

Accuracy Evaluation of Brain Tumor Detection using Entropy-based Image Thresholding

دقة النهج القائم على الانتروبيا من خلال العتبة للكشف عن الورم الدماغى

Student by

Amal.Q. Alyahya

Supervisor Dr. Ahmad Adel Abu-Shareha

Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Computer Information Systems

> Department of Computer Information Systems Faculty of Information Technology Middle East University January- 2017

تفويص

أنا أمل قاسم اليحيى أفوض جامعة الشرق الاوسط بتزويد نسخ من رسالتي ورقياً والكترونيا للمكتبات، أو المنظمات، أو الهيئات والمؤسسات المعنية بالابحاث والدراسات العلمية عند طلبها.

الإسم: أمل قاسم علي اليحيى

التاريخ: 2017/1/17

التوقيع: ام

Middle East University

Examination Committee Decision

This is to certify that the thesis entitled " Evaluate the Accuracy of Entropybased Image Thresholding for Brain Tumor Detection" was successfully defended and approved in 17 / 01 / 2017

Examination Committee Members

Dr.Ahmad Abu Shariha(Supervisor)Middle East University (MEU)

Prof. Hamza A . AL-Sewadi (Internal Member)

Middle East University (MEU)

Hamza A. Ali 1/2/2017

Signature

Prof. Wesam AL- mobaideen (External Member)

Professor, computer science Department . The University of Jordan .

1/2/207

قرار لجنة المناقشة

نوقشت هذه الرسالة وعنوانها: " تقييم كفاءة الانتروبيا من خلال العتبه للصورة لتحديد الورم الدماغي"

وأجيزت بتاريخ: ١/١٧ / ٢٠١٧ .

أعضاء لجنة المناقشة:

المرجي	جهه العمل	مشرفا رئيسا	د. احمد ابو شريحه	ر .
التوقيع مسمر	جهة العمل جهة العمل	عضوأ	د. حمزه السوادي د. وسام المبيضين	۲. ۲

ACKNOWLEDGMENT

I knew from the beginning that pursuing graduate study is a difficult and challenging task. Throughout this long journey, I have gained a lot by learning to persevere despite hardship. I am grateful for all of the support and contribution along this journey. I would never have successfully completed this thesis without the assistance of numerous people who I am indebted to. I am forever indebted to my family who supported me during this academic journey and my whole life; they had more faith in me than could ever be justified by logical argument.

I would like to express my sincerest appreciation to my supervisor Dr. Ahmad Adel Abu-Shareha whose thoughtful consideration and guidance has been invaluable. Without his guidance, support and inspiration during the most critical period of my Master degree journey, I would not have been able to accomplish this study. To him, I wish to say 'You are a wonderful Supervisor, Doctor and Researcher!'

Many sincere thanks also go to the Information Technology Faculty members at the Middle East University for their insightful conversations and hard questions, thank you for teaching me how to be a dedicated researcher. Finally, million thanks go to my fellow colleagues for their support and encouragement.

Dedication

```
(وقل رب زدني علمًا) طه الاية (111)
```

I dedicate this thesis to my Family who standing beside me and my Mother God's mercy. I hope to reach my research into the world to benefit from it and be ongoing charity to dear my father

TABLE OF CONTENTS

Content	Page Number	r
Thesis Title		Ι
Authorization		II
Thesis Committee Decision		III
Thesis Committee Decision Arabic		VI
Acknowledgement		V
Dedication		IV
Table of Content		IIV
List of Tables		IX
List of Figures		Х
Abstract		XIII
الملخص باللغة العربية		XV
Chapter One	Introduction	1
1.1.	Tumor Detection	2
1.2.	Entropy-based Image Thresholding	3
1.3.	Problem Statement	5
1.4.	Goal and Objectives	5
1.5.	Motivation	6
1.6.	Research Methodology	7
1.7.	Scope	8
1.8.	Thesis Outlines	9
Chapter Two	BACKGROUND AND LITRATURE REVIEW	10
2.1	Background	10
2.2	Related Work	14
2.3	Brain Tumor Detection	18
2.4	Summary	22
Chapter Three	PROPOSED WORK	23
3.1	Introduction	23
3.2	Proposed framework	23

3.3	Summary	27
Chapter Four	EXPERIMENTAL RESULTS	
4.1	Introduction	28
4.2	Dataset	28
4.3	Software used	28
4.4	Results of Individual Entropies	29
4.5	Results of Entropies Aggregation	31
4.6	Discuss the results	46
4.7	Summery	46
Chapter Five	Conclusion and Future work	47
5.1	Conclusion	47
5.2	Future Work	47

LISTOF TABELS

Table Title Page Number

Table 2.1	List of Entropies used in Image Thresholding	10
Table 2.2	Summary of the Related Works in Entropy-based	17
	Thresholding	
Table 2.3	Summary of the Related Works of Brain Tumor	21
	Detection	
Table 4.1	Average Accuracy of the Entropies	29

LIST OF FIGUERS	
-----------------	--

Figure Titl	re Title Page Number		
Figure 1.1	Example Image Segmentation	2	
Figure 1.2	An example of the brain tumor detection	2	
Figure 1.3	Example Segmented Image (a) An Image of Three Objects and (b) The Result of Image Segmentation	3	
Figure 1.4	Research Methodology	7	
Figure2.1	Image Thresholding	11	
Figure2.2	Brain Tumor Detection Framework Proposed by Prastawa	18	
Figure2.3	Brain Tumor Detection Framework Proposed by Ahmed & Mohammad	19	
Figure2.4	Brain Tumor Detection Framework Proposed Mustaqeem	20	
Figure2.5	Brain Tumor Detection Framework Proposed Roy	20	
Figure3.1	The Proposed Work	23	
Figure3.2	Data Classification	24	
Figure3.3	Scull Removal Example	25	
Figure3.4	Threshold Combination	26	
Figure3.5	Example of Applying AND Operation	26	
Figure 4.1	Entropies Comparison for Tumor Detection	29	
Figure 4.2	Example of Renyi Entropy Output	30	
Figure 4.3	Example of Tsallis Entropy Output	30	
Figure 4.4	Example of Minimum Entropy Output	30	
Figure 4.5	Example of Maximum Entropy Output	30	
Figure 4.6	Example of Kapur Entropy Output	31	
Figure 4.7	Entropies Aggregation Comparison for Tumor Detection	32	
Figure 4.8	Example of Minimum AND Maximum Entropy Output	32	
Figure4.9	Example of Minimum AND Tsallis Entropy Output	33	
Figure 4.10	Example of Minimum AND Renyi Entropy Output	33	
Figure 4.11	Example of Minimum AND Kapur Entropy Output	34	
Figure 4.12	Example of Maximum AND Kapur Entropy Output	34	
Figure 4.13	Example of Maximum AND Tsallis Entropy Output	35	
Figure 4.14	Example of Kapur AND Tsallis Entropy Output	35	
Figure 4.15	Maximum AND-OR Minimum Entropy Scatter	36	
Figure 4.16	Kapur AND-OR Minimum Entropy Scatter	37	

Figure 4.17	Tsallis AND-OR Minimum Entropy Scatter	38
Figure 4.18	Reniyh AND-OR Minimum Entropy Scatter	39
Figure 4.19	Maximum AND-OR Kapur Entropy Scatter	40
Figure 4.20	TsallisAND-OR Maximum Entropy Scatter	41
Figure 4.21	Reniyh AND-OR Maximum Entropy Scatter	42
Figure 4.22	Kapur AND-OR Tsallis Entropy Scatter	43
Figure 4.23	Reniyh AND-OR kapur Entropy Scatter	44
Figure 4.24	Reniyh AND-OR Tsallis Entropy Scatter	45

List of abbreviation

RGB	Red Green Blue	7
MRI	Magnetic Resonance Image	28
SVM	Support Vector Machine	23
PNG	Portable Network Graphics	28

Accuracy Evaluation of Brain Tumor Detection using Entropy-based Image Thresholding

Student Name Amal.Q. Alyahya

Supervisor Dr. Ahmad Adel Abu-Shareha

Abstract

Image thresholding is one of the techniques that are used for image segmentation. Threshold techniques divide the image into two main regions, these are: Foreground and Background. The output of the thresholding process is a binary image with only two regions that are formed by the highest possible contrast that could be found in the image. Entropies are information gain approaches that have been used for image thresholding with various application and image modalities. However, the accuracy of the existing entropies for image thresholding has been studied in general domain (e.g.: natural images)that teams from the regular medical images and images that form in the ordinary image is a reflection of light objects, While medical images. Taken by magnetic resonance imaging, for example, A strong magnetic field is used with radio frequencies and computer to produce automatic selection of the best result. It produces the results with the highest accuracy. detailed images of organs and soft tissues, bones and other internal parts of the body. and were not compared thoroughly. In this work, the accuracy of the entropy-based thresholding approaches and their combination in brain tumor detection framework is investigated. For this purpose, a framework for brain tumor segmentation

is developed. The developed framework is made simple and has the core process of the image thresholding, in order to evaluate the accuracy of the entropies. Five entropies, namely, Reniyh, Maximum, Minimum, Tsallis and Kapur are evaluated. The aggregation of entropies was implemented and evaluated. The results show that the maximum entropy is the best for brain tumor detection. Moreover, it was shown that aggregation of entropies output does not enhance the result, however, it works as

Keywords: Accuracy Evaluation , Entropy, based Image Thresholding

دقة النهج القائم على الانتروبيا من خلال العتبة للكشف عن الورم الدماغي

اعداد أمل قاسم علي اليحيى إشراف الدكتور أحمد أبو شريحة الملخص

ان صورة العتبة هي واحدة من التقنيات التي تستخدم لتجزئة الصورة. تقنيات العتبة هي عبارة عن تقسيم الصورة إلى منطقتين رئيسيتين ،هي: المقدمة والخلفية والناتج من هذه العملية عباره عن صورة نثائية .الانتروبيا هي طريقة لتوزيع المعلومات بشكل متساوي في الصورة التي استخدمت فيها العتبة .ومع ذلك، فقد تمت دراسة دقة الانتروبيا القائمة لعتبة صورة في نطاق عام (مثلا: صور فيها العتبة .ومع ذلك، فقد تمت دراسة دقة الانتروبيا القائمة لعتبة صورة في نطاق عام (مثلا: صور الطبيعية)وذلك لفرق الصور الطبيه عن الصور العاديه والتي تتشكل في ان الصور العادية هي عبارة عن الطبيعية)وذلك لفرق الصور الطبيه عن الصور العاديه والتي تتشكل في ان الصور العادية هي عبارة عن انعكاس الضوء الاجسام بينما الصور العاديه والتي تتشكل في ان الصور العادية هي عبارة عن انعكاس الضوء الاجسام بينما الصور الطبيه على سبيل المثال التي تؤخذ بالرنين المغناطيسي, والأنسجة الرخوة والعظام وغيرها من أجزاء الجسم الداخلية .ولم تتم المقارنة بدقة بين الانتروبيا .

الاطار على الانواع الخمسة الشائعة من الانتروبيا ،من أجل تقييم مدى دقة الانتروبيا. الانواع الخمسة هي رينية ,كابور ، ساليز , الحد الأقصى والحد الأدنى. تم تنفيذ جميع الانتروبيا وتقييمها. وأظهرت النتائج أن نوع الحد الاقصى هو أفضل للكشف عن الورم في المخ. وعلاوة على ذلك، فقد تبين أن دمج اكثر من نوع من الانتروبيا لايطور من النتيجة ، ومع ذلك ،فإنه يقوم بالاختيار التلقائى لأفضل نتيجة..

الكلمات المفتاحية: دقة النهج القائم ، الانتروبيا ، الكشف عن الورم الدماغي.

CHAPTER ONE

INTRODUCTION

Captured images, over decades, have helped in solving many of the problems that were difficult to resolve using the traditional ways in many fields, such as: earth science, astronomy, biology, industry, etc. Images have also contributed to the development of the most important field, the medical, which helps in the survival of the human being .With the ever increase in the value of images; there is a demand for automatic analysis, processing and recognition of these images. The processing demand is emerged by the fact that it might be difficult to re-capture the images as the phenomena cannot be brought back to an earlier time or it is too expensive to capture the same image again and again. The solution to such atomization is the digital image processing.

Digital image processing is a branch of computer science that concerns about the automatic handling of the images in term of saving, improving, analysis and information extraction. Image segmentation is an important phase in digital image processing. Image segmentation divides the image into coherent and homogeneous regions according to specific criteria, such as: region color, region shape, or region boundary. The union of the segmented regions should result in reconfiguring the original image. Image segmentation allows the extraction of valuable information from the image as it provides a high-level description of each region individually, and allows for the linkage of neighboring regions in the image. An example of a segmented image is illustrated in Figure1.1 (Gonzales& Woods, 2002).

Figure 1.1: Segmentation of brain image (Myron et al., 1970)

1.1 Tumor Detection

Tumor is the abnormal growth of cells to form abnormal fraction that has different characteristics from the normal cells. Tumor is classified into a benign tumor, premalignant tumor and malignant. Benign tumor is the one that does not grow suddenly and has no effect on tissue, example of this class of tumor is moles. Pre-malignant is the class that if it is not treated quickly, it becomes a malignant tumor.Malignant tumor grows rapidly and affects the neighboring tissue and, with time, it affects human life and leads to the death. Tumor detection is an important part in the treatment process. Thus, tumor detection techniques have concerned researchers in computer fields, especially, image processing (Wu, & Chang, 2007).

Figure 1.2:Brain tumor detection (a) input image and (b) detected tumorregion (Wu& Chang, 2007)

Automatic tumor detection in early stage is critical task that were addressed by many existing approaches. One of the most important stage in tumor detection is image segmentation, in which tumor is being isolated from other healthy tissues. By isolating the tumor then determines its stage, the treatment becomes easier(Marcel ,2004).

1.2 Entropy-based Image Thresholding

Image thresholding is one of the techniques that are used for image segmentation. Threshold techniques divide the image into two main regions, these are: Foreground and Background. The output of the thresholding process is a binary image with only two regions that formed by the highest possible contrast that could be found in the image (Abu-Shareha et. al., 2008). This type of thresholding, which produce two regions, is called global thresholding. The other type of thresholding is called multi-thresholding. Multi-thresholding, in general, is implemented by segmenting an image into multiple objects and background, as illustrated in Figure 1.2.

What's happening, during the application of the thresholding? First, the value of the threshold is determined. Then, all pixels with values that are greater than the threshold considered in one object and all the pixels with values that are less than the threshold value is considered as a background and vice versa (Prasanna&Arora, 2006).

Figure 1.3: Example segmented image (a) an image of three objects and (b) the result of image segmentation.

The main assumption of global thresholding is that the object and background can be distinguished by searching the gray-level value that divides the image into two distinguished parts. Threshold mathematically easy and required less time compared to the other approaches of image segmentations (El-Sayed et al., 2014).

In order to determine the value of the threshold, several approaches have been developed and used. Entropy is one of these approaches that aim sat finding a threshold value that facilitates maximum information extraction from the image. Entropy has been emerged in Information Theory to extract the amount of information expressed by a piece of data (El-Sayed, 2014).

Entropy is a Greece word, which means "if any system has many point of information's, the entropy is incense until arrive to equal distribution for this information". This technique helps to get a good threshold for the regions in the image. Entropies not only used in computer sciences; it is used in many different fields, such as: physics, biology, astronomy, etc. Entropy in image processing measures the amount of information that can be obtained from the image, either in its original form or after some processing. There are several ways to use entropy, as well as several equations to be used as the entropy basis(Abu-Shareha et al., 2008).

The entropies that are used for thresholding, are many, each of them has different aim, such as: reducing error, increase efficiency and remove noise. Some kinds of entropy are: Renyih, maximum, Tsallis and minimum cross.

In this work, the accuracy of image thresholding, as the most important factor in tumor detection, is evaluated.

1.3 Problem Statement

The accuracy of the existing entropies for image thresholding has been studied in general domain (e.g.: natural images). However, natural image are different from medical images by all means (e.g.: the contrast, colors, etc.). Moreover, medical images differ from each other by the means of organ, modality and equitation parameters such as chosen thresholding value ,priorities value and possibilities value. Subsequently, there is a need to evaluate the existing entropies for medical image segmentation.

This problem can be further divided into the following sub-problems:

- 1. How to develop a tumor detection framework that depends on image thresholding.
- 2. How to use entropy based thresholding in the developed tumor detection framework.
- How to combine more than single entropy to produce a single segmented image by merging and selection.
- 4. How to compare between different entropy-based thresholding in the developed tumor detection framework and different combinations.

1.4 Goal and Objectives

The goal of this work is to evaluate the accuracy of the entropy-based thresholding approaches and their combination in brain tumor detection framework. The objectives of this research are as follows:

- 1. To develop a tumor detection framework that takes a brain image and produces a segmented image with a detected tumor if the tumor is present.
- To use different entropy based thresholding in the developed tumor detection framework.
- To combine multiple thresholding approaches by applying logical operators (AND and OR) on the thresholding output and acquires an automatic selection of their outputs to get the best result.
- 4. To evaluate and compare the entropies results and their different combinations in the developed tumor detection framework.

1.5 Motivation

A human life is the most important thing in the globe; medical researcher tries to make human life comfortable by defeating and curing diseases that may decimate health. This work is motivated by both the crucial need for technology-based applications in the field of tumor detection, and also the significant amount of time and effort to be saved by involving machine learning techniques in this field. More specifically, this work is devoted to brain tumors that are not easy to be understood as it comes in images with different shapes and intensities. Currently, as the detection process is still immature, it is not really used for treatment and diagnosis, it is used for indexing and retrieval of images in teaching of medicine by example.

1.6 Research Methodology

The proposed work is implemented in various phases as given in Figure 1.4, these are:

Figure 1.4: Research Methodology

Building a Segmentation Framework

First, a segmentation framework, in which the entropies will be employed, is constructed. Simply, this framework reads the input image, applies the thresholding and report the results.

The proposed framework deals with medical image; subject matter is gray-level images. The difference between the gray-level images and color images is that each pixel in graylevel images is represented by a single value, usually 0-255, while each pixel in color images represented by more than one value (e.g.: 3 values for RGB images) (Mohamed and Clausi, 2001).

Building a Classification Mechanism

The images, before they undergo to image segmentation for the purpose of tumor detection, theyundergo classification process, which classifies the images based on the

presence and absence of tumor. The classification is implemented based on the images as a whole.

Building an Analysis Mechanism

The outputs of different entropies are collected and analyzed and combined using different logical operators.

Evaluation

The evaluation of the proposed framework is carried on based on a set of syntactic data.

1.7 Scope

The research conducted in this thesis evaluates the accuracy of the entropy-based image thresholding in tumor detection framework, the following summarizes the scope of the conducted research:

- Images used in this research are synthetic images provided by a well-known trusted provider. Obtaining Images of real tumor patients is not easy as this would involve privacy and data protection issues. However, what is applied on synthetic images can be applied on real images as they are identical by all the means.
- The processing framework deals with individuals 2D images. 3D volume processing is outside the scope of this research.
- This thesis focus on the original and mostly-utilized entropies. Other entropies that were developed by extended original one is outside the scope of this thesis.

1.8 Thesis Outlines

In this chapter, **Chapter One**, a brief introduction to the problem that will be investigates in this thesis is given. Moreover, the problem statement, goal and objectives and the proposed framework is given. **Chapter Two**, discusses the related work in the field of entropy-based image thresholding and tumor detection. **Chapter Three**, presents and discusses the proposed work for evaluating the existing entropy-based image thresholding in tumor detection framework. **Chapter Four**, present the experimental results and discusses he findings. **Chapter Five** presents a brief summary of the thesis findings and the future direction.

CHAPTER TWO

BACKGROUND AND LITRATURE REVIEW

This chapter is devoted for clarifying the concept of image thresholding based on entropy and automatic tumor detection. A brief background is given in section 2.1. Section 2.2 reviews the related work on segmentations. Section 2.3presents the related work on brain tumor detection. Section 2.4 gives a summary of this chapter

2.1 Background

As mentioned before, global image thresholding divides the image into two main regions, that are: Foreground and Background. The output of the thresholding process is a binary image with only two regions that represents the highest possible contrast that could be found in the image. This process is illustrated in Figure 2.1. The image is first read as a matrix of numbers, each value in the matrix represents the intensity at each pixel. Then, the threshold is determined. Shown in Figure 2.1, as the value of 1,0. Finally, a binary matrix is generated based on the threshold value and the output image from the binary matrix. While, there are many thresholding techniques presented such as :histogram shape-based methods, global and local, entropies are one of the most utilized technique for it is reliability(Beck&Teboulle, 2009). Image thresholding is simply finding the optimal value to be used to transform an image into a Black/White image based on the optimal thresholding value. Pixels of the original image is to be scanned against the optimal threshold, where the value of the pixel is to be set to 0, Black, if the value of the pixel is less than the thresholding value. Otherwise, the pixel is transformed to 255, White, as shown in figure 2.1.

Figure 2.1: Image Thresholding

Name	Aim	Usability				
Renyi	Reduce error	Works on the distribution of gray level priorities				
	Reduce noise	that are represented by the density scale.				
Maximum	Reduce the time	Generate a strong correlation between data				
	and Increase	partitions.				
	equality					
Tsallis	Reduce the time	Determine the value of the gray-level and mid-				
		level gray in order to choose the optimal data				
		distribution.				
Minimum	Noise resistant	Increases the contrast at the edges in the image.				
Kapur	Reduce error	Expresses quantifiable information that gives the				
	Reduce noise	best state of distribution.				

Table2.1: List of Entropies used in Image Thresholding

Renyih Entropy was established in 1961, by Renyih, with the aims to divide a given set of data into two main parts that maximizes the information gain. Later on, Renyih entropy were used in many fields, including image thresholding. Renyih entropy is based on mathematical equation, as given in Equation 2.1, Equation 2.2 and Equation 2.3.

$$H1(t) = \frac{1}{1-a} \ln \sum_{i=1}^{t} p_i^a$$
(2.1)

$$H2(t) = \frac{1}{1-a} \ln \sum_{j=t}^{n} p_{j}^{a}$$
(2.2)

 $T=MAX (H_1 + H_2)$ (2.3)

where, H1 and H2 are the generated parts using the threshold value, t. a is a small selected value in the range (0-1), pi and pj are the probability of data pieces in H1 and H2 regions, respectively (Abu-Shareha et al., 2008).

Tsallis entropy deals with bilateral level or multi-level data (e.g.: images). Compare to Renyih, this type is much easier to be implemented takes less time and the value that produced by Tsallisis moreflexible. Unlike Renyih, which focus on the within homogeneity, Tsallisfocuses on the among heterogeneity, which form more clear edges in the image, and thus a better segmentation for the image.Tsallisentropy is based on mathematical equation, as given in Equation 2.4, Equation 2.5 and Equation 2.6 (Sahoo, 2006).

$$H1_{n}^{x}(t) = \frac{1}{x-1} 1 - \sum_{i=1}^{t} p_{i}^{x} \text{ where } x \neq 0(2.4)$$
$$H2_{n}^{x}(t) = 1 - \sum_{j=t}^{n} p_{i}^{x} \quad (2.5)$$
$$t=MAX (H_{1} + H_{2})(2.6)$$

where, H1 and H2 are the generated parts using the threshold value, t. t is a selected value, pi and pj are the probability of data pieces in H1 and H2 regions, respectively In the maximum and minimum entropy, the assumption is that, there is a strong correlation between data elements. The aim is to find the best distributionthat maximize the information gain. Maximum entropy is calculated based on mathematical equation, as given in Equation 2.7, Equation 2.8 and Equation 2.9 (Sahoo, 2006).

$$H1(t) = -\sum_{i=1}^{t} P_i \log P_i$$
(2.7)

$$H1(t) = -\sum_{j=t}^{n} P_j \log P_j (2.8)$$

$$t=MAX (H_1 + H_2)$$
(2.9)

Minimum entropy is seen as an extension of the maximum entropy, noted that in the absence of advanced sufficient information, both maximum and minimum produced preliminary equal information (Phillips et al., 2006).

Kapurentropy is very similar to Tsallisentropy. However, Sarkar, (2013) results proved that Kapur Entropy gives more effective results than Tsallis in terms of noise removal, although most researchers confirm that the entropy, in general, is similar, they produced different results based on the underlying application. Kapurentropy is calculated based on mathematical equation, as given in Equation 2.10, Equation 2.11 and Equation 2.12(Bhandari et al., 2014).

$$H1(t) = \frac{1 - (\sum_{i=1}^{t} p_i^{1/a})^a}{1 - a}$$
(2.10)

$$H1(t) = \frac{1 - (\sum_{j=t}^{n} p_j^{1/a})^a}{1 - a}$$
(2.11)

$$T = MAX (H_1 + H_2)$$
(2.12)

2.2 Related Work

There are many approaches and techniques that are used for entropy-based image thresholding. The original entropies, as have been discussed earlier, and enhanced by many techniques proposed in the literature, by modifying the underlying calculations, adding pre-processing or post-processing steps. In the following, a summary of these techniques are given.

Chang et al., (1994) used entropy-based thresholding with hash-based distance metrics in order to enhance the accuracy in images with a very limited gray-level range. The experimental result shows that while the original entropy focused on the homogeneity within region parts, the developed approaches gain both the within region and among region homogeneity and heterogeneity criteria.

Sahoo, (2006) proposed an image thresholding technique using Tsallis entropy. The proposed approach extends the original entropy by proposing a two dimensional histogram that capture the differences in neighborhood pixels. Then, the proposed technique calculates the entropy based on the constructed histogram and using a various, alpha values. The value of alpha, has been proved to change the results significantly. Thus, the value of alpha was chosen automatically by analyzing the output of several alpha's and select the optimal one. Yin, (2007)proposed multi-level image thresholding based on Minimum entropy. In-order to ease the process of calculating the distribution for all possible threshold values, the proposed approach uses an optimization approach. The experimental showed that using swarm optimization increases the efficiency of the minimum entropy.

Abu-Shareha et al., (2008) proposed an image thresholding using Renyih entropy by calculating distribution of information between two regions. The final threshold value is the maximum value for the distribution of information components, which showed high efficiency and more accurate results. The developed technique uses the advantage of texture and image intensityin order to increase the homogeneity within the regions and heterogeneity among regions.

Zhang and Wu, (2011) proposed a multi-level image thresholding based on Tsallis. In-order to ease the process of calculating the distribution for all possible threshold values, the proposed approach uses an optimization approach. The experimental results showed that using Bee colony algorithm increases the efficiency of the Tsallis entropy. It was clear that Bee colony is much faster than Genetic Algorithm in this context. Moreover, compared with other entropies, Tsallis is shown to give superior results.

El-Sayed et al., (2014) proposed a new thresholding approach based on Tsallis entropy. The proposed approach constructs a two-dimensional histogram by the gray value of all pixels compares with the average gray value of all pixels.AmodifiedTsallis entropy was then applied on the generated histogram. The experimental result which was implemented on real and synthetic images showed that the proposed approach outperformed many of the thresholding techniques using the original entropies. El-Sayed, (2015) used Shannon entropies, which is identical to Renyi, to segment the image and highlight the edges. The proposed approach uses the entropy as it is follow the thresholding process with edge detection on the generated thresholded image. The results show that the proposed approach outperforms the well-known edge detection techniques.

Overall, different approaches were proposed for image processing based on using entropies for information extraction. The reviewed papers, above, shows that different entropies have shown to give different results in different domains and applications. Thus, there is no best entropy for all applications. The reviewed Literationis summarized in Table 2.2.

Author(Year)	Entropy	applications	Feature Threshold	Binraization	Reduce Error	Enhance Quality	Reduce Time	Noise Removal
Chang et al., (1994)	Tsallis	Mammography image		\checkmark	\checkmark	\checkmark		
Sahoo (2006)	Tsallis	Segmentation image		\checkmark		\checkmark		
Yin (2007)	Minimum	The temperature distribution				\checkmark	\checkmark	
Abu-Shareha et al., (2008)	Renyi	a novel combination mechanism	\checkmark	\checkmark				
Bhandari et al., (2014)	Kapur	segmentation purposes		\checkmark		V	\checkmark	\checkmark
El-Sayed et al., (2014)	Tsallis	Canny method Sobel method LOG method		V		V	V	
Phillips et al., (2006)	Maximum	wildlife			\checkmark			\checkmark
El-Sayed (2015)	Haverd tasllis	Brain image		\checkmark	\checkmark			

Table 2.2: Summery of the Related Works in Entropy-based Thresholding

The differences of entropy based thresholding results are caused by many factors, as shown on 2.2. For example, the type of used entropy is indeed affecting the results. Also different images give different results, based on level of details and noise in the image. Maximum Entropy, for instance works based on the distribution of information on image borders. So better results are expected of Maximum entropy when distribution of information in the image is better.

2.3 Brain Tumor Detection

Statistics say that the low survival rate of patients with brain tumor is due to the lack of disease understanding. The most effective way for more success in dealing with the disease is the advances in medical image processing. However, brain images are complex and require careful processing stage in-order to reveal the underlying information. Subsequently, several approaches, techniques and approaches for brain tumor detection were proposed (Prastawa et al., 2004).

Prastawa et al., (2004) proposed an approach for brain tumor detection using image thresholding. As illustrated in Figure 2.2, after the threshold is applied, a graph structure of the brain regions in the image is generated. Based on the edge weights which reflects the region connectivity, the best option for tumor treatment is determined. These options are: surgery, radiation therapy and chemotherapy. The choice of therapy, for example depends on the size and type of tumor grade and location, which all revealed in the constructed graph.

Figure 2.2 Brain Tumor Detection Framework Proposed by Prastawa et al., (2004)

Ahmed& Mohammad (2008)Proposed a brain tumor extraction and segmentation from the MR images. First, the image is enhanced. Then, k-means clustering is implemented over a group of different modality images that represent the same brain view, namely. The proposed framework is illustrated in Figure 2.3.

Figure 2.3: Brain Tumor Detection Framework Proposed by Ahmed & Mohammad (2008)

Mustaqeem, (2012) implements an image segmentation for the brain images and tumor identification. The detected tumor is classified into benign tumor, pre-malignant tumor and malignant tumor. This approach as claimed to help in the diagnose is of brain tumor in early stage, which in turn prevent the disease to develop from benign into malignant. The framework, as illustrated in Figure 2.4, is simple in the manner that is depends on two stages, image segmentation and region classification.

Figure 2.4: Brain Tumor Detection Framework Proposed Mustaqeem, (2012)

Roy &Bandyopadhyay (2012)proposedafully an automatic tumor detection and quantifying framework using image thresholding .The framework consists of four main stages, these are: filtering, segmentation, tumor recognition and tumor analysis. The results show that the proposed framework has achieved a full result for the detection and analysis of tumor in MRI images, which is confirmed by a medical expert. The proposed framework is illustrated in Figure 2.5.

Figure 2.5: Brain Tumor Detection Framework Proposed by Roy et al., (2012)
Several other have proposed automatic detection of brain tumor based on using segmentation with other filtering process. Some of these techniques, are: Karayiannis, (2000), Akram&Usman (2011), Arockiaraj et al. (2012), Cobzas et al. (2007), Menzeet al. (2015), Kharrat et al (2009), Bauer et al. (2013) and Xavierarockiaraj et al (2012). A summary of these approaches is given in Table 2.3.

Author (Year)	Techniques	Results
Akram&Usman (2011),	The global threshold in addition to noise removal	MRI is better than CT, improving accuracy
Ahmed & Mohammad (2008)	Alberona principle filtering and K-means clustering	High efficient detection
Bauer et al. (2013)	Fragmentation for the tumor and the surrounding tissues	
Bhandari et al. (2014)	Wigheted aggregation and classification	Effective results in terms of the size of the tumor
Cobzas et al. (2007)	Used of priors, logistical system with the three- dimensional images.	Less noise
Kharrat et al. (2009)	K-means, Morphology – threshold	High quality segmentation
Roy &Bandyopadhyay (2012)	Segmentation and region analysis	Effective results in tumor detection
Prastawa et al., (2004)	Thresholding and Graph- based Decision Making	Good results for tumor detection
Mustaqeem et al., (2012)	Threshold and watershed segmentation	Effective results for the heterogeneous images

 Table 2.3: Summery of the Related Works of Brain Tumor Detection

Menze et al. (2015)	Merge several algorithms into the hierarchy approach and study the	Remove noise and provide primary
	neighborhoods	estimates of the
	relationships	tumor
Xavierarockiaraj et	Threshold in addition to	Optimal and
al (2012)	Canny filter	clear results

2.4 Summary

In summary, brain tumor detection is implemented basically by segmenting the image into regions and recognize the tumor region, if present, in the image. One of the segmentation aapproach is the thresholding, for image thresholding, different entropies were used. The entropies are either run directly on the image histogram or over features extracted from the image.

CHAPTER THREE PROPOSED WORK

3.1 Introduction

This chapter presents the proposed comparison of using entropies and their aggregation in the segmentation of the brain tumor images .Subsequently ,detection of tumor if presented in brain section.

In order to evaluate the accuracy of the entropies in brain tumor. A framework for brain tumor detection is built. Thresholding based on the entropy is implemented as the main step in this framework. An enhancement is proposed by combining entropies that results in an automatic selection of the optimal entropies result.

3.2. Proposed Framework

The proposed framework is made as simple as possible in-order to give a major rule for the thresholding process, subject matter of this research. The proposed work consists of several processing stages, as illustrated in Figure 3.1.

Figure 3.1: The Proposed Work

3.2 Scull Removal

The Scull removal is the process for excluding the outer structure of the brain, which helps in concentration on the interior region of the brain. Technically, the scull is identified and removed as the complete circle with distinguish color in the brain images. To get rid of this structure the white matter, gray and cerebrospinal fluid are isolated in the brain images using the level set approaches.

MATLAB function called, Remove Scull, is used in this step. This function uses few processing steps to remove the scull as illustrated . Example of the input/output of the scull removal is given in Figure 3.2.

Figure 3.2: Scull Removal Example

3.3 Image Thresholding

The main component of the proposed work is the image thresholding. Thresholding takes as input the image of the brain and produce a thresholded, or so called segmented image.

Five types of entropies, which are discussed in Chapter Two, are used. The differences between the entropy was the calculations, which are implemented according to the equation discussed earlier.

3.4 Threshold Aggregation

The results of several thresholding, using different entropies, are combined. This work propose a combination process based logical operators. Figure 3.3, illustrates an example of such combination.

Figure 3.3: Threshold Combination

The logic operators that are used, AND and OR, which are implemented as follows: The AND takes two inputs, which represents a corresponding pixel in the resulted segmented images from two entropies and produce one output .

Examples of applying AND and OR on input segmented images are given in Figure 3.4 and Figure 3.5, respectively.

Figure 3.4: Example of Applying AND Operation

Figure 3.5: Example of Applying OR Operation

3.3Summary

In summary, brain tumor detection is implemented in the proposed work by, extracting features from the image, segmenting the image, using several thresholding and combined threshold process. The idea of entropy reflects the separation of objects from the background, which contributes significantly to the separation of tumor part from the rest of the brain discussed.

CHAPTER FOUR

EXPERIMENTAL RESULTS

4.1 Introduction

This chapter presents the experiments conducted for entropies comparison and aggregation on brain images. The results are presented and discussed accordingly in this chapter.

In order to experiment the proposed frame work a set of brain images are collected. The underlying images are tested using implemented framework with tools and programming as will be discussed accordingly.

4.2 Dataset

The dataset that is used in the thesis are synthetic images mimics the natural brain images captured using the magnetic resonance images (MRI). Besides the images, the ground truth segmentation is provided for these images (Prastawa et al., 2009). 300 images were used, 150 of these images are with tumor and 150 without. The resolutions of these images are 189x 188 and sizes ranging from 17 KB to 30 KB. The type of images is PNG.

4.3 Software used

The software used in the proposed application is MATLAB program .A pilot program of mathematic programming and engineering calculations (Program version is R-2016).

4.4 Results of Individual Entropies

In this thesis, 5 entropy-based thresholding techniques have been applied on 150 different images of brain tumor. Figure 4.1 illustrates the accuracy rate of all the used techniques across all the images. It can be clearly seen that minimum cross entropy has the lowest average accuracy, where at its best value the accuracy never reached 80%, while all other methods have better accuracy rate.

The number of image

Figure 4.1: Entropies Comparison for Tumor Detection

The average accuracy for these entropies are given in Table 4.1. Example results of applying the proposed framework with Renyih , Tsallis, maximum, minimum and Kapur entropies, are illustrated in Figure 4.2, Figure 4.3, Figure 4.4, Figure 4.5 and Figure 4.6, respectively.

'Renyie'	'Tsallis'	'Kapur'	'Maximim'	'MinCross'
86.35738753	87.71731117	88.24548896	90.36235245	54.2981202

Table 4.1: Average Accuracy of the Entropies

Figure 4.2: Example of Renyi Entropy Output

Figure 4.3: Example of Tsallis Entropy Output

Figure 4.4: Example of Minimum Entropy Output

Figure 4.5: Example of Maximum Entropy Output

Figure 4.6: Example of Kapur Entropy Output

4.5 Results of Entropies Aggregation

The goal of applying AND and OR logical functions on the threshold images to get the optimal threshold value which will help in detecting the tumor in better way. The use of these functions showed different output rather than the original goal, as it does not enhance the results, however it always produces identical result with the entropy that have the best accuracy. On the other hand, OR-gate produced unstable results .The gate OR always choose worst one .it works unlike AND gate and including the AND choose the best offer and choose the worst between the two sets of entropy, according to the truth table and apply it to the pixels in each image applied by the entropy values.

The results of the aggregations are given in Figure 4.7. Example of the produced aggregation results are given in Figures 4.8 to 4.17

Figure 4.7: Entropies Aggregation Comparison for Tumor Detection

The entropies comparison for tumor detection is given in Figure 4.7. Figure 4.7 (A) illustrates a brain with tumor as captured by Magnetic Resonance. Figure 4.7 (B) is the image after applying minimum cross entropy thresholding. Figure 4.7 (C) gives the result of applying maximum entropy thresholding and Figure 4.7 (D) is the result of merging two entropies by applying the logic gates over the results of these entropies.

Figure 4.8: Example of Minimum AND Maximum Entropy Output

Figure 4.9: Example of Minimum AND Tsallis Entropy Output

Figure 4.10: Example of Minimum AND Renyih Entropy Output

Figure 4.12: Example of Maximum AND Kapur Entropy Output

Figure 4.13: Example of Maximum AND Tsallis Entropy Output

Figure 4.14: Example of Kapur AND Tsallis Entropy Output

Figure 4.15: Maximum(AND – OR) Minimum Entropy Scatter

Figure 4.16: Kapur (AND –OR) Minimum Entropy Scatter

Figure 4.17: Tsallis(AND –OR) Minimum Entropy Scatter

Figure 4.18: Reniyh(AND –OR) Minimum Entropy Scatter

Figure 4.19: Maximum(AND –OR) Kapur Entropy Scatter

Figure 4.20: Tsallis(AND –OR) Maximum Entropy Scatter

Figure 4.21: Reniyh(AND –OR) Maximum Entropy Scatter

Figure 4.22Kapur(AND –OR) Tsallis Entropy Scatter

Figure 4.24: Reniyh(AND –OR) TsallisEntropy Scatter

4.6 Discuss the results

After the apply the proposed work on the dataset of approximately 300 different picture of brain tumors 150 image of brain tumor and 150 for normal brain, the results obtained were as follows: The aggregation of the five common types of entropies, Maximum, Minimum, kapur, Tasills and Renyih, helps to get a good value for the threshold, which means a good segmentation output that accurately isolates the brain tumor. The use of the aggregation process based on the logical operators, gives the best results among the aggregated entropies. Aggregation using OR-AND did not improve the result of entropies, however, it works as an automatic selection for the best entropy, as for the AND gate. In general the AND gate give better results for Entropy as shown in Figures 4.15 to Figure 4.23. On the other hand, the OR-gate results for the entropy was give less efficiency.

4.7 Summary

In summary, Maximum entropy was shown to give the best results in brain tumor segmentation. The use of aggregation showed different output rather than the original goal, as it does not enhance the results, however it always produces identical result with the entropy that have the best accuracy. On the other hand, OR-gate produced unstable results.

CHAPTER FIVE

CONCLUSION AND FUTURE WORKS

5.1 Summary

In this thesis, evaluation of the entropies accuracy and their combination in brain tumor detection has been implemented. The findings of this research are as follows:

- 1. Developed a tumor detection framework that takes as input brain image and produces a segmented image with a detected tumor if tumor is present.
- Used different entropy based thresholding in the developed tumor detection framework.
- 3. Compared between different entropies based thresholding and it was found that maximum entropy achieved the best result in the tumor detection framework.
- 4. The aggregation of the entropies using AND operations has play the roles of automatic selection of the best threshold.

5.3Conclusion

This thesis has discussed how to detect brain tumor using image processing techniques. More specifically, Entropy-based image thresholding techniques have been used in this thesis to find the optimal thresholding value, in order to be used to segment brain mages into background and objects. The use of these techniques would indeed improve the quality and accuracy of tumor detection on brain images. Applying many different entropy-based thresholding approaches has resulted in different results, and hence, has made the process of choosing the best thresholding technique even easier.

On the other side, no significant results has been gained by merging entropies using logical gates, AND/OR, for the purpose of improving the accuracy of the tumour detection. However, the merging process has been considered as the automatic selection technique of the best entropy-based thresholding method, where Maximum Entropy gave the best accuracy average rate

5.4 Future Work

The future directions include the following:

- 1. Evaluates more thresholding techniques in the developed framework.
- 2. Evaluate the thresholding within the framework with different image modalities and corresponding to different organs.
- 3. Apply this evaluation technique on real brain images rather than synthetic ones.
- 4. Experiment on the degree of maligning if possible .
- 5. Comparison of the five types and choose the best among them and apply it

References

Abutaleb, A. S. (1989), "Automatic thresholding of gray-level pictures using twodimensional entropy". Computer vision, graphics, and image processing, 47(1), 22-32.

Abu-Shareha, A. A., Rajeswari, M., &Ramachandram, D. (2008, August), Textured Renyi Entropy for Image Thresholding. In Computer Graphics, Imaging and Visualisation, (pp. 185-192).IEEE.

Ahmed, M. M., & Mohamad, D. B. (2008). Segmentation of brain MR images for tumor extraction by combining kmeans clustering and perona-malik anisotropic diffusion model. International Journal of Image Processing, 2(1), 27-34.

Ali, Mohamed, and David Clausi (2001), "Using the Canny edge detector for feature extraction and enhancement of remote sensing images", Geoscience and Remote Sensing Symposium, IEEE, Vol. 5.IEEE.

Akram, M. U., &Usman, A. (2011, July). Computer aided system for brain tumor detection and segmentation. In Computer Networks and Information Technology (ICCNIT), 2011 International Conference on (pp. 299-302). IEEE.

Andrews, H. C., & Hunt, B. R. (1977), "Digital image restoration", Prentice-Hall Signal Processing Series, Englewood Cliffs: Prentice-Hall, 1(1).

Arockiaraj, J., Easwvaran, S., Vanaraja, P., Singh, A., Othman, R. Y., &Bhassu, S. (2012). First report on interferon related developmental regulator-1 from Macrobrachiumrosenbergii: Bioinformatic analysis and gene expression. Fish & shellfish immunology, 32(5), 929-933.

Bhandari, A. K., Singh, V. K., Kumar, A., & Singh, G. K. (2014), "Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy", Expert Systems with Applications, 41(7), 3538-3560.

Bauer, S., Wiest, R., Nolte, L. P., & Reyes, M. (2013). A survey of MRI-based medical image analysis for brain tumor studies. Physics in medicine and biology, 58(13), R97.

Beck, A., &Teboulle, M. (2009, April).A fast iterative shrinkage-thresholding algorithm with application to wavelet-based image deblurring.In 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 693-696). IEEE.

Chang, C. I., Chen, K., Wang, J., &Althouse, M. L. (1994), "A relative entropy-based approach to image thresholding". Pattern recognition, 27(9), 1275-1289.

Cobzas, D., Birkbeck, N., Schmidt, M., Jagersand, M., & Murtha, A. (2007, October). 3D variational brain tumor segmentation using a high dimensional feature set. In 2007 IEEE 11th International Conference on Computer Vision(pp. 1-8). IEEE

Corso, J. J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., &Yuille, A. (2008).Efficient multilevel brain tumor segmentation with integrated bayesian model classification. IEEE transactions on medical imaging, 27(5), 629-640.

El-Sayed, Mohamed A., S. Abdel-Khalek, and Eman Abdel-Aziz, (2014), "Study of efficient technique based on 2D tsallis entropy for image thresholding." arXiv preprint arXiv:1401.5098.

El-Sayed, Mohamed A., (2015) "A new algorithm based entropic threshold for edge detection in images." arXiv preprint arXiv.

Gonzales, R. C., & Woods, R. E. (2002).Colour image processing. Digital Image Processing, 2, 282-348.

Karayiannis, N. B. (2000). Soft learning vector quantization and clustering algorithms based on ordered weighted aggregation operators. IEEE Transactions on Neural Networks, 11(5), 1093-1105.

Kharrat, A., Benamrane, N., Messaoud, M. B., &Abid, M. (2009, November).Detection of brain tumor in medical images.In Signals, Circuits and Systems (SCS), 2009 3rd International Conference on (pp. 1-6).IEEE.

Sarkar, S., & Das, S. (2013). Multilevel image thresholding based on 2D histogram and maximum Tsallis entropy—a differential evolution approach. IEEE Transactions on Image Processing, 22(12), 4788-4797

Sahoo, P. K., & Arora, G. (2006).Image thresholding using two-dimensional Tsallis– Havrda–Charvát entropy. Pattern Recognition Letters, 27(6), 520-528.

Li, C. H., & Lee, C. K. (1993), "Minimum cross entropy thresholding". Pattern Recognition, 26(4), 617-625.

Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., &Lanczi, L. (2015). The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Transactions on Medical Imaging, 34(10), 1993-2024

Mustaqeem, A., Javed, A., & Fatima, T. (2012). An efficient brain tumor detection algorithm using watershed &thresholding based segmentation, International Journal of Image, Graphics and Signal Processing, 4(10), 34.

Phillips, S. J., Anderson, R. P., &Schapire, R. E. (2006), "Maximum entropy modeling of species geographic distributions", Ecological modelling, 190(3), 231-259.

Pitas, I. (2000). Digital image processing algorithms and applications. John Wiley & Sons.

Prastawa, M., Bullitt, E., Ho, S., &Gerig, G. (2004). A brain tumor segmentation framework based on outlier detection. Medical image analysis, 8(3), 275-283.

Roy, S., &Bandyopadhyay, S. K. (2012). Detection and Quantification of Brain Tumor from MRI of Brain and it's Symmetric Analysis. International Journal of Information and Communication Technology Research, 2(6).

Sparavigna, Amelia Carolina. "Gray-level image transitions driven by Tsallis entropic index." arXiv preprint arXiv:1502.04204 (2015).

Sahoo, P. K., & Arora, G. (2006)Imagethresholding using two-dimensional Tsallis– Havrda–Charvát entropy. Pattern Recognition Letters, 27(6), 520-528.

Twogood, R. E., and F. G. Sommer."Digital image processing." IEEE Transactions on Nuclear Science 3 (1983): 1076-1086.

Wu, M. N., Lin, C. C., & Chang, C. C. (2007, November).Brain tumor detection using color-based k-means clustering segmentation.In Intelligent Information Hiding and Multimedia Signal Processing, 2007.IIHMSP 2007.Third International Conference on (Vol. 2, pp. 245-250).IEEE.

Yin, P. Y. (2007), "Multilevel minimum cross entropy threshold selection based on particle swarm optimization", Applied mathematics and computation, 184(2), 503-513.

Xavierarockiaraj, S., Nithya, K., & Devi, R. M. (2012). Brain Tumor Detection Using Modified Histogram Thresholding-Quadrant Approach. Journal of Computer Applications (JCA), 5(1), 21-25.

Zhang, Yudong, and Lenan Wu. (2011), "Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach", Entropy 13.4, 841-859.

http://www.nitrc.org/projects/tumorsim/

APPENDIX A

ACCURACY TABLES

'Image '	'Entropy1 Accuracy'	'Entropy 2 Accurac y'	'Entropy1&2 Accuracy'	'Entropy1 Or 2 Accuracy'	'time'
''	MinimumC rossEntrop y'	'Maximu mEntrop y'	'MinimumCrossEntr opy&MaximumEntr opy'	'MinimumCrossEntr opyOrMaximumEntr opy'	'time'
'Image 1'	69.921335 5	93.8479 5532	93.84795532	69.9213355	0.1559 48437
'Image 2'	70.026421 67	93.5837 3867	93.58373867	70.02642167	0.1280 05074
'Image 3'	74.677235 33	94.3523 6894	94.35236894	74.67723533	0.1106 35892
'Image 4'	64.841169 76	94.0671 3505	94.06713505	64.84116976	0.1144 9419
'Image 5'	60.691767 25	96.4150 6035	96.41506035	60.69176725	0.1427 26647
'Image 6'	67.099021 2	96.6972 9178	96.69729178	67.0990212	0.1630 34242
'Image 7'	57.680297 84	95.0939 7706	95.09397706	57.68029784	0.1637 65103
'Image 8'	52.071698 79	93.4396 2049	93.43962049	52.07169879	0.1305 90672
'Image 9'	48.174503 09	94.9108 2688	94.91082688	48.17450309	0.1180 95895
'Image 10'	45.838587 64	92.5779 1389	92.57791389	45.83858764	0.1178 44434
'Image 11'	42.839128 09	87.9751 3961	87.97513961	42.83912809	0.1211 00594
'Image 12'	46.394043 12	89.9807 8424	89.98078424	46.39404312	0.1126 27478
'Image 13'	48.111451 39	91.2057 8875	91.20578875	48.11145139	0.1154 23055
'Image 14'	38.104245 48	86.2036 8702	86.20368702	38.10424548	0.1179 40228
'Image 15'	52.242839 13	90.4461 6586	90.44616586	52.24283913	0.1271 72858
'Image 16'	53.702035 67	97.3938 6297	97.39386297	53.70203567	0.1170 19916
'Image 17'	36.446886 45	95.8265 7779	95.82657779	36.44688645	0.1209 68877
'Image 18'	59.445745 51	93.3345 3432	93.33453432	59.44574551	0.1240 77496
'Image 19'	46.640245	95.5623 6114	95.56236114	46.640245	0.1003 07184
'Image 20'	44.460457 58	86.2517 2642	86.25172642	44.46045758	0.2046 05239

'Image	41.926379	93.5296	03 52060435	41 02637063	0.1184
21'	63	9435	90.02909400	41.92037903	30748
'Image	43.499669	90.2389	00 22800508	42 40066072	0.1538
22'	73	9598	90.23099390	43.49900973	31548
'Image	56.113012	94.0911	04 00115475	56 11201267	0.1693
23'	67	5475	94.09110475	50.11501207	2632
'Image	76.019335	35.9304	25 02046209	76.01022596	0.1669
24	86	6298	30.93040290	70.01933300	81919
'Image	40.344082	93.7698	02 76000121	40.24409245	0.2102
25	15	9131	93.70909131	40.34406215	8791
'Image	45.613402	94.2022	04 20224594	45 61240200	0.1744
26	99	4584	94.20224304	45.01540299	70575
'Image	48.952140	94.2713	04 07120247	49.05214076	0.2444
27'	76	0247	94.27150247	40.95214070	3055
'Image	46.574190	95.1059	05 10509601	46 57410094	0.1194
28	84	8691	95.10596691	40.37419004	06228
'Image	33.426409	94.3433	04 24226156	22 42640066	0.1637
29	66	6156	94.34330130	33.42040900	91618
'Image	77.805800	50.4984	50 4004007	77 90590076	0.1357
30	76	087	00.4964067	11.00000070	67428
'Image	48.750975	83.2402	02 24025704	40 7500750	0.1518
31	8	5701	83.24025701	48.7509758	70753
'Image	41.683180	93.6257	02 62577242	44 69249024	0.1084
32	21	7313	93.02377313	41.00310021	36038
'Image	38.941932	95.3551	05 25510126	20 04402220	0.1288
33'	38	9126	95.55519126	30.94193230	81765
'Image	65.979102	85.2609	95 26001205	65.07010296	0.1543
34'	86	1395	05.20091595	05.97910200	7082
'Image	49.873896	89.3772	00 27720020	10 9729066	0.1417
35'	6	8938	09.31120930	49.07 30900	63142
'Image	38.101243	93.1844	02 10//1122	29 1012/202	0.1305
36'	02	1122	95.10441122	30.10124302	29517
'Image	32.069296	88.9659	88 06505208	32 06020682	0.1370
37'	82	5208	00.90393200	52.00929002	97433
'Image	73.899597	93.6918	93 6918273	73 89959767	0.1905
38'	67	273	00.0010210	10.00000101	337
'Image	53.215636	85.7803	85 78033988	53 21563682	0.1848
39'	82	3988		00.21000002	37344
'Image	54.188434	95.7515	95,75151624	54,18843452	0.1514
40'	52	1624	00.101021	01.10010102	63626
'Image	62.661382	93.6377	93,63778298	62,66138233	0.2155
41'	33	8298	00.00110200	02.00100200	73718
'Image	61.967813	90.8094	90,80946376	61,96781361	0.1620
42'	61	6376		01100101001	16852
'Image	61.967813	90.8094	90.80946376	61.96781361	0.1620
43'	61	6376			78007
Image	65.952080	88.9959	88,9959767	65,95208071	0.1920
44'	71	767			83519
'Image	68.336035	93.8839	93.88398487	68.33603555	0.1558
45'	55	8487			61195
Image	69.020596	95.7485	95,74851378	69.02059689	0.1954
46'	89	1378		00.02000000	99195

'Image 47'	75.719089 65	93.7638 8639	93.76388639	75.71908965	0.2136 63813
'===== ===== ='	'====== ==='	'======'	'====='	'======='	'===== ===== ='
'Image '	'Entropy1 Accuracy'	'Entropy 2 Accurac y'	'Entropy1&2 Accuracy'	'Entropy1 Or 2 Accuracy'	'time'
''	'Minimum CrossEntr opy'	'KapurE ntropy'	'MinimumCrossEntr opy&KapurEntropy'	'MinimumCrossEntr opyOrKapurEntropy '	'time'
'Image 1'	69.921335 5	89.6084 7895	89.60847895	69.9213355	0.9677 62559
'Image 2'	70.026421 67	83.5164 8352	83.51648352	70.02642167	0.9236 14517
'Image 3'	74.677235 33	93.6467 9037	93.64679037	74.67723533	0.9217 2343
'Image 4'	64.841169 76	91.1937 789	91.1937789	64.84116976	0.9501 55174
'Image 5'	60.691767 25	69.2728 037	69.2728037	60.69176725	0.9496 71925
'Image 6'	67.099021 2	87.7709 722	87.7709722	67.0990212	0.9671 98056
'Image 7'	57.680297 84	91.3378 9708	91.33789708	57.68029784	0.9602 54232
'Image 8'	52.071698 79	94.2112 5323	94.21125323	52.07169879	0.9331 95258
'Image 9'	48.174503 09	94.8777 998	94.8777998	48.17450309	0.9401 36088
'Image 10'	45.838587 64	92.7940 9115	92.79409115	45.83858764	0.9111 92441
'Image 11'	42.839128 09	89.7856 2421	89.78562421	42.83912809	0.9455 13842
'Image 12'	46.394043 12	91.9173 7225	91.91737225	46.39404312	0.9275 82722
'Image 13'	48.111451 39	82.6457 6953	82.64576953	48.11145139	0.9593 56158
'Image 14'	38.104245 48	89.4673 6324	89.46736324	38.10424548	0.9473 72427
'Image 15'	52.242839 13	91.5480 6942	91.54806942	52.24283913	0.9434 90181
'Image 16'	53.702035 67	97.1476 6108	97.14766108	53.70203567	0.9190 92928
'Image 17'	36.446886 45	95.8986 3688	95.89863688	36.44688645	0.9316 09516
'Image 18'	59.445745 51	64.8081 4268	64.80814268	59.44574551	1.1063 85863
'Image 19'	46.640245	95.5683 6606	95.56836606	46.640245	0.9525 12405
'Image 20'	44.460457 58	84.3151 3841	84.31513841	44.46045758	1.0151 8344
'Image	41.926379	93.6347	93 63478052	41 92637963	0.9398
---------------	-----------------	-----------------	-------------	-------------	-----------------
21'	63	8052	33.00470032	41.52057505	83772
'Image 22'	43.499669	90.4611 7817	90.46117817	43.49966973	0.9498
'Image 23'	56.113012 67	93.8839 8487	93.88398487	56.11301267	0.9679 53721
'Image 24'	76.019335 86	35.7503 1526	35.75031526	76.01933586	0.9944 7214
'Image 25'	40.344082 15	90.4191 437	90.4191437	40.34408215	1.0352 04079
'Image 26'	45.613402 99	91.2748 4537	91.27484537	45.61340299	0.9821 76649
'Image 27'	48.952140 76	89.4523 5093	89.45235093	48.95214076	1.0600 71324
'Image 28'	46.574190 84	86.6420 4648	86.64204648	46.57419084	0.9234 37896
'Image 29'	33.426409 66	94.4244 2803	94.42442803	33.42640966	0.9574 96289
'Image 30'	77.805800 76	67.5944 2743	67.59442743	77.80580076	0.9546 29722
'Image 31'	48.750975 8	82.7328 4093	82.73284093	48.7509758	0.9726 62195
'Image 32'	41.683180 21	93.7909 0855	93.79090855	41.68318021	0.9198 90076
'Image 33'	38.941932 38	95.9226 5658	95.92265658	38.94193238	0.9427 93532
'Image 34'	65.979102 86	86.8882 4836	86.88824836	65.97910286	0.9671 6812
'Image 35'	49.873896 6	77.8478 3522	77.84783522	49.8738966	0.9416 00377
'Image 36'	38.101243 02	92.9382 0933	92.93820933	38.10124302	0.9290 15364
'Image 37'	32.069296 82	89.0860 5056	89.08605056	32.06929682	0.9275 62195
'Image 38'	73.899597 67	94.5505 3144	94.55053144	73.89959767	1.0131 65767
'Image 39'	53.215636 82	85.6302 1678	85.63021678	53.21563682	1.0162 61984
'Image 40'	54.188434 52	95.7935 5071	95.79355071	54.18843452	0.9879 7436
'Image 41'	62.661382 33	94.2142 5569	94.21425569	62.66138233	0.9820 53485
'Image 42'	61.967813 61	90.2660 1813	90.26601813	61.96781361	0.9867 08075
'Image 43'	61.967813 61	90.2660 1813	90.26601813	61.96781361	0.9776 80719
'Image 44'	65.952080 71	88.7377 6497	88.73776497	65.95208071	1.0180 71818
'Image 45'	68.336035 55	93.9890 7104	93.98907104	68.33603555	0.9728 2
'Image 46'	69.020596 89	95.5893 8329	95.58938329	69.02059689	1.0373 66727

'Image 47'	75.719089 65	94.4244 2803	94.42442803	75.71908965	1.0456 73485
'===== ===== ='	'====== ==='	'======'	'======='	'========'	'===== ===== ='
'Image '	'Entropy1 Accuracy'	'Entropy 2 Accurac y'	'Entropy1&2 Accuracy'	'Entropy1 Or 2 Accuracy'	'time'
''	'Minimum CrossEntr opy'	'Tsallis'	'MinimumCrossEntr opy&Tsallis'	'MinimumCrossEntr opyOrTsallis'	'time'
'Image 1'	69.921335 5	91.5090 3741	91.50903741	69.9213355	0.2057 61616
'Image 2'	70.026421 67	91.2898 5768	91.28985768	70.02642167	0.2011 61766
'Image 3'	74.677235 33	94.3523 6894	94.35236894	74.67723533	0.1752 85684
'Image 4'	64.841169 76	93.9560 4396	93.95604396	64.84116976	0.1852 67564
'Image 5'	60.691767 25	60.6917 6725	60.69176725	60.69176725	0.2071 63467
'Image 6'	67.099021 2	85.3629 9766	85.36299766	67.0990212	0.2427 18222
'Image 7'	57.680297 84	82.9069 8373	82.90698373	57.68029784	0.2288 41266
'Image 8'	52.071698 79	91.5931 0635	91.59310635	52.07169879	0.1927 14309
'Image 9'	48.174503 09	92.3497 2678	92.34972678	48.17450309	0.1798 54315
'Image 10'	45.838587 64	92.6799 976	92.6799976	45.83858764	0.1906 5216
'Image 11'	42.839128 09	87.4647 2107	87.46472107	42.83912809	0.1871 90726
'Image 12'	46.394043 12	90.2510 0582	90.25100582	46.39404312	0.2036 9348
'Image 13'	48.111451 39	91.2057 8875	91.20578875	48.11145139	0.1971 7731
'Image 14'	38.104245 48	85.8974 359	85.8974359	38.10424548	0.1875 491
'Image 15'	52.242839 13	91.2328 109	91.2328109	52.24283913	0.1889 35128
'Image 16'	53.702035 67	97.9673 3321	97.96733321	53.70203567	0.1813 65218
'Image 17'	36.446886 45	95.8535 9995	95.85359995	36.44688645	0.1913 29565
'Image 18'	59.445745 51	93.5086 7712	93.50867712	59.44574551	0.2160 06504
'Image 19'	46.640245	73.3291 2989	73.32912989	46.640245	0.1704 70723
'Image 20'	44.460457 58	86.2337 1164	86.23371164	44.46045758	0.2689 1419

'Image	41.926379	94.1001	94.10016213	41.92637963	0.1755
21'	63	6213			88035
'Image 22'	43.499669 73	90.1279 0488	90.12790488	43.49966973	0.2370 67625
'Image 23'	56.113012 67	94.6496 1268	94.64961268	56.11301267	0.2386 02905
'Image 24'	76.019335 86	60.6167 057	60.6167057	76.01933586	0.2324 09187
'Image 25'	40.344082 15	94.0010 8089	94.00108089	40.34408215	0.2875 11167
'Image 26'	45.613402 99	88.6266 7387	88.62667387	45.61340299	0.2389 45883
'Image 27'	48.952140 76	71.5186 4529	71.51864529	48.95214076	0.3091 10278
'Image 28'	46.574190 84	91.3649 1923	91.36491923	46.57419084	0.1930 09391
'Image 29'	33.426409 66	93.5356 9927	93.53569927	33.42640966	0.2219 56031
'Image 30'	77.805800 76	49.6096 7994	49.60967994	77.80580076	0.2213 23103
'Image 31'	48.750975 8	83.8677 7157	83.86777157	48.7509758	0.2365 90791
'Image 32'	41.683180 21	94.0461 1782	94.04611782	41.68318021	0.1960 58139
'Image 33'	38.941932 38	93.6768 1499	93.67681499	38.94193238	0.1993 31405
'Image 34'	65.979102 86	86.8882 4836	86.88824836	65.97910286	0.2432 63909
'Image 35'	49.873896 6	89.7015 5528	89.70155528	49.8738966	0.2244 44552
'Image 36'	38.101243 02	88.8158 2898	88.81582898	38.10124302	0.1923 81167
'Image 37'	32.069296 82	88.2393 5627	88.23935627	32.06929682	0.1973 67616
'Image 38'	73.899597 67	91.1517 4443	91.15174443	73.89959767	0.2626 3879
'Image 39'	53.215636 82	85.4410 6167	85.44106167	53.21563682	0.2726 79259
'Image 40'	54.188434 52	74.9414 5199	74.94145199	54.18843452	0.2271 95225
'Image 41'	62.661382 33	93.8569 6271	93.85696271	62.66138233	0.2736 90661
'Image 42'	61.967813 61	90.3741 0677	90.37410677	61.96781361	0.2396 82304
'Image 43'	61.967813 61	90.3741 0677	90.37410677	61.96781361	0.2490 42375
'Image 44'	65.952080 71	89.0470 1856	89.04701856	65.95208071	0.2770 16102
'Image 45'	68.336035 55	93.7158 4699	93.71584699	68.33603555	0.2229 16115
'Image 46'	69.020596 89	96.2229 0278	96.22290278	69.02059689	0.2838 29918

'Image 47'	75.719089 65	94.5655 4375	94.56554375	75.71908965	0.2745 77189
'===== ====== ='	'====== ==='	'======'	'======'	'======'	'===== ===== ='
'Image '	'Entropy1 Accuracy'	'Entropy 2 Accurac y'	'Entropy1&2 Accuracy'	'Entropy1 Or 2 Accuracy'	'time'
''	'Minimum CrossEntr opy'	'Renyi'	'MinimumCrossEntr opy&Renyi'	'MinimumCrossEntr opyOrRenyi'	'time'
'Image 1'	69.921335 5	93.8479 5532	93.84795532	69.9213355	0.1396 0306
'Image 2'	70.026421 67	93.1243 6198	93.12436198	70.02642167	0.1360 75339
'Image 3'	74.677235 33	94.7246 7423	94.72467423	74.67723533	0.1105 21708
'Image 4'	64.841169 76	94.3853 9602	94.38539602	64.84116976	0.1247 05293
'Image 5'	60.691767 25	80.8442 9232	80.84429232	60.69176725	0.1457 12958
'Image 6'	67.099021 2	88.1883 1442	88.18831442	67.0990212	0.1734 32657
'Image 7'	57.680297 84	91.6051 162	91.6051162	57.68029784	0.1657 29747
'Image 8'	52.071698 79	94.2382 7539	94.23827539	52.07169879	0.1276 62523
'Image 9'	48.174503 09	94.9108 2688	94.91082688	48.17450309	0.1233 29101
'Image 10'	45.838587 64	92.8811 6255	92.88116255	45.83858764	0.1162 86917
'Image 11'	42.839128 09	89.7616 0452	89.76160452	42.83912809	0.1215 25683
'Image 12'	46.394043 12	91.9503 9933	91.95039933	46.39404312	0.1249 87972
'Image 13'	48.111451 39	84.4442 4428	84.44424428	48.11145139	0.1371 1625
'Image 14'	38.104245 48	89.5514 3217	89.55143217	38.10424548	0.1192 8178
'Image 15'	52.242839 13	91.6291 3589	91.62913589	52.24283913	0.1293 34651
'Image 16'	53.702035 67	97.2707 6202	97.27076202	53.70203567	0.1092 21639
'Image 17'	36.446886 45	95.9076 4427	95.90764427	36.44688645	0.1270 40285
'Image 18'	59.445745 51	65.4326 5478	65.43265478	59.44574551	0.1248 48985
'Image 19'	46.640245	95.5683 6606	95.56836606	46.640245	0.1065 59491
'Image 20'	44.460457 58	86.0205 3684	86.02053684	44.46045758	0.2221 08276

'Image	41.926379	93.6678	93 6678076	41 92637963	0.1161
21'	63	076	55.0070070	41.52007500	59476
'Image 22'	43.499669 73	90.5002 1017	90.50021017	43.49966973	0.1530 63053
'Image 23'	56.113012 67	93.9890 7104	93.98907104	56.11301267	0.1696 93248
'Image 24'	76.019335 86	35.7563 2018	35.75632018	76.01933586	0.1714 54328
'Image 25'	40.344082 15	92.2746 6523	92.27466523	40.34408215	0.2107 656
'Image 26'	45.613402 99	91.4519 9063	91.45199063	45.61340299	0.1862 44327
'Image 27'	48.952140 76	77.5866 2103	77.58662103	48.95214076	0.2459 91061
'Image 28'	46.574190 84	87.5998 3186	87.59983186	46.57419084	0.1153 67032
'Image 29'	33.426409 66	40.6623 4312	40.66234312	33.42640966	0.1552 66756
'Image 30'	77.805800 76	66.9188 7348	66.91887348	77.80580076	0.1345 8197
'Image 31'	48.750975 8	82.5556 9567	82.55569567	48.7509758	0.1592 20848
'Image 32'	41.683180 21	93.8179 307	93.8179307	41.68318021	0.1206 62676
'Image 33'	38.941932 38	95.9286 615	95.9286615	38.94193238	0.1326 64368
'Image 34'	65.979102 86	86.9302 8283	86.93028283	65.97910286	0.1569 66254
'Image 35'	49.873896 6	78.8296 4031	78.82964031	49.8738966	0.1454 50805
'Image 36'	38.101243 02	93.0042 635	93.0042635	38.10124302	0.1293 84687
'Image 37'	32.069296 82	35.4470 6659	35.44706659	32.06929682	0.1385 57017
'Image 38'	73.899597 67	94.5565 3636	94.55653636	73.89959767	0.1834 02563
'Image 39'	53.215636 82	85.5941 8723	85.59418723	53.21563682	0.1956 83514
'Image 40'	54.188434 52	95.7935 5071	95.79355071	54.18843452	0.1592 55488
'Image 41'	62.661382 33	94.2322 7046	94.23227046	62.66138233	0.2075 66745
'Image 42'	61.967813 61	90.3741 0677	90.37410677	61.96781361	0.1605 44011
'Image 43'	61.967813 61	90.3741 0677	90.37410677	61.96781361	0.1643 91617
'Image 44'	65.952080 71	84.5763 5261	84.57635261	65.95208071	0.2112 33454
'Image 45'	68.336035 55	94.0010 8089	94.00108089	68.33603555	0.1692 00162
'Image 46'	69.020596 89	92.1515 6428	92.15156428	69.02059689	0.2046 13364

'Image 47'	75.719089 65	93.9350 2672	93.93502672	75.71908965	0.2168 51976
'===== ===== ='	'====== ==='	'===== ====='	'======='	'======='	'===== ===== ='
'Image '	'Entropy1 Accuracy'	'Entropy 2 Accurac y'	'Entropy1&2 Accuracy'	'Entropy1 Or 2 Accuracy'	'time'
·	'Maximum Entropy'	'KapurE ntropy'	'MaximumEntropy& KapurEntropy'	'MaximumEntropyO rKapurEntropy'	'time'
'Image 1'	93.847955 32	89.6084 7895	93.84795532	89.60847895	0.9496 70642
'Image 2'	93.583738 67	83.5164 8352	93.58373867	83.51648352	0.9409 14847
'Image 3'	94.352368 94	93.6467 9037	94.35236894	93.64679037	0.9073 98292
'Image 4'	94.067135 05	91.1937 789	94.06713505	91.1937789	0.9400 0266
'Image 5'	96.415060 35	69.2728 037	96.41506035	69.2728037	0.9637 50734
'Image 6'	96.697291 78	87.7709 722	96.69729178	87.7709722	0.9873 13206
'Image 7'	95.093977 06	91.3378 9708	95.09397706	91.33789708	0.9742 52642
'Image 8'	93.439620 49	94.2112 5323	94.21125323	93.43962049	0.9460 6295
'Image 9'	94.910826 88	94.8777 998	94.91082688	94.8777998	0.9245 17296
'Image 10'	92.577913 89	92.7940 9115	92.79409115	92.57791389	0.9335 35671
'Image 11'	87.975139 61	89.7856 2421	89.78562421	87.97513961	0.9261 64193
'Image 12'	89.980784 24	91.9173 7225	91.91737225	89.98078424	0.9079 01641
'Image 13'	91.205788 75	82.6457 6953	91.20578875	82.64576953	0.9353 68597
'Image 14'	86.203687 02	89.4673 6324	89.46736324	86.20368702	0.9059 02357
'Image 15'	90.446165 86	91.5480 6942	91.54806942	90.44616586	0.9242 01259
'Image 16'	97.393862 97	97.1476 6108	97.39386297	97.14766108	0.9250 84366
'Image 17'	95.826577 79	95.8986 3688	95.89863688	95.82657779	0.9127 49959
'Image 18'	93.334534 32	64.8081 4268	93.33453432	64.80814268	0.9397 39653
'Image 19'	95.562361 14	95.5683 6606	95.56836606	95.56236114	0.8962 40362
'Image 20'	86.251726 42	84.3151 3841	86.25172642	84.31513841	1.0174 35896
'Image 21'	93.529694 35	93.6347 8052	93.63478052	93.52969435	0.9535 40914

'Image	90.238995	90.4611	00/6117817	00 23800508	0.9576
22'	98	7817	90.40117017	90.23099390	0363
'Image 23'	94.091154 75	93.8839 8487	94.09115475	93.88398487	0.9749 40738
'Image 24'	35.930462 98	35.7503 1526	35.75031526	35.93046298	0.9689 7667
'Image 25'	93.769891 31	90.4191 437	93.76989131	90.4191437	1.0091 25289
'Image 26'	94.202245 84	91.2748 4537	94.20224584	91.27484537	0.9923 29592
'Image 27'	94.271302 47	89.4523 5093	94.27130247	89.45235093	1.0571 35905
'Image 28'	95.105986 91	86.6420 4648	95.10598691	86.64204648	0.9371 99813
'Image 29'	94.343361 56	94.4244 2803	94.42442803	94.34336156	0.9708 8187
'Image 30'	50.498408 7	67.5944 2743	50.4984087	67.59442743	0.9489 40636
'Image 31'	83.240257 01	82.7328 4093	83.24025701	82.73284093	0.9734 08452
'Image 32'	93.625773 13	93.7909 0855	93.79090855	93.62577313	0.9267 68896
'Image 33'	95.355191 26	95.9226 5658	95.92265658	95.35519126	0.9568 97573
'Image 34'	85.260913 95	86.8882 4836	85.26091395	86.88824836	0.9647 03548
'Image 35'	89.377289 38	77.8478 3522	89.37728938	77.84783522	0.9286 51003
'Image 36'	93.184411 22	92.9382 0933	93.18441122	92.93820933	0.9308 33323
'Image 37'	88.965952 08	89.0860 5056	89.08605056	88.96595208	0.9678 55788
'Image 38'	93.691827 3	94.5505 3144	94.55053144	93.6918273	0.9992 99502
'Image 39'	85.780339 88	85.6302 1678	85.63021678	85.78033988	1.0037 57371
'Image 40'	95.751516 24	95.7935 5071	95.79355071	95.75151624	0.9668 38398
'Image 41'	93.637782 98	94.2142 5569	94.21425569	93.63778298	1.0306 28177
'Image 42'	90.809463 76	90.2660 1813	90.80946376	90.26601813	0.9784 05593
'Image 43'	90.809463 76	90.2660 1813	90.80946376	90.26601813	0.9772 6119
'Image 44'	88.995976 7	88.7377 6497	88.9959767	88.73776497	0.9982 70138
'Image 45'	93.883984 87	93.9890 7104	93.98907104	93.88398487	0.9736
'Image 46'	95.748513 78	95.5893 8329	95.74851378	95.58938329	1.0089
'Image 47'	93.763886 39	94.4244 2803	94.42442803	93.76388639	1.0143 85437

'===== ===== ='	'====== ==='	'===== ====='	'======='	'======'	'===== ===== ='
'Image '	'Entropy1 Accuracy'	'Entropy 2 Accurac y'	'Entropy1&2 Accuracy'	'Entropy1 Or 2 Accuracy'	'time'
·	'Maximum Entropy'	'Tsallis'	'MaximumEntropy& Tsallis'	'MaximumEntropyO rTsallis'	'time'
'Image 1'	93.847955 32	91.5090 3741	93.84795532	91.50903741	0.2058 75372
'Image 2'	93.583738 67	91.2898 5768	93.58373867	91.28985768	0.1860 16387
'Image 3'	94.352368 94	94.3523 6894	94.35236894	94.35236894	0.1766 00721
'Image 4'	94.067135 05	93.9560 4396	94.06713505	93.95604396	0.1830 28366
'Image 5'	96.415060 35	60.6917 6725	96.41506035	60.69176725	0.2056 97896
'Image 6'	96.697291 78	85.3629 9766	96.69729178	85.36299766	0.2549 87198
'Image 7'	95.093977 06	82.9069 8373	95.09397706	82.90698373	0.2233 94233
'Image 8'	93.439620 49	91.5931 0635	93.43962049	91.59310635	0.1833 41409
'Image 9'	94.910826 88	92.3497 2678	94.91082688	92.34972678	0.1822 98788
'Image 10'	92.577913 89	92.6799 976	92.6799976	92.57791389	0.1910 01554
'Image 11'	87.975139 61	87.4647 2107	87.97513961	87.46472107	0.1861 04056
'Image 12'	89.980784 24	90.2510 0582	90.25100582	89.98078424	0.1777 21603
'Image 13'	91.205788 75	91.2057 8875	91.20578875	91.20578875	0.1938 01834
'Image 14'	86.203687 02	85.8974 359	86.20368702	85.8974359	0.1768 68005
'Image 15'	90.446165 86	91.2328 109	91.2328109	90.44616586	0.1874 31067
'Image 16'	97.393862 97	97.9673 3321	97.96733321	97.39386297	0.1727 58674
'Image 17'	95.826577 79	95.8535 9995	95.85359995	95.82657779	0.1886 69127
'Image 18'	93.334534 32	93.5086 7712	93.50867712	93.33453432	0.1996 50863
'Image 19'	95.562361 14	73.3291 2989	95.56236114	73.32912989	0.1577 30045
'Image 20'	86.251726 42	86.2337 1164	86.23371164	86.25172642	0.2803 91577
'Image 21'	93.529694 35	94.1001 6213	94.10016213	93.52969435	0.1862 21233
'Image 22'	90.238995 98	90.1279 0488	90.23899598	90.12790488	0.2282 36135

		1		1	
'Image	94.091154 75	94.6496	94.64961268	94.09115475	0.2313
23	75	1200			04904
1mage 24'	35.930462 98	057	35.93046298	60.6167057	0.2301 81535
'Image 25'	93.769891 31	94.0010 8089	94.00108089	93.76989131	0.3082 28455
'Image	94.202245	88.6266	94.20224584	88.62667387	0.2335
20 	04 271202	71 5196			0 2052
111aye 27'	94.271302 17	4520	94.27130247	71.51864529	20102
21	47	4529			20103
image	95.105960	91.3049	95.10598691	91.36491923	0.1924
20	91	1923			29919
image	94.343301	93.5356	94.34336156	93.53569927	0.2200
29	56	9927			8/1/1
Image	50.498408	49.6096	49.60967994	50.4984087	0.2119
30'	7	7994			28392
'Image	83.240257	83.8677	83 86777157	83,24025701	0.2372
31'	01	7157		0012 10201 01	45102
'Image	93.625773	94.0461	94 04611782	93 62577313	0.1865
32'	13	1782	54.04011702	30.02011010	85167
'Image	95.355191	93.6768	05 35510126	03 67681/00	0.1957
33'	26	1499	95.55519120	93.07001499	9898
'Image	85.260913	86.8882	95 26001205	06 00004006	0.2486
34'	95	4836	00.20091390	00.00024030	35248
'Image	89.377289	89.7015	00 70455500		0.2202
35'	38	5528	89.70155528	89.37728938	09491
'Image	93.184411	88.8158			0.2001
36'	22	2898	93.18441122	88.81582898	4908
'Image	88 965952	88 2393			0.2031
37'	08	5627	88.96595208	88.23935627	95262
	93 691827	91 1517			0.2690
38'	3	4443	93.6918273	91.15174443	77554
	85 780330	85 4410			0.2502
20'	88	6167	85.78033988	85.44106167	30807
Umaga	05 751516	74 0414			0.2157
	95.751510	74.9414 5100	95.75151624	74.94145199	10075
40	24	02.0500			19975
image	93.637782	93.8569	93.85696271	93.63778298	0.2775
41	98	6271			44255
image	90.809463	90.3741	90.80946376	90.37410677	0.2485
42	/6	0677			27907
Image	90.809463	90.3741	90 80946376	90.37410677	0.2422
43'	76	0677			15729
'Image	88.995976	89.0470	89 04701856	88 9959767	0.2801
44'	7	1856	03.04701030	00.3333707	02483
'Image	93.883984	93.7158	02 00200407	02 71594600	0.2155
45'	87	4699	93.00390407	93.71304099	58322
'Image	95.748513	96.2229	06 0000070	05 74054070	0.2827
46'	78	0278	90.22290270	95.74651376	30847
'Image	93.763886	94.5655		02 76200020	0.2737
47	39	4375	94.00004375	93.10388639	8389
'					'=====
	=======	======	'======='	'======='	=====
='	==='	====='			='

'Image	'Entropy1	'Entropy 2	'Entropy1&2	'Entropy1 Or 2	'time'
1	Accuracy'	Accurac y'	Accuracy'	Accuracy'	ume
·	'Maximum Entropy'	'Renyi'	'MaximumEntropy& Renyi'	'MaximumEntropyO rRenyi'	'time'
'Image 1'	93.847955 32	93.8479 5532	93.84795532	93.84795532	0.1358 08483
'Image 2'	93.583738 67	93.1243 6198	93.58373867	93.12436198	0.1270 77491
'Image 3'	94.352368 94	94.7246 7423	94.72467423	94.35236894	0.1147 22985
'Image 4'	94.067135 05	94.3853 9602	94.38539602	94.06713505	0.1217 18982
'Image 5'	96.415060 35	80.8442 9232	96.41506035	80.84429232	0.1524 14301
'Image 6'	96.697291 78	88.1883 1442	96.69729178	88.18831442	0.1666 59468
'Image 7'	95.093977 06	91.6051 162	95.09397706	91.6051162	0.1564 0731
'Image 8'	93.439620 49	94.2382 7539	94.23827539	93.43962049	0.1181 49779
'Image 9'	94.910826 88	94.9108 2688	94.91082688	94.91082688	0.1140 15217
'Image 10'	92.577913 89	92.8811 6255	92.88116255	92.57791389	0.1117 75163
'Image 11'	87.975139 61	89.7616 0452	89.76160452	87.97513961	0.1166 81642
'Image 12'	89.980784 24	91.9503 9933	91.95039933	89.98078424	0.1105 07168
'Image 13'	91.205788 75	84.4442 4428	91.20578875	84.44424428	0.1207 3666
'Image 14'	86.203687 02	89.5514 3217	89.55143217	86.20368702	0.1158 68243
'Image 15'	90.446165 86	91.6291 3589	91.62913589	90.44616586	0.1233 76571
'Image 16'	97.393862 97	97.2707 6202	97.39386297	97.27076202	0.1087 40528
'Image 17'	95.826577 79	95.9076 4427	95.90764427	95.82657779	0.1203 62463
'Image 18'	93.334534 32	65.4326 5478	93.33453432	65.43265478	0.1177 48212
'Image 19'	95.562 <mark>361</mark> 14	95.5683 6606	95.56836606	95.56236114	0.0932 08122
'Image 20'	86.251726 42	86.0205 3684	86.25172642	86.02053684	0.2027 89846
'Image 21'	93.529694 35	93.6678 076	93.6678076	93.52969435	0.1193 42935
'Image 22'	90.238995 98	90.5002 1017	90.50021017	90.23899598	0.1480 34265
'Image 23'	94.091154 75	93.9890 7104	94.09115475	93.98907104	0.1619 32177

'Image	35.930462	35.7563	25 75622019	25.02046208	0.1755
24'	98	2018	35.75032016	55.95040290	29447
'Image 25'	93.769891 31	92.2746 6523	93.76989131	92.27466523	0.2086 30321
'Image 26'	94.202245 84	91.4519 9063	94.20224584	91.45199063	0.1636 09437
'Image 27'	94.271302 47	77.5866 2103	94.27130247	77.58662103	0.2508
'Image 28'	95.105986 91	87.5998 3186	95.10598691	87.59983186	0.1125
'Image 29'	94.343361	40.6623 4312	94.34336156	40.66234312	0.1577
'Image 30'	50.498408 7	66.9188 7348	50.4984087	66.91887348	0.1361 65574
'Image 31'	83.240257 01	82.5556 9567	83.24025701	82.55569567	0.1572
'Image 32'	93.625773 13	93.8179 307	93.8179307	93.62577313	0.1149
'Image 33'	95.355191 26	95.9286 615	95.9286615	95.35519126	0.1530 24564
'Image 34'	85.260913 95	86.9302 8283	85.26091395	86.93028283	0.1579 57129
'Image 35'	89.377289 38	78.8296 4031	89.37728938	78.82964031	0.1409 51026
'Image 36'	93.184411 22	93.0042 635	93.18441122	93.0042635	0.1281 67582
'Image 37'	88.965952 08	35.4470 6659	88.96595208	35.44706659	0.1444 28712
'Image 38'	93.691827 3	94.5565 3636	94.55653636	93.6918273	0.1813 65646
'Image 39'	85.780339 88	85.5941 8723	85.59418723	85.78033988	0.1930 23931
'Image 40'	95.751516 24	95.7935 5071	95.79355071	95.75151624	0.1536 23708
'Image 41'	93.637782 98	94.2322 7046	94.23227046	93.63778298	0.1997 1159
'Image 42'	90.809463 76	90.3741 0677	90.80946376	90.37410677	0.1603 71238
'Image 43'	90.809463 76	90.3741 0677	90.80946376	90.37410677	0.1662 22405
'Image 44'	88.995976 7	84.5763 5261	88.9959767	84.57635261	0.1945 19866
'Image 45'	93.883984 87	94.0010 8089	94.00108089	93.88398487	0.1663 22049
'Image 46'	95.748513 78	92.1515 6428	95.74851378	92.15156428	0.1987 93416
'Image 47'	93.763886 39	93.9350 2672	93.93502672	93.76388639	0.2052 59122
'===== ===== ='	'====== ==='	'===== ====='	'======='	'============'	'===== ===== ='

'Image'	'Entropy1	'Entropy 2	'Entropy1&2	'Entropy1 Or 2	'time'
	Accuracy	Accuracy	Accuracy	Accuracy	
·	'KapurEnt ropy'	'Tsallis'	'KapurEntropy &Tsallis'	'KapurEntropyO rTsallis'	'time'
'Image1'	89.60847 895	91.50903 741	91.50903741	89.60847895	1.405840 989
'Image2'	83.51648 352	91.28985 768	91.28985768	83.51648352	1.424413 59
'Image3'	93.64679 037	94.35236 894	94.35236894	93.64679037	1.412863 929
'Image4'	91.19377 89	93.95604 396	93.95604396	91.1937789	1.402831 585
'Image5'	69.27280 37	60.69176 725	69.2728037	60.69176725	1.390910 72
'Image6'	87.77097 22	85.36299 766	87.7709722	85.36299766	1.436451 204
'Image7'	91.33789 708	82.90698 373	91.33789708	82.90698373	1.432355 131
'Image8'	94.21125 323	91.59310 635	94.21125323	91.59310635	1.409460 228
'Image9'	94.87779 98	92.34972 678	94.8777998	92.34972678	1.403676 63
'Image10'	92.79409 115	92.67999 76	92.79409115	92.6799976	1.398957 464
'Image11'	89.78562 421	87.46472 107	89.78562421	87.46472107	1.407512 262
'Image12'	91.91737 225	90.25100 582	91.91737225	90.25100582	1.396549 343
'Image13'	82.64576 953	91.20578 875	91.20578875	82.64576953	1.388765 606
'Image14'	89.46736 324	85.89743 59	89.46736324	85.8974359	1.370952 519
'Image15'	91.54806 942	91.23281 09	91.54806942	91.2328109	1.389168 456
'Image16'	97.14766 108	97.96733 321	97.96733321	97.14766108	1.379311 878
'Image17'	95.89863 688	95.85359 995	95.89863688	95.85359995	1.419057 647
'Image18'	64.80814 268	93.50867 712	93.50867712	64.80814268	1.381164 477
'Image19'	95.56836 606	73.32912 989	95.56836606	73.32912989	1.382807 098
'Image20'	84.31513 841	86.23371 164	86.23371164	84.31513841	1.472310 45
'Image21'	93.63478 052	94.10016 213	94.10016213	93.63478052	1.383316 _434
'Image22'	90.46117 817	90.12790 488	90.46117817	90.12790488	1.470914 586
'Image23'	93.88398 487	94.64961 268	94.64961268	93.88398487	1.427838 673
'Image24'	35.75031 526	60.61670 57	35.75031526	60.6167057	1.443599 447

	90.41914	94.00108	04.00400000	00 4404 407	1.491756
Image25	37	089	94.00108089	90.4191437	321
'Image26'	91.27484	88.62667	01 27/8/537	88 62667207	1.445201
intagezo	537	387	51.27404557	00.02007307	44
'Image27'	89.45235	71.51864	89.45235093	71,51864529	1.552835
magozi	093	529	00.10200000	11.01001020	626
'Image28'	86.64204	91.36491	91.36491923	86.64204648	1.416723
	648	923			509
'Image29'	94.42442	93.53569	94.42442803	93.53569927	1.423611
	803	927			138
'Image30'	07.09442	49.60967	49.60967994	67.59442743	1.440000
	82 73284	83 86777			1 / 38922
'Image31'	093	157	83.86777157	82.73284093	619
	93,79090	94.04611			1.386333
'Image32'	855	782	94.04611782	93.79090855	108
	95.92265	93.67681		00.07004.400	1.425380
image33	658	499	95.92265658	93.67681499	516
'lm2go34'	86.88824	86.88824	86 88824836	86 88834836	1.433944
inage34	836	836	00.00024030	00.00024030	295
'Image35'	77.84783	89.70155	89 70155528	77 84783522	1.448164
mageoo	522	528	00.70100020	11.01100022	657
'Image36'	92.93820	88.81582	92.93820933	88.81582898	1.378303
	933	898			042
'Image37'	89.08605	88.23935	89.08605056	88.23935627	1.393861
	030	027			903
'Image38'	94.55055 1 <i>11</i>	91.15174 AA3	94.55053144	91.15174443	1.521995
	85,63021	85.44106			1.472030
'Image39'	678	167	85.63021678	85.44106167	764
	95.79355	74.94145	05 70055074	74 04445400	1.450727
'Image40'	071	199	95.79355071	74.94145199	162
'Imago/11'	94.21425	93.85696	04 21425560	02 95606271	1.558432
inaye41	569	271	94.21425509	93.00090271	767
'Image42'	90.26601	90.37410	90 37410677	90 26601813	1.586040
magenz	813	677	00.07410077	00.20001010	849
'Image43'	90.26601	90.37410	90.37410677	90.26601813	1.470924
	813	677			422
'Image44'	88.73776	89.04701	89.04701856	88.73776497	1.505524
	497	000			220
'Image45'	93.96907	93.71504 600	93.98907104	93.71584699	1.443072
	95 58938	96 22290			1 482124
'Image46'	329	278	96.22290278	95.58938329	262
	94,42442	94,56554	04 5055 1055	04.40446666	1.485495
'Image47'	803	375	94.56554375	94.42442803	889
'======	'======	'======	, ,	, ,	'======
'	===='	===='			===='

'Image'	'Entropy1	'Entropy 2	'Entropy1&2	'Entropy1 Or 2	'time'
·'	'KapurEntr	'Renyi'	KapurEntropy	'KapurEntropy	'time'
'Image1'	89.608478	93.847955	93.84795532	89.60847895	1.3409529
'Image2'	83.516483 52	93.124361 98	93.12436198	83.51648352	1.3477133 54
'Image3'	93.646790 37	94.724674	94.72467423	93.64679037	1.3312345
'Image4'	91.193778 9	94.385396	94.38539602	91.1937789	1.3529367
'Image5'	69.272803 7	80.844292 32	80.84429232	69.2728037	1.3649012
'Image6'	87.770972	88.188314 42	88.18831442	87.7709722	1.3803921
'Image7'	91.337897 08	91.605116 2	91.6051162	91.33789708	1.3536282 41
'Image8'	94.211253 23	_ 94.238275 39	94.23827539	94.21125323	1.3202968 61
'Image9'	94.877799 8	94.910826 88	94.91082688	94.8777998	1.3600623 01
'Image10'	92.794091 15	92.881162 55	92.88116255	92.79409115	1.3175076 99
'Image11'	89.785624 21	89.761604 52	89.76160452	89.78562421	1.3377212 1
'Image12'	91.917372 25	91.950399 33	91.95039933	91.91737225	1.3311905
'Image13'	82.645769 53	84.444244 28	84.44424428	82.64576953	1.3337525 77
'Image14'	89.467363 24	89.551432 17	89.55143217	89.46736324	1.3142887 45
'Image15'	91.548069 42	91.629135 89	91.62913589	91.54806942	1.3582071 36
'Image16'	97.147661 08	97.270762 02	97.27076202	97.14766108	1.3066427 12
'Image17'	95.898636 88	95.907644 27	95.90764427	95.89863688	1.3153386 36
'Image18'	64.808142 68	65.432654 78	65.43265478	64.80814268	1.3405830 72
'Image19'	95.568366 06	95.568366 06	95.56836606	95.56836606	1.3062313 09
'Image20'	84.315138 41	86.020536 84	86.02053684	84.31513841	1.4389183 42
'Image21'	93.634780 52	93.667807 6	93.6678076	93.63478052	1.3387976 16
'Image22'	90.461178 17	90.500 <mark>210</mark> 17	90.50021017	90.46117817	1.3751 <u>508</u> 02
'Image23'	93.883984 87	93.989071 04	93.98907104	93.88398487	1.3698072 6
'Image24'	35.750315 26	35.756320 18	35.75632018	35.75031526	1.390235 <mark>4</mark> 54

'Image25'	90.419143	92.274665	92.27466523	90.4191437	1.4227842
'Image26'	91.274845 37	91.451990 63	91.45199063	91.27484537	1.3919644
'Image27'	89.452350 93	77.586621	89.45235093	77.58662103	1.4066137
'Image28'	86.642046 48	87.599831 86	87.59983186	86.64204648	1.3344834
'Image29'	94.424428	40.662343	94.42442803	40.66234312	1.3766745
'Image30'	67.594427 43	66.918873 48	66.91887348	67.59442743	1.3653639
'Image31'	82.732840 93	82.555695 67	82.73284093	82.55569567	1.3651479
'Image32'	93.790908 55	93.817930 7	93.8179307	93.79090855	1.3349401 73
'Image33'	95.922656 58	95.928661 5	95.9286615	95.92265658	1.3266522
'Image34'	86.888248 36	86.930282 83	86.93028283	86.88824836	1.3652698 48
'Image35'	77.847835 22	78.829640 31	78.82964031	77.84783522	1.3648178 17
'Image36'	92.938209 33	93.004263 5	93.0042635	92.93820933	1.3254731 89
'Image37'	89.086050 56	35.447066 59	89.08605056	35.44706659	1.4130854 53
'Image38'	94.550531 44	94.556536 36	94.55653636	94.55053144	1.4088704 92
'Image39'	85.630216 78	85.594187 23	85.59418723	85.63021678	1.4071346 43
'Image40'	95.793550 71	95.793550 71	95.79355071	95.79355071	1.3767001 93
'Image41'	94.214255 69	94.232270 46	94.23227046	94.21425569	1.3951218 32
'Image42'	90.266018 13	90.374106 77	90.37410677	90.26601813	1.3649003 54
'Image43'	90.266018 13	90.374106 77	90.37410677	90.26601813	1.3727901 5
'Image44'	88.737764 97	84.576352 61	88.73776497	84.57635261	1.3930489 92
'Image45'	93.989071 04	94.001080 89	94.00108089	93.98907104	1.3693043 39
'Image46'	95.589383 29	92.151564 28	95.58938329	92.15156428	1.3859208 49
'Image47'	94.424428 03	93.935026 72	94.42442803	93.93502672	1.4125709 85
'====== ====='	'====== ====='	'====== ===='	'======================================	'====='	'====== ====='

'Image'	'Entropy1 Accuracy'	'Entropy 2 Accuracy'	'Entropy1&2 Accuracy'	'Entropy1 Or 2 Accuracy'	'time'
''	'Tsallis'	'Renyi'	'Tsallisℜ nyi'	'TsallisOrRe nyi'	'time'
'Image1'	91.5090374	93.8479553	93.8479553	91.5090374	0.25196753
	1	2	2	1	1
'Image2'	91.2898576	93.1243619	93.1243619	91.2898576	0.22829215
	8	8	8	8	8
'Image3'	94.3523689	94.7246742	94.7246742	94.3523689	0.21626181
	4	3	3	4	3
'Image4'	93.9560439	94.3853960	94.3853960	93.9560439	0.22559921
	6	2	2	6	9
'Image5'	60.6917672	80.8442923	80.8442923	60.6917672	0.26207599
	5	2	2	5	7
'Image6'	85.3629976	88.1883144	88.1883144	85.3629976	0.28073455
	6	2	2	6	6
'Image7'	82.9069837 3	91.6051162	91.6051162	82.9069837 3	0.26013359 1
'Image8'	91.5931063	94.2382753	94.2382753	91.5931063	0.22117898
	5	9	9	5	3
'Image9'	92.3497267	94.9108268	94.9108268	92.3497267	0.22378425
	8	8	8	8	4
'Image10'	92.6799976	92.8811625 5	92.8811625 5	92.6799976	0.23049628 9
'Image11'	87.4647210	89.7616045	89.7616045	87.4647210	0.21975318
	7	2	2	7	4
'Image12'	90.2510058	91.9503993	91.9503993	90.2510058	0.21144514
	2	3	3	2	2
'Image13'	91.2057887	84.4442442	91.2057887	84.4442442	0.24224865
	5	8	5	8	8
'Image14'	85.8974359	89.5514321 7	89.5514321 7	85.8974359	0.21833123 3
'Image15'	91.2328109	91.6291358 9	91.6291358 9	91.2328109	0.22640663
'Image16'	97.9673332	97.2707620	97.9673332	97.2707620	0.20498756
	1	2	1	2	2
'Image17'	95.8535999	95.9076442	95.9076442	95.8535999	0.22075902
	5	7	7	5	7
'Image18'	93.5086771	65.4326547	93.5086771	65.4326547	0.26705731
	2	8	2	8	5
'Image19'	73.3291298	95.5683660	95.5683660	73.3291298	0.20039027
	9	6	6	9	7
'Image20'	86.2337116	86.0205368	86.2337116	86.0205368	0.31272395
	4	4	4	4	7
'Image21'	94.1001621 3	93.6678076	94.1001621 3	93.6678076	0.21050173 7
'Image22'	90.1279048	90.5002101	90.5002101	90.1279048	0.28141324
	8	7	7	8	4
'Image23'	94.6496126	93.9890710	94.6496126	93.9890710	0.27481667
	8	4	8	4	5
'Image24'	60.6167057	35.7563201 8	35.7563201 8	60.6167057	0.27463577 7

llmogo QE!	94.0010808	92.2746652	94.0010808	92.2746652	0.33453518
image25	9	3	9	3	5
'Image26'	88.6266738	91.4519906	91.4519906	88.6266738	0.25951691
magezo	7	3	3	7	3
'Image27'	71.5186452	77.5866210	77.5866210	71.5186452	0.32817981
magozi	9	3	3	9	3
'Image28'	91.3649192	87.5998318	91.3649192	87.5998318	0.22599650
magezo	3	6	3	6	9
'Image29'	93.5356992	40.6623431	93.5356992	40.6623431	0.26732716
	7	2	7	2	5
'Image30'	49.6096799	66.9188734	49.6096799	66.9188734	0.25424393
mageee	4	8	4	8	5
'Image31'	83.8677715	82.5556956	83.8677715	82.5556956	0.27637804
mageor	7	7	7	7	1
'Image32'	94.0461178	93 8179307	94.0461178	93 8179307	0.23569613
magooz	2	00.0170007	2	00.0170007	8
'Image33'	93.6768149	95 9286615	95 9286615	93.6768149	0.24294701
magooo	9	00.0200010	00.0200010	9	7
'Image34'	86.8882483	86.9302828	86.9302828	86.8882483	0.27746342
magoor	6	3	3	6	8
'Image35'	89.7015552	78.8296403	89.7015552	78.8296403	0.25940358
magooo	8	1	8	1	5
'Image36'	88.8158289	93 0042635	93 0042635	88.8158289	0.22676243
magooo	8	00.00 12000	00.00 12000	8	8
'Image37'	88.2393562	35.4470665	88.2393562	35.4470665	0 24944437
magoor	7	9	7	9	012101101
'Image38'	91.1517444	94.5565363	94.5565363	91.1517444	0.30060979
mageee	3	6	6	3	2
'Image39'	85.4410616	85.5941872	85.5941872	85.4410616	0.29994564
magooo	7	3	3	7	5
'Image40'	74.9414519	95.7935507	95.7935507	74.9414519	0.27203050
	9	1	1	9	7
'Image41'	93.8569627	94.2322704	94.2322704	93.8569627	0.32121931
	1	6	6	1	1
'Image42'	90.3741067	90.3741067	90.3741067	90.3741067	0.28705400
	/	/	/	/	5
'Image43'	90.3741067	90.3741067	90.3741067	90.3741067	0.28652072
	/	/	/	/	0.0000000
'Image44'	89.0470185	84.5763526	89.0470185	84.5763526	0.32633362
	6	1	6	1	9
'Image45'	93.7158469	94.0010808	94.0010808	93.7158469	0.25323253
	9	9	9	9	2
'Image46'	96.2229027	92.1515642	96.2229027	92.1515642	0.322/1054
	Ŏ	8 00.0050007	Ŏ	ð	
'Image47'	94.5055437	93.9350267	94.5055437	93.9350267	0.31861575
	<u></u> 5		<u>с</u>		
				`	_ ======= [`]
===	====	===	====	==	===="

'lm age '	'Entropy1 Accuracy'	'Entropy 2 Accurac y'	'Entropy1&2 Accuracy'	'Entropy1 Or 2 Accuracy'	'time'
2111) 12	MinimumC rossEntrop y'	'Maximu mEntrop y'	'MinimumCrossEntro py&MaximumEntrop y'	'MinimumCrossEntro pyOrMaximumEntrop y'	'time'
'Im age 1'	69.921335 5	93.8479 5532	93.84795532	69.9213355	0.155 94843 7
'lm age 2'	70.026421 67	93.5837 3867	93.58373867	70.02642167	0.128 00507 4
'lm age 3'	74.677235 33	94.3523 6894	94.35236894	74.67723533	0.110 63589 2
'Im age 4'	64.841169 76	94.0671 3505	94.06713505	64.84116976	0.114 49419
'lm age 5'	60.691767 25	96.4150 6035	96.41506035	60.69176725	0.142 72664 7
'Im age 6'	67.099021 2	96.6972 9178	96.69729178	67.0990212	0.163 03424 2

APPENDIX B

ENTROPY-BASED THRESHOLDING IMAGES

MinimumCrossEntropy KapurEntropy MinimumCrossEntropy&KapurEntropy Image5

Image3

MinimumCrossEntropy

Tsallis

MinimumCrossEntropy&Tsallis

MaximumEntropy&Tsallis

