
I

Enhancement of Digital Signature Scheme

الرقمي التوقيع نظام تعزيز

Prepared by

Ruqa Abdulkareem Salih Al-Shnawa

Supervisor:

Prof. Hamza A. Al-Sewadi

Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master of Computer Science

Department of Computer Science

 Faculty of Information Technology

Middle East University

June, 2018

II

Authorization

III

Decision of Discussion Committee

IV

Acknowledgment

....(ِّ ب َ
ن ير

ْ
ع ز

ْ
ِّأوَ

ْ
ِّأنَ

َ
كُر

ْ
كَِّأشَ

َ
ت
َ
م
ْ
ع ِّال تَ ين

َ
ت
ْ
م
َ
ع
ْ
ِّأنَ

َ
لَ
َ
لَىِّع

َ
ِّوع َ َي

الِ
َ
ِّو

ْ
أنَ
َ
لَِّو

َ
م
ْ
أعَ

ال حًا
َ
ِّص

ُ
ِّتَرْضَاه

ْ
ل ح

ْ
أصَ

َ
ِّو ِّف ِّلِ َت يِّإ ن

ي
ِّذرُ

ُ
يَِّتبُْت سْل م ُ

م
ْ
ِّال
َ
ن ِّم إ ن َ

 .} سورة الأحقاف {(51()إ ليَْكَِّو

All praise and thanks are due to the Almighty Allah who always guides me to the right path

and has helped me to complete this thesis. There are many people whom I have to

acknowledge for their support, help and encouragement during the journey of preparing

this thesis. So, I will attempt to give them their due here, and I sincerely apologize for any

omissions.

First and foremost, I would like to record my heartfelt gratitude to my supervisor

Prof. Hamza Abbass Al-Sewadi for his skilful supervision, advice and patient guidance

throughout the work. Above all and the most needed, he provided me unflinching

encouragement and support in various ways. I am really indebted to him more than he

knows.

I would also like to express my deepest gratitude to all the respectable lecturers at the

Faculty of Information Technology, Middle East University and special thanks to the

Graduate School Office and the Library Staff and for everyone who supports me especially

my colleague Mohammed Mustafa Rifaat to accomplish this work.

The Researcher

V

Dedication

To:

My parents who have always loved me unconditionally and whose good examples have

taught me to work hard for the things that I aspire to achieve.

My beloved brother and sisters for their love and kindness, endless support and

encouragement.

My lovely husband who has been a constant source of support and encouragement.

My daughter (Asl), the spirit of my life.

Everyone gives me support.

I dedicate this thesis.

The Researcher

VI

Table of Contents

Subject Pages

Cover Page ………………………………………………………….. I

Authorization ………………………………………………………… II

Decision of Discussion Committee …………………………………... III

Acknowledgment …………………………………………………….. IV

Dedication ……………………………………………………………. V

Table of Contents …………………………………………………….. VI

List of Tables …………………………………………………………. XI

List of Figures ………………………………………………………… XII

List of Appendixes …………………………………………………… XIII

Table of Abbreviations ……………………………………………….. XIV

English Abstract ……………………...………………………………. XV

Arabic Abstract ……………………………………………………… XVI

Chapter One: Background of The Study and The Study Importance

1.1 Introduction ……………………………………………………………. 2

1.2 Keywords Definitions …………………………………………………. 3

1.3 Basic of Digital Signature Process ……………………………………... 5

1.4 Problem Statement ……………………………………………………… 7

1.5 Questions of the Study…………………………………………………... 7

1.6 Objectives of the Study …………………………………………………. 8

VII

1.7 Motivation ………………………………………………………………. 8

Chapter Two: Theoretical Background and Literature Review

2.1 Introduction………………………………………………………………. 10

2.2 Theoretical Background ………………………………………………….. 10

2.2.1 Use of Digital Signature ………………………………………………… 11

2.2.1.1 Integrity and Authentication …………………………………………... 11

2.2.1.2 Nonrepudiation ……………………………………………………….. 12

2.3 Digital Signature Generation and Verification …………………………… 12

2.3.1 Digital Signature Generation …………………………………………… 13

2.3.2 Digital Signature Verification or Validation …………………………… 15

2.4 Types of Digital Signature ………………………………………………... 15

2.5 Typical Digital Signature Algorithms …………………………………….. 17

2.5.1 Diffie-Hellman (D-H) …………………………………………………. 17

2.5.2 ElGamal ………………………………………………………………... 18

2.5.3 Rivest-Shamir-Adleman (RSA) ………………………………………… 20

2.5.4 Digital Signature Algorithm (DSA) …………………………………….. 21

2.5.5 Short Comparison ……………………………………………………….. 23

VIII

2.5.6 Modified DSA Algorithm (M.DSA) ……………………………………. 24

2.5.7 GOST Digital Signature ………………………………………………… 25

2.5.7.1 Signing Process ……………………………………………………….. 25

2.5.7.2 Verification Process …………………………………………………… 26

2.5.8 Yen-Laih Digital Signature ……………………………………………… 26

2.5.8.1 Yen-Laih Digital Signature Generation Process ……………………… 26

2.5.8.2 Yen-Laih Verification Process ………………………………………… 27

2.5.9 McCurly Digital Signature ………………………………………………. 27

2.5.9.1 McCurly Digital Signature Generation Process ……………………….. 27

2.5.9.2 McCurly Verification Process …………………………………………. 28

2.6 Review of Related Literature ……………………………………………… 28

Chapter Three: Methodology and the Proposed Work

3.1 Introduction …………………………………………………………….. 32

3.2 The Methodology ……………………………………………………….. 32

3.3 Investigation of GOST Algorithm ………………………………………. 33

3.3.1 Initialization …………………………………………………………… 33

3.3.2 Public Key Generation ………………………………………………… 36

IX

3.3.3 Signature Generation ………………………………………………….. 36

3.3.4 Signature Verification ………………………………………………… 37

3.3.5 Signature Validation Proof ……………………………………………. 38

3.4 Proposed Measurement ………………………………………………….. 38

3.5 Modification of GOST (M.GOST) ……………………………………… 39

3.5.1 Create the Digital Signature …………………………………………… 39

3.5.2 Validate the Signature …………………………………………………. 39

3.5.3 Mathematical Proof …………………………………………………… 40

3.6 Example of application of the GOST algorithm ………………………… 41

3.7 Example of application of the M.GOST algorithm ……………………… 43

Chapter Four: Implementation and Results

4.1 Introduction …………………………………………………………… 45

4.2 Digital Signature Implementation ……………………………………... 45

4.3 Digital Signature Comparison …………………………………………. 57

4.4 Algorithms Signature and Verify Complexity ……………………….… 60

4.4.1 GOST Signature Complexity ………………………………………… 61

4.4.2 GOST Verify Complexity ……………………………….…………… 61

X

4.4.3 M.GOST Signature Complexity ……………………………………… 62

4.4.4 M.GOST Verify Complexity …………………………………………. 63

4.5 Signature and Verification Speed of GOST and M.GOST Algorithms … 65

4.5.1 Signature Speed Gain of M.GOST to Other Algorithms ……………… 65

4.5.2 Verification Speed Gain of M.GOST to Other Algorithms …………… 66

Chapter Five: Conclusion and Future Work

5.1 Conclusions ……………………………………………………………… 69

5.2 Future Work ……………………………………………………………… 70

References ……………………………………………………………………. 71

XI

List of Tables

Chapter Number -

Table Number
Table Contents Page

Table 2.1 Comparison of Listed Algorithms 23

Table 4.1

Parameters of GOST and M.GOST Algorithms with

Prime values

47

Table 4.2

Comparison of execution time for different key lengths

for GOST signature and verification
48

Table 4.3

Comparison of execution time for different key lengths

for M.GOST signature and verification
50

Table 4.4
Signing Time Calculation for GOST and M.GOST

signature with p, q and g of Length of 100 Digits

53

Table 4.5

Verification Time Calculation for GOST and M.GOST

verification with p, q and g of Length of 100 Digits
55

Table 4.6

The Average of signing and verification Times in

Comparison for M.GOST with other DSA algorithms
57

Table 4.7

The Normalized signing and verification execution time

comparison for M.GOST and other algorithms

(Normalized to the highest execution time)

59

Table 4.8

Summary of the result of computations algorithm and

compare their Big O complexity
64

Table 4.9 Signature Speed Gain for M.GOST to other algorithms 66

Table 4.10
Verification Speed Gain for M.GOST to other

algorithms
67

XII

List of Figures

Chapter

Number -

Figure

Number

Contents Page

Figure 1.1
Digital Signature Processes 6

Figure 2.3
Digital Signature Generation 13

Figure 2.4
Digital Signature Verification or Validation 14

Figure 3.1-a
Flowchart for the Investigation of GOST Digital

Signature Algorithm
34

Figure 3.1-b
Flowchart for the Investigation of M.GOST Digital

Signature Algorithm

35

Figure 4.1

Signing Time Calculation for GOST & M.GOST

signature with p, q and g of Length of 100 Digits

54

Figure 4.2

Verification Time Calculation for GOST & M.GOST

verification with p, q and g of Length of 100 Digits
56

Figure 4.3

The Average signing and verification Times

Comparison for Several Algorithms with M.GOST
58

Figure 4.4-a

Comparison of The Normalized Signing Time for

M.GOST with Other Algorithms.
59

Figure 4.4-b

Comparison of The Normalized Verification Time for

M.GOST with Other Algorithms.
60

XIII

List of Appendixes

Appendix Contents Page

Appendix A
GOST & M.GOST Algorithms Interfaces 74

Appendix B 78 كتاب الاستلال

XIV

Table of Abbreviations

Abbreviations Meaning

ANS American National Standard

CA Certification Authority

DL Discrete Logarithm

DLP Discrete Logarithm Problem

DSA Digital Signature Algorithm

DSS Digital Signature Standard

ECC Elliptic Curve Cryptosystems

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDSA Elliptic Curve Digital Signature Algorithm

FIPS Federal Information Processing Standard

H Hash Function

Kp Public key

Kr Private key

M Message

M.DSA Modified Digital Signature Algorithm

NIST National Institute of Standards and Technology

P Plaintext

PKCS Public Key Cryptography Standard

PKI Public Key Infrastructure

RGB Random Bit Generator

RSA Algorithm developed by Rivest, Shamir and Adleman

SHA Secure Hash Algorithm

TTP Trusted Third Party

XV

Enhancement of Digital Signature Scheme

Prepared by

Ruqa Abdulkareem Salih Al-shnawa

Supervisor

Prof. Hamza A. Al-Sewadi

Abstract

A digital signature is a way to ensure the authenticity of the data source or messages received

within the field of the digital world that is equivalent to the traditional handwritten signature used

for classical authentication. In recent years, a number of digital signature algorithms were

developed and used such as DSA, RSA, ElGamal, GOST, etc. together with many of their variants.

They vary in signing and verification execution speed, some have fast signing speed, while others

have fast verification speed. Comparatively, GOST digital signature algorithm has the shortest

signing time but longest verification time, and hence an improvement in its signature verification

time is sought.

This thesis presents a modified version for GOST digital signature algorithm, called M.GOST. Its

main objective is to improve the signature verification speed of this algorithm by reducing the

computation complexity and benefit from its efficient signing speed. The authentication is

achieved by reducing the calculation steps in the original GOST while preserving the strength of

the parameters themselves. This thesis also contains the mathematical proof of this modified

algorithm.

An investigation of the original GOST algorithm is performed first, then the suggested modified

GOST variants (M.GOST) is tested for various parameter values. The time complexity is also

compared with those of other available digital algorithms. The results of the comparison indicate

that the proposed model achieved an improvement of about one and a half times faster signature

verification speed over the original algorithm, using the same values for the general parameters,

public and private key, random numbers, etc. for both signing and verification processes.

Therefore, it is recommended to use the suggested version of the algorithm in applications that

require short time for both, signing and verification.

Keywords: digital signature algorithms, authenticity, NIST-DSA, DSA variants, signature

verification time complexity, cryptography, discrete logarithms.

XVI

الرقمي التوقيع نظام تعزيز

 إعداد

 رقى عبد الكريم صالح الشناوة

 إشراف

 السوادي عباس حمزة الدكتور الأستاذ

 المُلخص

م الرقمي مجال العال من وثوقية مصدر البيانات او الرسائل المستلمة ضمن للتأكدالتوقيع الرقمي هو طريقة

، وقد طورت هاثيقو تو المستندات عن مصدر هذه والذي يُعبّريعتبر مكافئ للتوقيع التقليدي المكتوب باليد أنهحيث

. اضافة الى وغيرها GOSTو ElGamalو RSAو DSAحديثاً العديد من خوارزميات التوقيع الرقمي مثل

لتوقيع واخرى فمنها السريعة في عملية ا منه.التعديلات عليها. وهي تتفاوت في سرعة تنفيذ التوقيع والتحقق

 سريعة في التحقق من التوقيع.

في عملية التحقق من ئبطهي الاسرع في التوقيع ولكنها الأ GOSTوبالمقارنة فان خوارزمية التوقيع الرقمي

 التوقيع، لذا فان التحسين في زمن التحقق من التوقيع هو المطلوب.

حيث M.GOSTاُطلق عليها اسم GOSTتقدم هذه الاطروحة خوارزمية معدلة من خوارزمية التوقيع الرقمي

هدفها الرئيسي هو تحسين تعقيد خوارزمية التوقيع الرقمي من خلال تقليل تعقيد الوقت وتعقيد التحقق من هوية

مع الحفاظ على قوة المعلمات الأصلي GOSTالمرسل الذي تم تحقيقه عن طريق تقليل خطوات الحساب في

 .المعدلة الخوارزمية لهذه الرياضي الإثبات الاطروحة على هذه تحتوي نفسها كما

XVII

عدة خوارزميات للتوقيع الرقمي الاصلية و كذلك GOSTدراسة لخوارزمية التوقيع الرقمي بإجراءتبدأ الرسالة

مُعاملات التوقيع الرقمي على إداء هذه الخوارزميات حيث تم حساب و تأثيرمنها لإختبار رات مختلفةإصداو

مختلفة لمعاملات خوارزمية التوقيع الرقمي الاصلية، و نتيجة لأطوالمقارنة معدل وقت التوقيع و التحقق منه

تي وقت يالمقارنة تشير الى تفوق النموذج المُقترح لمعامل المفتاح الخاص و الرقم الاولي العشوائي من ناح

التوقيع ووقت التحقق من التوقيع ، و كذلك التعقيد العام للخوارزمية المعدلة على بقية الخوارزميات حيث كانت

اسرع بحوالي مرة ونصف من الخوارزمية الاصلية بشكل عام. ومن هنا يوصى بإستخدام الإصدار المُقترح من

 ت التوقيع ووقت التحقق من التوقيع معاً.الخوارزمية في التطبيقات التي تحتاج سرعة في حساب وق

زمن التحقق من ،DSAتطويرات ،NIST-DSAالوثوقية، الرقمي،خوارزميات التوقيع المفتاحية:الكلمات

التشفير، اللوغارتيمات المتقطعة. التوقيع،

1

Chapter One

Background of the Study and the study Importance

2

Chapter One

Background of the Study and the study Importance

1.1. Introduction

A digital signature is a mathematical technique used to validate the authenticity and integrity of a

message, software or digital document.

The digital equivalent of a handwritten signature or stamped seal, but offers far more inherent

security, a digital signature is intended to solve the problem of tampering and impersonation in

digital communications. Digital signatures can provide the added assurances of evidence to origin,

identity and status of an electronic document, transaction or message, as well as acknowledging

informed consent by the signer.

In many countries, including the United States, digital signatures have the same legal significance

as the more traditional forms of signed documents. The United States Government Printing Office

publishes electronic versions of the budget, public and private laws, and congressional bills with

digital signatures (Paul, 2017).

 Digital Signature Standard (DSS) was defined by the National Institute of Standards and

Technology (NIST) to be used for senders’ authentication and message integrity. Hence, it is used

for signing and verification of messages as well as assuring their integrity.

Digital Signature Algorithm (DSA) is specified and referred to as NIST-DSA. The specification

includes criteria for the generation of domain parameters, for the generation of public and private

key pairs, and for the generation and verification of digital signatures.

http://www.emptrust.com/blog/author/paul

3

This Standard includes requirements for obtaining the assurances necessary for valid digital

signatures. Methods for obtaining these assurances are provided in NIST Special Publication (SP)

800-89, Recommendation for Obtaining Assurances for Digital Signature Applications

(Merkle,1989).

The efficiency of DSA for some sensitive application is highly required. Hence signing and

verification time are required to be as short as possible. Many varieties of DSA have been

successful in improving either signing time or verification time. For example, GOST variant

achieved improvement on the signing time while Yen-laih, McCurley, Ali, and Naccache variants

achieved improvement on the verification side. An improvement in both signing and verification

is sought and highly demanded in many sensitive data transfer and management applications.

This work proposes a technique that look for improvement in the signing and verification time

complexity by mixing the policy of GOST variant for signing digital document with any of the

other variants that does the signature verification faster than DSA. Therefore, processing time

would be reduced for both signing and verification of the signature.

1.2. Keywords Definitions (Kerry, Gallagher 2013)

It is important at the beginning to clarify the exact meaning of the common terms used in the field

of the study. as briefly defined in the following:

Assurance of domain parameter validity: Confidence that the domain parameters are

arithmetically correct.

Assurance of possession: Confidence that an entity possesses a private key and any associated

keying material.

Assurance of public key validity: Confidence that the public key is arithmetically correct.

4

Certificate: A set of data that uniquely identifies a key pair and an owner that is authorized to use

the key pair. The certificate contains the owner’s public key and possibly other information, and

is digitally signed by a Certification Authority (i.e., a trusted party), thereby binding the public key

to the owner.

Digital signature: The result of a cryptographic transformation of data that, when properly

implemented, provides a mechanism for verifying origin authentication, data integrity and

signatory non-repudiation

Domain parameters: Parameters used with cryptographic algorithms that are usually common to

a domain of users. A DSA or ECDSA cryptographic key pair is associated with a specific set of

domain parameters.

Hash function: A function that maps a bit string of arbitrary length to a fixed length bit string.

Approved hash functions are specified in FIPS 180 and are designed to satisfy the following

properties:

One-way: It is computationally infeasible to find any input that maps to any new pre-specified

output, and

Collision resistant: It is computationally infeasible to find any two distinct inputs that map to the

same output.

 Hash value: message digest.

 Intended signatory: An entity that intends to generate digital signatures in the future.

 Key: A parameter used in conjunction with a cryptographic algorithm that determines its

operation. Examples applicable to this Standard include:

5

The computation of a digital signature from data, and

The verification of a digital signature

Key pair: A public key and its corresponding private key.

Message: The data that is signed. Also known as “signed data” during the signature verification

and validation process.

Security strength: A number associated with the amount of work, or the number of operations,

required to break a cryptographic algorithm or system. Sometimes referred to as a security level.

Signature validation: The mathematical verification of the digital signature and obtaining the

appropriate assurances.

Signature verification: The process of using a digital signature algorithm and a public key to

verify a digital signature of data.

1.3. Basic of Digital Signature Process

Digital signatures are based on public key cryptography which is also known as asymmetric

cryptography. Using a public key algorithm such as Digital Signature Algorithm (DSA), Rivest-

Shamir-Adleman (RSA), El Gamal, and many more, one can generate two keys or more that are

mathematically linked: some private and others are public. To create a digital signature, (signing

a document) a one-way hash value of the digital data to be signed is created.

The private keys are then used to encrypt the hash. producing the document signature. This

signature along with other information, such as the hashing algorithm and signer public key are

sent to the recipient as shown in Figure 1.1(Atreya, Hammond, Paine, Starrett, & Wu:2002). The

reason for encrypting the hash instead of the entire message or document is that a hash function

can convert an arbitrary input into a fixed length value, which is usually much shorter. This saves

http://searchsecurity.techtarget.com/definition/asymmetric-cryptography
http://searchsecurity.techtarget.com/definition/asymmetric-cryptography
http://searchsecurity.techtarget.com/definition/public-key
http://whatis.techtarget.com/definition/algorithm
http://searchsecurity.techtarget.com/definition/RSA
http://searchsecurity.techtarget.com/definition/private-key

6

time since hashing is much faster than signing. The value of the hash is unique to the hashed data.

Any change in the data, even changing or deleting a single character, results in a different value.

Figure 1.1 Digital Signature Processes (Prepared by the researcher)

To sign a digital message m, it is first hashed by the hash function H producing the hash value

H(m), then this value is signed with private key Kr and sent over to the recipient together with the

message and the senders public key Kp.

At the receiver side, the received signature S together with public keys Kp and the message m can

verify the signature after decrypting the signature to get the hash value which will be compared

with that produced by hashing the message m.

Sender

Signature Generation

Message/Data

Hash Function

m

Signature

Generation

Private Key

rK

(H(m))rS=Ek

Receiver

Signature Verification

Message/Data

Hash Function

Message Digest

H (m) H (m)

Message Digest

Signature

Verification

Private Key

pK

H(m) (S)pDk

s

Valid or

Invalid

7

If the two hash values match, the message has not been tampered with, and the receiver verifies

the senders signature. But if the two hashes do not match the data has either been tempered with

in some way (integrity) or the signature is not valid (i.e. the signer is not authentic). These

processes will be explained in details in chapter 2.

1.4. Problem Statement

 The most widely used algorithm for digital signature is the NIST-DSA, that was adapted

by National Institute of Standards and Technology. However, DSA has considerably long

signing and verification time, so many DSA variants were developed, resulting in execution

time improvement either on the signing side or on the verification side, such as Yen-Leih,

McCurly, Modified DSA (M.DSA), GOST, etc.

 The GOST algorithm has the shortest signing time (but long verification time), while some

DSA variants has the shortest Verification time, hence improvement in both sides is sought and

will be problem tackled in this thesis.

 1.5. Questions of the Study

This research is aimed to look for answers for the following questions:

1. What are the possible improvement and the time complexity of GOST algorithm when

different equation configuration is adopted?

2. What are the effects of various parameters on the behavior of the modified digital signature

algorithm (M.GOST)?

3. What is the effect of the private key length for different messages on the signing and

verification time measurement?

4. Is there any effect of the length of message secret random integer on the signature

generating process speed?

8

1.6. Objectives of the Study

The computations of digital signature algorithm generally rely on the choice of large primes. The

use of discrete mathematics, involves multiplications and exponentiations of large numbers, and

their security relies on the difficulty of analysis and factoring of large numbers. Therefore, one of

the possible ways to improve the time measurement, which is the goal of this study, is the choice

of the parameters used and the way in which the mathematical processes are done.

The main objectives of this study are:

1. Investigate the time complexity of standard DSA, GOST, and (M.DSA) variant then check

the effect of important factors on the time measurements for signing and verification.

2. Propose, design, and test a new modified version of the digital signature algorithm which

involve both GOST and M.DSA modifications of the standard DSA.

3. Achieve time complexity improvements on both signing and validation sides.

1.7. Motivation

1. Some modification versions of digital signature algorithm have shorter signing time, while

others have shorter verification time therefore, a worthy motivation to work on a

modification to digital signature algorithm that improve both signing and verification

times, such improvement will be useful for sender and verifier for application where time

is crucial.

2. Improvement of computation complexity by altering the mathematical processes such as

multiplication and exponentiation. Such modifications will certainly change the time

needed for the signing and validation process that will affect the efficiency.

9

Chapter Two

Theoretical Background and Literature Review

11

Chapter Two

Theoretical Background and Literature Review

2.1. Introduction

A brief but comprehensive theoretical background will be described first in this chapter. It covers

the definition of digital signature concept, signing, and verification, types of digital signature and

the standard DSA. Then, a literature survey of DSA variants and other digital signatures

algorithms will be presented.

2.2. Theoretical Background

A digital signature is an electronic analogue of a written signature; It is used to provide assurance

that the claimed signatory truly signed the information. In addition, a digital signature may be used

to detect whether or not the information was modified after it was signed (i.e., to detect the integrity

of the signed data). These assurances may be obtained whether the data was received in

transmission or retrieved from storage. A properly implemented digital signature algorithm that

meets the requirements of this Standard can provide these services (Chang, 2009).

Digital signature algorithm includes a signature generation process and a signature verification

process. A signatory uses the generation process to generate a digital signature on data; a verifier

uses the verification process to verify the authenticity of the signature (Merkle,1989).

11

Each signatory has a public and private key and is the owner of that key pair; the private key is

used in the signature generation process. Where the key pair owner is the only entity that is

authorized to use the private key to generate digital signatures, while the public key is used in the

signature verification process (Atreya, Hammond, Paine, Starrett, & Wu, 2002).

The public key need not be kept secret, but its integrity must be maintained, as anyone may use it

to verify a correctly signed message. Typically, for both the signature generation and verification

processes, the message is converted into a fixed-length data string using an approved hash

function. Both the original message and the digital signature are made available to a verifier, who

already also knows the same hash function and the signatory's public key.

2.2.1. Use of Digital Signature

2.2.1.1. Integrity and Authentication

This attribute enables others to validate the integrity of the data by using the signer's public key to

decrypt the hash. If the decrypted hash function matches a second computed hash of the same data,

it proves that the data hasn’t been changed since it was signed. If the two hashes don't match, the

data has either been tampered with in some way (Integrity) or the signature was created with a

private key that doesn't correspond to the public key presented by the signer (authentication).

A digital signature can be used with any kind of message (whether it is encrypted or not), so the

receiver can be sure of the sender's identity and that the message arrived intact.

http://searchsecurity.techtarget.com/definition/authentication

12

2.2.1.2. Nonrepudiation

Digital signatures make it difficult for the signer to deny having signed something (non-

repudiation) (assuming their private key has not been compromised) as the digital signature is

unique to both the document and the signer, and it binds them together.

A digital certificate, is an electronic document that contains the digital signature of the certificate-

issuing authority, binds together a public key with an identity and can be used to verify a public

key belongs to a particular person or entity.

2.3. Digital Signature Generation and Verification

2.3.1. Digital Signature Generation

The processes of digital signature generation and verification will be outlined in more details in

the following.

Figure 2.3 illustrates a typical block diagram for signing a digital message (m). Prior to the

generation of a digital signature for the message, it's digest shall be generated using an appropriate

approved hash function. Then, the obtained hash value is encrypted (signed) by certain digital

signature algorithm. Depending on the digital signature algorithm to be used, some additional

information shall be obtained. For example, for DSA algorithm a random secret number per-

message shall be generated. Using the selected digital signature algorithm, the signature private

key, the message digest, and any other information required by the digital signature process, a

digital signature shall be generated in accordance with this Standard (Menezes, van Oorschot and

Vanstone, 1996).

13

Figure 2.3 Digital Signature Generation

The signatory may optionally verify the digital signature using the signature verification process

and the associated public key. This optional verification serves as a final check to detect otherwise

undetected signature generation computation errors; this verification may be prudent when signing

a high-value message, when multiple users are expected to verify the signature, or if the verifier

will be verifying the signature at a much later time (Schneier, B. 2000).

2.3.2. Digital Signature Verification or Validation

Figure 2.4 depicts the digital signature verification and validation process that are performed by a

verifier (e.g., the intended recipient of the signed data and associated digital signature). In order to

verify a digital signature, the verifier shall obtain the public key of the claimed signer, (usually)

based on the claimed identity. A message digest shall be generated on the message whose signature

is to be verified using the same hash function that was used during the digital signature generation

process.

Secure Hash Algorithm

Message Digest H(m)

DSA Sign Operation

Message m

Private

Key

Digital

Signature

14

Then, using the appropriate digital signature algorithm, the domain parameters (if appropriate), the

public key and the newly computed message digest, the received digital signature is verified in

accordance with this Standard. If the verification process fails, no inference can be made as to

whether only the data is correct, or the sender is authentic. It can only be said that the signature is

not validated.

Figure 2.4 Digital Signature Verification or Validation

Received Message (m)

Secure Hash Algorithm

Message Digest H(m)

DSA Verify Operation Public

Key

Valid or

Invalid

Valid – Signature Verified

Or

Invalid – Signature Verification Failed

15

If DSA algorithm has been used to generate the digital signature, the verifier also obtains the

domain parameters which are usually obtained, together with the public key from a certificate

created by a trusted party or directly from the claimed signatory.

 Before accepting the verified digital signature as valid, the verifier shall have

 (1) Assurance of the signatory’s claimed identity,

 (2) Assurance of the validity of the domain parameters (for DSA and ECDSA),

 (3) Assurance of the validity of the public key, and

 (4) Assurance that the claimed signatory actually possessed the private key that was used

to generate the digital signature at the time that the signature was generated.

(IEEE Potentials, Volume: 25, Issue: 2, March-April 2006)

 Methods for the verifier to obtain these assurances are provided in SP 800-89. Note that assurance

of domain parameter validity may have been obtained during initial setup. If the verification and

assurance processes are successful, the digital signature and signed data shall be considered valid.

However, if a verification or assurance process fails, the digital signature should be considered

invalid (Stallings, 2006).

2.4 Types of Digital Signature

Historically, public key implementation for digital signature started by two persons in 1976

(Whitfield Diffie and Artin E. Hellman at Stanford University in United State of America). They

introduced a new way to exchange keys for more secure communication and a new method to

generate and share cryptographic keys, that later had led to the invention of the algorithm, termed

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=45
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=34572

16

asymmetric encryption/decryption algorithms as compared to the traditional symmetric system

(Diffie and Hellman (D-H), 1976). Next year Ronald Linn Rivest, Adi Shamir, and Leonard

Adleman created the RSA algorithm, (RSA is the name taken from their names first letters), using

a new exchange way.

 RSA algorithm was suitable for encryption/decryption as well as for digital signature (Rivest,

Shamir and Adleman, 1978), however, it is more convenient for the former because it is slow for

digital signature. Later on other digital signature algorithms were developed, namely ElGamal

algorithm (ElGamal, 1985), Schnorr algorithm (Schnorr, 1989), and the digital standard algorithm

(DSA) by NIST 1991 which last revision at 2013 (Kerry, Gallagher, 2013).

The Digital Signature Algorithm (DSA) was specified in a U.S. Government Federal Information

Processing Standard (FIPS) called the Digital Signature Standard (DSS).

Its security is based on the computational intractability of the discrete logarithm problem (DLP)

in prime-order subgroups of
*

pZ . Elliptic curve cryptosystems (ECC) were invented by Neal

Koblitz and Victor Miller in 1985.

They can be viewed as elliptic curve analogues of the older discrete logarithm (DL) cryptosystems

in which the subgroup of
*

pZ is replaced by the group of points on an elliptic curve over a finite

field. The mathematical basis for the security of elliptic curve cryptosystems is the computational

intractability of the elliptic curve discrete logarithm problem (ECDLP). Since the ECDLP appears

to be significantly harder than the DLP, the strength-per-key-bit is substantially greater in elliptic

curve systems than in conventional discrete logarithm systems. Thus, smaller parameters, but with

equivalent levels of security, can be used with ECC than with DL systems. However, ECDSA is

outside the scope of this thesis, and only DSA and its modified versions will be considered here

after.

17

There are many modifications for the DSA algorithm such as GOST, Yen-laih, McCurly, and

other variants, they all sought improvement in the signing and verification efficiency and will

be discussed and compared in the following:

2.5. Typical Digital Signature Algorithms

2.5.1. Diffie-Hellman (D-H)

In 1979, Diffie and Hellman have suggested a very well-known public-key distribution technique

which is based on their exchanged public keys. It is a key agreement protocol establishes secret

communication key(s) among all parties and based on the discrete logarithm problem that enables

two parties to establish a common secret key. Nevertheless, this scheme did not present

authentication instrument for the exchanged public keys. So, for attaining key authentication, in

1993, Arazi proposed replacing the message in the DSA algorithm with D-H exchange key.

Afterwards, Nyberg and Rueppel have showed Arazi's scheme weakness stating that if one secret

session key which is called as known key attack is compromised, then others will be also revealed.

Later, Arazi's approach is expanded to firmly incorporate the D-H key exchange into the DSA

which is called as secure D-H + DSA (Li Xin: 2007). D-H technique also suffers from what is

known as man-in-the-middle attack weakness.

18

2.5.2 ElGamal

A signature elements of the digital signature is computed by first covering the long-term private

key d utilizing a single additive process to join the key d with a first value in order to generate a

digital signature of a message m. Then, the concealed value is multiplied by a second value to gain

components (ElGamal,1985).

The first value is enumerated using the message m and another component of the digital signature,

and the second value is obtained deploying the inverse of a component of the first value. In such a

way, the signature component s is therefore produced using a process that counters the efficiency

of side channel attacks, for instance, differential side channel analysis, by keeping away from a

direct multiplication employing long-term private key d.

 The above algorithm is in connection to D-H algorithm, where both the use of exponentiation in

a finite field, and its security which is based on the rigidity of calculating discrete logarithms are

the backbone of it. ElGamal algorithm’s benefit is that each time exactly similar plaintext is

encrypted. His algorithm provides different cipher text with one drawback where the cipher text

length is double the length of the plain text. It also decrypts (verifies) the signature by employing

private key to encrypt (sign) and public key (Menezes, van Oorschot and Vanstone, 1996). Thus,

we can sum up ElGamal signature scheme as follows:

By looking at a cryptographic system having cryptographic parameters that involve a proper first

number p and a generator α. A signee A has long-term private key d and public key., which is

calculated by py d mod .

19

Then, to generate an ElGamal signature for a message m, the following steps are used.

1- Select random integer k, with the value in the range 1 to p-2, where gcd (k, p−1) =1.

2- Calculate pr k mod (2.1)

3- Calculate)1mod().)((1   prdmHks (2.2)

Whereas H(m) is the message hash function.

Thus, the generated signature is the pair (r, s). Whereas s must not be zero. Now both r and s are

the signature.

 In order to verify the signature, the following calculations are performed:

Compute, 𝑣1 ≡ 𝑟𝑠. 𝑦𝑟𝑚𝑜𝑑𝑝. (2.3)

and 𝑣2 ≡ 𝑔𝐻(𝑚)𝑚𝑜𝑑𝑝. (2.4)

 Then if 𝑣1 = 𝑣2 , the signature is accepted as authentic.

In Cryptographic systems the setting information, electromagnetic emissions, power usage, or

channel information are used to attempt and decide a secret value employed by the cryptographic

unit during computing processes. Thus, the systems might be an issue to side channel attacks. As

a result, multiplication in a computational unit of a cryptographic system is absolutely executed

using a sequence of additions (ElGamal,1984). Therefore, through employing the side channel

attacks, interlopers usually having enough awareness that in producing ElGamal signatures and

their variants the long-term private key d is only used in one step of the generation of the signature

which is in the calculation of the signature component s by way of the signing equation.

Consequently, an interloper may seek using differential side channel analysis for gaining

information about long-term private key d. In other words, an interloper would try to get

21

information from the side channel over the course of signing multiple messages comparing the

differences between this information for acquiring information about private key d. It may also be

feasible to remove enough information about long-term private key d for compromising its secrecy

through examining those differences between the information upon multiple uses of private key d

(i.e. upon multiple signing operations). Menezes, van Oorschot and Vanstone, (1996) stated that

differential side channel analysis may compromise private key d with a greater probability if more

processes in which long-term private key d is directly utilized in each signing operation.

2.5.3. Rivest-Shamir-Adleman (RSA)

RSA is a public-key cryptosystem developed by Ron Rivest, Adi Shamir, and Leonard Adleman.

RSA involves the use of static keys, whereas the D-H key exchange algorithm required the

dynamic exchange of keys. The RSA system reduces communications overhead with the ability

to have static, unchanging keys for each receiver that are ‘advertised’ by a formal ‘trusted

authority’ (the hierarchical model) or distributed in an informal ‘web of trust’. The computational

problem that RSA addresses the integer factorization problem. For example, a simple

factorization problem is: What are the factors of the number 147? After trying a variety of

numbers, such as 2, 4 and 5, it is evident that they will not divide equally into 147.

 It soon becomes apparent that after experimenting with more numbers, 147 only has 3 and 7 as

factors. This example is very easy, and it is worth remembering that Rivest, Shamir, and Adleman

experimented with much larger numbers, numbers with over 100 digits. Subsequently, Rivest

discovered a method that provides secure communications and did not suffer the key distribution

problem. It can be used to encrypt messages and provide digital signatures. It is the most

commonly used asymmetric algorithm, with high level of security (Alan Dhillon: 2002).

21

To sign a message m by RSA algorithm, the private key [d, N] is used in the equation.

𝑆 ≡ 𝑚𝑑𝑚𝑜𝑑𝑁 (2.5)

To verify the signature, the public key [e, N] is used in the equation.

𝑚 ≡ 𝑆𝑒𝑚𝑜𝑑𝑁 (2.6)

Where N is the product of two large primes p and q.

If the message m = the received (m) then the sender is authentic and the message has integrity.

However, generally if RSA is used for signing a message, it is more efficient to sign a hash value

for the message rather than the message itself.

2.5.4. Digital Signature Algorithm (DSA)

As mentioned above, the Digital Signature Algorithm (DSA) is one of the variations of ElGamal

digital signature scheme. In this algorithm, a signatory, which has public and private keys, is used

to generate a digital signature of digital message; and a verifier to validate the authenticity of the

signature as well. The private key of the signatory is utilized in the signature generation process

whereas the public key is used in the signature verification process. For both signature generation

and verification, the data (which is known as a message) is decreased by means of the Secure Hash

Algorithm, like SHA which is identified in FIPS 180-1. Thus, the correct signature of the signatory

cannot be generated if an adversary does not know the private key of the signatory. For more

clarification, these signatures cannot be faked, however anyone can justify a correctly signed

message by using the signatory’s public key.

22

The verifier shall also gain the domain parameters in case the DSA is utilized for generating the

digital signature. These public key and domain parameters may be concerted between the two

communicating parties or gained from a trusted party (e.g., Certificate Authority, CA) (Atreya,

Hammond, Paine, Starrett, & Wu: 2002).

 To sign a message m digitally, the below equations are run to generate the signature, r and s:

qpgr k mod)mod( (2.7)

qxrmHks mod))((1  
 (2.8)

Whereas p, q, g, y are public parameters, which is long-term private key; k is a random integer

for each message.

For verification purpose, the following is performed:

qsw mod1 (2.9)

 qpygv qwrqwmH mod)mod.(()mod.(mod)).((
 (2.10)

If v = r then the signature is verified.

where ',,' msr  are the received signature and message.

23

2.5.5. Short Comparison

A brief comparison of the previous digital signature algorithms is listed in the following table.

Table (2.1) Comparison of Listed Algorithms

Algorithm Advantage Disadvantage

GOST

 Strong due to the change of random

number (k), so, every time new

cipher text is produced when the

same plain text encrypted.

 Signing time is shorter than DSA

and variants.

 Long verification time compared with

other digital signature algorithms

D-H *

 Challenging to find solutions for

discrete logarithms.

 No transmission of the shared key

transmitted over the channel.

 Require an expensive exponential

operation.

 Utilized for setting up a secret key only

rather than to encrypt or sign a

message

RSA *

 Signing (or verification) process

requires single equation.

 Calculating Key generator does

needs plenty of calculations.

 Operating slower than other symmetric

cryptosystems.

ElGamal *

 Strong due to the change of random

number (k), so, every time new

cipher text is produced when the

same plan text encrypted.

 Require randomness and slow-moving.

 Cipher text length is double than the

plan text.

DSA *

 Signature length does not depend on

the message length.

 Strong due to change of random key

for each message

 Probability of verification fail because

of S-1mod q if S=0

 Long verification time compared with

other digital signature algorithms

* (M. Rifaat, 2017)

24

2.5.6. Modified DSA Algorithm (M.DSA)

There are various customized versions of standard DSA algorithm that are supported by the NIST,

have been built up which ensured efficiency of the execution time measurement of either on the

signing side or the verification side. The M.DSA, which was developed lately has shown good

improvement in the verification time, and it will be included and compared with the proposed

GOST algorithm in later chapter for examination of execution time for signing and signature

verification.

In M.DSA versions, the equations contents of both signature and verification were altered. The

computation of signature s is adjusted at the sender side, while one equation of the DSA

verification calculation is deleted and the verification equation is also adjusted to accomplish the

signature validation at the received side. These adjustments have decreased the verification time

but reserved the same difficulty level for the signature and verification of NIST-DSA (M. Rifaat:

2017 and Ali, 2004). The M.DSA signing process consists of performing the following

calculations

qpgr k mod)mod( (2.11)

And qrmHxks mod))(..(1 (2.12)

But only s is modified. It is noted that the value of r is the same as in NIST-DSA. For the

verification process, the following equations are used instead of those for NIST-DSA.

𝑢1 = (𝐻(𝑚) + 𝑟)𝑚𝑜𝑑𝑞 (2.13)

 𝑢2 = (𝑠. 𝑢1)𝑚𝑜𝑑𝑞 (2.14)

𝑣 = (𝑦𝑢2 𝑚𝑜𝑑𝑝)𝑚𝑜𝑑𝑞 (2.15)

25

Then if the value of v is equal to the received r, the signature is verified, but if they do not have

the same value then the signature will be rejected.

2.5.7. GOST Digital Signature

 Another version of DSA algorithm is developed and used as standard by the Russian for

message signing and verification. It also utilizes primes numbers p, q, y, s, etc as DSA with the

following details (Schneier, B. 2000):

1. Prime number, p having length either between 509 to 512 or 1020 to1024 bits.

2. Prime factor q, such that its value less than p-1, namely in the range from 254 bits to 256-

bits long.

3. α (which corresponds to g in NIST-DSA). It is an integer with value less than p-1, such

that 𝑎𝑞𝑚𝑜𝑑𝑝 = 1.

4. An integer x, such that x < q. It is considered the private key for the signer.

5. The public key for the signer, y is calculated by the following equation.

𝑦 = 𝑎𝑥𝑚𝑜𝑑𝑝, (2.16)

The parameters p, q, g, and the public key y are all public, together with the hash function H.

2.5.7.1. Signing process

The signing process for GOST consists of calculating the signature parameters, r and s as follows.

𝑟 = (𝑎𝑘𝑚𝑜𝑑𝑝)𝑚𝑜𝑑𝑞 k (2.17)

𝑠 = (𝑥. 𝑟 + 𝑘(𝐻(𝑚))𝑚𝑜𝑑𝑞. (2.18)

26

2.5.7.2 Verification process

The signature verification for GOST algorithm can be achieved by the following calculations

𝑣 = 𝐻(𝑚)𝑞−2𝑚𝑜𝑑𝑞 (2.19)

𝑧1 = (𝑠. 𝑣)𝑚𝑜𝑑𝑞. (2.20)

𝑧2 = ((𝑞 − 𝑟) ∗ 𝑣)𝑚𝑜𝑑𝑞. (2.21)

Now, z1 and z2 are substituted in the following equation to produce u.

𝑢 = ((𝑎𝑧1 ∗ 𝑦𝑧2)𝑚𝑜𝑑𝑝)𝑚𝑜𝑑𝑞. (2.22)

If u=r, then the signature is authentic and the message is accepted, otherwise it is rejected.

2.5.8. Yen-Laih Digital Signature

A DSA variant which attempt to create a faster signature by computing the inverse of the fixed

private key x in advance and using it for each signature (Yen and Laih, 1995). The processes of

the Signature and verification are illustrated as follows:

2.5.8.1 Yen-Laih Signature Generating Process

The message m is first hashed using the hash function H and signed by calculating r and s as in the

following equations.

𝑟 = (𝑔𝑘𝑚𝑜𝑑𝑝) 𝑚𝑜𝑑𝑞 (2.23)

𝑠 = ((𝑟. 𝑘 − ℎ(𝑚)). 𝑥−1) 𝑚𝑜𝑑𝑞. (2.24)

The calculated signature r and s are then sent to the recipient, together with the message m.

27

2.5.8.2. Yen-Laih Verification Process

To verify the message signature, the verifier has to calculate u, using the following equations.

𝑤 = 𝑟−1𝑚𝑜𝑑𝑞. (2.25)

𝑢1 = (𝑤. (ℎ(𝑚))𝑚𝑜𝑑𝑞. (2.26)

𝑢2 = (𝑤. 𝑠)𝑚𝑜𝑑𝑞. (2.27)

 Then substitute u1 and u2 from equations (2.26) and (2.27) into equation 2.28 in order to

calculate v.

𝑣 = ((𝑔𝑢1. 𝑦𝑢2)𝑚𝑜𝑑𝑝)𝑚𝑜𝑑𝑞. (2.28)

Now if v=r, signature is authentic, otherwise it is not accepted.

2.5.9. McCurley Digital Signature

Within this algorithm, the DSA verification process has been developed by eradicating the

inverse from the computations on the verifier side to reduce the time complexity in order to

verify the signature. The processes of the calculation of the signature and verification are as

follows:

2.5.9.1. McCurley Signature Generating Process

To generate signature in this algorithm the signer has to calculate the following:

𝑟 = (𝑔𝑘𝑚𝑜𝑑𝑝) 𝑚𝑜𝑑𝑞. (2.29)

𝑠 = (𝑘. (ℎ(𝑚) + 𝑥 . 𝑟−1)𝑚𝑜𝑑𝑞. (2.30)

28

2.5.9.2. McCurley Verification Process

The verifier has to calculate u1 and u2 from equations 2.31 and 2.33, then compute v using equation

2.33.

𝑢1 = (ℎ(𝑚) . 𝑠)𝑚𝑜𝑑𝑞. (2.31)

𝑢2 = (𝑠. 𝑟)𝑚𝑜𝑑𝑞. (2.32)

𝑣 = ((𝑔𝑢1. 𝑦𝑢2)𝑚𝑜𝑑𝑝)𝑚𝑜𝑑𝑞. (2.33)

If v=r, then the message is authentic.

2.6. Review of Related Literature

To develop the signature processing time, several researchers have proposed some variant of DSA.

Thus, some of these variant will be listed here:

1. (Ali, 2004): this researcher offered a developed version of DSA that reduced the processing

time on the verification side, whilst the signing time stayed the same as that for NIST-DSA.

This achievement was by minimizing the number of exponentiation in the used equations

without any change to the parameter used in the NIST-DSA.

2. (Poulakis, 2009): suggested a modified variant of DSA which was based on a factorization

problem and known as digital signature algorithm. It resists all the identified attacks,

employs two discrete logarithms and maintains security strength at least equal to the

original DSA. In order to present two modular exponentiations and a modular

multiplication for the signature, this work has manipulated the properties of RSA

technique.

29

3. (Nguyen et al, 2011): submitted a paper mainly on functionality Extension of the Digital

Signature Standards. The utilized protocol here is on the ground of Belarusian digital

signature standards due to its flexibility and the possibility providing natural extension of

their functionality.

4. (Galego Hernandes Jr, Carvalho and Proenca Jr, 2014): employed Digital Signature to

underpin network management for aiding network administrators through traffic

characterization. Researchers have used the Digital Signature of network segment using

flow analysis as a method for explaining standard network behavior; and genetic algorithm

for optimizing the process.

5. (Singh, Kaur and Kakkar, 2015): presented a scheme for discovering any tampering and

supporting the image compression. Researchers recommended that there is a transmission

of a digital signature along with the image itself while the receiver will reproduce the

signature in a correspondence to the received image. They also added that if both signatures

are matching to each other, then the received image is authentic.

6. (Alpizer-chacon and Chacon-Rivas, 2016): applied digital signature to find a solution for

the problem of verification of the authors and the contents of learn objects in online

education via different repositories. They suggested that the author introduce his/her own

digital certification by uploading the learn object to repository.

7. (Dhagat and Joshi, 2016): described a technique for digital signature in utilizing another

singer as proxy. This scheme enables the sender to assign his signature to another signer,

declaring that their scheme will offer protection to proxy signer private key. So, the proxy

signer can put his/her signature instead of the original signer only within the validation

period, as this scheme is controlled by certification holding identity of signer, giving

31

duration and imposing rules on the signing ability delegation by the original signer.

Consequently, signer and proxy cannot deny each other as the scheme employs protected

nominative signature.

8. (SadrHaghighi and Khorsandi, 2016): Utilized digital signature for detecting pollution

attack in intra session Network coding and presented "Identity-based Digital Signature

scheme", They asserted that in using this signature, the intermediate nodes can sense bogus

packets and erase them before being combined with other packets. Additionally, the sender

can keep up to date its own keys with no change of the identity and there is no necessity

for a certificate management. Furthermore, the process of the verification is much faster in

this scheme in a comparison with previous work.

9. (M. Rifaat, 2017): proposed a modified version of Digital Signature Algorithm (DSA

which referred to as M.DSA) with a mathematical proof to improve the time complexity

measurement. An investigation for the DSA and four of the variations has been utilized to

scrutinize the impact of the digital signature parameters variations and their performance.

The average time for singing and verification for the original and modified DSA and all

other variants were computed for various parameter lengths of private keys, randomly

generated keys and messages with a comparison of all the results. The findings of the study

revealed that M.DSA has superior validation time in a comparison to others and the overall

time complexity was impressive with speed gain about two minutes the original DSA

overall time. The study has recommended that this modified version of DSA would be of

used for applications which require fast verification time.

31

Chapter Three

Methodology and The Proposed Work

32

Chapter Three

Methodology and The Proposed Work

3.1. Introduction

This chapter is intended to outline the proposed modification scheme to the GOST digital signature

algorithm. As the main purpose of the modification is to reduce the signature verification time,

the procedure for determining the execution time for both signing and verification is outlined first,

then the original GOST algorithm is investigated for various operational parameters, followed by

investigation of the modified algorithm (M.GOST) using the same parameters. A mathematical

proof of the correctness of the modified scheme is also included. Finally, few example are listed.

These investigations have demonstrated an improvement in reducing the signature verification

time.

3.2. The Methodology

GOST's principal design criterion doesn't seem to be computationally balanced, as the signing of

a message is fast compared with DSA algorithm and its variants while the signature verification is

much slower than others. It also has a key of double the size of that for DSA. This is mainly due

to the usage of the modulus q which is at least 255-bit long. During verification, the modular

inverses are computed by exponentiation and the generation of the public parameters is much more

complicate than in case of DSA. This choice of the parameters makes GOST algorithm more secure

as compared with DSA, obviously at the price of longer verification time.

The reason for fast signing process in GOST algorithm is that signers don't have to generate

modular inverses as the basic signature equation for calculating signature parameter, s is:

33

qmHkxrs mod)(.:  (3.1)

as compare with that for DSA, which is

qxrmHks mod))((: 1  
 (3.2)

Also, the hash function for GOST algorithm is the Russian equivalent of the SHA.

This chapter includes two parts; the first part is an investigation of the GOST algorithm for

message signing and message verification using various parameters and key lengths, while the

second part present the new modified version of GOST that is suggested to improve the time

measurement of the digital signature efficiency for signing and signature verification speed

measurements.

3.3. Investigation of GOST algorithm

3.3.1. Initialization

During the initialization of the system, a trusted authority generates two primes p,q with

the constraint that q| (p−1), and the public key generatorαis of order q. These values

are kept the same for the whole session (for the sake of comparison). Hence, the proposed

modified GOST digital signature algorithm, the original GOST algorithm, as well as any

other digital signature algorithm considered here will be investigated using the same

parameters: p, q, α, and the hash function H. However, the signer’s private key (x), public

key (y), and the random number (k) are selected and changed as required.

The investigation process will follow the flow chart shown in figure 3.1-a and figure

3.1-b in order to calculate the execution time for signing messages as well as their

verification time of different message sizes and contents using a range of parameter

values

34

Generate Prims p, q & g

Generate x, k & Calculate y

sDetermine signing time, t

Find H(m), Calculate v

𝐯 = 𝐇(𝐦)𝐪−𝟐 𝐦𝐨𝐝 𝐪

𝐳𝟏 = (𝐬. 𝐯)𝐦𝐨𝐝 𝐪

 𝐳𝟐 = ((𝐪 − 𝐫) ∗ 𝐯)𝐦𝐨𝐝 𝐪

𝒖 = ((𝛂𝒛𝟏 ∗ 𝒚𝒛𝟐) 𝒎𝒐𝒅 𝒑) 𝒎𝒐𝒅 𝒒

vDetermine Verification time, t

Print x, k, kp, kr, ts & tv

,

Need to repeat for

new random

number, k

Need to repeat for new

private key, x

End

G
en

er
a

te
 N

ew
 k

 G
en

er
a

te
 N

ew
 x

Yes

Yes

No

No

Start

Input m, Find H(m) Calculate the

signature r & s;

(mod p) mod q kr = α

𝐬 = (𝐱. 𝐫 + 𝐤(𝐇(𝐦)) 𝐦𝐨𝐝 𝐪

Figure (3.1-a) Flowchart for the

investigation of GOST digital signature

Algorithm

35

Input m, Find H(m) Calculate r & s

Generate Prims p, q & g

Generate x, k & Calculate y

sDetermine signing time, t

Find H(m), Calculate v

mod q1 -= s.r1 z

H(m) mod q1 -r-= 2 z

(mod p) mod q z2. yz1u = α

vDetermine Verification time, t

Print x, k, kp, kr, ts & tv

,

Need to repeat for

new random

number, k

Need to repeat for new

private key, x

End

G
en

er
a

te
 N

ew
 k

 G
en

er
a

te
 N

ew
 x

Yes

Yes

No

No

Start

Input m, Find H(m) Calculate the

signature r & s;

(mod p) mod q kr = α

s = (x.H(m) + kr) mod q

Figure (3.1-b) Flowchart for the

investigation of M.GOST digital

signature Algorithm

36

3.3.2. Public Key Generation

This procedure first determines the public key generator α after p and q have been

determined.

Select a random number
*
pZd 

Calculate pdf qp mod: /)1( (3.3)

If f=1, then go to step1.If f≠1thenα: =f.

Then, the public key for the signer is generated as follows:

A trusted authority chooses a large prime p, with
512509 22  p or

10241020 22  p ,and a prime divisor q,
256254 22  q ,with q| (p−1)

.Every user chooses a secret key x ∈ Zq and computes his related public key by

py x mod:  (3. 4)

To guarantee the security of the system, the public key so f the user must be certified

by a trusted authority although this is not explicitly mentioned in the standard.

3.3.3. Signature generation

The signature generation for the message m is done by the following algorithm.

Calculate H(m), the hash value of the message m, using the GOST hash function.

If H(m)≡0 (mod q) then set
12550:)(mH

Create the random integer
*

pzk

Calculate the two values, pkr mod: 

37

Then qpkqrr mod)mod(mod:  (3.5)

 Now r is one of the first elements of the signature, however if r= 0, pass to

step 2 and create another random number k.

 Using the signer’s secret key x, calculate the second element of the signature s using

equation 3.6.

qmHkrxs mod))(..(:  (3. 6)

If s=0, go to step 2.

The signature of the message m is the tuple (r and s) are then sent to the verifier.

3.3.4. Signature Verification

The verifier checks the authenticity of the message by checking the validity of the

signature. This is possible, if he/she knows the public key of the signer. The

signature verification consists of the following steps.

1. Verify the conditions 0<s<q and 0<r<q. If one of the second conditions

is not satisfied, the signature is not valid.

2. Calculate H(m), the hash value of the received message m, but if

H(m)≡0 (mod q), then set
12550:)(mH

3. The verification equation is

qmHrymHsr mod))(..)(.(  (3.7)

It can be checked by the following steps:

1. Calculate the value v as

qqmHv mod2)( . (3.8)

Which is the multiplicative inverse of qmH mod)(.

38

2. Compute the values qvsz mod.:1  (3.9)

And qvxz rq mod.:2

 (3.10)

3. Calculate the value

qpyu zz mod)mod.(: 21 (3.11)

4. Verify the condition r=u. If this check succeeds, the message is accepted as

authentic, i.e. it is really signed by the claimed signer, and otherwise it is rejected.

3.3.5. Signature Validation Proof

In order to have r=u, z1+xz2 should equal to k, therefore, substitution for z1 and z2 gives

qvxxqvs rq mod..mod. 

= qrqmHxmHmHkrx mod))).((.)().(..(11  
 (3.12)

But (q-r) mod q= -r mod q.

Substitution of the last equation results into:

= kqrmHmHkmHrx   mod).().(.)(.. 11
 (3.13)

(q.e.d.)

3.4. Proposed Measurements

- Security tests will be conducted to be satisfied with the modified scheme.

- Comprehensive comparison of the suggested scheme will be conducted with DSA and its

variants.

39

3.5. Modification of GOST

The modified M.GOST algorithm is aimed to produce improvements in the signature

verification processing time. Few alterations to the equations used for the calculation is done

that reduces the execution computation steps without affecting the security parameters that

were used for the original GOST algorithm. These alterations are written in details in the

following sections that include signing and verification. The mathematical proof of the

modified verification process is included next followed by a numerical example.

3.5.1. Create the digital Signature

Let the signature be as follows:

Having the message m,

1- Calculate the hash value of m, using SHA algorithm, i.e. h=H(m). (3.14)

2- Generate a random integer k for each message such that k < q.

3- Calculate the signature r and s as follows:

qpkr mod)mod( (3.15)

qrkmHxs mod).)(.( . (3.16)

4- The digital signature r & s parameters are sent to the verifier, together with message m.

3.5.2. Validate the signature

1- On receiving r, s, & m, calculate H(m), then determine H-1(m).

2- Let qrsz mod.: 1

1

 and . (3.17)

 qrmHz mod.).(: 1

2

 . (3.18)

41

3- Now calculate qpyu zz mod)mod.(21). (3. 19)

If u=r, then the signature is accepted, otherwise it is rejected.

3.5.3. Mathematical Proof

The received signature elements are r and s together with the message m. A mathematical

expression u will be obtained that is to be compared with expression for r, then exponents

are matched, as will be seen in the following steps.

1- Let qpyu zz mod)mod.(21 (3.20)

 qp
zxz

mod)mod2.
.1( (3.21)

 qp
zxz

mod)mod2.1(


  (3.22)

Substituting for z1 and z2, resulting into

 qpu
rmHxrs

mod)mod(
)).(..(11  

  (3.23)

but qpr k mod)(mod (3.24)

Therefore, if
1).(.1.  rmHxrs equals to k, then u=r (3.25)

Substitute for s into the exponent of α in equation 3.23, the exponent becomes:

1).(.1)..)(.( rmHxrrkmHx (3.26)

Now, simplifying equation 3.26 results into k, i.e. u = r.

(q.e.d.)

41

3.6 Example of application of the GOST algorithm

1. Initialization

 p = 3023

 q = 1511.

 h= 1351

g*: Public key generator.


qphg /1

 = 2332.

2. Key generation

 𝑥=250.

 pgy x mod

= 3023mod2332201

= 1991

Make 𝑦 public and keep 𝑥 secret.

3. Signature generation

Now we send the digitally signed message as follows

 𝑘 =2172.

 H(m) = 1702

 pgr k mod

= 3023mod23322172

= 451

* Parameter (g) in DSA algorithm is the same parameter (α) in GOST algorithm

42


1).(,  xmHkrs

 = 451+2172(1702*250^-1)

 = 263

The signature for M is (r, s) = (451, 263).

4. Signature verification

Now we verify the Signature of sender (r, s) on message M as follows

 smHu ).(1

 = 1457

 rmHu ).(2

 = 1121

 qpyv
uu

mod)mod(21

 = 1511mod)3023mod1991(11211457

 = 451

Accept, where 𝑣 =𝑟=451.

43

3.7 Example of application of the M.GOST algorithm

1. Initialization

 p = 3023

 q = 1511.

 h= 1351

g*: Public key generator.


qphg /)1(

 = 2332.

2. Key generation

 𝑥=387

 pgy x mod

= 3023mod2332387

= 2034

Make 𝑦 public and keep 𝑥 secret.

3. Signature generation

Now we send the digitally signed message as follows

 𝑘 =156.

 H(m) = 505

 pgr k mod

= 3023mod2332156

= 483

* Parameter (g) in DSA algorithm is the same parameter (α) in GOST algorithm

44


1).(.  xmHkrs

1387.505.156483 

 = 314

The signature for M is (r, s) = (483, 314).

4. Signature verification

Now we verify the Signature of sender (r, s) on message M as follows

 qsrz mod. 1

1



 = 326

 qrmHz mod).(1

2



 = 390

 qpyv
zz

mod)mod.(21

 = 483

Accept, where 𝑣 =𝑟=483.

45

Chapter Four

Implementation and Results

46

Chapter Four

Implementation and Results

4.1 Introduction

This chapter displays the implementation of GOST Algorithm and the proposed

M.GOST algorithm, as well as a comparison with another four algorithm variants, namely

Yen-Laih, McCurley, NIST-DSA, and M.DSA, which were examined, too. This

examination included the signing and verification execution time for different keylengths

and different message lengths and contents. For the coding and testing purpose, Microsoft

Visual Studio Integrated Development Environment using C# language has been utilized in

this study. The BigO values for all the considered algorithms were evaluated and they are

compared with each other. Finally, the execution speed gains for the M.GOST over other

algorithms are calculated and compare.

4.2 Digital Signature Implementation

This section tackles the digital signature implementation for both the standard GOST

algorithm and the modified M.GOST algorithm in order to scrutinize and compare the

suggested improved scheme with the standard GOST. This scrutinizing and comparison will

be according to various values for the private key of the signer and the random integer

number k that is used for each message. This study is carried out first for values of the

randomly chosen prime numbers p, and divisor q, then integer values h to generate the values

of g, which used to generate the signee public y as illustrated below in table 4.1.

47

Table (4.1) Parameters of GOST and M.GOST Algorithms with Prime values

Parameters GOST M.GOST

p √ √

q √ √

h √ √

g qphg /1

From the table above, we can say that the GOST algorithm and M.GOST algorithm take the same

parameters In this thesis, the values of p and q were selected with random primes values and h

values were added to generate g values. These values of p, q, h were allocated the same values in

GOST and M.GOST algorithms in order to be able to compare them correctly.

In above Table GOST and M.GOST algorithms take the same parameters (p, q and h values) to

generate the value of g but these parameters take randomly primes values.

The signing time and the signature verification time are calculated for different values of the

private key x in order to find different values of the corresponding public key.

 For each value of the private key x, the signing time is measured for different values of the

random integer number k. Then the average time is calculated for 10 different values of the

random integer number k is calculated for different values of the random integer number k. The

signature verification process is done for each of the signed messages and their execution time is

measured too.

48

This test is done to see the effect of key length on the time measurement. The obtained results are

listed in table 4.2

Table (4.2) comparison of execution time for different key lengths for

GOST signature and verification

No. of digits x

Private Key

k

Random number for

each message

Execution time in (msec)

Signing Signature Verification

2 Digits

36

36 0.44 0.89

142 0.35 0.89

153 0.33 0.93

390 0.44 11.1

721 0.35 10.2

858 0.44 0.93

1366 0.44 0.98

1749 0.44 10.2

2223 0.44 0.98

2571 0.44 10.2

49

3 Digits

772

250 0.35 10.2

434 0.35 0.80

731 0.40 10.2

1112 0.40 0.93

1345 0.44 0.98

1572 0.40 10.2

2065 0.40 0.80

2130 0.44 11.1

2248 0.53 11.1

2517 0.44 10.7

4 Digits

1017

84 0.31 0.98

1066 0.40 10.2

1962 0.40 0.98

2197 0.44 0.93

2297 0.40 0.93

2787 0.44 0.93

2799 0.44 10.2

2867 0.40 0.93

2917 0.44 10.2

2927 0.49 0.98

Average Time 0.41 5.05

51

Table (4.3) comparison of execution time for different key lengths for

M.GOST signature and verification

No. of digits x

Private Key

k

Random number for

each message

Execution time in (msec)

Signing Signature Verification

2 Digits

71

302 0.22 0.35

544 0.17 0.35

902 0.22 0.35

1121 0.22 0.35

1532 0.26 0.40

1946 0.26 0.40

2189 0.22 0.44

2265 0.26 0.35

2510 0.26 0.40

2613 0.26 0.40

51

3 Digits

244

42 0.26 0.75

219 0.35 0.66

355 0.35 0.66

690 0.35 0.62

743 0.53 0.71

1134 0.44 0.53

1175 0.44 0.62

1305 0.40 0.66

1413 0.40 0.62

2059 0.40 0.66

52

4 Digits

1115

2210 0.53 0.71

491 0.44 0.53

975 0.58 0.71

1045 0.44 0.84

1136 0.94 0.71

1873 0.58 0.75

2185 0.53 0.80

2397 0.53 0.66

2797 0.58 0.84

2902 0.49 0.80

Average Time 0.40 0.59

Different message lengths are used for testing the execution time for both the original

(GOST) algorithm and modified algorithm (M.GOST) and the results are listed in table (4.4)

and table (4.5). Message lengths used were (20, 40, 60, 80 and 100 characters) and the private

key length of 100 digits.

53

Table (4.4) Signing Time Calculation for GOST & M.GOST signature with p, q and g

of Length of 100 Digits

Length of

Message

Characters

The used message * GOST Average

Signature time in

(msec)

M.GOST Average

Signature time in

(msec)

20 I am extremely happy 37.28 13.93

40 The weather was beautiful

yesterday

32.05 36.91

60 English language is one of

the international

languages today

29.33 41.30

80 Some people preferably

choose to use the private

vehicles due to the

convenience

28.47 42.18

100 The governments should

encourage their residents

to use public

transportations as it brings

benefits

28.19 23.74

Overall average time 31.06 31.61

* The space is considered as character

54

The figure (4.1) below illustrates the accuracy of the results.

Figure (4.1) Signing Time Calculation for GOST & M.GOST signature with p, q and

g of Length of 100 Digits

0

5

10

15

20

25

30

35

40

45

20 40 60 80 100 Overall
average

time

GOST Average Signature time in (msec) M.GOST Average Signature time in (msec)

55

Table (4.5) Verification Time Calculation for GOST & M.GOST verification with p, q

and g of Length of 100 Digits

Length of

Message

characters

The used message * GOST Average

Verification time

in (msec)

M.GOST Average

Verification time

(msec)

20 I am extremely happy 86.97 22.66

40 The weather was beautiful

yesterday

74.43 46.36

60 English language is one of the

international languages today

67.62 64.34

80 Some people preferably choose

to use the private vehicles due

to the convenience

65.47 65.67

100 The governments should

encourage their residents to use

public transportations as it

brings benefits

64.55 37.70

Overall average time 71.81 47.34

* The space is considered as character

56

The figure (4.2) below illustrates the accuracy of the results.

Figure (4.2) Verification Time Calculation for GOST & M.GOST verification with p,

q and g of Length of 100 Digits

The execution time for different message lengths does note very with message length,

because only the hash values of the message is involved in the calculations which is always

of the same length. However, the noticed variation in the time can be attributed to the

computation environment time complexity. Usually the average time is compered rather than

the time itself in order to have more realistic comparison.

0

10

20

30

40

50

60

70

80

90

20 40 60 80 100 Overall
average

time

GOST Average Verification time in (msec) M.GOST Average Verification time (msec)

57

4.3 Digital Signature Comparison

The average signing, verification, and total computation time is calculated for various

digital signature algorithms under consideration using large number of rounds (namely 100

different keys) in this thesis, the algorithms that are considered for comparison with the

proposed algorithm in this thesis (i.e. M.GOST) to be compared with are: GOST (Bruce, S.

,1996), DSA (NIST), M.DSA (M. Rifaat, 2017), Yen-Laih (Yen, S. M., & Laih, 1995), and

McCurley (Schnier,1996).

The results summary of the calculations is listed in table (4.6). While the detailed

calculation results for each algorithm.

Table (4.6) The Average of signing and verification Times in Comparison for M.GOST

with other DSA algorithms

NO. Algorithms Avg. signature time

(msec)

Avg. verification

time (msec)

1. GOST 31.06 71.81

2. M.GOST 31.61 47.34

3. McCurley 36.05 47.66

4. Yen-Laih 36.00 51.22

5. DSA 35.86 50.88

6. M.DSA 36.52 23.86

58

The figure (4.3) below illustrates the accuracy of the results.

Figure (4.3) The Average signing and verification Times Comparison for Several

Algorithms with M.GOST

In order to visualize the execution time clearly, the obtained values of Table 4.6 are normalized to

the highest execution time and listed in Table 4.7, the plotted in Figure 4.4 for both signing and

verification processes. It shows the improvement in the verification time for M.GOST algorithm

compared with that for GOST and how it compares with other DSA algorithms. I must be noted

that these measurements were taken for signing and verification of the same message using the

same parameters on the same computing environment.

GOST Sign

15% GOST Verify

25%

M.GOST Sign

15%

M.GOST Verify

16%

McCruley Verify

16%

McCruley Sign

17%
Yen-Laih Verify

18% Yen-Laih Sign

17%

DSA Sign

17%

DSA Verify

17%

M.DSA Sign

18%

M.DSA Verify

8%

59

Table (4.7). The Normalized signing and verification execution time comparison for

M.GOST and other algorithms (Normalized to the highest execution time)

NO. Algorithms Signing time (msec) Verification time (msec)

1. GOST 0.433 1

2. M.GOST 0.440 0.659

3. McCurley 0.502 0.664

4. Yen-Laih 0.501 0.713

5. DSA 0.499 0.709

6. M.DSA 0.509 0.332

Figure (4.4-a) Comparison of the normalized signing time for M.GOST with other

algorithms.

N
o
rm

al
iz

ed
 E

x
ec

u
ti

o
n
 T

im
e

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

GOST M.GOST McCurley Yen-Laih DSA M.DSA

Signing time (msec)

61

Figure (4.4-b) Comparison of the normalized verification time for M.GOST with other

algorithms.

4.4. Algorithms Signature and Verify complexity (M. Rifaat, 2017)

One of the most significant measures for cryptographic algorithm development is the time

complexity where Big O notation is the most well-known usage measure. It categorizes the

cryptographic algorithm into the principle classes of algorithm time complexity. This section will

present the GOST signature of the message hash that includes two values r and s as a measure of

each Digital Signature Algorithm. A complexity calculation will be functioned for both of them

for GOST, M.GOST, DSA, M.DSA, McCurley, and Yen-Laih algorithms. Later, a comprehensive

complexity of the signature will be done for all of algorithms signature complexity.

N
o
rm

al
iz

ed
 E

x
ec

u
ti

o
n
 T

im
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GOST M.GOST McCurley Yen-Laih DSA M.DSA

Verification time (msec)

61

4.4.1. GOST Signature complexity

qpr k mod)mod( (4.1)

qpOrO k mod)mod()(

)(log)(nOrO  𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜𝑓𝑎𝑠𝑡 𝑝𝑜𝑤𝑒𝑟 𝑎𝑙𝑔𝑜𝑟𝑖𝑡h𝑚.

qmHkrxs mod))(..( (4.2)

qmHkrxOsO mod))(..()(

(𝑠) = 1.

Therefore,

(𝑠𝑖𝑔𝑎𝑛𝑡𝑢𝑟𝑒) =(log𝑛)

4.4.2. GOST Verify complexity

GOST verification has four steps as follows:

qmHv q mod)(2 (4.3)

qvsz mod).(1  (4.4)

qvrqz mod).(2  (4.5)

qpyu
zz

mod)mod.(21 (4.6)

)mod)(()(2 qmHOvO q

62

𝑂(𝑣) = (𝑙𝑜𝑔𝑛)

)mod.()(1 qvsOzO 

(𝑧1) = 1.

)mod).(()(2 qvrqOzO 

(𝑧2) = 1.

qpyOuO
zz

mod)mod).(()(21

)log2()()(log)(log)(nOuOnOnOuO 

 Therefore,

𝑂(𝑉𝑒𝑟𝑖𝑓𝑦) =)log2()(log)()(nOnOvOuO 

(𝑣𝑒𝑟𝑖𝑓𝑦) =(3log𝑛)

4.4.3. M.GOST Signature complexity

qpr k mod)mod( (4.7)

)mod)mod(()(qpOrO k

)(log)(nOrO  𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑓𝑎𝑠𝑡 𝑝𝑜𝑤𝑒𝑟 𝑎𝑙𝑔𝑜𝑟𝑖𝑡h𝑚.

qrkhxs mod)..( (4.8)

)mod)..(()(qrkhxOsO 

63

(𝑠) = 1.

Therefore,

(𝑠𝑖𝑔𝑎𝑛𝑡𝑢𝑟𝑒) =(log𝑛)

4.4.4. M.GOST Verify complexity

M.GOST verification has three steps as follows:

qrsz mod. 1

1

 (4.9)

)mod.()(1

1 qrsOzO 

1)(1 zO

qhrz mod).(1

2

 (4.10)

)mod).(()(1

2 qhrOzO 

1)(2 zO .

qpyu
zz

mod)mod.(21 (4.11)

)mod)mod.(()(21 qpyOuO
zz

)log2()(log)(log)(nOnOnOuO 

 Therefore,

𝑂(𝑉𝑒𝑟𝑖𝑓𝑦) =)log2()(nOuO 

64

𝑂(𝑣𝑒𝑟𝑖𝑓𝑦) =)log2(nO

Table (4.8) Summary of the result of computations previous algorithm and compare

their Big O complexity

NO. Algorithm Avg.

signature

time (µsec)

Signature

Big O

Avg.

verification

time (µsec)

Verification

Big O

Total Big O

1. GOST 31.06 Logn 71.81 3logn 4logn

2. M.GOST 31.61 Logn 47.34 2logn 3logn

3. McCurley* 36.05 2logn 47.66 2logn 4logn

4. Yen-Laih* 36.00 2logn 51.22 3logn 5logn

5. DSA* 35.86 2logn 50.88 3logn 5logn

6. M.DSA* 36.52 2logn 23.86 Logn 3logn

* The results of the (McCurley, Yen-Laih, DSA, M.DSA) algorithms were obtained from

(M. Rifaat, 2017)

65

4.5. Signature and Verification Speed of GOST and M.GOST Algorithms

The execution speed improvement in the signature and / or the verification processes for the

M.GOST will be calculated and compared to those for the other algorithms, by dividing the

average of GOST algorithm execution time by the average time of M.GOST. As indicated in the

following tables.

4.5.1. Signature Speed Gain for M.GOST to other algorithms

The attempts to modify GOST's signing execution time is to have the best speed. Success in

speeding up is one goal, but nevertheless can’t achieve gains for all goals such as making

improvements for both signing and signature validation. The Signing Speed Gain (SSG) of

M.GOST over GOST algorithm for example can be computed by equation 4.12.

 %100*
. timeGOSTM

timeGOST
SSG




 (4.12)

 %98%100*
61.31

06.31


In the same way, the signature speed for all other algorithms are calculated and listed in

Table (4.9) below

66

Table (4.9) Signature Speed Gain for M.GOST to other algorithms

NO. Algorithm Avg. signature time

(msec)

M.GOST Avg.

signature time

(msec)

M.GOST Signature speed

gain over other algorithm

1. GOST 31.06 31.61 0.98

2. McCurley 36.05 31.61 1.14

3. Yen-Laih 36.00 31.61 1.14

4. DSA 35.86 31.61 1.13

5. M.DSA 36.52 31.61 1.16

If the obtained signing speed gain value is more than 1, it means that there is improvement in the

execution speed. Hence less than 1 values mean there is deterioration in the execution speed.

4.5.2. Verification Speed Gain for M.GOST to other algorithms

M.GOST provides greater efficiency over GOST algorithm for the evaluated time of verification

and also over some other algorithms. Verification Speed Gain (VSG) calculations for M.GOST

algorithm with respect to GOST algorithm are achieved by equation 4.13.

%100*
. timeGOSTM

timeGOST
VSG




 (4.13)

 52.1%100*
34.47

81.71


67

By the same way, the speed for verification is calculated for all other algorithms. The results are

summarized in Table (4.10)

Table (4.10) Verification Speed Gain for M.GOST to other algorithms

NO. Algorithm Avg. verification

time (msec)

M.GOST Avg.

verification time

(msec)

M.GOST speed over

other algorithm

1. GOST 71.81 47.34 1.52

2. McCurley 47.66 47.34 1.01

3. Yen-Laih 51.22 47.34 1.08

4. DSA 50.88 47.34 1.07

5. M.DSA 23.86 47.34 0.50

68

Chapter Five

Conclusions and Future Work

69

Chapter Five

Conclusions and Future Work

5.1. Conclusions

The purpose of this thesis is to improve the digital signature algorithm by reducing the complexity

of signature time and the signature verification time. The authentication of the sender identity has

been achieved by reducing the calculation steps in the original GOST while maintaining the same

parameters strength. From practical experience, the following conclusions can be drawn:

 The digital signature mechanism provides authentication of the sender's identity in terms

of the integrity of the data transmitted by the other party, even if the communication

channel is unsafe.

 The proposed M.GOST model, by reducing the processing steps, showed a shorter

verification time compared to the original GOST algorithm in terms of signature time and

verification time as well as other algorithms such as DSA and its variants; Yen-Laih, and

McCurley.

 The study showed that the time of signing for the M.GOST algorithm was faster, but the

verification time was slower than the M.DSA algorithm.

 Big O accounts are included in the search to visualize the obtained optimization, which

means an improvement in the time complexity of the algorithm

71

 It was observed that the time of the calculation fluctuates according to changes of the

private key length and the generated random number, thus the average time for a large

number of experiments is taken for all measurements. This indicates that the length of the

private key, the random integer, and message does not affect the speed of the signature, but

this action is the reason for the improvement in account time.

5.2. Future work

Future work on the digital signature may extend to the following problems:

 Implement the proposed GOST algorithm in certain applications such as commercial

applications, e-government, e-banking and e-elections. Security and military.

 The implementation of this technique helps to control the systems of personal

identification, intrusion detection and penetration of transmitted data.

 It may also be useful to improve them in coordination with biometrics to generate a

signature.

 Due to the quick signature process of the GOST Digital Signature algorithm and the

M.GOST Digital Signature algorithm and the application obtained in the signature

validation process, these two algorithms can be combined to look for further

improvements in the GOST that can be achieved for signing and verification.

71

References

 Ali H. A. (2004). Improved Verification Speed Enhancement for Digital Signature Using

Discrete Algorithm Variant. Journal of the Association of the Advancement of Modeling

and Simulation Techniques in Enterprises (AMSE), Signal Processing and Pattern

Recognition, Vol. 47, No. 4, France.

 Alpizar-Chacon, I., & Chacon-Rivas, M. (2016). Authenticity and versioning of learning

objects using the digital signature infrastructure of Costa Rica. In Learning Objects and

Technology (LACLO), Latin American Conference on IEEE.

 Atreya Mohan, et al (2002). Digital Signatures. USA.

 Chang, X. (2009). PDFeH: A PDF Based Generic Teacher-Student E-Homework System.

In Computational Intelligence and Software Engineering, 2009. CiSE 2009. International

Conference on IEEE.

 Dhagat, R., & Joshi, P. (2016). New approach of user authentication using digital signature.

In Colossal Data Analysis and Networking (CDAN), IEEE.

 Dhillon, Alan (2002). A Web-Based Tutorial on Digital.

 Diffie, W., & Hellman, M. (1976). New directions in cryptography. IEEE transactions on

Information Theory, 22(6).

 ElGamal, T. (1984). A public key cryptosystem and a signature scheme based on discrete

logarithms. In Workshop on the Theory and Application of Cryptographic Techniques

Springer Berlin Heidelberg.

 ElGamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete

logarithms. In Workshop on the Theory and Application of Cryptographic Techniques.

Springer Berlin Heidelberg.

72

 Gallagher, P., & Kerry, C. Fips pub 186-4: Digital signature standard, DSS (2013).

 Hernandes, P. R. G., & Carvalho, L. F. (2014, November). Digital Signature of Network

Segment Using Flow Analysis through Genetic Algorithm and ACO Metaheuristics. In

Chilean Computer Science Society (SCCC), 2014 33rd International Conference of the.

IEEE.

 IEEE Potentials, Volume: 25, Issue: 2, March-April 2006.

 Kerry, Cameron F. & Gallagher, Patrick D. (2013), Federal Information Processing

Standers Publication, Digital Signature Standard (DSS), National Institute of Standards and

Technology, Issue July 2013.

 Menezes, A. J., Van Oorschot, P. C., & Vanstone, S. A. (1996). Handbook of applied

cryptography. CRC press.

 Nguyen, Minh Hoai, et al, 2016, Deep learning for analyzing synchrotron data streams,

New York Scientific Data Summit (NYSDS),IEEE Conferences

 Paul, Eliza (2017). Introduction to Digital Signatures.

 Poulakis, D. (2009). A variant of digital signature algorithm. Designs, codes and

cryptography, 51(1).

 Merkle, R. C. (1989), A Certified Digital Signature, Advance in Cryptology-Crypto’89,

Springer-Verlag’.

 Rifaat, Mohammed Mustafa (2017). Computation Complexity Improvement for Digital

Signature Algorithm. (Unpublished Master’s Thesis), Middle East University, Amman,

Jordan.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=45
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=34572
https://ieeexplore.ieee.org/document/7747813/
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7731593
http://www.emptrust.com/blog/author/paul

73

 Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM, 21(2)

 S. Yen, C. Laih, Improved Digital Signature Suitable for Batch Verification, IEEE

Transaction on Computers, vol.44, No.7, July 1995.

 SadrHaghighi, S., &Khorsandi, S. (2016). An identity-based digital signature scheme to

detect pollution attacks in intra-session network coding. In Information Security and

Cryptology (ISCISC), 2016 13th International Iranian Society of Cryptology Conference

on IEEE.

 Schneier, B. (2000). Applied Cryptography Second Edition: protocols, algorithms, and

source. Beijing: China MachinePress.

 Schnorr, C. P. (1989). Efficient identification and signatures for smart cards. In Conference

on the Theory and Application of Cryptology (pp. 239-252). Springer New York.

 Singh, M., Kaur, H., & Kakkar, A. (2015). Digital signature verification scheme for image

authentication. In 2015 2nd International Conference on Recent Advances in Engineering

& Computational Sciences (RAECS). IEEE.

 Stallings, W. (2006). Cryptography and Network Security: Principles and Practice.

 Xin, Li (2007), An Improvement of Diffie-Hellman Protocol, Network & Computer

Security, vol. 12.

74

Appendix A

GOST & M.GOST Algorithms Interfaces

1- GOST Algorithm

75

76

2- M.GOST Algorithm

77

78

Appendix B

 كتاب الاستلال

