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Modified Random Early Detection (RED) Technique Using 

Various Congestion Indicators 

Prepared By  

Mohammad Ramez Abbass Ali 

Supervised By  

     Dr. Ahmad Adel Abu-Shareha 

 

Abstract 

In this thesis, modified Random Early Detection (RED) algorithm is proposed by 

including various selected congestion indicators. First, the best congestion indicators to 

be used for queue management are chosen. Then, these indicators, Queue length, load 

rate and Delay, are integrated with RED algorithm. Subsequently, nine different proposed 

methods were developed. 

The proposed approach, as similar to the existing AQM method, preserves the 

core of the RED technique embodied in calculating Dp with each arrival packet, drop 

packets based on the calculated Dp and divide Dp calculation into categories. Existing 

AQM methods have taken different approaches in modifying RED. However, the overall 

trends in these approaches are changing both, the congestion indicator and the utilized Dp 

calculation procedure, building on the assumption that different indicators required 

different calculation procedure. Unlike the existing AQM methods, the proposed 

approach changes the REDôs utilized congestion indicator and preserves the RED 

calculation. The proposed approach uses novel indicators in the RED framework. These 

indicators will be discussed accordingly. 
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The evaluation and comparison of the proposed methods shows that the proposed 

methods gain the best delay and best loss. However, ERED provides the best results to 

the dropping values. Subsequently, each of the proposed methods can be used according 

to the type of the network. 

 Keywords: Congestion control , Random Early Detection , Average queue size ,                                           

Dropping Probability , Traffic control , Active Queue Management . 
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 ɔƺ˕˭ǁä çä̠ ƪˑǄ ýä˕˱˭ƨƌȸ ˗ɚˬ˶ǁä ǏƏäˤ˳ƴǁä ɂ˳ḥǁä ƕ˹˷ƾƗ ǍǂƳ Ʉǐ˕ƴ˭ǁä
 ƕƻǂ˭˱˶ǁä 

ìä˕Ƴä 
ǏǂƳ ðƑˬƳ ˘Ǆäî ˕˶˰Ǆ 

 ùä̠ ƪä 
ǈ˰ɀ˗ƪ ˤƓä üìƑƳ ˕˶Ɵä îˤ˭Ḩ˕ǁä 

 
˛˱ǂ˶ǁä 
 Ɨ˻ǆðïå˦Ƥ Ɇǒ˗ƶƙ ë̇ ˯ƿå ˗ǀǃ , ƗǃƓƪ̇ ǃå ǉ˘ǋ ǑƼ( RED )   ɖƼ˗˯ǃå èå̇ Ƭ˓ǆ ïƓ˻˯Ƥå ýǚƤ ˥ǆ

 ǉ˘ǋ ǑǃƓ˯ǃƓɁā. ïƓˢ˯ǈǙå Ɨ˸ƑƓƿ çïåíǗ ǉïƓ˻˯Ƥå ˤƙ ɖƼ˗ƙ ˙Ƭ˓ǆ Ɇ˷Ƽá þ˗˳˯ƪå ˗ǀǃ , Ǚāå . ûƓ˹˯ƤǙå āá

 Ɨ˻ǆðïå˦Ƥ ƴǆ ɆǆƓḧ˯ƙ . ˙˻ƤƋ˯ǃåā Ɇ˻˸˲˯ǃå ý˗ƶǆā , ïƓˢ˯ǈǙå Ɨ˸ƑƓƿ ý˦˟ā , èå̇ Ƭ˓˸ǃå( RED )   .

.ƗƽǄ˯˳ǆ û̇  ˟Ɨƶ˴ƙ ƴưā ʕ˯ƪ˻ ɖơǙ ̞ƿā ǑƼā 

Ɲǌ˹ǃå  æ˦ǄƪǕ ƗǌƕƓ˵ǆ Üë̇ ˯ǀ˸ǃåAQM  Ɨ˻˹ǀƙ ˙ǋ˦ƞ ǏǄƵ ɌƼƓ˲Ȼ Üí˦ƞ˦ǆ(RED) ç˗˴˱˸ǃå 

 æƓ˴ơ ǑƼDp  ñƓƪá ǏǄƵ þ̊ ˲ǃå ɉƓǀƪã Üý˦Ʈ˦ǃå Ɨǆ̊ ơ ɆḪ ƴǆæƓ˴ơ Dp  āˤ˻˴ǀƙ  Ɨ˻ƕƓ˴˲ǃå Ɨ˻Ǆ˸ƶǃå

Dp  .èƓ˭Ƽ Ǐǃã û̇  ˟ÿåAQM ǉí˦ƞ˦˸ǃå  Ɇǒ̠ƶƙ ǑƼ ƗƽǄ˯˳ǆ ĄƓ˱ǌǈ è̆ ƙ˳å(RED) . 

 Ɲǌ˹ǃå ǉ˘ǋ ǑƼ ƗǆƓƶǃå èƓǋƓ˱ƙǙå ˙˻˻ƺƙ Üˣǃî ƴǆā Ɠ˸ǋǚḧǃ ˙˻ƺ˯ǆÿå,  þƓơíðǙå ˙Ƭ˓ǆ

 æƓ˴ơ èåßå̇ ƞɀāDp  æƓ˴ơ ßå̇ ƞã ˔Ǆˠ˯ƙ èå̇ Ƭ˓˸ǃå ɄǄ˯˳ǆ ÿá ôå̇ ˯Ƽå ǏǄƵ ßƓ˹ƕ ÜƗǆ˗˳˯˴˸ǃå

 ˔˻ǃƓƪǕ ƓƼǚƤ .Üßå˦ ƪ ˗ơ ǏǄƵ ƗƽǄ˯˳ǆAQM  Ɨǆ˗˳˯˴˸ǃå þƓơíðǙå ˙Ƭ˓ǆ ˙˻ƺ˯ǒ Üçí˦ƞ˦ǆ ǑƼ

(RED ) Ǆǃë̇ ˯ǀ˸ǃå Ɲǌ˹  æƓ˴ơ ǏǄƵ ɌƼƓ˲ɂā( RED ) . ÿå ˖˻ơ èå̇ Ƭ˓ǆ þ˗˳˯˴Ȼ ë̇ ˯ǀ˸ǃå Ɲǌ˹ǃå

 ïƓ˟ã ǑƼ ç˗ǒ˗ƞ( RED )èå̇ Ƭ˓˸ǃå ǉ˘ǋ ˜ƿƓ˹˯ƪā . .ˣǃ˘ǃ ƓǀƼā 
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 Ɨơ̇ ˯ǀ˸ǃå ˔˻ǃƓƪǕå ÿá Ɨơ̇ ˯ǀ˸ǃå ˔˻ǃƓƪǕå ƗǈïƓǀǆā ˤ˻˻ǀƙ ˥˻ˮɂāɆ˷Ƽåā ˙˻ƤƋƙ Ɇ˷Ƽá ˔˴ḧƙ çïƓ˴Ƥ .

 ˙Ƽ˦ǒ Üˣǃî ƴǆāERED  ˔˻ǃƓƪǕå ˥ǆ ɆḪ þå˗˳˯ƪå ˥ɜ˸Ȼ Üˣǃî ˗ƶȺ .ˤ˻ǀǃå ɉƓǀƪǗ ƝƑƓ˯˹ǃå Ɇ˷Ƽá

.Ɨɜˮ˵ǃå ÷˦ ˹ǃ ƓǀƼā Ɨơ̇ ˯ǀ˸ǃå 

 èƓ˸ǄǂƗ˻ơƓ˯ƽ˸ǃå  :  þƓơíðǙå ǑƼ ˤɜ˲˯ǃå ,˙ɜˮ˸ǃå ǑƑå˦˵ƶǃå Ʉ˵ḧǃåïƓˢ˯ǈǙå Ɨ˸ƑƓƿ ˤ˱ơ Ɋƪ˦˯ǆ ,  ,

 , ûƓ˹˯ƤǗƓȺ ˤɜ˲˯ǃå , ɉƓǀƪǙå ýƓ˸˯ơåƗˠ˵˹ǃå ïƓˢ˯ǈǙå Ɨ˸ƑƓƿ çïåíã . 
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CHAPTER ONE  

 INTRODUCTION  

Internet is enormous small networks that are linked together to form the global 

network for human being over this planet. Over the years, Internet has become an 

essential part of human needs, as more and more people are surfing the Internet 

continuously as part of their daily lives. Through the Internet, people are reading 

electronic news, searching information, watching videos, playing online games, and talk 

to each other via p2p telephone services. The traditional circuit-switched telephone 

networks are now evolving into packet-switched networks. This is because packet 

switched networks can provide extra and a variety of communication services as well as 

reducing the cost of running and maintaining these services. 

Data communication through the global network, or what so called the Internet, 

is transmitted from a source device to a destination and passing by cables, routers and 

other intermediate devices and carrier medium, as illustrated in Fig 1.1. These devices, 

which form the communication medium, consist of a set of hardware (physical 

equipment) and software (programs). Router is one of the most important, yet hardly 

handled device in the communication channels.  
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Fig 1.1: Data Transmission Intermediated by Routers (Dobbins,1998) 

The router, as illustrated in Fig 1.2, is connected to at least two networks, 

commonly two LANs or WANs or a LAN and it is responsible for directing the data 

between the connected networks. Router mission is to keep the data flowing between 

networks and maintain the networks connectivity with the global network. The routers 

making the Internet work by re-directing data based on a uniform addressing scheme. 

Information could be sent to anywhere in the world as long as the site has an IP address 

(Pirenne, 2015). 

 

Fig 1.2 :The Router Location between Networks (Lammle,2013) 
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1.1. The Router Buffer and The Congestion Problem 

All Internet routers contain storage space to hold packets that are arrived to the 

router. Arrival packets are accommodated in the router buffer to be processed and then 

transmitted into their destination, as illustrated in Fig. 1.3 (Spalink et al.,2001). The 

storage space also absorbing bursty traffic to avoid loss of packets. However, it leads to 

puts delay on the transmitted packets, which raises an important question about the 

optimal size of these storage. Notably, small storage leads to the data loss, as the 

transmitted packets in bursty traffic leads to over flow the routers quickly and all the 

following packets will be forced to be lost as it cannot be entered to the router. Packet 

loss affects the performance of applications badly. On the other hand, the large router 

storage increase latency, complexity and cost required . 

 

Fig. 1.3: The Router Buffer (Spalink,2001) 

Congestion is a problem that occurs on shared networks when many users try to 

gain access to the same resources (bandwidth, stores, and queues). For example, 

congestion at the highway where  many cars continuously intervened regardless of 

existing of high traffic. With the entry of more cars on the highway, the congestion 

increased and leads to bad consequences in the end, such as ramps back up, preventing 

vehicles from getting at all. Congestion at the router occurs when the number of arrived 
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packets exceeded the capacity of the router buffer and eventually leads to buffer overflow 

and packet loss (Baklizi et al., 2014).  

Congestion control techniques and mechanisms at the router can prevent 

congestion before it happens, or remove the tension, after it happened. Overall congestion 

control techniques can be divided into two categories, one category prevents congestion 

from happening while other category removes congestion as it occurred. The first one is 

using open loop control traffic, and the second uses a closed loop congestion control in 

an attempt to remove the congestion after it occurs (Lim, 2015). 

The congestion prevention technique implements packets dropping, as illustrated 

in Fig. 1.4, when the number of packets in the router storage reachs a specific critical 

limit prevent  packet  loss. Low packet dropping in critical cases may lead to packet loss 

and high drop in non-critical case degrade the network performance.  

 

Fig. 1.4 : The Packets Dropping (Chua,2007) 

Subsequently, the goal of the congestion control mechanisms is to achieve the best 

packet dropping rate to avoid packet loss without degrading the performance of the 

network by adding more delay.  
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1.2. Random Early Detection (RED) 
 

Random early detection (RED) algorithm, which was proposed by Floyd and 

Jacobson in 1993 (Floyd et al., 1993) was designed with the objectives to minimize packet 

loss and queuing delay, avoid global synchronization of sources, maintain high link 

utilization and remove biases against bursty sources. The basic idea behind RED queue 

management is to detect congestion early and to convey congestion notification to the 

end-hosts, allowing them to reduce their transmission rates before queues in the network 

overflow (Feng et al., 2002). 

Random early detection algorithm (RED) was recommended later in the IETF. 

The RED's goal is to avoid global synchronization of flows in TCP and then maintain 

high productivity. RED has been suggested to reduce delays and achieve a fair 

distribution despite the number of connections in TCP ( Floyd et al., 1993). 

 RED computes a weighted average queue length in a router to determine when 

congestion is occurring. When the average queue length is below minth (minimum 

threshold), no packets are marked. While, when the average is between minth (minimum 

threshold) and maxth (maximum threshold), RED marks incoming packets with 

probability p (where p varies linearly between 0 and maxp). When the average is above 

maxth, all incoming packets are dropped ( p=1) as illustrated in Fig 1.1.(Balkas et al., 

2002 ). 
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Fig 1.1: Flow chart for Random Early Detection (Misra,2010) 

RED uses the average queue length as a congestion indicator, which forms a 

critical part of the RED algorithm. While, several other algorithms were proposed, such 

as Weighted Fair Queue (Homg et al.,2001), RED remains the most utilized and well-

known method for its simplicity, consistency and acceptable performance (Rosolen et 

al.,1999). However, the congestion indicator of the REDôs algorithm was not criticized.  

1.3.  Problem  statement : 

The major problem is to investigate how the modify on RED algorithm through 

congestion indicators are adjusted so that the flow of the algorithm RED 

indicator while maintaining the key equation where you must determine the 

best probability of dropping depending on different situations at the router 

buffer so that it can be a no-congestion, pre-congestion, light-congestion and 

heavy congestion. The researcher also chooses congestion indicators, which 

will be replaced by the previous studies are then replaced the indicator's 
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original algorithm and then work experiences and evaluation of this algorithm, 

after the amendment to the indicators and the preservation of the main 

equation. 

1.4. Problem Statement Questions : 

¶ How to determine and criticize of best dropping probability with different 

situations at the router buffer, which are: no-congestion, pre-congestion, light-

congestion and heavy congestion ?  

¶ How to choose the best congestion indicators to be used for queue management? 

¶ How to modify RED algorithm by including the selected congestion indicators ? 

¶ How to implement, test and evaluates the modified RED algorithm ? 

1.5. Objective: 

      The main objective of this research is to define the best dropping probability while 

having a different with situations at the router buffer, which are: no-congestion, pre-

congestion, light-congestion and heavy congestion , and select the best congestion 

indicators, by reviewing and criticizing the previous work in the field of active queue 

management .Then modify RED algorithm by modifying both, the main dropping 

calculation in RED and the REDôs dropping categories , and implement, test and 

evaluates the modified RED algorithm. 

1.6. Motivation  : 

       In this study, several methods proposal in order to reduce and prevent the 

congestion of data through the modification to the congestion indicators of 

RED algorithm, which is still so far used in some organizations  
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while maintaining the original equation indicators and thus can use these 

methods suggested in the different types of networks to prevent the congestion 

of data before they occur thus reducing delays in data and improve data 

network . 

 

1.7. Methodology : 

The adopted methodology approach in this research is experimental, which 

involved the following main steps: 

We must define the best dropping probability while having a different with situations at 

the router buffer, which are: no-congestion, pre-congestion, light-congestion and heavy 

congestion .  

1. Then select the best congestion indicators, by reviewing and criticizing the previous 

work in the field of active queue management. 

2. After that modify RED algorithm by replace indicator with another indicator, the 

main dropping calculation in RED and the REDôs dropping categories . 

3. Last thing make implement, test and evaluates the modified RED algorithm. 

 

. 
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Chapter Two 

 

Background and Related Work 
 

2.1. Introduction  

As mentioned earlier, congestion is a problem that occurs on shared networks 

when many users try to gain access to the same resources (bandwidth, stores, and queues). 

Congestion control techniques and mechanisms can prevent congestion before it happens, 

or remove the tension, after that it happened. This chapter gives a brief review on these 

mechanisms with the focus on the Active Queue Management (AQM) methods.  

2.2. Active Queue Management and RED 

There are mainly two ways to deal with congestion: Active and Passive. The early 

method for congestion control was passively act after congestion occur with the aim to 

reduce the bad consequences that results from the congestion occurrences. Active Queue 

Management (AQM) is a term that are given for the congestion control methods that 

manage, detect and prevent congestion actively. These set of methods use a set of 

indicators to predict and prevent congestion in the early stage (De Vos,2012 ).  

Random Early Detection (RED) algorithm was proposed by  Floyd and Jacobson 

in 1993 as the first Active Queue Management (AQM) mechanism, which was, later on, 

standardized as a recommendation in the IETF. The goal of RED was to avoid global 

synchronization of TCP flows and maintain high productivity. Moreover, RED was 

proposed to reduce delay and achieve fair allocation though multiple TCP connections 

(Li, 2008 ). 
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RED calculates the average queue size using a low pass filter with an exponential 

weighted moving average. The calculated average queue size is compared with two 

thresholds: a minimum and a maximum threshold.  

When the average queue size is less than the minimum threshold, no packets are 

marked, because this is indicating that the buffer is of fair size and no congestion would 

occur at this stage. While, when the average queue size is greater than the maximum 

threshold, every arriving packet is marked and dropped. This is because at this stage, the 

buffer is about to be overflowed by the influence of a congestion state and packets are 

about to be lost. Thus, dropping packets will reduce the number of packets in the buffer 

and prevent buffer overflowing. When the average queue size is between the minimum 

and maximum thresholds, each arriving packet is marked and dropped with probability 

Dp, where Dp is a function of the average queue size (avg). The probability that a packet 

is marked from a particular connection is roughly proportional to that connectionôs share 

of the bandwidth at the router. 

RED algorithm implements its process in two stages: One is for computing the 

average queue size, which determines the degree of  burstiness in the router buffer. It 

takes into account the period when the queue is empty (the idle period) by estimating the 

number m of small packets that could have been transmitted by the router during the idle 

period and the number of packets resides in the buffer over a period of time. RED 

algorithm is given in Algorithm 2.1 .  
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Algorithm 2.1: RED 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

  INITIALIZATION:  

    avg:= 0 

    count:= -1 

  FOR EACH arrival packet 

   CALCULATE new avg as follows: 

     IF  q==0 THEN avg:=(1-w)f(time- q_time) * avg   

     IF q != 0 THEN avg:= (1-w)* avg + wq *q  

   CALCULATE Dp and its related parameters, and implements packet dropping, as:     

   if (minth Ò avg < maxth) 

    increase count 

    Dp'= Dmax* (avg-minth)/(max th-min th)  

      Dp = Dp'/ (1-count* Dp') + wd(D) 

    with probability Dp 

     drop and mark packet 

      count := 0 

    else if (avg > maxth) 

   drop and mark packet 

   Count = 0 

   else  

    Count = -1 

    When q==0 

   q_time=time 
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     Saved Variables: 

   avg: average queue size 

  q_time: start of the queue idle time 

   count: packets since last marked packet 

   Pre-Initialized Parameters: 

   wq : queue weight 

  minth: minimum threshold for queue 

   maxth: maximum threshold for queue 

  Dmax: maximum value for Dp 

   Other:   

  Dp: current packet-marking probability 

  Time: current time 

 

As avg varies from minth to maxth, the packet-marking probability Dp varies 

linearly from 0 to Dmax. The final packet-marking probability Dp increases slowly as the 

count increases since the last marked packet, to prevent, to some extent, consequent 

dropping of packets. Fig. 2.1 illustrates a queue buffer with RED supported queue 

management.  

The problem with RED is the pre-initialized parameters, maxth, minth, Dmax and 

wq that should be given a certain value in-order to give a satisfactory QoS. 
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Fig.2.1: Buffer Queue and RED Parameters (Bonald,2000) 

 

Active Queue Management (AQM) methods have been developed to monitor, 

detect and prevent congestion in early stage. These methods have been designed to keep 

queue at the router buffer as small as possible and to provide early notification of 

congestion. The main technique of these methods is to drop packets when necessary in-

order to prevent router overflowing. At the same time, this technique avoids dropping 

packets unnecessarily ( Mohamed et al., 2010 ) . 

Active Queue Management (AQM) methods help TCP to carry out links 

utilization properly. Active queue management determines routers quantitative and 

qualitative packets dropping. Subsequently, AQM methods reduce the number of packets 

loss in routers. By keeping the average queue size small, AQM methods provide greater 

capacity to absorb naturally occurring bursts without dropping packets and provide lower-

delay interactive service by keeping the average queue size small, queue management 

will reduce the delays seen by flows ( Baker et al., 2015 ) . 

Among many methods, the most prominent method is the random early detection 

(RED), which was proposed in the early nineties. RED controls the queue length so it is 

used in a lot of routers webserver ( Xie et al., 2008 ). 
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2.3.    Related Work 

This section reviews the proposed techniques for AQM, such as FRED ( 

Silberschatz et al.,2006 ), BLUE ( Dhodapkar et al.,2002 ), SFB ( Thiruchelvi et al. 2008 ), 

and CHOKe ( Thiruchelvi et al, 2008 ) . A survey on active queue management 

mechanisms. International Journal of Computer Science and Network Security, 8(12), 

130-145. and compares some of these techniques with RED Lee et al., (2008) and Drop 

Tail ( Floyd et al.,2000 ) , which are considered the base line for congestion control. The 

review and comparison focus on the utilized indicators, performance and simulation 

results. The characteristics of these techniques are also discussed and compared. 

In the efforts to achieve high Quality of Service (QoS), many several congestion 

control approaches were developed. Floyd and Jacobson (1993) proposed Random Early 

Detection (RED)  approach with the aim at detecting and preventing congestion in the 

packet-switched. Gateway detects congestion status with the reference to the average size 

of the queue in the buffer. The average number of packets in the queue determins whether 

to drop or mark packets by placing a bit in the header of the packet to notify the sender 

about congestion.  

When the average queue size exceeds a predetermined threshold, RED drops or 

marks every arriving packet with a certain probability, where the probability is a function 

of the average size of the queue. Subsequently, Red maintains a fair average size of the 

queue while allowing Bursts every now. RED was designed to accompany congestion 

control with no bias against irregular senders and to avoid global synchronization of the 

many connections decreasing their window at the same time. Overall, RED is relatively 

simple and easy to be implemented in an existing networks  or with a newly established 

high-speed networks.  
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Since RED was proposed, many AQM methods and algorithms were proposed 

with reference to RED and with the aim to overcome some of the expected limitations in 

its procedure.  

Feng et al. (2002), proposed BLUE algorithm with the aim to address the problem 

of solely depends on the average queue size as congestion indicator to calculate Dp, as 

given in RED. Blue uses history of packet loss to manage congestion in the buffer. In 

addition to BLUE, SFB, a novel algorithm for scalable flows in a large aggregate was 

proposed. Using SFB, all the connected flows are denied from exceeding its limited rate 

and by increasing Dp for such flows. Using both simulation and controlled trials, BLUE 

was proved to give better performance compared to RED, both in terms of packet loss 

and the size of the over time.  

Siew (2005), proposed Flow-state-dependent dynamic priority scheduling  

(FDPS), a new mechanism that depends on building a scheduling and traffic monitoring. 

FDPS depends on the queue size as indicator of the buffer states. The proposed 

mechanism drops packets of specific source when the source exceed the limits allocated 

and there is no space to accommodate the exceeded packets.  The results show that FDPS 

can differentiating services and prevent congestion.  

Lee et al. (2008) proposed congestion control based on servo control structure 

based on Linear Quadratic, servo-LQ. The implemented approach uses the traditional 

control mechanism with an input variable that represents the queue size. The simulation 

results have shown that the proposed controller gives satisfactory performance balance 

between the queue size and packet loss.  
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Abbasov et al., (2009) proposed an extension to RED algorithm, called HERED. 

The proposed algorithm used a dropping function that is similar to the one used in RED, 

but it drops less packet when the load is light and more aggressive dropping, compared 

to RED, is implemented when the load is heavy. The simulation shows that it achieves 

better QoS compared to RED and the state-of-art algorithms.  

Chen et al., (2010) proposed RED- restraint algorithm, which aims to keep the 

queue around a stable target value. The RED-restraint algorithm stabilize the queue size 

by adjusting the dropping probability value as the value of the current queue length shifted 

away from the target value. RED-restraint differs from RED by using the actual queue 

length instead of the average queue length in RED. Moreover, RED-restraint stabilize q 

around target value, which is not presented in RED. The simulations show that RED-

restraint gives better results compared to RED in packet loss and dropping rate.  

As experimental studies, (Wang, Y. C. et al 2004) conducts a statistical analysis of 

the behaviour of RED. According to the experiments, RED shows weakness dealing with 

heavy congestion, where many packets are lost due to the slow response of the avg. When 

the number of packets arrived to the queue increased with the status of heavy congestion, 

the calculated (avg) increases slowly, because it depends strongly on the previous value 

of avg besides the new value of the queue size.  Subsequently, avg takes time to cope with 

the increase of packets resides in the buffer.  

Ren et al., (2011) conducted a comparative study of the different congestion 

control schemes based on some key performance metrics. By comparing different 

algorithms, it was proven experimentally that there is no mechanism that can efficiently 

control congestion and all of the congestion control mechanisms required large number 

of parameters tuning, which affect the system. In addition, it also concludes that in today's 
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high-speed network, and the nature of  congestion is not really known, which suggest to 

use different types of congestion control.  

Subsequently, there is a need to propose new congestion control that does not 

depend on manual tuning of parameters. Moreover, there is a need to have a congestion 

control that does not concern about pre-assumptions about the nature of congestion that 

faces the network. The utilization of machine learning can solve both of the problems if 

congestion control problem can be reformulated in away to suits the available machine 

learning algorithms.  

2.3.1.  Average-Queue based Methods 

RED  (Wang, B. et al 2005) uses the average queue length as the indicator to 

estimate the state of the buffer and decide about the dropping probability. RED was the 

first technique in AQM and many other methods has follow the same concepts in buffer 

management and congestion control. When the link is congested, RED randomly drops 

arriving packets even if they would fit into the queue, to signalize congestion to the end 

nodes. The probability of the packet dropping is a function of the average queue length, 

while RED is adequate in situations with moderate congestion levels, it has been shown, 

that ï depending on its parameters ï the queue length either oscillates, or the technique 

reacts to the changes in traffic very slowly ( Brazio et al.,2006 ). 

2.3.2. Packet-Loss based Methods 

BLUE ( Dhodapkar et al.,2002 ) uses packet loss as congestion indicator. BLUE 

is one of the newly proposed techniques for congestion control ï either using ECN-

marking or packet dropping.  
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If the queue losses packets due to queue overflows, the probability is increased. If 

the link is underutilized, the probability is decreased. To avoid oscillations, it freezes the 

probability after every change for a fixed time interval, Note that RED cannot achieve 

this if the queue length is oscillating. 

      Using both simulation and experimentation, BLUE is shown to overcome 

many of REDôs shortcomings. RED has been designed with the objective to (1) minimize 

packet loss and queuing delay, (2) avoid global synchronization of sources, (3) maintain 

high link utilization, and (4) remove biases against bursty sources, and BLUE either 

improves or matches REDôs performance in all of these aspects ( Dhodapkar et al., 2002).  

The key idea behind BLUE is to perform queue management based directly on 

packet loss and link utilization  rather than on the instantaneous or average queue lengths. 

This is in contrast to other active queue  management schemes which use some form of 

queue occupancy in their congestion management.  

BLUE maintains a single marking probability, which it uses to mark or drop 

packets. If the queue is continually dropping packets due to buffer overflow, BLUE 

increments  marking probability, thus increasing the rate at which it sends back 

congestion notification. Conversely, if the queue becomes empty or if the link is idle, 

BLUE decreases its marking probability. This effectively allows BLUE to (learn) the 

correct rate it needs to send back congestion notification. The BLUE technique, which 

the marking probability is updated when the queue length exceeds a certain value as 

illustrated in Fig 2.2.( Feng et al., 2006 ). 
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      Fig 2.2 : Flowchart of Blue Algorithm ( Feng, 2006 ) 

 

This modification allows room to be left in the queue for transient bursts and 

allows the queue to control queuing delay when the size of the queue being used is large. 

Besides the marking probability, BLUE uses two other parameters which control how 

quickly the marking probability changes over time. The first is freeze time, which 

determines the minimum time interval between two successive updates of marking 

probability. This allows the changes in the marking probability to take effect before the 

value is updated again. Freeze time is initialized as a constant, this value should be 

randomized in order to avoid global synchronization. The other parameters used, (d1 and 

d2), determine the amount by which marking probability is increased when the queue 

overflows or is decreased when the link is idle. The parameter d1 is set significantly larger 
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than d2, this is because link underutilization can occur when congestion management is 

either too conservative or too aggressive, but packet loss occurs only when congestion 

management is too conservative. By weighting heavily against packet loss, BLUE can 

quickly react to a substantial increase in traffic load. Note that there are a myriad of ways 

in which marking probability can be managed, experiments with additional parameter 

settings and algorithm variations have also been performed with the only difference being 

how quickly the queue management algorithm adapts to the offered load. While BLUE 

seems extremely simple, it provides a significant performance improvement even when 

compared to a RED queue which has been reasonably configured ( Feng et al., 2006 ) . 

Another technique that uses packet loss as congestion indicator is Stochastic Fair 

Blue (SFB) ( Thiruchelvi et al. 2008 ). SFB is a novel technique for protecting TCP flows 

against non-responsive flows, which was built based on BLUE. SFB is a FIFO queuing 

algorithm that identifies and rate-limits non-responsive flows based on accounting 

mechanisms similar to those used with BLUE. SFB maintains accounting bins that are 

organized in L levels with N bins in each level. In addition, SFB maintains L independent 

hash functions, each associated with one level of the accounting bins. Each hash function 

maps a flow into one of the accounting bins in that level. The accounting bins are used to 

keep track of queue occupancy statistics of packets belonging to a particular bin. As a 

packet arrives at the queue, it is hashed into one of the N bins in each of the L levels. If 

the number of packets mapped to a bin goes above a certain threshold (i.e., the size of the 

bin), the packet dropping probability marking probability for that bin is increased. If the 

number of packets in that bin drops to zero, marking probability is decreased. The 

observation is that, a non-responsive flow quickly drives marking probability to 1 in all 

of the L bins it is hashed into. Responsive flows may share one or two bins with non-

responsive flows, however, unless the number of non-responsive flows is extremely large 
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compared to the number of bins, a responsive flow is likely to be hashed into at least one 

bin that is not polluted with non-responsive flows and thus has a normal value. The 

decision to mark a packet is based on Pmin the minimum marking probability value of all 

bins to which the flow is mapped into. If Pmin is 1, the packet is identified as belonging to 

a non-responsive flow and is then rate-limited.  

2.3.3.  Queue and Average-Queue based Methods 

Gentle Random Early Detection (GRED) ( Sally et al., 2000 ),  was proposed in 

order to increase throughput and reduce the undesired oscillation in buffer size of router 

by enhancing parameter settings of RED.  GRED was evaluated using same simulation 

as it used in RED.  

GRED aims to solve some of REDôs problems using technique that is similar to 

RED, but the main difference is in parameter setting in order to be optimized and have a 

better performance regarding to Packet loss and throughput. In GRED another parameter 

was introduced namely, Effective Random Early Detection (ERED) ( Freed et al., 2006 ) 

was proposed to reduce packet loss rates in a simple and scalable manner. ERED modifies 

the packet drop function of RED scheme by controlling packet dropping function both 

with average queue size and instantaneous queue size. Simulations demonstrate that 

ERED achieves a highest throughput and lowest packet drops than RED and it performs 

better than RED due to lowest packet drops . 

RED  probability is dropped by a mechanism dependent on queue length of buffer 

and TCP senders are informed before congestion. The mechanism monitors average 

queue length at a router and a drop probability is calculated accordingly, if the average 

length of waiting increased, congestion will happen and therefore the dropping 

probability should also increase to prevent congestion (Wang, B. et al 2005 ). 



22 
   

 
 

At light traffic load when the average queue size exceeds the maximum threshold 

(maxth), RED drops all packets even though current queue size is small or queue is empty. 

When the load is getting heavy and the current queue size quickly approaches the queue 

limitðan indicator that the queue size may soon get out of control, but the average queue 

size is not big enough to make random drops; ERED allows more aggressive packet 

dropping to quickly back off from it.  

The disadvantage of RED is  if congestion is sufficiently heavy that the gateway 

cannot control the average queue size. ERED proposed to control average queue size 

when connections immediately reduce their sending rate in the case of no congestion  

(Janevski et al.,2003 ).  

 When the average queue size is between the minimum and the maximum 

threshold, each arriving packet is dropped with probability , even though current queue 

size is small or queue is empty. ERED proposed to calculate packet dropping probability 

according to instantaneous queue size when queue size increases immediately and 

exceeds queue limit, but average queue size is below the minimum in the case of 

congestion, and drop each arriving packet with probability ( Xu et al.,2005) . 

ERED has higher throughput and lower packet loss rate than other AQM 

algorithms. ERED has highest throughput value between simulated algorithms when 

comparing throughput values of AQM algorithms and the Router buffer of ERED 

algorithms newer overflows and reduces to zero during simulation. Router buffer 

frequently reduces to zero in RED because RED is aggressive when traffic load is light 

and not aggressive when traffic load is heavy. ERED forwarded the most packets to 

destination nodes and has lost the least packets among rest techniques ( Abbasov et 

al.,2009 ). 
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Weighted random early detection (WRED) ( May et al.,1999 ) is a congestion 

avoidance mechanism and drops them when queues are full , WRED depends on the value 

of precedence in measuring the size of the waiting lists and starts to drop packets when 

the wait between the minimum and maximum threshold list and  arranging will decide 

that 1 in every N packets are dropped . WRED helps to prevent TCP synchronization and 

TCP starvation but when TCP loses packets it will go into slow start and if all TCP 

sessions lose packets at the same time they could become synchronized ( Wurtzler et 

al.,2002 ). 

Random early detection (RED) is a mechanism to avoid congestion which takes 

advantage of the control mechanism in the congestion of the TCP.  By randomly dropping 

packets before high congestion occurs, RED reduces the source packet transmission rate, 

WRED drops packets on a selective basis on the IP precedence. Edge routers set the IP 

precedence to packets as they enter the network. WRED is useful on any output interface 

where you expect it to be crowded. However, WRED is usually used in the core routers 

for the network, and not on the edge. WRED uses these precedence to determine how to 

deal with different traffic (Odom et al., 2004).  

When a packet arrives, the average is less than the minimum queue threshold, the 

arriving packet is queued. But if the average is between the minimum queue threshold for 

that type of traffic and the maximum threshold for the interface, the packet is either 

dropped or queued, depending on the packet drop probability for that type of traffic. But 

if the average queue size is greater than the maximum threshold, the packet is dropped as 

illustrated in Fig 2.3. 
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Fig. 2.3: WRED drops packets probability (May,1999 ) 

The packet drop probability is based on the minimum threshold and maximum 

threshold, and mark probability denominator. But when the average queue depth is upper 

the minimum threshold then RED starts dropping packets. The average of packet drop 

increases linearly as the average queue size increases until the average queue size reaches 

the maximum threshold. The mark probability denominator is the part of packets dropped 

when the average queue depth is at the maximum threshold , and when the average queue 

size is upper the maximum threshold, all packets are dropped ( Wurtzler et al.,2002 ). 

Robust random early detection (RRED) ( Zhang et al., 2010 ) is a queuing 

correction for a network scheduler. RRED technique was suggest to improve the TCP 

throughput against LDoS attacks. The main idea behind RRED is to detect and filter out 

attack packets before a normal RED algorithm is applied to incoming flows. RRED 

algorithm can significantly improve the performance of TCP under Low-avrage negation-

of-service attacks , and the basic idea behind the RRED is to detect and filter out LDoS 

attack packets from incoming flows before they feed to the RED algorithm (Braden et 

al.,1998) . 
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Flow Random Early Drop (FRED) ( Silberschatz et al., 2006 )  aims to reduce the 

effects of injustice in RED. Instead of indicating congestion to randomly selected contacts 

through a drop packets relatively speaking, that generates a unique responses of the 

selective action of a group that has filtered of connections that have a large number of 

packets in the queue. FRED is able to isolate the non-passage of greed adapt more 

effectively  ( Pan et al., 2000 ). 

FRED is like RED, but with some additions. FRED introduces the parameters 

minq and maxq, they aims for the minimum and maximum number of packets each flow 

should be allowed to buffer, and FRED maintains a variable strike for each flow, which 

counts the number of times the flow has failed to respond to congestion notification. 

FRED held to account for the presence of flows with high values of strike ( Kidambi et 

al.,2000 ). 

FRED is modified version of the RED, providing selective dropping on the basis 

of an active share of the flow of the charges buffer. FRED keeps this only extra state for 

flows that have packets stored in each gateway (Alemu et al.,2004), which is compatible 

with existing FIFO queue architectures.. FRED processes arriving packets using the 

following flow chart of the algorithm illustrated in Fig 2.4. 

New flow?

Calculate avg & maxq

Non-adaptive?

N

Y

minth<avg<maxth

Drop

N

Y

Robust
RED

avg<minth Accept

N

Drop Tail

New state

Fragile

N

 

Fig 2.4: FRED processing arriving packet (Stoica, 1998) 
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CHOKe as a queue management algorithm, CHOKe basicly will detect all the   

non-responsive and unwanted flows using pre-existing queue buffer occupancy 

information of each flow. The RED usually used a certain existing technique in order to 

calculate the average occupancy and it works, and that was the same used by  CHOKe ( 

Bergmeyer et al., 2012). 

 It also marks two thresholds on the buffer, a minimum threshold minth and a 

maximum threshold maxth. Depending on the Queue size the outcome will change: If the 

average queue size is less than minth, each arriving packet is being automatically queued 

and waited  into the FIFO buffer. If the collected  arrival rate is less  than the output link 

capacity, the average queue size should not build up to minth very often and packets are 

not dropped frequently. If the average queue size is more  than maxth, each  arriving 

packet is dropped ( Pan, R., Prabhakar, B., 2000). 

 This will take  the queue occupancy back to below maxth. When the average 

queue size is bigger than minth, each arriving packet is compared with a another  packet 

this is done randomly , named as  drop candidate packet, from the FIFO buffer. If they 

have the same flow ID, they are both dropped. Otherwise, the randomly chosen packet is 

kept in the buffer (in the same position as before) and the arriving packet is dropped with 

a probability that depends on the average queue size. The drop probability is computed 

exactly as in RED. In particular, this means that packets are dropped with probability 1 if 

they arrive when the average queue size exceeds maxth.  And in order to bring the queue 

occupancy back to below maxth as fast as possible. A flow chart of the algorithm is given  

in Fig 2.5 (Pan et al.,2000) . 
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Admit new packet 
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Draw a packet randomly 
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Drop the new packet 

 

                         Fig 2.5 : Flow chart for Basic CHOKe (Pan,2000) 
 
 
 

The following table 2.1 shows the comparison brief review on these mechanisms 

indicator :  

 

                         Table 2.1: comparison of mechanisms indicator 
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RED  avg Yes Yes No Yes No No 

FRED  avg Yes Yes No Yes No No 

RRED avg & q Yes Yes No Yes No No 

WRED avg & q Yes Yes No Yes No No 

GRED  avg & q Yes Yes No Yes No No 

CHOKe avg Yes Yes Yes No No No 

ERED  avg & q Yes Yes Yes Yes No No 

BLUE  PL Yes No No Yes Yes No 

SFP PL Yes No No Yes Yes No 

AVQ  Arrival rate Yes Yes Yes No Yes No 

FDPS q Yes Yes Yes No No No 

AFRED  avg avg Yes Yes No Yes Yes 
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2.4. Summary 

 
Several queue management algorithms (RED, FRED, BLUE, SFB, CHOKe) 

based on comparison result and algorithm characteristics. Itôs still hard to conclude which 

algorithm is better in all aspects than another, especially considering the deployment 

complexity. But the major trends are: (1) all these algorithms have in common that they 

do  provide high link utilization, (2) RED and BLUE do not usually  identify and drop the  

non-responsive flow,  but  the other three algorithms FRED ,SFB and CHOKe  maintains 

equal  sharing among different traffic flows, (3) the equality maintained by the three 

algorithms is achieved  by using different methods, FRED record per-active-flow 

information, SFB statistically multiplex buffers to bins, but it requires to achieve this is 

to have a  large number of non-responsive flows, CHOKe correlates dropping rate with 

corresponding flowôs incoming rate, and is able to drop large number of non-responsive 

flows adaptively, (4) all of the algorithms has computation overhead per incoming packet, 

they do require a different  space.   
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Chapter Three 

Proposed Work 

This Chapter presents the proposed approach for AQM. The proposed approach 

operates in the router buffer in order to control the number of packets presents in the 

router and drop the packets randomly before buffer overflow, it calculates a dropping 

probability with each arrival packet and it avoids the problem of global synchronization 

phenomena. Overall, the proposed approach contributes by using different indicators with 

RED, as will be discussed in this chapter.  

This chapter is organized as follows: Section 3.1. is an introduction. Section 3.2 

presents the proposed methods. Section 3.3. is the summary of the chapter3.  

3.1. Introduction  

            RED, the first and most well-known AQM methods is influenced by the 

utilized congestion indicator. The congestion indicator in RED, the average queue length, 

has two main roles, these are:  

¶ Selecting Dp category.  

¶ Calculating the actual Dp value in likelihood dropping category [0-1].  

Subsequently, the proposed approach and the other existing AQM methods use 

different indicators to play these roles, accordingly.  

The proposed approach, as similar to the existing AQM method, preserves the 

core of the RED technique embodied in calculating Dp with each arrival packet, drop 
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packets based on the calculated Dp and divide Dp calculation into categories. Existing 

AQM methods have taken different approaches in modifying RED. However, the overall 

trends in these approaches are changing both, the congestion indicator and the utilized Dp 

calculation procedure, building on the assumption that different indicators required 

different calculation procedures. Unlike the existing AQM methods, the proposed 

approach changes the REDôs utilized congestion indicator and preserves the RED 

calculation. The proposed approach uses novel indicators in the RED framework, these 

indicators will be discussed accordingly.  

3.2. The proposed methods 

  RED uses Average Queue Length as single and sole congestion indicator. 

Average Queue Length is an intelligent indicator of the number of packets within the 

buffer zone. It is a reflection of the queue length, an indicator of the actual number of 

packets in the router buffer.    

 Diff erent indicators rather than AVG-Queue are investigated. The utilized 

indicators are calculated in a way to fit in the RED procedure. Subsequently, different 

calculation process than those founds in the literature is implemented. The investigated 

indicators are: Queue Length, Load Rate and Delay.  

As noted and proven in the experiments, we found out that whenever the number 

of arrival queue increase, the indicators will increase their number . 

The indicators were used in order to replace the parameters in the equation of 

original RED in order to have different proposed methods than the original RED . 
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3.2.1. Queue Length 

  Queue length is the number of the packets that reside in the router buffer 

simultaneously at a specific time.  It is simply calculated by counting the number of 

packets that reside in the buffer. Queue length was previously used in an extended-RED 

AQM method, called ERED. The utilization of this factor along with the average queue 

length, as given in ERED work, has shown an improvement in the overall results. 

However, in the work, Queue length is used as in different way that is simpler compared 

to ERED.  

3.2.2. Load Rate 

  Load Rate is an indicator of the ratio between the packet arrival rate and packet 

departure rate that formulate the load on the router. The load rate is calculated based on 

four scenarios as given in Algorithm 1.  

Algorithm 1: Lode Rate Calculation  

1. if(QueueLength==0)  

2. LoadRate = 0  

3. else if (QueueLength==BufferSize) 

4. LoadRate = 1 

5. else if(DepartureRate>ArrivalRate) 

6.  LoadRate =0 

7. else 

8.  LoadRate = ArraivalRate-DepartureRate 

In Line 1 and Line 2, the load rate is set to zero if there is no packets queued in 

the buffer. In another case, in Line 3 and Line 4, if the buffer is full, by other means if the 

number of queued packets is equal to the buffer capacity, then the load rate is set to one, 
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which is the maximum loade rate value. In such a case, the load cannot be determined 

precisely, as no arrival packets can occur in this case. However because buffer can only 

be overflowed with heavy load, it is given the maximum load rate value.  

In Line 5 and Line 6, if the departure rate is greater than the arrival rate, no load 

will be added on the buffer because the departed packet are larger than those arriving. 

Thus, the load rate is set to zero. Finally, the major load rate calculation is implemented 

in Line 7 and Line 8. This case refers to arriving packets greater than departing; buffer is 

neither empty nor full. In such a case the load rate will be given a value in the range [0-

1] and it will be calculated as the difference between the arrival rate and departure rate. 

The arrival rate is calculated as given in Equation 3.1.  

ArraivalRatet = w * Arrival t + (1-w) * ArraivalRatet-1 (3.1) 

where, ArraivalRatet is the arrival rate calculate at the current time denoted as t. 

ArraivalRatet is calculated as low filter pass of the average arrival packets at the current 

time, Arrival t, and the old arrival rate calculated at time (t-1), ArraivalRatet-1. This 

averaging process is similar to the way of calculating the average queue length proposed 

by Floyd. The advantage of such low pass filter as mentioned before is to avoid false 

calculation in burst traffic or short ideal link. The weight w is set to a value less than 0.5 

to ensure the low pass filtering of the old and new values.  

Arrival t, the arrival at time t is calculated as the inverse difference between the 

current time, which is the time of a newly arrived packet, and the time of the last arrived 

packet, as given in Equation 3.2. Note that Timecurrent is a time of newly arrived packet 

implicitly understood as all calculations in any AQM method is implemented with packet 

arrivals only.  
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Arrival t = 1/(Timecurrent - TimePrevious) (3.2) 

The departure rate is calculated differently from the arrival because the calculation 

is not implemented with each packet departure, thus, the AQM has no control on the 

packet departing process. The departure at time t, DepartureRatet, is calculated as the 

difference between the arrival rate and the packet queuing rate, which is estimated as 

AVG/BufferSize, as given in Equation 3.3.  

DepartureRatet = arrivalRate - (AVG/BufferSize)   (3.3) 

Note that, the values of LoadRate, ArraivalRatet and DepartureRatet are updated 

with each packet arrival, by other means with each AQM triggered for action.   

3.2.3. Delay 

Delay is an indicator of the average time the packets will be waited in the queue. 

The delay is calculated based on Equation 3.4. 

Delay = LoadRate * QueueLength    (3.4) 

Generally, these indicators are the most common indicators used by the existing 

active queue management methods. It is used with different calculations rather than given 

here. 
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3.3. The Proposed Sub-Methods 

The proposed approach extends RED by maintaining the overall structure of the 

underlying process in RED while modifying the major indicators used to produce the final 

Dp value. In the proposed work, the process is divided into three stages: which are:  

         The investigated Modified-RED Sub-methods are listed in Table 3.1.  

Table 3.1: The Modified-RED Sub-Methods 

Investigated Trial 

# 

For Categorization  For [0-1] Category 

Calculation  

Comments 

RED AVG-Queue AVG-Queue Original RED 

1 AVG-Queue Queue-Length Proposed 

Variation 1 

2 Queue-Length AVG-Queue Proposed 

Variation 2 

3 Queue-Length Queue-Length Proposed 

Variation 3 

4 AVG-Queue Load-Rate Proposed 

Variation 4 

5 Load-Rate AVG-Queue Proposed 

Variation 5 

6 Load-Rate Load-Rate Proposed 

Variation 6 

7 AVG-Queue Delay Proposed 

Variation 7 

8 Delay AVG-Queue Proposed 

Variation 8 

9 Delay Delay Proposed 

Variation 9 
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3.3.1.  Sub-Method 1 

  The first variation uses the original RED indicator average queue length (AVG) 

for categorization and the queue length for the main calculation. The proposed variation 

is given in Algorithm 1.  

Algorithm 2: Proposed Sub-Method-1 

1. QueueAverage:= 0 

2. count:= -1 

3. with packet arrival 

4. If QueueLenth==0 THEN QueueAverage:=(1-w)f(time- q_time) * QueueAverage 

5. If QueueLenth<> 0 THEN QueueAverage:= (1-w)* QueueAverage + w *q 

6. If (minthÒ QueueAverage<maxth) 

7.  Count ++ 

8.  Dp'= Dmax* (QueueLenth -minth)/(maxth-minth) 

9.   Dp = Dp'/ (1-count*Dp')  

10.  with probability Dp 

11.     drop and mark packet 

12. count:= 0 

13.    Else If (QueueAverage>maxth) 

14. drop and mark packet 

15. count = 0 

16. Else  

17. count = -1 

18. If QueueLenth ==0 

19.  q_time=time 

In Line 1 and Line 2, the parameters required to run the algorithm, are setting up 

to their initial values. The queue management process start at Line 3. The average queue 

length is calculated according to one of three scenarios, similar to the scenarios given in 

the original RED, in Line 4 and Line 5. In Line 6 to Line 12, the first calculation category 
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is represented, the likelihood category. As given in Line 8, the calculation of the dropping 

probability has been modified to include the QueueLength parameter in the place of the 

AverageQueue, which was used in the original RED. The new calculation of Dp is given 

in Equation 3.5. 

Dp'= Dmax* (QueueLenth -minth)/(maxth-minth),  Dp = Dp'/ (1-count*Dp')  (3.5) 

In Line 13 to Line 15, the second calculation category is represented, which is the 

full dropping category. This scenario for calculating Dp value is followed when 

AverageQueue is above the value of maxth. In Line 16 and Line 17, the third calculation 

category is represented, which is zero dropping category. This scenario for calculating 

Dp value is followed when AverageQueue is below the value of minth. Finally, the value 

of ideal time is updated if the queue is getting full. The ideal time is used to calculate the 

AverageQueue. 

3.3.2.  Sub-Method 2 

The second variation uses the queue length for categorization and the original 

RED indicator, average queue length (AVG), for the main calculation. This variation is 

given in Algorithm 2.  

Algorithm 3:  Proposed Sub-Method-2 

1. QueueAverage:= 0 

2. count:= -1 

3. with packet arrival 

4. If QueueLenth==0 THEN QueueAverage:=(1-w)f(time- q_time) * QueueAverage 

5. If QueueLenth<> 0 THEN QueueAverage:= (1-w)* QueueAverage + w *q 

6. If (minthÒ QueueLenth<maxth) 

7. Count ++ 

8. Dp'= Dmax* (QueueAverage -minth)/(maxth-minth) 

9.Dp = Dp'/ (1-count*Dp')  

10. with probability Dp 
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11.  drop and mark packet 

12.  count:= 0 

13. Else If (QueueLenth>maxth) 

14.  drop and mark packet 

15. count = 0 

16. Else  

17. count = -1 

18. If QueueLenth ==0 

19.  q_time=time 

 

As before Line 1, Line 2 and Line 3 setting the parameters to their initial values 

and initiate the queue management. The average queue length is calculated, similar to the 

calculation in the original RED, in Line 4 and Line 5. Line 6 to Line 12 represent the first 

calculation category, the likelihood category. As given in Line 6, the triggering of the 

category depends on comparing QueueLength value to the thresholds, which replace the 

AverageQueue, which was used in the original RED. The calculation of the Dropping 

probability, in Line 7 and Line 8 is implemented as the original RED. Lines 13 to 15 

represent the second calculation category, full dropping category, which is followed when 

QueueLength is above the value of maxth, unlike original RED which uses AverageQueue 

for this purpose. Line 16 and Line 17 represent the third calculation category, no dropping 

category, which is followed when AverageQueue is below the value of minth. Finally, the 

value of ideal time is updated if the queue is getting full. The ideal time is used to calculate 

the AverageQueue. 
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Proposed Variation 3:  

The third variation uses the queue length for categorization and for the main 

calculation. This variation is given in Algorithm 3.  

Algorithm 3: Proposed Variation 3 

1. QueueAverage:= 0 

2. count:= -1 

3. with packet arrival 

4. If (minthÒ QueueLenth<maxth) 

5.  Count ++ 

6.  Dp'= Dmax* (QueueLenth -minth)/(maxth-minth) 

7.  Dp = Dp'/ (1-count*Dp')  

8.  with probability Dp 

9.  drop and mark packet 

10.  count:= 0 

11. Else If (QueueLenth>maxth) 

12. drop and mark packet 

13.count = 0 

14. Else  

15. count = -1 

As before, Line 1, Line 2 and Line 3 setting the parameters to their initial values and 

initiate the queue management .Line 4 to Line 10 represent the first calculation category, 

the likelihood category. As given in Line 4, the triggering of the category depends on 

comparing QueueLength value to the thresholds, which replace the AverageQueue, which 

was used in the original RED. The calculation of the Dropping probability in Line 5 and 

Line 6 is implemented based on QueueLength. Line 11 to Line 13 represent the second 

calculation category, full dropping category, which is followed when QueueLength is 

above the value of maxth. Line 14 and Line 15 represent the third calculation category, no 

dropping category, which is followed when AverageQueue is below the value of minth. 

As noted there is neither. AverageQueue nor ideal time calculation in this variation.  
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Proposed Variation 4:  

The fourth variation uses the original RED indicator average queue length (AVG) 

for categorization and the load rate for the main calculation. The proposed variation is 

given in Algorithm 4.  

Algorithm 4: Proposed Variation 4 

1. QueueAverage:= 0 

2. count:= -1 

3. with packet arrival 

4.  If QueueLenth==0 THEN QueueAverage:=(1-w)f(time- q_time) * QueueAverage 

5.  If QueueLenth<> 0 THEN QueueAverage:= (1-w)* QueueAverage + w *q 

6.  loadRate = LoadRateCalculation() 

7.  If (minthÒ QueueAverage<maxth) 

8.   Count ++ 

9.   Dp'= Dmax* (loadRate -minth)/(maxth-minth) 

10. Dp = Dp'/ (1-count*Dp')  

11. with probability Dp 

12. drop and mark packet 

13. count:= 0 

14. Else If (QueueAverage>maxth) 

15. drop and mark packet 

16.  count = 0 

17. Else  

18. count = -1 

19. If QueueLenth ==0 

20. q_time=time 

 

 

As before, Line 1, Line 2 and Line 3 setting the parameters to their initial values 

and initiate the queue management. The average queue length is calculated, similar to the 

calculation in the original RED, in Line 4 and Line 5. The load rate is calculated as given 

in Algorithm 1 in Line 6. Line 7 to Line 13 represent the first calculation category, the 

likelihood category. As given in Line 9, the calculation of the Dropping probability has 

been modified to include the LoadRate parameter in the place of the AverageQueue, 



40 
   

 
 

which was used in the original RED. The LoadRate is calculated as discussed in 

Algorithm 1. Line 14 to Line 16 represent the second calculation category, full dropping 

category, which is followed when AverageQueue is above the value of maxth. Line 17 

and Line 18 represent the third calculation category, no dropping category, which is 

followed when AverageQueue is below the value of minth. Finally, the value of ideal time 

is updated if the queue is getting full. The ideal time is used to calculate the 

AverageQueue. 

Proposed Variation 5:  

The fifth variation uses the LoadRate for categorization and the original RED 

indicator, average queue length (AVG), for the main calculation. This variation is given 

in Algorithm 5.  
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Algorithm 5: Proposed Variation 5 

1. QueueAverage:= 0 

2. count:= -1 

3. with packet arrival 

4.  If QueueLenth==0 THEN QueueAverage:=(1-w)f(time- q_time) * QueueAverage 

5. If QueueLenth<> 0 THEN QueueAverage:= (1-w)* QueueAverage + w *q 

6. loadRate = LoadRateCalculation() 

7. If (minthÒ loadRate<maxth) 

8. Count ++ 

9. Dp'= Dmax* (QueueAverage -minth)/(maxth-minth) 

10.  Dp = Dp'/ (1-count*Dp')  

11.  with probability Dp 

12. drop and mark packet 

13. count:= 0 

14. Else If (LoadRate>maxth) 

15.drop and mark packet 

16. count = 0 

17. Else  

18. count = -1 

19. If QueueLenth ==0 

20.  q_time=time 

As before Line 1, Line 2 and Line 3 setting the parameters to their initial values 

and initiate the queue management. The average queue length is calculated, similar to the 

calculation in the original RED, in Line 4 and Line 5. The load rate is calculated as given 

in Algorithm 1 in Line 6. Line 7 to Line 13 represent the first calculation category, the 

likelihood category. As given in Line 7, the triggering of the category depends on 

comparing LoadRate value to the thresholds, which replace the AverageQueue, which 

was used in the original RED. The calculation of the Dropping probability, in Line 8 and 

Line 9, is implemented as the original RED. Line 14 to Line 16 represent the second 
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calculation category, full dropping category, which is followed when LoadRate is above 

the value of maxth. Unlike original RED which uses AverageQueue for this purpose. Line 

17 and Line 18 represent the third calculation category, no dropping category, which is 

followed when LoadRate is below the value of minth. Finally, the value of ideal time is 

updated if the queue is getting full. The ideal time is used to calculate the AverageQueue. 

Proposed Variation 6:  

The sixth variation uses the load rate for categorization and for the main 

calculation. This variation is given in Algorithm 6.  

Algorithm 6: Proposed Variation 6 

1. QueueAverage:= 0 

2. count:= -1 

3. with packet arrival 

4.  LoadRate = LoadRateCalculation() 

5. If (minthÒ loadRate<maxth) 

6. Count ++ 

7. Dp'= Dmax* (LoadRate -minth)/(maxth-minth) 

8. Dp = Dp'/ (1-count*Dp')  

9. with probability Dp 

10. drop and mark packet 

11. count:= 0 

12. Else If (LoadRate>maxth) 

13. drop and mark packet 

14.  count = 0 

15. Else  

16. count = -1 

As before Line 1, Line 2 and Line 3 setting the parameters to their initial values 

and initiate the queue management. The load rate is calculated as given in Algorithm 1 in 

Line 4. Line 5 to Line 11 represent the first calculation category, the likelihood category. 

As given in Line 5, the triggering of the category depends on comparing LoadRate value 

to the thresholds, which replace the AverageQueue, which was used in the original RED. 
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The calculation of the Dropping probability, in Line 6 and Line 7 is implemented based 

on LoadRate. Line 12 to Line 14 represent the second calculation category, full dropping 

category, which is followed when LoadRate is above the value of maxth. Line 15 and Line 

16 represent the third calculation category, no dropping category, which is followed when 

LoadRate is below the value of minth. As noted there is neither AverageQueue nor ideal 

time calculation in this variation.  

Proposed Variation 7:  

The seventh variation uses the original RED indicator average queue length 

(AVG) for categorization and the delay for the main calculation. The proposed variation 

is given in Algorithm 7.  

 

Algorithm 7: Proposed Variation 7 

1. QueueAverage:= 0 

2. count:= -1 

3. with packet arrival 

4.  If QueueLenth==0 THEN QueueAverage:=(1-w)f(time- q_time) * QueueAverage 

5. If QueueLenth<> 0 THEN QueueAverage:= (1-w)* QueueAverage + w *q 

6. LoadRate = LoadRateCalculation()   DelayRate = LoadRate*QueueLength 

7.    If (minthÒ QueueAverage<maxth) 

8.  Count ++ 

9.   Dp'= Dmax* (DelayRate -minth)/(maxth-minth) 

10.    Dp = Dp'/ (1-count*Dp')  

11  with probability Dp 

12.  drop and mark packet 

13. count:= 0 

14.   Else If (QueueAverage>maxth) 

15.  drop and mark packet 

16.  count = 0 

17.  Else  

18.count = -1 

19. If QueueLenth ==0 

20. q_time=time 
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As before Line 1, Line 2 and Line 3 setting the parameters to their initial values 

and initiate the queue management. The average queue length is calculated, similar to the 

calculation in the original RED, in Line 4 and Line 5. The load rate and delay are 

calculated as given in Algorithm 1 and Equation 4 in Line 6. Line 7 to Line 13 represent 

the first calculation category, the likelihood category. As given in Line 9, the calculation 

of the dropping probability has been modified to include the DelayRate parameter in the 

place of the AverageQueue, which was used in the original RED. The DelayRate is 

calculated as discussed in Equation 4. Line 14 to Line 16 represent the second calculation 

category, full dropping category, which is followed when AverageQueue is above the 

value of maxth. Line 17 and Line 18 represent the third calculation category, no dropping 

category, which is followed when AverageQueue is below the value of minth. Finally, the 

value of ideal time is updated if the queue is getting full. The ideal time is used to calculate 

the AverageQueue. 

Proposed Variation 8:  

The eighth variation uses the DelayRate for categorization and the original RED 

indicator, average queue length (AVG), for the main calculation. This variation is given 

in Algorithm 8.  
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Algorithm 8: Proposed Variation 8 

1. QueueAverage:= 0 

2. count:= -1 

3. with packet arrival 

4. If QueueLenth==0 THEN QueueAverage:=(1-w)f(time- q_time) * QueueAverage 

5. If QueueLenth<> 0 THEN QueueAverage:= (1-w)* QueueAverage + w *q 

6. LoadRate = LoadRateCalculation()   DelayRate = LoadRate*QueueLength 

7. If (minthÒ DelayRate<maxth) 

8. Count ++ 

9. Dp'= Dmax* (QueueAverage -minth)/(maxth-minth) 

10. Dp = Dp'/ (1-count*Dp')  

11. with probability Dp 

12. drop and mark packet 

13. count:= 0 

14. Else If (DelayRate>maxth) 

15. drop and mark packet 

16. count = 0 

17. Else  

18. count = -1 

19. If QueueLenth ==0 

20. q_time=time 
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As before Line 1, Line 2 and Line 3 setting the parameters to their initial values 

and initiate the queue management. The average queue length is calculated, similar to the 

calculation in the original RED, in Line 4 and Line 5. The delay is calculated in Line 6. 

Line 7 to Line 13 represent the first calculation category, the likelihood category. As 

given in Line 7, the triggering of the category depends on comparing DelayRate value to 

the thresholds, which replaces the AverageQueue, which was used in the original RED. 

The calculation of the Dropping probability, in Line 8 and Line 9 is implemented as the 

original RED. Line 14 to Line 16 represent the second calculation category, full dropping 

category, which is followed when DelayRate is above the value of maxth. Unlike original 

RED which uses AverageQueue for this purpose. Line 17 and Line 18 represent the third 

calculation category, no dropping category, which is followed when DelayRate is below 

the value of minth. Finally, the value of ideal time is updated if the queue is getting full. 

The ideal time is used to calculate the AverageQueue. 

Proposed Variation 9:  

         The ninth variation uses the delay for categorization and for the main calculation. 

This variation is given in Algorithm 9.  
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Algorithm 9: Proposed Variation 9 

1. QueueAverage:= 0 

2. count:= -1 

3. with packet arrival 

4.  LoadRate = LoadRateCalculation()   DelayRate = LoadRate*QueueLength 

5. If (minthÒ DelayRate<maxth) 

6. Count ++ 

7. Dp'= Dmax* (DelayRate -minth)/(maxth-minth) 

8. Dp = Dp'/ (1-count*Dp')  

9. with probability Dp 

10. drop and mark packet 

11. count:= 0 

12. Else If (DelayRate>maxth) 

13. drop and mark packet 

14. count = 0 

15. Else  

16. count = -1 

 

As before Line 1, Line 2 and Line 3 setting the parameters to their initial values 

and initiate the queue management. The delay is calculated in Line 4. Line 5 to Line 11 

represent the first calculation category, the likelihood category. As given in Line 5, the 

triggering of the category depends on comparing DelayRate value to the thresholds, 

which replaces the AverageQueue, which was used in the original RED. The calculation 

of the dropping probability, in Line 6 and Line 7 is implemented based on DelayRate. 



48 
   

 
 

Line 12 to Line 14 represents the second calculation category, full dropping category, 

which is followed when DelayRate is above the value of maxth. Line 15 and Line 16 

represent the third calculation category, no dropping category, which is followed when 

DelayRate is below the value of minth. As noted there is neither Average Queue nor ideal 

time calculation in this variation. 

 3.4. Summary 

We replaced the existing  original parameter code   RED  with  new indicators 

(Queue length , load rate and Delay ) .As every time we do these replacements, we have 

a proposed methods , that provided us with  nine  different  proposed methods .Later on 

in chapter four all these proposed methods will be tested and studied in order to find out 

which one of the nine is going to be recognised as the best proposed methods . 
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CHAPTER FOUR 

 THE EXPERIMENTAL RESULTS  

This chapter presents, compares and discusses the results of the proposed 

methods for congestion control that were built based on RED, as has been discussed in 

Chapter Three. The proposed and compared methods are developed, executed and 

compared in this chapter. 

This chapter is organized as follows: Section 4.1 presents an introduction to this 

chapter. Section 4.2 describes all the aspects that are related to the environment, in which 

the experiments were conducted. Section 4.3 describes the parameters and settings that 

are used in the experiments. The results are given in Section 4.4. Finally, Section 4.5 

gives a summary of the chapter.  

4.1 Introduction  

The procedure of conducting the experiments   consists of implementing the 

proposed and compared methods, testing, and comparing the results. The implementation 

is conducted using JAVA programming language. The code is developed in NetBeans 7.5 

IDE. Multiple tests were conducted by changing the rate of incoming packets, which 

provides different results in order to get variety of tests. The results are evaluated 

according to the following measures: Delay, which is known as the average time that 

packets will spend waiting in the queue. Loss usually happens when one or more packets 

of data travelling across a computer network fail to be accommodated in the router buffer. 

Dropping rate is the rate of packets that dropped by the AQM to the total number of 

packets. Sum of dropping and losing reflects the total number of packets that were not 

accommodated in the router buffer, either by loss or by dropping.  Drop and loss were 
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aggregated, as each of them alone might not express the effectiveness of the compared 

approach. This is because sometimes, drooping are necessary to avoid loss and in some 

other times it is not necessary. In order to achieve a proper evaluation with the proposed 

methods, these methods are compared with RED, which is the core of the developed 

methods and ERED which is a unique AQM method that was proposed to overcome the 

limitations of RED. 

4.2 Environment  

  The simulation of the network process is implemented using one of the well-

known approaches called discrete time queue (Alfa, 2010). The Discrete Time Queue 

tracks measures and evaluates the status of the network and network resources at 

specific time intervals known as SLOTS. At every slot, either a packet arrive event or 

departed event separately or both events may occur at the same time .Where two 

subsequent packets arrival without departure makes two time slots and so on. Several 

methods have been introduced and tested using discrete-time queues. The other 

approach, called continuous model, measures and evaluates the network performance 

periodically with equal length periods. However, this approach does not properly 

address the events of packet arrival and departures accurately. As the AQM is based on 

calculating Dp with each arrival packets (event based), Discrete time queue was chosen 

to verify the proposed work. 

The discrete time queue, packet arrival and packet departure rates are established 

as probability values. Probability for arrival, and similarly for departure, with 0 values, 

means no packets will be arrived at any time slot. While, with probability of 1.0, a packet 

will surely arrive at each time slot. For a value of 0.5, there is Probability for the packet 

to arrive or not at each time slot. 
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4.3 Experimental Setup  

The probability of the packet departure in the conducted test is set to 0.5. The 

probabilities of packet arrival are set to the values of 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 

0.99. When the arrival probability is below the departure, no congestion is expected. 

While, congestion or pre-congestion are expected when the arrival rate is higher than 

the departure rate.  

Two Million time slots were used in the experiments. This value allows sufficient 

results. Part of these slots is used as a warm-up before the steady state, with total number 

of 800000 slots, and the rest is for the experimental measures. A buffer size of 20 packets 

was used (Baklizi, et 57 al., 2014). The parameters minth, maxth, maxp, and weight 

values are set to 3, 9, 0.1, and 0.002, respectively, as recommended in RED (Floyd and 

Jacobson, 1993). The parameters that are used in the experiments for the proposed and 

compared method, given in Table 4.1, these parameters are as follows: 

Table 4.1: Parameter settings  

Parameter Values 

Packet Arrival Probability 0.3-0.99 

Packet Departure Probability 0.5 

Number of Slots 2,000,000 

Number of Slots for Warm-Up  800,000 

Router Buffer Capacity 20 

Queue Weight 0.002 

maxp 0.1 

minth 3 

maxth 9 

 

          



52 
   

 
 

The experiments are conducted as follows: The parameters are initialized first to 

values that are given in Table 4.1.  Then, a packet is generated and sent to the queue, 

based on the probability of packet arrival. If a packet is generated and sent to the router, 

there is a probability for the packet to be lost if the queue is full, or it might be dropped 

or queued as decided based on the calculated value for the drop probability Dp. DP is 

calculated using the proposed AQM methods and the compared methods. Packet arrival 

is simulated based on a pre-determined probability value called ñAlphaò that is in the 

range between 0-1. A random number generation is used to generate a random number to 

be compared with alpha. If the number generated is below alpha then the packet is arrived 

to the buffer, else no packet is arrived. The properties of random number besides it is 

random, it also generates a distributed number. When Alpha is 0.5 then for a 100 slots, 

50 slots will allow packet arrival. Packet departure is simulated based on a pre-determined 

value called ñBetaò and is happened in a similar way as the packet arrival and based on 

random number generation. Congestion Control checks the statuses and decides whether 

to drop the packet or to queue it. In the same time slot, a packet maybe departed. This 

process is repeated for each time slot. This process is illustrated in Figure 4.1. 
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Fig 4.1: Flowchart of the Experiments 

4.4 Results  

The results of the proposed and compared methods are reported in this section. 

Each group of the proposed methods is compared with RED and ERED using the 

performance measures mentioned earlier. The results are collected under different 

ALPHAôs values to provide a variety of tests. 
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4.4.1 Queue Length-based Proposed Methods 

 In this sub-section, the three proposed methods, which was developed using 

queue-length indicator, as discussed in Chapter Three, are evaluated and compared with 

RED and ERED.  

Table 4.2 shows the average delay for the proposed queue-length based methods 

and compared methods. Table 4.2 is plotted in Figure 4.2. As demonstrated in Figure 4.2, 

delay for RED, ERED and the proposed sub-methods at arrival probability 0.4 and below 

is almost identical. Above this value, ERED getting more value for delay compared to 

RED and the proposed sub-methods. As noted, for the values 0.3 and 0.4, the proposed 

sub-method-2 and the proposed sub-method-3 have achieved the same best delay, 

compared to the proposed sub-method-1, RED and ERED. However, at the value 0.5 and 

above the proposed sub-method-2 achieved the best delay compare with the rest. 

Table 4.2: Delay Comparison for the Proposed Queue-based Methods  

Alpha RED ERED Sub-Method-1 Sub-Method-2 Sub-Method-3 

0.3 260 169 41243 12375 4675 

0.4 850 722 55617 2620 2620 

0.5 3181 28653 13444 34573 32387 

0.6 128606 124150 117175 126375 125052 

0.7 237797 232512 234788 269303 269303 

0.8 355110 340017 352669 360288 359901 

0.9 473148 378621 472833 478906 478906 

0.99 582929 518954 584232 587682 587682 
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Fig 4.2: Delay Comparison for the Proposed Queue-based Methods  

Drop Comparison  

 Table 4.3 shows the total dropping for the proposed queue-length based methods 

and compared methods. Table 4.3 is plotted in Figure 4.3. As demonstrated in Figure 4.3, 

the drop for RED, ERED and the proposed sub-methods2,3, at arrival probability 0.4 and 

below is almost identical. Above this value, ERED and the proposed method-1 has 

achieved the best results. However, the good result of the proposed method-1 was 

maintained up to the value of 0.6.  
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Table 4.3: Drop Comparison for the Proposed Queue-based Methods  

Alpha RED ERED Sub-method-1 Sub-method-2 Sub-method-3 

0.3 0 0 0 75 75 

0.4 0 82 7 2620 2620 

0.5 3181 28653 13444 34573 32387 

0.6 128606 114150 117175 126375 125052 

0.7 237797 202512 234788 244303 240057 

0.8 355110 240017 352669 360288 359901 

0.9 473148 278621 472833 478906 478906 

0.99 582929 318954 584232 587682 587682 

 

 

 

Fig 4.3: Drop Comparison for the Proposed Queue-based Methods  
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Loss Comparison  

   Table 4.4 shows the total loss for the proposed queue-length based methods and 

compared methods. Table 4.4 is plotted in Figure 4.4. As demonstrated in Figure 4.4, 

RED, ERED and the proposed sub-methods all have an equal loss at the value 0.3. At 

value of 0.4, the proposed sub-method-2 and sub-method-3 achieve the best loss and 

maintain it.  

 

Table 4.4: Loss Comparison for the Proposed Queue-based Methods  

Alpha RED ERED Sub-method-1 Sub-method-2 Sub-method-3 

0.3 0 0 0 0 0 

0.4 65 60 60 0 0 

0.5 3122 3188 7989 0 0 

0.6 8381 2592 15068 0 0 

0.7 44842 13484 15206 0 0 

0.8 117555 13087 15916 0 0 

0.9 199617 12828 15026 0 0 

0.99 268144 12103 13487 0 0 

 

 

 

Fig 4.4: Loss Comparison for the Proposed Queue-based Methods  
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Drop and Loss Comparison  

Table 4.5 shows the total drop and loss for the proposed queue-length based 

methods and compared methods. Table 4.5 is plotted in Figure 4.5. As demonstrated in 

Figure 4.5, RED, ERED and the proposed sub-method-1 at the value 0.3 had recorded 

the best drop and loss comparing to the proposed sub-method-2 and the proposed sub-

method-3. Then, the best drop and loss is recorded for the proposed sub-method-2 and 

the proposed sub-method-3. However, the result clearly changed at the value 0.5 

onward for sub-method-2 and maintained the best for the proposed sub-method-3. The 

Proposed sub-method 3 has achieved and maintained the best drop and loss value till the 

end. 

Table 4.5: Drop and Loss Comparison for the Proposed Queue-based Methods  

Alpha RED ERED Sub-method-1 Sub-method-2 Sub-method-3 

0.3 0 0 0 21 22 

0.4 13 2 14 55 55 

0.5 6426 4785 3598 5735 5382 

0.6 19009 16169 18248 17414 17317 

0.7 29967 28584 30043 29083 28576 

0.8 38402 37494 38588 37497 37494 

0.9 45164 44388 45238 44388 44388 

0.99 62142 61822 50222 49482 49482 
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Fig 4.5: Drop and Loss Comparison for the Proposed Queue-based Methods  

 

 Overall, sub-proposed-3 and sub-method-2 have shown to give the best results 

compared with the rest. ERED has also satisfactory results by the means of all the utilized 

measures.  

4.4.2 Delay-based Proposed Methods 

In this sub-section, the three proposed methods, which was developed using delay 

indicator, as discussed in Chapter Three, are evaluated and compared with RED and 

ERED.  

Table 4.6 shows delay for the proposed delay-based methods and compared 

methods. Table 4.6 is plotted in Figure 4.6. As demonstrated in Figure 4.6, at value of 

0.3, RED and ERED and the proposed sub-method-4 and proposed sub-method-6 give 

the same delay value. The proposed sub-method-5 clearly gives a higher delay value. 

Those results are not maintained at the value of 0.6 and above, as the proposed sub-

method-5 provides the best results.  
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Table 4.6: Delay Comparison for the Proposed Delay-based Methods  

Alpha RED ERED Sub-method-4 Sub-method-5 Sub-method-6 

0.3 0 0 0 0 0 

0.4 0 82 60 60 60 

0.5 3181 28653 5334 2384 2290 

0.6 128606 114150 13262 7476 7474 

0.7 237797 202512 14416 10766 11104 

0.8 355110 240017 12447 8845 8822 

0.9 473148 278621 11680 7281 6842 

0.99 582929 318954 10780 6175 6218 
 

 

 

 

 

Fig 4.6: Delay Comparison for the Proposed Delay-based Methods  

 

Drop Comparison  
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Table 4.7: Drop Comparison for the Proposed Delay-based Methods  

Alpha RED ERED Sub-method-4 Sub-method-5 Sub-method-6 

0.3 0 0 0 0 0 

0.4 0 82 0 1 1 

0.5 3181 28653 26536 32544 32498 

0.6 128606 114150 120296 123870 124180 

0.7 237797 202512 235261 235632 234681 

0.8 355110 240017 354204 353406 354385 

0.9 473148 278621 474731 473001 471612 

0.99 582929 318954 583610 582540 582252 
 

 

 

Fig 4.7: Drop Comparison for the Proposed Delay-based Methods  

Loss Comparison  

Table 4.8 shows the loss for the proposed delay-based methods and compared 

methods. Table 4.8 is plotted in Figure 4.8. As demonstrated in Figure 4.8, RED, ERED 

and all the proposed sub-methods provides the same loss value, at the value of 0.3. At the 

value of 0.4, ERED provides the best loss but not with a significant margin, compares 

with the rest. At the value of 0.5, ERED produces the best results. The proposed sub-

method-5 and the proposed sub-method-6 provide and maintain the best loss value 

compare to the rest. 
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Table 4.8: Loss Comparison for the Proposed Delay-based Methods  

Alpha RED ERED Sub-method-4 Sub-method-5 Sub-method-6 

0.3 0 0 0 0 0 
0.4 18 60 60 60 60 
0.5 122 3188 5334 2384 2290 
0.6 2592 8381 13262 7476 7474 
0.7 44842 13484 14416 10766 11104 
0.8 117555 13087 12447 8845 8822 
0.9 199617 12828 11680 7281 6842 
0.99 268144 12103 10780 6175 6218 

 

 

 

Fig 4.8: Loss Comparison for the Proposed Delay-based Methods  
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Drop and Loss Comparison  

Table 4.9 shows the drop and loss aggregation for the proposed delay-based 

methods and compared methods. Table 4.9 is plotted in Figure 4.9. As demonstrated in 

Figure 4.9, there is no margin differences in the results of all the compared and the 

proposed methods. Overall, drop and loss for RED, ERED and the proposed sub-methods 

at the value 0.3 are identical. At the value of 0.4, RED and the proposed sub-methods 

provides a closely similar drop and loss value. At the other values, ERED and sub-

methods-6 give the best result.  

Table 4.9: Drop and Loss Comparison for the Proposed Delay-based Methods  

Alpha RED ERED Sub-method-4 Sub-method-5 Sub-method-6 

0.3 0 0 0 0 0 

0.4 32 13 12 12 12 

0.5 6426 4785 5328 5771 575 

0.6 19009 16169 1859 18229 18272 

0.7 29967 28584 29513 29237 29262 

0.8 38402 37494 38181 37702 37857 

0.9 45164 44388 44976 44429 44449 

0.99 50114 40482 49983 49469 49549 
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Fig 4.9: Drop and Loss Comparison for the Proposed Delay-based Methods  

 

Overall, ERED has shown to give the best results compared with the rest. The 

proposed sub-method-6 and RED have also satisfactory results by the means of all the 

utilized measures.  
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better for ERED. At the value 0.6 and above the proposed sub-method-7 and ERED 

give the best delay value compare with the rest. 

Table 4.10: Delay Comparison for the Proposed Load-based Methods  

Alpha RED ERED Sub-method-7 Sub-method-8 Sub-method-9 

0.3 350773 350773 350773 30773 350773 

0.4 584475 585111 585122 585119 585122 

0.5 1240181 1389808 1780169 1054485 1834025 

0.6 2054205 1821025 1956409 2022601 2394007 

0.7 2090896 1926622 1957856 2332519 2634898 

0.8 2040384 1949447 1948204 2542172 2682462 

0.9 2035898 1902153 1939444 2651028 2730972 

0.99 2007244 1953334 1931982 2690246 2266752 
 

 

 

 

Fig 4.10: Delay Comparison for the Proposed Load-based Methods  
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Drop Comparison  

Table 4.11 shows the drop values for the proposed load-based methods and 

compared methods. Table 4.11 is plotted in Figure 4.11. As demonstrated in Figure 4.11, 

the drop for RED, ERED and the proposed sub-methods are similar in arrival probability 

of 0.3, which will be not maintained at the value 0.4. At the value of 0.6 to the value 0.9, 

ERED provide the best drop value compared with the rest. The proposed sub-method-7 

gives satisfactory results as well.  

 

Table 4.11: Drop Comparison for the Proposed Load-based Methods  

Alpha RED ERED Sub-method-7 Sub-method-8 Sub-method-9 

0.3 0 0 0 0 0 

0.4 0 82 0 0 0 

0.5 3181 28653 14141 22925 18334 

0.6 128606 114150 118853 122145 111513 

0.7 237797 202512 238302 239580 240133 

0.8 355110 240017 358842 360115 359903 

0.9 473148 278621 477153 478910 478907 

0.99 582929 318954 587209 587682 587682 
 

  

 
Fig 4.11: Drop Comparison for the Proposed Load-based Methods  
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Loss Comparison  

Table 4.12 shows the loss values for the proposed load-based methods and 

compared methods. Table 4.12 is plotted in Figure 4.12. As demonstrated in Figure 4.12, 

RED, ERED and the proposed sub-methods, at the value 0.4, give similar loss and that 

will be changed at the value 0.5, as only ERED will provide the best loss among all. 

However from the value 0.7 and above, the proposed sub-method-8 and sub-method-9 

provide the best loss. 

Table 4.12: Loss Comparison for the Proposed Load-based Methods  

Alpha RED ERED Sub-method-7 Sub-method-8 Sub-method-9 

0.3 0 0 0 0 0 

0.4 18 60 60 60 60 

0.5 122 3188 7658 2005 3435 

0.6 2592 8381 10660 1444 9 

0.7 44842 13484 9341 1 0 

0.8 117555 13087 7293 0 0 

0.9 199617 12828 5998 0 0 

0.99 268144 12103 5093 0 0 
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Fig 4.12: Loss Comparison for the Proposed Load-based Methods  

 

Drop and Loss Comparison  

Table 4.13 shows the aggregated loss and drop values for the proposed load-based 

methods and compared methods. Table 4.13 is plotted in Figure 4.13. As demonstrated 

in Figure 4.13, RED, ERED and the proposed sub-methods, at the value 0.4, give similar 

loss and that will be changed at the value 0.5, as only ERED will provide the best loss 

among all. However from the value 0.7 and above, the proposed sub-method-8 and sub-

method-9 provide the best loss. 
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Table 4.13: Drop and Loss Comparison for the Proposed Load-based Methods  

Alpha RED ERED Sub-method-7 Sub-method-8 Sub-method-9 

0.3 0 0 125 0 0 

0.4 325 125 2355 254 125 

0.5 6426 4785 5382 1575 3665 

0.6 19009 16169 17317 18272 15581 

0.7 29967 28584 28576 29262 28583 

0.8 38402 37494 37494 37857 37494 

0.9 45164 44388 44388 44449 44388 

0.99 95014 49482 49482 49549 49482 
 

  

 

Fig 4.13: Drop and Loss Comparison for the Proposed Load-based Methods 

 

Overall, ERED has shown to give the best results compared with the rest. The 

proposed sub-method-9 and sub-method-3  have also satisfactory results by the means of 

all the utilized measures.  
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 4.4.4  Best of the Proposed Methods  

In this sub-section, the best proposed sub-method from each category, queu-length 

based, delay-based and load-based are compared in order to give a final conclusion about 

the proposed work.   

Delay Comparison  

Table 4.14 shows the delay values for the best methods and compared methods. 

Table 4.14 is plotted in Figure 4.14. As noted the sub-method-2 and sub-method-6 

outperformed the compared methods.  

Table 4.14: Delay Comparison for the Best of the Proposed Methods  

Alpha RED ERED Sub-method-2 Sub-method-6 Sub-method-9 

0.3 350773 340773 349861 350773  350773 

0.4 585111 584475 536871 585103 585122 

0.5 1089808 1040181 1085234 1041137 1434025 

0.6 1818025 1554205 1305974 1362951 1394007 

0.7 1626622 1590896 1536583 1584558 1634898 

0.8 1649447 1540384 1660045 1696903 1682462 

0.9 2219553 1735898 1773079 1797766 1730972 

0.99 1953334 1807244 1268166 1294301 1766752 
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Fig 4.14: Delay Comparison for the Best of the Proposed Methods 

 

Drop Comparison  

Table 4.15 shows the drop values for the best methods and compared methods. 

Table 4.15 is plotted in Figure 4.15. As noted, ERED outperformed the other methods.  
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Table 4.15: Drop Comparison for the Best of the Proposed Methods  
 

 
Alpha RED ERED sub-method-1 sub-method-6 sub-method-7 

0.3 0 0 0 0 0 

0.4 0 82 7 1 0 

0.5 3181 28653 13444 32498 14141 

0.6 128606 114150 117175 124180 118853 

0.7 237797 202512 234788 234681 238302 

0.8 355110 240017 352669 354385 358842 

0.9 473148 278621 472833 471612 477153 

0.99 582929 318954 584232 582252 587209 

 

 

 

Fig 4.15: Drop Comparison for the Best of the Proposed Methods 

 

Loss Comparison  

Table 4.16 shows the loss values for the best methods and compared methods. 

Table 4.16 is plotted in Figure 4.16. As noted the sub-method-2 and sub-method-9 

outperformed the compared methods.  
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Table 4.16: Loss Comparison for the Best of the Proposed Methods  

Alpha RED ERED Sub-method-2 Sub-method-6 Sub-method-9 

0.3 0 0 0 0 0 

0.4 18 60 0 60 60 

0.5 122 3188 0 2290 2435 

0.6 2592 1381 0 2474 9 

0.7 14842 13484 0 1104 0 

0.8 13555 13087 0 8822 0 

0.9 13617 12828 0 6842 0 

0.99 18144 12103 0 6218 0 
 

  

 

Fig 4.16: Loss Comparison for the Best of the Proposed Methods 

 

Drop and Loss Comparison  

Table 4.17 shows the aggregated drop and loss values for the best methods and 

compared methods. Table 4.17 is plotted in Figure 4.17. As noted, ERED outperformed 

the other methods, and the best drop and loss is sub-method-7.   
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Table 4.17: Drop and Loss Comparison for the Best of the Proposed Methods  

Alpha RED ERED Sub-method-2 Sub-method-6 Sub-method-9 

0.3 0 0 0 0 0 

0.4 130 200 130 130 130 

0.5 6426 3585 3584 4129 3665 

0.6 19009 15169 18145 17093 15581 

0.7 29967 20584 29678 22843 28583 

0.8 38402 37424 38284 37494 37494 

0.9 45164 44311 44364 44388 44388 

0.99 45014 43482 44991 49482 49482 
 

  

 

 

Fig 4.17: Drop and Loss Comparison for the Best of the Proposed Methods 
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4.5 Summary 

       This chapter evaluates and compares the proposed methods. In summary of 

the findings, the one that provides the best delay is sub-method 6 and best loss is the 

proposed sub-method 9. However, ERED provides the best results according to some 

measurements. Overall, the proposed sub-method 6 is the provider of the best drop. Loss 

and Drop rate as noted are best achieved by the proposed sub-method 7. Subsequently, 

each of them can be used according to the type of the network.  
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CHAPTER FIVE  

Conclusions and Future Works 

 5.1 Conclusion 

This thesis presents an approach for modifying and replacing the existing REDôs 

indicator with new indicators (Queue length , load rate and Delay ) .Every time we do 

such replacement, we obtained a new method, which provided us with nine different 

proposed methods. All these proposed methods were tested and studied in order to find 

out which one of these nine is going to be recognized as the best method. 

We compared the proposed methods with RED and ERED. In summary of the 

findings, the one that provides the best delay and best loss is the proposed sub-method-2. 

However, ERED provides the best results according to some measurements. Overall, the 

proposed sub-method-6 is the provider of the best drop. Loss and Drop rate as noted are 

best achieved by the proposed sub-method-2. Subsequently, each of them can be used 

according to the type of the network. 
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 5.2 Future Work 

In the future , We will experiment some future works : 

1. We can Use different algorithm rather than Modified Random Early Detection (RED) 

algorithm with various indicators and implement, test and evaluates the modified that 

algorithm . 

2. we can Use different indicators with Modified Random Early Detection (RED)  and 

other algorithms. Based on the previous solutions and implement, test and evaluates 

the modified that algorithm. 

3. we can propose algorithm that deal with two or multi-buffers in the router to prevent 

congestion before it happens and reduce congestion. 
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