.

- Janevski, T. (2003). Traffic analysis and design of wireless IP networks. Artech

House.

- Lee, K. M., Yang, J. H., &Suh, B. S. (2008). Congestion Control of Active Queue

Management Routers Based on LQ-Servo Control. Engineering Letters, 16(3),

332-338.

- May, M., Bolot, J., Diot, C., & Lyles, B. (1999). Reasons not to deploy

RED.In Quality of Service, 1999.IWQoS'99. 1999 Seventh International

Workshop on (pp. 260-262). IEEE.

- Misra, S., Oommen, B. J., Yanamandra, S., &Obaidat, M. S. (2010). Random

early detection for congestion avoidance in wired networks: a discretized pursuit

learning-automata-like solution. Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, 40(1), 66-76.

- Mohamed, M. H. E. (2010). Some Active Queue Management Methods for

Controlling Packet Queueing Delay. Design and Performance Evaluation of

Some New Versions of Active Queue Management Schemes for Controlling Packet

Queueing Delay in a Buffer to Satisfy Quality of Service Requirements for Real-

time Multimedia Applications (Doctoral dissertation, University of Bradford).

- Thiruchelvi, G., & Raja, J. (2008). A survey on active queue management

mechanisms. International Journal of Computer Science and Network

Security, 8(12), 130-145.

- Odom, W., & Cavanaugh, M. J. (2004). Cisco QOS Exam Certification Guide (IP

Telephony Self-Study). Pearson Education.

82

- Pan, R., Prabhakar, B., & Psounis, K. (2000). CHOKe-a stateless active queue

management scheme for approximating fair bandwidth allocation. InINFOCOM

2000. Nineteenth Annual Joint Conference of the IEEE Computer and

Communications Societies. Proceedings. IEEE (Vol. 2, pp. 942-951). IEEE.

- Pan, R., Prabhakar, B., &Psounis, K. (2000).CHOKe-a stateless active queue

management scheme for approximating fair bandwidth allocation. In INFOCOM

2000.Nineteenth Annual Joint Conference of the IEEE Computer and

Communications Societies.Proceedings.IEEE (Vol. 2, pp. 942-951).IEEE.

- Rastogi, S., & Srivastava, S. (2014). Comparison Analysis of Different Queuing

Mechanisms Droptail, RED and NLRED in Dumb-bell Topology.International

Journal of Advanced Research in Computer and Communication

Engineering, 3(4).

- Ren, F., He, T., Das, S. K., & Lin, C. (2011). Traffic-aware dynamic routing to

alleviate congestion in wireless sensor networks. IEEE Transactions on Parallel

and Distributed Systems, 22(9), 1585-1599.

- Rosolen, V., Bonaventure, O., & Leduc, G. (1999). A RED discard strategy for

ATM networks and its performance evaluation with TCP/IP traffic. ACM

SIGCOMM Computer Communication Review, 29(3), 23-43.

- Silberschatz, A., Ozden, B., Bruno, J., & Saran, H. (2003). U.S. Patent No.

6,556,578. Washington, DC: U.S. Patent and Trademark Office.

- Stoica, I., Shenker, S., & Zhang, H. (1998). Core-stateless fair queueing:

Achieving approximately fair bandwidth allocations in high speed networks (Vol.

28, No. 4, pp. 118-130). ACM.

83

- Thiruchelvi, G., & Raja, J. (2008). A survey on active queue management

mechanisms. International Journal of Computer Science and Network

Security, 8(12), 130-145.

- Wang, Y. C., Jiang, J. A., & Chu, R. G. (2004, August). Drop behaviour of random

early detection with discrete-time batch Markovian arrival process.

InCommunications, IEE Proceedings- (Vol. 151, No. 4, pp. 329-336).IET.

- Wang, B., Kasthurirangan, B., & Xu, J. (2005). Subsidized RED: an active queue

management mechanism for short-lived flows. Computer communications, 28(5),

540-549.

- Wu-changFeng, Kang Shin, DilipKandlur, DebanjanSaha, The BlueActive Queue

Management Algorithms, IEEE/ACM Transactions onNetworking, Vol. 10, No.

4, August 2002.

- Wurtzler, M. (2002). Analysis and simulation of weighted random early detection

(WRED) queues (Doctoral dissertation, University of Kansas).

- Xie, X. (2008). A review of recent advances in surface defect detection using

texture analysis techniques. ELCVIA Electronic Letters on Computer Vision and

Image Analysis, 7(3).

84

- Xu, K., Gerla, M., Qi, L., & Shu, Y. (2005). TCP unfairness in ad hoc wireless

networks and a neighborhood RED solution. Wireless Networks, 11(4), 383-399.

- Zhang, C., Yin, J., Cai, Z., & Chen, W. (2010). RRED: robust RED algorithm to

counter low-rate denial-of-service attacks. IEEE Communications Letters,14(5),

489-491.

