

Strengthening the MD5 File Integrity Algorithm

with User Fingerprint

 باستخدام بصمة المستفيد MD5تعزيز أداء خوارزمية سلامة الملفات

Prepared by

Marwa Hussein Issa Al-Awawdeh

Supervisor:

Dr. Mudhafar Al-Jarrah

Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master of Computer Science

Department of Computer Science

Faculty of Information Technology

Middle East University

June, 2019

II

Authorization

III

Discussion Committee Decision

IV

Acknowledgment

All praise and thanks are due to the Almighty Allah who always guides me to the right

path and has helped me to complete this thesis. There are many people whom I have to

acknowledge for their support, help, and encouragement during the journey of preparing

this thesis. So, I will attempt to give them their due here, and I sincerely apologize for

any omissions.

First and foremost, I would like to record my heartfelt gratitude to my supervisor Dr.

Mudhafar Al-Jarrah for his skillful supervision, advice and patient guidance throughout

the work. Above all and the most needed, he provided me unflinching encouragement

and support in various ways. I am really indebted to him more than he knows.

I would also like to express my deepest gratitude to all the respectable lecturers at the

Faculty of Information Technology, Middle East University and special thanks to the

Graduate School Office and the Library Staff and for everyone who supported me

especially my colleague to accomplish this work.

The Researcher

V

Dedication

To:

My parents who have always loved me unconditionally and whose good

examples have taught me to work hard for the things that I aspire to

achieve.

My beloved brothers and sisters for their love and kindness, endless

support and encouragement.

Everyone gives me support.

I dedicate this thesis.

The Researcher

VI

Table of Contents

Title .. I

Authorization ..II

Discussion Committee Decision ... III

Acknowledgment .. IV

Dedication .. V

Table of Contents .. VI

List of Tables ... VIII

List of figures .. IX

List of Appendix .. X

Table of Abbreviate .. XI

English Abstract ... XII

Arabic Abstract .. XIII

Chapter One: Background And The Study Importance

1.1 Introduction ... 2

 1.1.1 Fingerprint recognition ... 5

1.2 Problem statement ... 6

`1.3 Goal and objectives ... 7

1.4 Research questions .. 8

1.5 Motivations ... 8

 1.6 Expected Contribution ... 9

Chapter Two: Theoretical Background and Literature Review

2.1 Introduction11

2.2 Theoretical background.... 11

2.3 Introduction to cryptography .. 12

2.4 Hash function .. 14

 2.4.1 Application of hash function ... 16

 2.4.1.1 Digital signature ... 16

 2.4.1.2 Password protection ... 16

2.5 Description of MD5 .. 16

2.6 MD5 collision attacks ` ... 19

2.7 Description of MD521

2.8 Data integrity checksum ... 23

VII

2.9 Fingerprint recognition ... 24

2.10 Comparative study of message Digest MD5 and SHA Algorithm 25

 2.10.1 Description of SHA256 algorithm ... 26

 2.10.2 Description differences between MD5 and SHA 26

2.11 Related work ... 28

2.12 Summary ... 32

Chapter Three: Methodology and the Proposed Work

3.1 Introduction ... 34

3.2 The methodology .. 34

3.3 Investigation of the original MD5 algorithm ... 35

 3.3.1 Simple test on MD5 .. 40

3.4 The proposed MDM protocol ... 40

3.5 The proposed changes ... 40

 3.5.1 The method of operation ... 45

 3.5.2 Create checksum ... 50

 3.5.3 Decode step ... 52

3.6 Proposed measurements ... 54

3.7 The method of evaluation ... 54

Chapter Four: Implementation and Results

4.1 Introduction ... 56

4.2 MDM implementation .. 56

 4.2.1 System One ... 57

 4.2.2 System two .. 62

 4.2.3 System three .. 65

4.3 Comparative study on MDM .. 70

4.4 Test result .. 73

4.5 Proving attacks ... 74

Chapter Five: Conclusion and Future Work

5.1 Conclusion ... 83

5.1 Future work ... 84

References ... 86

Appendix A ... 93

VIII

List of Tables

Chapter number-

table number Table content Page

Table 2.1 Comparison between MD5 and SHA 26

Table 2.2 Similarities between MD5 and SHA Algorithms 26

Table 2.3
Comparison between MD5 and SHA hash algorithm on

general properties basic
27

Table 3.1 result table 40

Table 4.1 Comparative time of execution 71

Table 4.2 MDM results 73

IX

List of Figures

Chapter number-

figure number
Table content Page

Figure 2.1 hash function 15

Figure 2.2 the discerption of the MD5 21

Figure 2.4 Graph about average running time MD5 and SHA256 29

Figure 3.1 Create message digest using new MD5 47

Figure 3.2 Create checksum value using new MDM 52

Figure 3.3 Decode step using the new MD5 53

Figure 4.1 – 4.20 MDM implementation 58 – 70

Figure 4.21 – 4.320 Proving attacks 72 - 81

X

List of Appendixes

Appendixes A Contract

Page 94

XI

Table of Abbreviations

DES Data Encryption Standard

3-DES Triple Data Encryption Algorithm

LCM least common multiple

MD4 Message Digest 4

MD5 Message Digest 5

MDM Message Digest Modification

RC4 Complement-Receptor Type 4

RC5 Complement-Receptor Type 5

RFC Request For Comment

RSA Rivest, Shamir, and Adelman

SHA256 Secure Hash Algorithm 256

XII

Strengthening the MD5 File Integrity Algorithm with User Fingerprint

Prepared by

Marwa Hussein Issa Al-Awawdeh

Supervisor

Dr. Mudhafar Al-Jarrah

Abstract

The MD5 (Message Digest 5) is one of the algorithms used in digital signature processes

as well as password protection to secure the integrity of both data source and the file

manipulates. Over the past few years, the weakness in the original algorithm MD5 has

been proved, The MD5 algorithm has an equal speed of SHA256 (Secure Hash Algorithm

256) where these algorithms differ in terms of security and execution speed to produce

the hash value. But it is limited in terms of proving such an occurrence of a collision

attack, which limited its Performance, and thus seeking to improve security in the MD5

becomes a mandatory requirement.

This thesis presents a new version of the algorithms used in Hash operations called MDM

(Message Digest Modification), Its main goal is to improve the security level in MD5 and

solve the problem of the main vulnerability by using variable values, which are not fixed

in the original algorithm and are taken from the fingerprint, which maintaining the basic

structure of the original algorithm. Also the thesis contains the comparisons of the

implementation time difference to illustrate the strength of the new algorithm.

Then an adequate explanation and summary of the original MD5 algorithm is made, and

also the weak point is identified in order to determine the general weakness of the

algorithm. After that the proposed modifications are clarified and applied to produce a

new MDM algorithm and compared with the other model as well as the algorithm

currently adopted in SHA256 in terms of safety and execution time and 128bit out of

message digest. The results indicate the strength of the new algorithm, and its

significantly higher speed, even while using different file sizes. So, it is recommended to

use the new MDM algorithm in applications requiring greater security and faster

execution, for digital signature, verification and password protection.

Keywords: digital signature algorithms, authenticity, MD5, signature verification

time complexity, cryptography, hash functions.

XIII

 باستخدام بصمة المستفيد MD5 مة الملفاتتعزيز أداء خوارزمية سلا
 إعداد

 مروه حسين عيسى العواوده
 المشرف

 د. مظفر الجراح
 الملخص

في عمليات التوقيع الالكتروني وحماية كلمات المرور ةحدى الخوارزميات المستخدمإهي MD5 تعد

بت أث الماضيةلضمان صحة مصدر البيانات وسلامة الملفات من التعديلات. على مدار السنوات

ول ميات اخرى التنافس على المركز الأتاح المجال لخوارز أمما ةالاصلي ةضعف في الخوارزمي وجود

ذه تختلف ه حيث وسرعتها،لتي صنفت تبعا لقوتها والعديد غيرها ا SHA256 خوارزميةمثل

بسرعه MD5خوارزمية تتمتع التجزئة،نتاج قيمة مان وسرعة التنفيذ لإلأالخوارزميات من حيث ا

ضعف أثبات وجود هجوم التصادم مما إضعف من ناحية أولكنها SHA256 خوارزميةمساويه ل

 . MD5 خوارزميةمان في لألى تحسين مستوى اإوبالتالي يتم السعي ،دائهاأ

 ميةخوارز في عمليات الهاش تسمى ةه جديده من الخوارزميات المستخدمنسخ الرسالةتقدم هذه

MDMخوارزميةمان في ف الرئيسي منه هو تحسين مستوى الأ. الهد MD5 وحل مشكلة الضعف

 الإصبع،صمة وتؤخذ من ب الأصلية ةفي الخوارزمي ةغير الثابت ةمتغير عن طريق استخدام قيم الرئيسية

ت التنفيذ قعلى مقارنات لفرق و ةتحتوي الرسال ،الأصلية ةساسي للخوارزميمع الحفاظ على البناء الأ

 .ةالجديد ةلتوضيح قوة الخوارزمي

لمعرفة فيها،ثم تحديد نقطة الضعف MD5 الأصلية ةء توضيح كافي وموجز عن الخوارزميجراإيتم

جديده ةارزمينتاج خو لإوتطبيقها المقترحةتتم بعدها توضيح التعديلات للخوارزمية،الضعف العام

MDM خوارزمية المعتمد حاليا في عمليات الهاش ةنتها بالنموذج القديم والخوارزميومقار SHA256

XIV

سرعة تنفيذ و ةالجديد ةتشير النتائج الى قوة الخوارزمي مان والوقت المستغرق بالتنفيذ.من حيث الأ

 ةجديدال ةام الخوارزمييوصى باستخد لذلك،. ةباستخدام أحجام ملفات مختلف ملحوظ،قل وبشكل أ

MDM ات المرور. قل للتوقيع والتحقق وحماية كلمأتنفيذ ةكبر وسرعأفي التطبيقات التي تحتاج أمانا

 التوقيع،تزمن التحقق من صحة ،MD5 الموثوقية، الرقمي،الكلمات الرئيسية: خوارزميات التوقيع

وظائف التجزئة. التشفير،

1

Chapter One

Background and the study Importance

2

CHAPTER ONE

Background and the study Importance

1.1 Introduction

The increasing use of information systems, the proliferation of technology that makes

users more dependent on the computer and the digital network have all revealed new

risks to computer system security. The traditional way of providing security fails to

keep pace with the dangers; as a result, researchers are looking for a new ways to

provide the highest levels of security, to maintain the integrity of information and the

absence of any manipulation. At present, there are many mechanisms to ensure that

information is fully accessible that there is no change on their content, and also are

currently dealing with ways to confirm the identity of the sender as well as the digital

signature.

A digital signature is a mathematical scheme to validate digital messages or documents

(Paul, 2017). The digital signature is used to confirm that the sender has created the

signature to confirm his identity, so that the sender cannot deny that he has sent the

message (not to repudiate) and that the message has not been changed during the

transfer (integrity). A digital signature is a standard element of most cryptographic

protocol suite and is commonly used for software distribution, financial transactions,

and contract management software, in these cases, where it is important to detect

forgery or tampering (Schaettgen. N, Levy. D & Schelnast. J, Socol. S, 2014).

3

One of the cryptographic protocols, commonly used, is the digital signature MD5

protocol. The MD5 protocol was initially designed to be used as a cryptographic hash

function, producing a 128-bit hash value; it has been found to suffer from extensive

vulnerabilities, but it is still widely used as a checksum function to verify data integrity

after downloads or transfer of data. The cryptographic hash function has a basic

requirement in, that it should be computationally infeasible to find two non-identical

messages with the same hash value.

MD5 was designed by Ronald Rivest in 1991 to replace an earlier hash function MD4

and was specified in 1992 as RFC 1321(Request for Comments). The security of the

MD5 hash function is severely compromised due to collision attack; there are also

chosen-prefix collision attacks that can produce a collision for two inputs with specified

prefix within hours. These attacks have been demonstrated in public in many various

situations, including conflicting documents and digital certificates (Guneysu. T, Paar.

C & Schage. S, 2018).

As of 2015, MD5 was demonstrated to be still quite widely used, most notably by

security research and antivirus companies. Hence, with the weakness of the MD5 is still

used; the problem addressed in this thesis depends on this, and explains how to make

MD5 more efficient with a high-level security (Stevens, 2007).

The Message Digest 5 algorithm (MD5) takes as input message of arbitrary length and

produces as output a 128-bit “message digest” of the input. The MD5 algorithm is

intended for digital signature application, where a large file must be compressed in a

secure manner before being encrypted with a private key under public key cryptosystem

such as RSA (Rivest–Shamir–Adleman) (RFC 1321, 1992).

4

The MD5 algorithm is designed to be quite fast on 16-bit and 32-bit machines and can

be extended to 64-bit machines. In addition, the MD5 has not required any large

substitution tables; the MD5 can be coded quite compactly (Gupta & Kumar, 2014).

The MD5 algorithm is an extension of the MD4 Message-digest algorithm, Md5 is

slightly slower than MD4; because of three rounds in MD4 and MD5 contains four

rounds which makes it is slower, it is a one-way hash function that deals with security

features, where the MD5 is more conservative in design.

MD4 was perhaps being adopted to be used more quickly than justified by existing

critical review, so MD5 was designed to make sure justified the existing critical review.

MD4 was designed to be exceptionally fast, but it stays at the edge in terms of risking

successful cryptanalytic attack. MD5 backs off a bit, giving up a little in speed for a

much greater likelihood of ultimate security, both algorithms follow the same concept

but with a different architecture (Kuzushko,2003).

The simple XOR hash function does not provide enough security to serve as a digital

signature. Tom Berson attempted to use the differential technique of crypto analysis

for a single round of MD5 (Berson, 1992). A more successful attack by Den Boer and

Bossel produces collision using the compression function in MD5 (Robshaw, 1994).

This does not lend itself to attacks against MD5 in practical application and does not

affect the use of MD5, it does mean that one of the basic design principles of MD5 – to

design a collision-resistant compression function – has been violated although it is true

that "There seems to be a weakness in the compression function "(Robshaw, 1994).

Hashing algorithms are commonly used to convert passwords into hashes, which

theoretically cannot be deciphered. A new approach to using MD5 in password storage

5

is proposed by using external information; such as fingerprint, a calculated salt; such as

username to encrypt the password before the MD5 calculation.

The importance of the internet has become a highly valid environment for all use is, for

organization and governments due to providing services and easily dealing with

government services. All these services need high technical protection for their user's

registration. Hashing algorithms are used to convert passwords into a string called hash

values or digests. A hash is also a one-way function which theoretically cannot be

reversed or get a plain text from the hash. Salted password hashing means to supply or

prepend a random string to the user’s password before hashing. To make hashes more

secure, salt can be added to the hash. This means that a random string of characters is

either prefixed or postfixes to the password before hashing it. Every password has a

different salt. Even if the salts are stored on the database, it will be very complicated

massive the passwords using a rainbow table as the salted passwords are long, complex

and unique. Salted hashes can be brutally forced but the time taken is significantly

longer. Using of two salts, one from the fingerprint and one from the password that user

uses, can also protect them as password against offline attacks.

1.1.1 Fingerprint recognition

Recognition of persons by means of biometric distinguishing is an emerging

phenomenon in the epochal community. It has a lot of turnout during the present time

due to the requirement for security of the application. Through the many biometric

features, the fingerprint is considered one of the most practical ones. The fingerprint

recognition demands the least potential from the user, provides comparatively good

performance to capture the necessary information for the recognition process.

6

The main reason behind using the fingerprint is the comparatively low price of

fingerprint sensors, which enables easy integration into PC keyboards. (Maltoni. D,

Maio. D & Jain. A, Prabhakar. S, 2009).

In order to access the internet or any other resource safely, a high-security

authentication system is essential. (Florenco. D, Herley. C, 2007). Some studies based

on general research on the use of passwords and user problems with the forgetting of

the words that have been used based on a special key on the memory of the user. The

new protocol will be affected if a special word in the build of the Encoding or Decoding

is used. Even if the user goes through using a fingerprint, both encoding and decoding

do not go over the user to remember the words that is used.

1.2 Problem Statement

The MD5, is one of the most popular hash protocols, which is commonly used to check

for file integrity, even with the known weakness of the algorithm. The problem

addressed in this thesis is to make the MD5 more robust to collision attacks.

This thesis assumed that it is possible to strengthen the original MD5 and to make some

updates on the round 4 of the algorithm, by modifying the algorithm through adding

additional steps and features that are amid to deal with the weaknesses.

As has been noted in many studies that go through the improving of the weaknesses on

the MD5. Libed. J, Sison. A & Dr.Medina. R, (2018). They pointed out what the study

supports through MD5 cryptographic hash function is affected by collision attacks.

Also they pointed out that security of the MD5 will be affected because of the collision

attack, because if the security has been affected the file integrity, as it is the main work

7

for the MD5, will be affected and will give the same value for the message digest and

take it surely.

Libed. J, Sison. A & Dr.Medina. R, (2018) showed that collision attacks of MD5

cryptographic protocol affects the data integrity and authenticity of the message digest

(Hash value).

Several studies have demonstrated the vulnerability within the protocol, and many

studies have implemented solutions such as improvements in collision values or

imposing greater volume of special values for use such as salt, some of which indicate

the use of a chain code, all of which have improved user benefit.

This study refers to essential improvement mode that greatly improves the safety for

using, and prevents the weakness within the current protocol to be improved and made

more powerful and more efficient to be used safely.

1.3 Goal and objectives

The goal of this research is strengthening the original MD5 protocol by developing a

new protocol that deals with the weaknesses of the existing protocol. The new

protocol will be in a high-level of security which depends on a unique value that will

be hard to have a message with the same digest or same hash value. In the attempt to

achieve the goal, the following objectives are taken into account:

• Identify, the weak points in the MD5 protocol.

• Investigate technical solutions to deal with the identified weaknesses, and then

update the MD5 protocol, using new features that are supported by the original

protocol.

• Implement the protocol in technical solutions.

8

• Test robustness of the new file integrity checksum protocol through practical

experimentation using the same practical method that was used with the original

MD5.

• Modify and evaluate the new protocol based on the outcome of the experimental

work.

 Test applicability of using the new MD5 in a business environment.

 Develop a new protocol using Asymmetric techniques.

 Verify the efficacy of the new protocol.

1.4 Research questions

• What are the weaknesses in the MD5 that need to be dealt with?

• What is the technical solution that will deal with the identified weaknesses in the

existing protocol?

• How to implement the new technical solution to deal with the identified weaknesses

in the existing protocol?

 What are the results of evaluating the robustness of the new protocol?

 What the results are of implement the technical solution in the new protocol?

 What are the results of test robustness through practical experimentation?

 What are the results of verifying the efficacy of the new protocol?

9

1.5 Motivation

Data in transit can suffer from alteration by accident or intention, hence the need for

integrity checking tools to verify that received file is identical to the original file. The

most widely used file checksum protocol is MD5, which although it is accepted as the

default protocol, this context has the weaknesses of possible collision attacks that give

the same message digest for different file contents.

MD5 is still popular software that is used through an application such as password

hashing, although it is not simple/plain MD5 and probably uses advanced techniques

such as Salt, Key stretching or the chain code. MD5 seems like the professional and

popular programs with many years of development .

Google Drive is still using MD5Sum for identification where security is not a factor

under consideration.

1.6 Expected contribution

The expected contribution of this study will be in the following:

 Make a file integrity protocol available that is resilient to collision attacks in

comparison with the existing MD5.

 Utilize the fingerprint data to enhance the file integrity checksum protocol.

 Apply and give evidence on using the new protocol on everyday used Microsoft office

files.

 Demonstrate the effectiveness of using fingerprint or similar mechanisms in the process

of building the Hash protocols to make them stronger and more secure.

10

 Develop new techniques in the hash protocols build as Asymmetric techniques.

 Verify the efficacy of using asymmetric techniques in the security environment of hash

protocols use.

11

Chapter Two

Theoretical Background and Literature Review

12

CHAPTER TWO

Theoretical Background and Literature Review

2.1 Introduction

In this chapter, at first. It covers the definition of MD5, digital signature concept,

password protection, verification and Fingerprint recognition, too. A brief of a

comprehensive theoretical background will be described. Then, a literature survey of

MD5 variants and others on digital signature, password protection and fingerprint will

be presented.

2.2 Theoretical background

The MD5 algorithm is designed to be quite fast on 32-bit machines (operating

system). In addition, the MD5 algorithm does not require any large substitution tables;

the algorithm can be coded quite compactly. The MD5 algorithm is an extension of

the MD4 message-digest algorithm. MD5 is slightly slower than MD4, but is more

"conservative" in design. MD5 was designed because it was felt that MD4 was

perhaps being adopted to be used more quickly, MD4 was designed to be

exceptionally fast. (Rivest. R, 1992).

The MD5 algorithm is considered as one of the hash function’s, which compress an

arbitrary length, taken as input message and produced as output a 128-bit “message

Digest” of the input. It is supposed that it is computationally infeasible to produce two

13

messages having the same message digest, or having a collision attack. (Naito.Y,

Sasaki.Y & Kuniniro.N, Ohta.K, 2005).

The MD5 algorithm is used in several fields, including digital signature and password

protection. It is considered a powerful algorithm in terms of calculating the hash value

for two messages despite the many studies that proved the weakness of the algorithm

and the possibility of proving two messages that may carry the same value of Hash.

(Thomsen.S, 2005).

All hash functions should be secure and fast at the same time, the MD5 algorithm It

has some weakness in terms of complete safety which may reduce its use, or user

confidence, one of the most famous weaknesses in this algorithm is the collision

attack (where this problem is summarized in brief, the existence of two messages have

the same hash values) as the other On the technical side, this problem significantly

affects the performance of the protocol and weakens the user 's trust, and as a result

limiting their use even if the percentage is low, which means that the apprehension of

their use will be significant.

2.3 Introduction to cryptography

The development of information security is closely related to encryption and

decryption, where the encryption process changes the original content of the message,

and the decryption retrieves the original information of the message after it has been

encrypted. This process is done using asymmetric key technology where there is a

private key for encryption and a public key for decryption. The cryptography provides

integrity, validation and non-repudiation, as well as confidentiality (Stallings. W,

2004).

14

Many cryptographic algorithms rely on the key and its ability as long as the key is

secret, it will be difficult to foresee or to be known by third parties other than sender

and recipient, thus ensuring the integrity of the file to the sender. Also, the recipient

can check the files and the identity of the sender. (Kumar, Satish and Zabeer, 2004).

When relying on encryption and decryption, two systems are used: symmetric and

asymmetric. In the case of symmetric, the same key is used in encryption and

decryption (I.e.). If (K) and (M) are the key and the message, then we have Dk (Ek

(M)) = M …… (1) Where (D) and (E) denote decryption and encryption algorithms.

(Stallings. W, 2004) (Kumar, Satish and Zabeer, 2004).

A special advantage of this system is that the speed of performance and safety level is

closely related to the strength of key. Examples of algorithms that support symmetric

systems are DES, 3-DES, RC4, RC5, etc. However, such systems are not without

flaws if they rely on the power of the key in the stage of ensuring safety, but there are

still some flaws about how to manage the key-exchange and non-avoidance.

In the case of asymmetry, the key used in this stage is different depending on the

public key. These keys are related to their mathematical relationship. The public key

is handled and shared between the sender and recipient, while the sender's private key

remains and is usually used in the encryption process, i.e. if K1 and K2 are public and

private keys, respectively and (M) be the message (Stallings. W, 2004), then:

 DK2 (EK1 (M)) = DK1 (Ek2 (M)) = M ………………………… (2)

Systems that support the public key are the most secure systems that support non-

repudiation, and ensure not to fall into the problem of how to manage to exchange the

key, but as previously stated that no system can be free of defects despite of its

strength. Accordingly, after the encryption process produces text larger than the

15

original text and is relatively slow. Examples of algorithms that support the

asymmetric encryption system: RSA and Elliptic curve cryptography.

2.4 Hash function

A hash h is generated by a hash function H of the form

h = H (M) …………………………………… (3)

Where (M) is a message of variable length and H (M) is the hash value of fixed

length.

A hash function should satisfy the following properties to be useful:

1. A hash function can be applied to a data block of any size.

2. It always produces an output of fixed length.

3. It must be easy and efficient to compute H (x) for any given x. Though the effort

depends on the length of x, it should not be a function of its length.

4. One-way: It should not be possible to find x for any given value h, such that h = H

(x).

5. Weak collision resistance: Given x, it is computationally infeasible to find y ≠ x

such that H (y) = H (x) ……………………………………. (4).

6. Strong collision resistance: It is computationally infeasible to find any pair (x, y)

(Stamp. M, Low. R, 2007) such that H(x) = H(y) ……….…. (5).

All the inputs in all the Hash functions are divided into a series of n-bit, after which

the hash function coupling as one block an m-bit object and the final value is the

16

value of the Hash value. Hash associations are simple and quick through using bitwise

exclusive- OR of every block of bits. (Stallings. W, 2004).

The hash function works to segment the message before being processed so that it is

divided into equal lengths and is used Merkle-Damgard construction in most Hash

functions, in which the input message (M) is partitioned into (L) blocks of size, as (b)

bits. (Kashyap. N, 2006)

The file compression associations are frequently used in the operations of the Hash

since they work with two inputs. This process is called chaining value and depends on

the previous steps, and (b-bit) where the (n-bit) output is generated from the process,

the chaining value has an initial value given by the used algorithm, mostly n<b so

.The compression of the bits can be abstract as given below

CV0 = IV = initial value …………………………………………... (6)

CVi = f (CVi-1, Yi-1) 1 ≤ i ≤ L ………………………………….... (7)

H (M) = CVL ……………………………………………………… (8)

Where the input message M is divided into blocks Y0, Y1…YL-1, as shown in figure

2.1.

Figure 2.1 hash function (Kashyap. N, 2006)

2.4.1 Application of hash functions

17

Hash functions are used in various contexts; such as digital signatures, password

protection, message authentication codes and as pseudo-random number generators.

2.4.1.1 Digital Signature

Digital signatures are used for several purposes including the following:

To ensure authenticity: The recipient is assured that the message was really sent by

the demanded sender.

To avoid repudiation: The sender cannot pretend that he did not sign that message.

Generally, a message is first hashed before signed so as to reducing the size of the

signature. (Thomsen. S, 2005).

2.4.1.2 Password Protection

Passwords are stored after hashing instead of plaintext for a clear reason; whenever a

password is typed, the afresh computed hash is compared with the existing hash and if

it matches, then the password is declared correct. (Thomsen. S, 2005)

2.5 Description of MD5

The MD5 algorithm is an extension of the MD4 message digest. Accordingly, MD5

algorithm is designed to be quite fast on 32-bit computers; because the MD5

algorithm does not require any huge substitution technique, MD5 is slower than MD4

(Rivest.R, 1991). But the MD5 is more conservative in design, where MD5 was

designed because of MD4 which was perhaps being designed to be exceptionally fast,

but it was risky felt in term successful cryptanalytic attack as shown in figure 2.2.

(Naito.Y, Sasaki.Y & Kuniniro.N, Ohta.K, 2005).

18

The MD5 algorithm has a b-bit message as input, the MD5 algorithm calculated to

find message digest, b is an arbitrary non-negative integer, b can be zero, and it need

not be a multiple of eight. In new MD5, imagine the bits of the message written as:

M0 M1…………………………………………………. M {b-1}

There are four steps to perform the computation of message digest in MD5:

 Step 1. Append padding bits.

Step 2. Append length.

Step 3. Initialize MD buffer.

Step 4. Process message in 16-word blocks.

Step. 1 Append padding bits:

The message must be padded so that the length will be in bit equal to 448 module 512

so that the length of the padding (length = 448 mod 512). So message in 64 bits less

than an integer multiple of 512 bits. If the message already has or doesn’t have the

desired length, the padding is always added as shown in figure 2.2. (Stallings.W,

1999).

19

Step. 2 Append length:

Before padding, in step one, 64-bit representing from the original message length, so

that

 In case the length in step 1 is greater than 264, these bits are appended as two 32-bit

words and appended low-order word first in accordance with the previous

conventions. Then, the low-order of the 64 bit will be used. As a result, the outcomes

of the two steps describe a message that is an integer equal to 512 bits in length as

shown in figure 2.2. (Stallings.W, 1999).

Step. 3 Initialize MD buffer:

This step is standing on build a 128-bit buffer, which is used to hold intermediate and

final results of the hash function. This buffer will be splitting into four 32-bit registers

(A, B, C, and D), they are represented in hexadecimal values, and these values are

represented in little-Indian format as shown in figure 2.2 (Kahate. A, 2008).

Step. 4 Process message in 16-word blocks:

The main work and the implementation of the goal of this study is in this step. This

step is a compression algorithm that consists of four-round processing. The fundament

of the four rounds that have a similar structure, but each round has a different

primitive logical function which refers to as F, G, H, and I in the specification.

Each round takes the 32-bit buffer value ABCD and the current block 512-bit, and

each round consists of a 64-element from the lookup table. After all these steps the

output is a 128-bit message digest as shown in figure 2.2 (Kahate.A, 2008).

20

Figure 2.2 the discerption of the MD5 (Stallings. W, 2014)

2.6 MD5 collision attacks

MD5 has been prevailed in a wide variety of security applications, and also is used to

check the integrity of files. In 1993, B. den and A. Bosselaers showed a weakness in

MD5 by finding a collision attack for consisting messages (the same hash value for

two messages with different initial content for each). MD5 compression function

(IHV) is an intermediate hash value IHV = (a, b, c, d) and a 512-bit message block

(Dobbertin. H, 1996).

It is now proved by Wang and others researchers that MD5 hash is no more secure

after they proposed an attack that generates two message-digests, giving the a same

MD5 hash value. With a different content for the file, Vlastimil Klima then proposed

a more active and fast mechanism to apply this attack, K. Vlastimil used this

mechanism to create a collision attack and then used this collision to apply

21

meaningful collision by making two different files that give congruent MD5 hash

value, but each file gives out different contents.

Wang’s attack was based on two parts of implementation, the first part to find the first

block and implement a Klima’s algorithm (Thomsen.S, 2005), and the second part to

find the second block using the approach of Wang (Klima.V, 2005). Wang assumed

that the two blocks can be found by different mechanism since they are independent

of each other, the second value can be evaluated during the first iteration.

Wang’s attack used Java language to build a program was run on a desktop computer

with AMD 64 3000+ (1.83 GHz) on Windows XP as well as a virtual machine with

fedora core 4 on the same computer. Wang found 25 collisions in less than 10 hours

with averages out to 24 minutes for each collision (Stevens. M, 2006).

One of the solutions that the researcher proposed is a mechanism to choose the

optimal input difference for generating MD5 collision attacks, with the degree of

difficulty to satisfy the condition. Second, by utilizing the weaknesses of compression

function of MD5. Third, there should be no difference scaling after state word with

the distribution of strong conditions for each input with different pattern. Finally, they

choose the input difference with the least number of strong conditions and the most

number of free message words. (Xie. T, Liu. F & Feny. D, 2013). Some study based

on finding a fast attack algorithm to find two – block collision of MD5 hash function,

the attack algorithm is based on two-blocks with the differential path. The derived

conditions for the desired differential path which it did not hold by using the attack

algorithm, it can represent to speed the attack of efficiently up, the MD5 collision

attacks can be accomplished within 5 Hours using the computer with Pentium 4 and

1.70 GHz (Lai. X, Liang. J, 2005).

22

In March 2005, Xiaogang Wang and Hongbo Yu of Shandong University in China

found and published an algorithm that can find two different sequences of 128 bytes

within the same MD5 hash value. So, the cryptographic MD5 hash function has been

broken as the following example; One of the examples on the collision attack:

d131dd02c5e6eec4693d9a0698aff95c2fcab58712467eab4004583eb8fb7f89

55ad340609f4b30283e488832571415a085125e8f7cdc99fd91dbdf280373c5b

d8823e3156348f5bae6dacd436c919c6dd53e2b487da03fd02396306d248cda0

e99f33420f577ee8ce54b67080a80d1ec69821bcb6a8839396f9652b6ff72a70

And

d131dd02c5e6eec4693d9a0698aff95c2fcab50712467eab4004583eb8fb7f89

55ad340609f4b30283e4888325f1415a085125e8f7cdc99fd91dbd7280373c5b

d8823e3156348f5bae6dacd436c919c6dd53e23487da03fd02396306d248cda0

e99f33420f577ee8ce54b67080280d1ec69821bcb6a8839396f965ab6ff72a70

Each of these blocks has MD5 has a same hash value =

79054025255fb1a26e4bc422aef54eb4 with different content but same hash value

(Selinger. P, 2011).

2.7 Description of MD4

The algorithm takes as input a message of arbitrary length and produces as output a

128-bit message digest of the input. The MD4 algorithm is intended for digital

signature application, where a large file must be “compressed” in a secure manner

23

before being encrypted with a private (secret) key under a public-key cryptosystem

such as RSA (Rivest. R, 1992).

The MD4 algorithm works as an MD5 algorithm, but the MD5 has a step more than

the MD4:

Step 1. Append padding bits.

Step 2. Append length.

Step 3. Initialize MD buffer.

Step 4. Process message in 16-word blocks.

Step 5. Output.

The main different between MD5 and the MD4 algorithms, in Step 4 process

message, i.e. in 16-word blocks where MD4 defines three auxiliary functions that

each takes as input the 32-bit word and produces as output 32-bit word (F, G, H),

where the MD5 algorithm defines four auxiliary functions with the same size of bit

word input and output.

The MD4 algorithm message digest produced as output A, B, C, D. that begins with

low-order byte A, and end with the high-order byte of D, with message digest of size

128-bit.

The major difference between MD4 and MD5 algorithm:

MD4 consists of three passes for each 16-byte chunk of the message. MD5 makes

four passes for each 16-byte chunk, the functions are slightly different.

24

MD4 has two constants, one in passes 2, and another in passes 3. MD5 uses a lookup

table (Ti) a different constant, for each message word on each pass (Wiesner. K,

2009).

(Rivest. R, 1992); The MD4 algorithm introduced by Rivest, its algorithm is defined

as an iterative application of a three-round compress function. But according to the

unpublished attack on the first two rounds of MD4 due to Merkle, and an attack

against the last two rounds by Den Boer and Bosselaers (Verlag. S, 1995), Rivest

introduced the MD5 as the extension of the MD4 (Rivest. R, 1992).

All hash functions should be secure and fast at the same time. Therefore, the MD4

was a significant contribution introduced by Ron Rivest's in 1990. A short time after

MD4 has been introduced, some weaknesses became apparent, and thus he introduced

MD5 in 1991 explaining his reasons in:

- The MD5 algorithm is an extension of the MD4 message-digest algorithm.

- MD5 is slightly slower than MD4 but is more "conservative" in design.

- MD5 was designed because it was felt that MD4 was perhaps being adopted

for use more quickly than justified by the existing critical review; because

MD4 was designed to be exceptionally fast, it is "at the edge" in terms of risky

successful cryptanalytic attack. (Rivest. R, 1992).

2.8 Data integrity checksum

The most significant vulnerabilities in maintaining data integrity occur when being

transferred.

The checksum techniques are used in the integrity of the data as it is transferred from

its original form, to a new environment that introduces unknown changes to the data.

25

The user can ensure that the data is correct compared with its original source at its

final transformed location.

The checksum is basically a small computing of information about a digital data,

usually a file, where checksum is also used to check data after being stored. All this is

to verify that the information is still the same as it was before. The computation used

to compute the checksum is referred to as the checksum algorithm such in the

building of the MD5 algorithm (McClelland. M, 2018).

2.9 Fingerprint recognition

The fingerprint is a vital part for the users who are currently relying heavily on their

respective classification processes and verifying user identity biology. (Tulyakov. S,

Farooq. F, Govindaraju.V, 2005).

The fingerprint is used by following specific algorithms to detect the number of

identical spellings for the user to identify the identity and purpose of the

authentication. The values that are produced in the condition of the user re-

emphasizing his/her identity, where the new values are compared according to the

values previously stored for the same user to give validity to the user's login

(Tulyakov. S, Farooq. F, Govindaraju.V, 2005).

The fingerprint biology enables the user to solve the problem of users' lost or

forgotten passwords. The fingerprint is one of the oldest biometrics used to prove its

power and documentation in data protection. In this research, the fingerprint is treated

in terms of digital signature to determine the values in the process of constructing the

26

hash value, as the repetition of the finger or studying in detail is not relevant to this

subject.

In the phase of dealing with password protection, the value of the fingerprint is stored

as well as the name of the user in the template, so that the comparison between them

occurs when re-logging, since the systems that used in all the experimental work

allows the user to repeat the fingerprint in case of rejection, since the values stored in

the template answers that match of fingerprint tried.

2.10 Comparative study of Message Digest 5(MD5)

and SHA algorithm

Because of the nature of an open document, the integrity of the information as a

content of the document is not preserved, which means the document contents can be

read and modified by many parties, so that the integrity of a document should be kept.

To maintain the integrity of the data, it needs to create a mechanism which is called a

digital signature, where there are many hash functions; Two of them are message

digest 5 (MD5) and SHA256.

Both algorithms certainly has advantages and disadvantages. The purpose of this

section is to define the algorithms as well as the different features between them. The

parameters used to compare the two algorithms are the running time, and complexity.

The research results obtained from the complexity of the Algorithms MD5 and

SHA256 is the same, i.e., O (N), but regarding the speed is obtained that MD5 is

better compared with SHA256 (Rachmawawati.D, Tarigan. J, 2018).

27

2.10.1 Definition of SHA256 algorithm

SHA256 algorithm is one of the successful hash functions to SHA-1, and is one of the

robust, hash functions available. SHA-256 is not much more complex to be coded

than SHA-1. The 256-bit key makes it a good partner-function for AES “which is a

specification for the encryption of electronic data established by the U.S. National

Institute of Standards and Technology (NIST) in 2001” as shown in figure 2.1, figure

2.2 and figure 2.3 (Thomas. C, Jose. R, 2015).

Table 2.1 Comparison between MD5 and SHA (Rachmawawati.D, Tarigan. J, 2018)

Table 2.2 Similarities between MD5 and SHA Algorithms (Rachmawawati.D, Tarigan. J, 2018)

Table 2.3 Comparison between MD5 and SHA hash algorithm on general properties

basic (Jose. R, Thomas. G, 2015)

Name of the

algorithm

Size of the output Rounds Collision Status

MD5 128 60 YES

SHA 160 80 YES

28

This comparative helped us understand that the SHA algorithm plays a very important

role in comparison to MD5 because SHA algorithms’ performance rate is

comparatively better than other cryptographic hash algorithm functions. The question

is: Will the results be similar when the improved Protocol is applied?

2.11 Related works

- (Black. J, Cochran. M & Highland. T, 2006) this study supports one of the

techniques that are generated for enhancing the MD5 as the (MD5 Toolkit), this tool

is generated to deal with the weaknesses that found by Wang and others in the MD5

protocol, they referenced that the MD5 still used in various applications including

SSL/TLS, IPSec, and many other protocols, also they pointed out that the several

destinations, are still working by using the MD5 protocol such as in:

 Implementation of timestamping mechanisms.

 Commitment schemes.

 Integrity-checking applications for online software.

 Distributed file system.

 Random-number generation.

It is even used by the Nevada State Gaming Authority to ensure slot-machine ROMs

would have not been modified with any modification.

- (Kasgar. A, Agrawal. I & Sahu. S, 2012) the study works on increasing hash code

length up to 256, the study assumed to make the hash protocol stronger against

collision attested, and works in a combination of some functions to reinforce the hash

functions.

29

This study dealt with a wide range of differences between MD5 and SHA family, the

main different conclusion at this point is that the MD5 and the newer one SHA-256 is

equal in the complexity of both algorithms, and the value is O (N), but the running

time of the MD5 is faster than SHA-256 as shown in figure 2.4.

Figure 2.4 Graph about average running time MD5 and SHA256 (Rachmawati. D,

Tarigan. J & Ginting. A, 2018).

- (Libed. J, Sison. A & Dr.Medina. R, 2018) the study explains a new mechanism to

enhance the MD5 and to protect the file integrity by a new method for the padding

process of the original message and to apply a technical solution, as in the additional

operations on the internal processes that are implemented.

Some of the solutions that the study suggests:

• The result of the computing simulation indicates the extension of the message block

from 512 to 1024-bit block.

30

 • Expansion of the length of the resulting value, per round from 32 to 64 bits

together with added operations, increases the security of the modified message digest

hash function.

It was also noted that many studies have aimed at many solutions. This study, while

changing the size of the data used to suit the required function away from the existing

weakness, has carried out several tests to verify the reliability of this process and the

results were somewhat satisfactory, also the test was for the evaluation of the

produced hash value has been conducted using the avalanche effect test that resulted

to a value of " 56.91 and randomness test to assess the randomization value into which

a remarkable output of 56.45 and 55.93 respectively have been obtained into which it

has considerably been attested.

- (Maliberan. E, Sison. A & Medina. R, 2018) the study works on enhancing the

MD5 algorithm by developed expanding the hash value up 1280-bits from the original

size of 128-bit using XOR and AND operators, and by using an available source to

check the security of the new algorithm they have as:

• Powerful brute force.

• Dictionary.

• Cracking tools.

• Rainbow table.

• Cracking station.

• Hash cracker.

31

• Cain and Able.

• Rainbow crack.

They found that the hash value of the modified algorithm was not cracked or hacked

during the experiment and testing, using the above sources and comparing with the

results from the original MD5.

This study relied on existing techniques to prove its new technique, but did not take

into account that the hackers can choose mechanisms that are not complex or may be

computational such as Wang's attack technique, and exploited to prove the existence

of a collision or to have two identical Hash values with the difference of original

blocks.

- (Karani. K, Aithal. S, 2018) one of the studies that approved the efficacy of using

the fingerprint with MD5 protocol, they take a fingerprint image hash code based on

the MD5 algorithm and Freeman chain code calculated on the binary image.

The study supposed that the hash code alone is not sufficient for verification or

authentication purpose. They used multifactor security MATLAB2015a. The study

shows how fingerprint hash code uniquely identifies a user or acts as index-key.

The main use of the fingerprint hashing in the new technique is to perform

identification based on fingerprint simultaneously hiding or keeping the fingerprint

information secretly.

The study shows that using the fingerprint alone is not enough, and the user needs to

use a good password or a special word because the fingerprint can easily be mimicked

32

by a fraud or an intruder, as the fingerprint does not get matched when the finger has

some changes as surgeries, because the fingerprint is working as identity or index-key

and not as a full security feature.

This study has proved the effectiveness of using fingerprint in the systems of

authentication and credibility by the user, and noted that using the values within the

fingerprint is effective and highly protected; this study relied on specific uses for the

purpose of documentation.

Up to now this method stays not suitable for solely security purpose unless the user

takes some security measures to protect static fingerprint image.

2.12 Summary

The MD-Message-Digest protocol is easy to implement, while the original MD5

collision attacks, in some cases, make it weak. Many companies, that are still working

with MD5 and Cisco routers, are working on "enabling the secret" (Cisco, 2007), and

applications such as password protection, sending and receiving files and others in the

retail application. It is supposed that the difficulty of sending two messages with the

same message number is in the order of 2 ^ 64 transactions, and that the difficulty of

accessing any message with a specific message digest is within 2 ^ 128 operations.

Through studies of the MD5 collision, the algorithm is viewed as prone to attacks and

therefore cannot be considered safe and secure enough.

That is the cause this proposed work is presented, taking into account the need for a

higher security technique to support the study, consider comparisons with existing

protocols currently adopted.

33

Chapter Three

Methodology and the Proposed Work

34

CHAPTER THREE

Methodology and the Proposed Work

3.1 Introduction

This chapter introduces the proposed modification scheme of the MD5 algorithm

since the main purpose of the amendment is to increase the efficiency of the algorithm

and make it safer against collision attacks. The original MD5 is explained first, and

then a simple experiment is performed showing the results of using the original

protocol in its fragmental operations, as well as identifying the main weaknesses in

MD5, and finally followed by a description of the proposed protocol, where each step

in the proposed modification is explained, and presented.

3.2 The methodology

After studying the original MD5 and identifying its weaknesses, the most important of

which is the collision attack, the MD5 does not seem to be considered safe enough.

The main source of weaknesses of the protocol is using fixed values in step 4 when

the hash value is being built. The new technique uses the user's fingerprint instead of

the fixed values in step 4, which aims to make the new protocol safer.

The reason of making the hash value more secure is that the main dependence will be

on generating the hash value of the general adoption of the protocol building values

on the user's fingerprint, which makes the values difficult to be predicted, the

fingerprint eventually is read by using the fingerprint scanner.

35

This chapter contains two parts; The first part is to investigate the original MD5

algorithm, and to identify the weaknesses in detail to produce a hash value with a

simple protocol experiment to be compared with the new protocol results later, while

the second part offers the proposed version of modified MD5 protocol to improve its

reliability and integrity for hash value and validation. The values of the test are

assumed by repeating the same experiment in the first part using the modified

protocol (the results are presented in chapter four).

3.3 Investigation of the original MD5 algorithm

As noted in chapter two, the weakness in the protocol is based on the fourth step,

specifically the fixed values that make the MD5 weak since the values are known,

which facilitates the process of predicting the value of message digest, where many

studies refer, as previously described, to the existence of a collision attack which is

about making two files have an inordinate length holding the same hash value, as this

vulnerability is unacceptable and considered as a vulnerability and a flaw in the safety

of the used protocol.

Here is a simplified explanation of the fourth step in the original MD5, and places of

the existence of fixed values, as well as the mechanism of definition when working to

extract the value of the message digest (the original equations):

#define S11 7

#define S12 12

#define S13 17

#define S14 22

36

#define S21 5

#define S22 9

#define S23 14

#define S24 20

#define S31 4

#define S32 11

#define S33 16

#define S34 23

#define S41 6

#define S42 10

#define S43 15

#define S44 21

 /* Round 1 */

 FF (a, b, c, d, x [0], S11, 0xd76aa478); /* 1 */

 FF (d, a, b, c, x [1], S12, 0xe8c7b756); /* 2 */

 FF (c, d, a, b, x [2], S13, 0x242070db); /* 3 */

 FF (b, c, d, a, x [3], S14, 0xc1bdceee); /* 4 */

 FF (a, b, c, d, x [4], S11, 0xf57c0faf); /* 5 */

 FF (d, a, b, c, x [5], S12, 0x4787c62a); /* 6 */

 FF (c, d, a, b, x [6], S13, 0xa8304613); /* 7 */

 FF (b, c, d, a, x [7], S14, 0xfd469501); /* 8 */

 FF (a, b, c, d, x [8], S11, 0x698098d8); /* 9 */

 FF (d, a, b, c, x [9], S12, 0x8b44f7af); /* 10 */

37

 FF (c, d, a, b, x [10], S13, 0xffff5bb1); /* 11 */

 FF (b, c, d, a, x [11], S14, 0x895cd7be); /* 12 */

 FF (a, b, c, d, x [12], S11, 0x6b901122); /* 13 */

 FF (d, a, b, c, x [13], S12, 0xfd987193); /* 14 */

 FF (c, d, a, b, x [14], S13, 0xa679438e); /* 15 */

 FF (b, c, d, a, x [15], S14, 0x49b40821); /* 16 */

 /* Round 2 */

 GG (a, b, c, d, x [1], S21, 0xf61e2562); /* 17 */

 GG (d, a, b, c, x [6], S22, 0xc040b340); /* 18 */

 GG (c, d, a, b, x [11], S23, 0x265e5a51); /* 19 */

 GG (b, c, d, a, x [0], S24, 0xe9b6c7aa); /* 20 */

 GG (a, b, c, d, x [5], S21, 0xd62f105d); /* 21 */

 GG (d, a, b, c, x [10], S22, 0x2441453); /* 22 */

 GG (c, d, a, b, x [15], S23, 0xd8a1e681); /* 23 */

 GG (b, c, d, a, x [4], S24, 0xe7d3fbc8); /* 24 */

 GG (a, b, c, d, x [9], S21, 0x21e1cde6); /* 25 */

 GG (d, a, b, c, x [14], S22, 0xc33707d6); /* 26 */

 GG (c, d, a, b, x [3], S23, 0xf4d50d87); /* 27 */

GG (b, c, d, a, x [8], S24, 0x455a14ed); /* 28 */

 GG (a, b, c, d, x [13], S21, 0xa9e3e905); /* 29 */

 GG (d, a, b, c, x [2], S22, 0xfcefa3f8); /* 30 */

 GG (c, d, a, b, x [7], S23, 0x676f02d9); /* 31 */

 GG (b, c, d, a, x [12], S24, 0x8d2a4c8a); /* 32 */

38

 /* Round 3 */

 HH (a, b, c, d, x [5], S31, 0xfffa3942); /* 33 */

 HH (d, a, b, c, x [8], S32, 0x8771f681); /* 34 */

 HH (c, d, a, b, x [11], S33, 0x6d9d6122); /* 35 */

 HH (b, c, d, a, x [14], S34, 0xfde5380c); /* 36 */

 HH (a, b, c, d, x [1], S31, 0xa4beea44); /* 37 */

 HH (d, a, b, c, x [4], S32, 0x4bdecfa9); /* 38 */

 HH (c, d, a, b, x [7], S33, 0xf6bb4b60); /* 39 */

 HH (b, c, d, a, x [10], S34, 0xbebfbc70); /* 40 */

 HH (a, b, c, d, x [13], S31, 0x289b7ec6); /* 41 */

 HH (d, a, b, c, x [0], S32, 0xeaa127fa); /* 42 */

 HH (c, d, a, b, x [3], S33, 0xd4ef3085); /* 43 */

 HH (b, c, d, a, x [6], S34, 0x4881d05); /* 44 */

 HH (a, b, c, d, x [9], S31, 0xd9d4d039); /* 45 */

 HH (d, a, b, c, x [12], S32, 0xe6db99e5); /* 46 */

 HH (c, d, a, b, x [15], S33, 0x1fa27cf8); /* 47 */

 HH (b, c, d, a, x [2], S34, 0xc4ac5665); /* 48 */

 /* Round 4 */

 II (a, b, c, d, x [0], S41, 0xf4292244); /* 49 */

 II (d, a, b, c, x [7], S42, 0x432aff97); /* 50 */

 II (c, d, a, b, x [14], S43, 0xab9423a7); /* 51 */

 II (b, c, d, a, x [5], S44, 0xfc93a039); /* 52 */

 II (a, b, c, d, x [12], S41, 0x655b59c3); /* 53 */

 II (d, a, b, c, x [3], S42, 0x8f0ccc92); /* 54 */

39

 II (c, d, a, b, x [10], S43, 0xffeff47d); /* 55 */

 II (b, c, d, a, x [1], S44, 0x85845dd1); /* 56 */

 II (a, b, c, d, x [8], S41, 0x6fa87e4f); /* 57 */

 II (d, a, b, c, x [15], S42, 0xfe2ce6e0); /* 58 */

 II (c, d, a, b, x [6], S43, 0xa3014314); /* 59 */

 II (b, c, d, a, x [13], S44, 0x4e0811a1); /* 60 */

 II (a, b, c, d, x [4], S41, 0xf7537e82); /* 61 */

 II (d, a, b, c, x [11], S42, 0xbd3af235); /* 62 */

 II (c, d, a, b, x [2], S43, 0x2ad7d2bb); /* 63 */

 II (b, c, d, a, x [9], S44, 0xeb86d391); /* 64 */

 State [0] += a;

 State [1] += b;

 State [2] += c;

 State [3] += d;

- Where A, B, C, and D are fixed values that are already defined by the MD5 to output

the Digest.

- X [16] is the value of Shared Key accessed by an MD5 Protocol user.

- S11 to S44 are also fixed values that are defined by the MD5 algorithm.

- The values 0xf4292244 and 0xeb86d391 are static values passed through the MD5

Protocol.

40

3.3.1 Simple test on MD5

This simple test has been used to encode the current protocol from an open source on

the Internet, based on MD5 for different files:

Table 3.1 result table

File name File size Hash value

Document 1 11 bytes 3f80c5aaaae973738a52fc1e0507bbd1

Document 2 11 bytes b6624d8dc379ee5810d32ad1e7ddc833

Pdf 1 265 KB f6ab5b67c316fc90a12056b0257fb99f

Pdf 2 345 KB 0d0ac21344537b9e3bfff1caa86c71bc

Word 1 12.2 KB 5294e064fc021ecd5d618b696558b30e

Word 2 12.2 KB 72a88edf67a16edd7af7e03a653971be

Document 3 111 bytes 4146e3a8cfac929eb7fdbf1bf845d5cb

These states demonstrate a simple implementation of the original MD5 on a simple set

of files, as at this stage the probability of a collision attack is weak, but with the

experience, it becomes available, as mentioned in previous studies listed in the

previous chapter.

3.4 The proposed MDM protocol

The proposed protocol represents an extension of the original MD5 protocol and

henceforth will be referred to as a new name the MDM (Message Digest

Modification) protocol. The MDM message-digest-modification protocol takes as

input a message of inordinate length and produces as output a 128-bit "message

digest" of the input. It is assumed that it is computationally infeasible to produce two

41

messages having the same message digest, or to produce any message has a given

predefined target. The MDM protocol is intended for digital signature applications,

where a large file must be "compressed" in a secure case before being encrypted with

a private (secret) key using a public-key cryptosystem such as RSA. Otherwise, the

protocol can be used in password protection operations by using the same fingerprint

and merging it with the username to produce the Hash value.

The structure and the method of operation of the MDM protocol will be described in

the following sections.

3.5 The proposed changes

The aim of the new protocol is to strengthening the mechanism of the old protocol

work to become effective and reliable, so that the work is done in the same way as

discussed in chapter two, where step 1 and step 3 have the same structure. But the

mechanism of symmetric handling does not alter any modifications, since the

adjustment lies within step 4 as the construction and use are similar to the MD5

protocol. The difference lies within the process of constructing hash within step 4

where the mechanisms of calculation in the fourth step of compatibility side by side

with the mechanism of using the fingerprint. so that, the fixed values in the previous

section has been changed to consider the values of a variable extracted from the

fingerprint, thus, the fingerprint was used to read 1024 Bit of the final points of the

fingerprint, and the last 512 bits were used in the process of Hash. Also the last-

second section was used 512 bits to be considered among the equations responsible

for extracting a special value for comparison when receiving the extracted value.

42

Here is a simplified explanation of the fourth step in the new MDM protocol and

places of the existence of fixed values and mechanism of definition when working to

extract the value of the message digest (the transformation equations that have been

modified):

#define S11 7

#define S12 12

#define S13 17

#define S14 22

#define S21 5

#define S22 9

#define S23 14

#define S24 20

#define S31 4

#define S32 11

#define S33 16

#define S34 23

#define S41 6

#define S42 10

#define S43 15

#define S44 21

43

 /* Round 1 */

 FF (a, b, c, d, Sharedkey, S11, Fingerprint); /* 1 */

 FF (d, a, b, c, Sharedkey, S12, Fingerprint); /* 2 */

 FF (c, d, a, b, Sharedkey, S13, Fingerprint); /* 3 */

 FF (b, c, d, a, Sharedkey, S14, Fingerprint); /* 4 */

 FF (a, b, c, d, Sharedkey, S11, Fingerprint); /* 5 */

 FF (d, a, b, c, Sharedkey, S12, Fingerprint); /* 6 */

 FF (c, d, a, b, Sharedkey, S13, Fingerprint); /* 7 */

 FF (b, c, d, a, Sharedkey, S14, Fingerprint); /* 8 */

 FF (a, b, c, d, Sharedkey, S11, Fingerprint); /* 9 */

 FF (d, a, b, c, Sharedkey, S12, Fingerprint); /* 10 */

 FF (c, d, a, b, Sharedkey, S13, Fingerprint); /* 11 */

 FF (b, c, d, a, Sharedkey, S14, Fingerprint); /* 12 */

 FF (a, b, c, d, Sharedkey, S11, Fingerprint); /* 13 */

 FF (d, a, b, c, Sharedkey, S12, Fingerprint); /* 14 */

 FF (c, d, a, b, Sharedkey, S13, Fingerprint); /* 15 */

 FF (b, c, d, a, Sharedkey, S14, Fingerprint); /* 16 */

 /* Round 2 */

 GG (a, b, c, d, Sharedkey, S21, Fingerprint); /* 17 */

 GG (d, a, b, c, Sharedkey, S22, Fingerprint); /* 18 */

 GG (c, d, a, b, Sharedkey, S23, Fingerprint); /* 19 */

 GG (b, c, d, a, Sharedkey, S24, Fingerprint); /* 20 */

 GG (a, b, c, d, Sharedkey, S21, Fingerprint); /* 21 */

 GG (d, a, b, c, Sharedkey, S22, Fingerprint); /* 22 */

44

 GG (c, d, a, b, Sharedkey, S23, Fingerprint); /* 23 */

 GG (b, c, d, a, Sharedkey, S24, Fingerprint); /* 24 */

 GG (a, b, c, d, Sharedkey, S21, Fingerprint); /* 25 */

 GG (d, a, b, c, Sharedkey, S23, Fingerprint); /* 26 */

 GG (c, d, a, b, Sharedkey, S24, Fingerprint); /* 27 */

 GG (b, c, d, a, Sharedkey, S24, Fingerprint); /* 28 */

 GG (a, b, c, d, Sharedkey, S21, Fingerprint); /* 29 */

 GG (d, a, b, c, Sharedkey, S22, Fingerprint); /* 30 */

 GG (c, d, a, b, Sharedkey, S23, Fingerprint); /* 31 */

 GG (b, c, d, a, Sharedkey, S24, Fingerprint); /* 32 */

 /* Round 3 */

 HH (a, b, c, d, Sharedkey, S31, Fingerprint); /* 33 */

 HH (d, a, b, c, Sharedkey, S32, Fingerprint); /* 34 */

 HH (c, d, a, b, Sharedkey, S33, Fingerprint); /* 35 */

 HH (b, c, d, a, Sharedkey, S34, Fingerprint); /* 36 */

 HH (a, b, c, d, Sharedkey, S31, Fingerprint); /* 37 */

 HH (d, a, b, c, Sharedkey, S32, Fingerprint); /* 38 */

 HH (c, d, a, b, Sharedkey, S33, Fingerprint); /* 39 */

 HH (b, c, d, a, Sharedkey, S34, Fingerprint); /* 40 */

 HH (a, b, c, d, Sharedkey, S31, Fingerprint); /* 41 */

 HH (d, a, b, c, Sharedkey, S32, Fingerprint); /* 42 */

 HH (c, d, a, b, Sharedkey, S33, Fingerprint); /* 43 */

 HH (b, c, d, a, Sharedkey, S34, Fingerprint); /* 44 */

 HH (a, b, c, d, Sharedkey, S31, Fingerprint); /* 45 */

45

 HH (d, a, b, c, Sharedkey, S32, Fingerprint); /* 46 */

 HH (c, d, a, b, Sharedkey, S33, Fingerprint); /* 47 */

 HH (b, c, d, a, Sharedkey, S34, Fingerprint); /* 48 */

 /* Round 4 */

 II (a, b, c, d, Sharedkey, S41, Fingerprint); /* 49 */

 II (d, a, b, c, Sharedkey, S42, Fingerprint); /* 50 */

 II (c, d, a, b, Sharedkey, S43, Fingerprint); /* 51 */

 II (b, c, d, a, Sharedkey, S44, Fingerprint); /* 52 */

 II (a, b, c, d, Sharedkey, S41, Fingerprint); /* 53 */

 II (d, a, b, c, Sharedkey, S42, Fingerprint); /* 54 */

 II (c, d, a, b, Sharedkey, S43, Fingerprint); /* 55 */

 II (b, c, d, a, Sharedkey, S44, Fingerprint); /* 56 */

 II (a, b, c, d, Sharedkey, S41, Fingerprint); /* 57 */

 II (d, a, b, c, Sharedkey, S42, Fingerprint); /* 58 */

 II (c, d, a, b, Sharedkey, S43, Fingerprint); /* 59 */

 II (b, c, d, a, Sharedkey, S44, Fingerprint); /* 60 */

 II (a, b, c, d, Sharedkey, S41, Fingerprint); /* 61 */

 II (d, a, b, c, Sharedkey, S42, Fingerprint); /* 62 */

 II (c, d, a, b, Sharedkey, S43, Fingerprint); /* 63 */

 II (b, c, d, a, Sharedkey, S44, Fingerprint); /* 64 */

46

Figure 3.1 Create message digest using new MDM

47

3.5.1 The method of operation

The work in this protocol is similar to the original MD5 protocol as mentioned in the

previous chapter, where the steps from 1 to 3 are exactly the same as the original

protocol as they have a full explanation in chapter two, where Step 1 is Append

Padding Bits, Step 2 is Append Length, and Step 3 is Initialize MD Buffer, and Step

4. Process Message in 16-Word Blocks, where step 3, when the protocol gets started

to initialize the MD buffers the values, it will be changed to be as the new protocol

MDM work , the values will become from the fingerprint to be initialized to being

used in step 4 in the transformation step. The main work and the implementation of

the goal of this study will be in this step. This step is a compression algorithm that

consists of four rounds of processing. The fundamental of the four rounds have a

similar structure, but each round has a different primitive logical function and

specification, refers to as F, G, I

+.and H. Each round takes the 32-bit buffer value ABCD and the current block 512-

bit and each round consists of a 64-element from the lookup table. The changes

addressed here are to change the inputs to the rounds and function to be merged with

the fingerprint value. After all these steps they output 128-bit message digest as

shown in figure 3.1.

In figure 3.1, the protocol starts by reading the fingerprint of the fingerprint scanner.

The fingerprint is recognized as a picture and converted to a byte matrix. It is split

into an array of bits and the protocol takes the last 1024 bits of the array to be

prepared in step 3, and then used in step 4 to build the message digest value.

48

These 1024 bits are used in the protocol structure whereas the user file or the text used

in the Hash process is processed by the first steps as mentioned earlier:

Step .1 Append Padding Bits

The message is "padded" (lengthened) so that its length (in bits) is corresponding to

448, modulo 512. That is, the message is lengthened so it is just 64 bits shy of being a

multiple of 512 bits long. Even if the length of the message is already corresponding

to 448, modulo 512, padding is always executed. Where it is performed as the

following: a single "1" bit is appended to the message, and then "0" bits are appended

so that the length in bits of the padded message becomes congruent to 448, modulo

512. Totally, at least one bit and at most 512 bits are appended.

Step .2 Append Length

A 64-bit representation, of b (the length of the message before the padding bits were

added), is appended to the result of the previous step. as it is unlikely event that b is

greater than 2^64, so only the low-order 64 bits of b are used. (These bits are

appended as two 32-bit words and appended low-order word first in accordance with

the previous conventions.) At this point, the resulting message (after padding with bits

and with b) has a length that is a specific multiple of 512 bits. Equivalently, this

message has a length that is an exact multiple of 16 (32-bit) words. Let M [0 ... N-1]

point out the words of the resulting message, where N is a multiple of 16.

Step 3. Initialize MD Buffer

A four-word buffer (A, B, C, and D) is used to compute the message digest. Here,

each of A, B, C, and D is a 32-bit register. These registers are initialized to the

following values in hexadecimal, low-order bytes first:

49

 Word [A] = 0x67452301;

 Word [B] = 0xefcdab89;

 Word [C] = 0x98badcfe;

 Word [D] = 0x10325476;

Step .4 Process Message in 16-Word Blocks

We first define four auxiliary functions that each takes as input three 32-bit words and

produces as output one 32-bit word.

F(X, Y, Z) = XY v not(X) Z

G(X, Y, Z) = XZ v Y not (Z)

H(X, Y, Z) = X xor Y xor Z

I(X, Y, Z) = Y xor (X v not (Z))

In each bit position F acts as a conditional: if X then Y else Z. The function F could

have been defined using + instead of v since XY and not(X) Z will never have 1’s in

the same bit position.) It is interesting to note that if the bits of X, Y, and Z are

independent and unbiased, each bit of F(X, Y, and Z) will be independent and

unbiased. The functions G, H, and I are similar to the function F, in that they act in

"bitwise parallel" to produce their output from the bits of X, Y, and Z, in such a

manner, that if the corresponding bits of X, Y, and Z are independent and unbiased,

then each bit of G(X, Y, Z), H(X, Y, Z), and I(X, Y, Z) will be independent and

unbiased. Note that the function H is the bit-wise "xor" or "parity" function of its

inputs.

50

The four words (A, B, C and D) each word will be entered in the four rounds to

calculate the message digest in this protocol, the values will be computationally

computed with the value of 512 bits taken from the fingerprint with the four words to

be introduced, and to be aggregated and then to give the value of the message digest.

In the right side of the figure3.1, there is a 512 bit still unused will be used in the next

step.

3.5.2 Create checksum

In the new protocol, more values to be dealt with than the old MD5 protocol. We need

to extrapolate values in the comparison process to the message digest to calculate the

checksum. This value is extracted by converting the 512 bits before the last one from

hexadecimal to the Decimal and also inserting values in the assembly frame to

produce a valid number that can be used, as well as the same steps are executed on

the value of message digest and are converted in the same way, so as to deal with the

resulting numbers of this process and the application of the mathematical equation

Least Common Multiple (LCM) to find the value of the division, and to be sent

attached to the value of message digest as shown in figure 3.2.

51

Figure 3.2 Create checksum value using new MDM

52

All of these changes are made in the sender side, and here is an explanation of the

side of the recipient.

3.5.3 Decode Step

In this step, the integrity of the files is checked and it is manipulated by delivering

three values: message digest, public key, and checksum.

The receiver converts the value of the message digest and also the public key from

the hexadecimal to the decimal, grouping the values, inserts them into the equation

LCM to extract their values and compare them in the scaling. If the values match, the

file is intact and it has not been manipulated, but unless the value matches, the file is

not correct and has been manipulated.

The process of sending the public key and the checksum for verification purposes

such as digital signature and in the case of password protection to give permission to

enter in the system as show in figure 3.3.

53

Figure 3.3 Decode step using the new MDM

54

3.6 Proposed Measurements

Two methods of measurement will be used:

1. Security tests will be conducted to provide a verification of the proposed protocol.

2. A comprehensive comparison of the suggested scheme will be conducted with SHA and

traditional MD5.

3.7 The method of evaluation

To prove the strength of the new MDM protocol, the new algorithm must deal with the

weaknesses of the original MD5, the collision attacks.

 a) Test the new protocol in a local system contains server/client to ensure that sending and

receiving of the data by using the new protocol is working, and that the way of hashing the

password protection before being loaded in the database of the server, is applicable.

b) Efficacy of the MDM

The purpose of the efficacy test is to demonstrate the practical side of using the new MDM in a

work environment like (Microsoft product daily use and others) to get feedback from the users

about the use of the product.

55

Chapter Four

Implementation and Results

56

Chapter four

Implementation and Results

4.1 Introduction

The implementation of the proposed MDM algorithm is introduced in this chapter, in addition to

clarifying a researcher-specific program that has been applied in several companies to check the

applicability of algorithm in practical application using Microsoft Visual Studio build with C #

language, to build a special chat system and to implement the MDM algorithm for protecting

passwords as well as creating the digital signature processes, Then , the comparison between

SHA256, MD5, and MDM in terms of the required time difference to execute the algorithm on

files of different sizes, Finally, the results of the use of MDM on the same files that were used in

a simple experiment on MD5 to know the value of Hash in chapter 3, which expresses the results

of the breaches on the MDM algorithm

4.2 MDM implementation

The new algorithm was implemented by constructing three special systems for the researcher;

the first system is based on a special program for recording users according to their username

and fingerprints, the possibility of having conversations and sending files which are all directed

to the new system algorithm for password protection operations. The user and the installation of

57

values for his fingerprint are handled in storage places and application algorithm to the process

of Hash and retain its value until the request for retrieval at the time of login.

The second system is based on the possibility of an application for digital signature so that a file

is selected and attached to the user's request to put the fingerprint to use the values in the Hash

process since the electronic signature is linked to the RSA algorithm to complete the hash

process correctly.

The third system is based on the possibility of extracting the value of Hash files, and clarifying

the process of comparison through it with most of the Hash algorithms adopted and the most

popular; MD5 and SHA family.

 The following is an illustration of the software screens that were used to implement the practice

in a real work environment for some companies that deal with office files and need more security

for data.

And also an explanation of the screens used for each system and the correct and incorrect input

results:

4.2.1 System one (chat system consists of server/client)

This system consists of a server and a client where a direct connection is opened between them

and recording the data that transfers to the server when the registration process to the client and

the retention of data to be retrieved, as this system proved efficient to maintain the user's data,

and inability to have them penetrated by breakthroughs, which will be mentioned later in this

chapter as shown in figure 4.1, figure 4.2, figure 4.3, figure 4.5 and figure 4.6.

58

Figure 4.1 the server display: is waiting to open a direct connection with the client.

Figure 4.2 open the connection

59

Figure 4.3 the client screen

 where the system is waiting to enter the user name and the position of the fingerprint to be

compared to its value in the database, and compare the results to give the permission to enter or

reject, also some common errors not to accept the fingerprint by the first time, so the system

allows the possibility of restoring the fingerprint to allowed the user to enter as shown in figure

4.3.

60

Figure 4.4 Confirm that the fingerprint entered correctly gives the permissions to enter the system.

Figure 4.5 the server log

61

 That records the calculated data for the value of the Hash as explained in the first chapters and

which is (Hash value or the message digest, public key the 512 bit that we use, and the checksum

that has been calculated with the LCM equation) as shown in figure 4.5.

Figure 4.6 after authentication, the use of the services available within the system and after

the user's verification is enabled.

62

4.2.2 System two (digital signature generator)

This system is used to insert files with different measurements and is authenticated with a digital

signature using the proposed protocol in dealing with the RSA algorithm. As Hash processes use

this algorithm in the process of creating the digital signature, this system includes a screen to

insert the file and request the use of the fingerprint to find the special values in it. Checking the

signature and not having any modification to the file are explained in the screens as shown in

figure 4.7, figure 4.8, figure 4.9 and figure 4.10.

Figure 4.7 the first screen of the program

As shown in figure 4.7 in the left inside the white space where the text or file is converted to

hexadecimal for easy handling of content, also clarifying the right values used by RSA and the

location of the fingerprint, as well as the possibility of creation and verification of the digital

signature.

63

Figure 4.8 the process of inserting the file and entering the fingerprint

64

Figure 4.9 the process of creating a digital signature is based on the value of the fingerprint

where the Pressing on sign is for calculating the message digest or hash value.

65

Figure 4.10 This screen enables the user to verify the file if it has been modified or not by

using the administrator to verify the signature and compare the existing file with the

original signature and give the confirmation or rejection of the file.

4.2.3 System three (Comparing system)

The function of this system is to calculate the Hash value for a given file, while the value is

stored in its own file, the possibility of retrieving the value and verifying that if the file is

modified or not. This system provides the possibility of using more than MDM Hash algorithms

66

such as (SHA family, MD5). This program was used to build comparison tables within this thesis

as shown in figure 4.11, figure 4.12, and figure 4.13 until figure 4.19, as illustrated by the

screens:

Figure 4.11 the first screen of the comparison program, and choosing the file to be hashed,

where it is determined by clicking on browse the file and choosing to work Hash.

67

.

Figure 4.12 after selecting the file, the fingerprint is used to determine the values to work.

Figure 4.13 the Hash value is determined

68

Figure 4.14 choose a comparison command to check the integrity of the file.

Figure 4.15 the file to be compared is chosen from the defined storage locations.

69

Figure 4.16 an additional command is pressed to confirm the file.

Figure 4.17 when the file has been manipulated, the response is rejected and the result of

the comparison is negative if the file has been modified.

70

Figure 4.18 choose the proper file for comparison.

Figure 4.19 the results of the comparison are true and that the file is not modified.

4.3 Comparative study on MDM

An illustrative table for new algorithm implementations and calculation of the time taken to

implement, and comparing results with MD5 and SHA256, These results were selected through

71

application in different companies for the purposes of checking the security of the algorithm and

the possibility of dealing with them in the real environment, and the results were satisfactory to a

large extent.

Table 4.1 Comparative time of execution measured by (ms).

File size MDM MD5 SHA256

1 KB

62

185

563

1038 KB

190

230

365

11 bytes

85

100

153

1114 KB

153

194

271

131 KB

190

209

257

144 KB

180

212

230

1551 KB

211

222

230

175 KB

185

279

236

17678 KB

345

387

663

2 KB

171

220

200

2118 KB

180

212

335

265 KB

199

203

220

345 KB

163

279

247

4 KB

63

166

215

5 KB

185

190

212

56 KB

181

189

247

7131 KB

91

241

817

72

868 KB

163

238

286

93587 KB

1056

1080

2425

2662688 KB

6323

20926

70710

Average 518.8

1298.1

3944.1

MDM/MD5 = 39.97%

MDM/SHA = 13.15%

Figure 4.20 Comparative time of execution measured by (ms).

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

MDM MD5 SHA-256

73

Table 4.3.1 demonstrates and as the graph 4.3.2 analyzes that the time taken by the new

algorithm is significantly lower than the time of the other algorithms which means the new

algorithm is faster than the others.

4.4 Test result

The study has made a small experiment to apply the MD5 in Chapter III and it has been reported

that the same files will be tested but on the new algorithm; here are the results.

Table 4.2 MDM results

File Name File size Hash value

Document 1 11 bytes ab5bee7e546c530af02b7091d2ad50c5

document 2 11 bytes ab5bee7e546c530af02b7091d2ad50c5

pdf 1 265 KB 225f4dc9810272e6f27fe8356ade6f47

pdf 2 345 KB 170ebcecbf1e4c2ada657b9e2a3782c5

word 1 12.2 KB f8cc92cdf4343549b34173bff8891955

word 2 12.2 KB 44701676e0d19feed4c2ab05786d4a16

Document 3 11 bytes ef31ff889c7dc647b7e162b5a067018c

74

4.5 Proving attacks

This section presents some of the hacking attempts on the proposed algorithm, then compared

with MD5, where the programs that have been used to find the original files of the MD5, cannot

be enabled to penetrate the new algorithm MDM. The programs that are used are Ophcrack, Cain

and able. The word Cisco was used to do the Hash and the original word was searched within

these programs when applied to the value of the MD5 it is found, but when searching after the

application the MDM value it could not be found as shown in figure 4.21 until figure 4.30.

Cisco = > MD5=> dfeaf10390e560aea745ccba53e044ed

Cisco => MDM => 5553cc030cd6a34ee9ef93784c72bfe5

Figure 4.21 Ophcrack on MDM

75

Figure 4.22 Ophcrack on MDM

Figure 4.23 Ophcrack on MD5

76

Figure 4.24 Cain and able on MD5

77

Figure 4.25 Cain and able on MD5

78

Figure 4.26 Cain and able on MD5

79

Figure 4.27 Cain and able on MD5 where the name is found

.

Figure 4.28 Cain and able on MDM

80

Figure 4.29 Cain and able on MD5

81

Figure 4.30 Cain and able on MDM

82

Chapter Five

Conclusions and Future Work

83

Chapter Five

Conclusion and Future Work

5.1 Conclusion

 The goal of this research thesis is to improve and strengthen the performance of the MD5

algorithm and to solve the problem of collision attack, through changing the constant

values used in the original algorithm. The enhancement has been achieved through

replacing the constant values with variable values obtained from user's fingerprint, with

retention of the structure of the original algorithm. Based on the practical experience of

modifying the MD5 algorithm and testing the new algorithm (MDM) , the following

conclusions can be drawn:

 Obtaining a new algorithm that is strengthened by the fingerprint technology that supports

the integrity of files, and is one of the first technologies that use the asymmetric key in the

Hash operations.

 Obtaining a Secure digital signature.

 The digital signature mechanism provides authentication for the sender's identity in terms

of the integrity of the data sent by the other party, even if the communication channel is

unsafe.

 Getting an algorithm that supports maintaining passwords, without fear of hacking.

84

 Providing an algorithm that is clearly much faster compared with the original algorithm

and the SHA algorithm.

 The results showed that the attack software was not able to penetrate the proposed

algorithm.

 The results showed the strength and security of the proposed algorithm to protect the

user's data.

 The study obtained a good deal of reliability feedback from companies that used the

MDM algorithm, the application was made through them to ensure the effectiveness of

the algorithm.

5.2 Future work

Work in this algorithm may extend to current problems:

 Use more non-fingerprinting techniques such as eye iris and retina.

 Target samples for further study.

 Use the algorithm within larger software to activate more of security.

 Applying the algorithms with higher cost techniques such as iris with fingerprint.

85

References

 (PDF) A Study on Fingerprint Hash Code Generation Based on MD5 Algorithm and

Freeman Chain code. Available from:

https://www.researchgate.net/publication/322465126_A_Study_on_Fingerprint_Hash_Co

de_Generation_Based_on_MD5_Algorithm_and_Freeman_Chain_code.

 Alok kumar Kasgar, Jitendra Agrawal and Santosh Sahu, (2012). New Modified 256-bit

MD5 Algorithm with SHA Compression Function, International Journal of Computer

Applications (0975 – 8887) Volume 42– No.12, March 2012, Available:

https://www.researchgate.net/publication/258650505_New_modified_256-

bit_MD5_Algorithm_with_SHA_Compression_Function.

 Boer, B. and Bosselaers, A. (1994) ‘Collisions for the compression function of

MD5’, in EUROCRYPT ’93, Lecture Notes in Computer Science, Vol. 765,

pp.293–304.

 C.G Thomas, Thomas.Ro.Jo,(2015), A Comparative Study on Different Hashing Algorithms,

International Journal of Innovative Research in Computer And Communication

Engineering, ISSN (Online): 2320-9801.

 Cisco, (2007). Cisco IOS software integrity assurance- Cisco.com. (on-line) Available:

https://tools.cisco.com/security/center/resources/integrity_assurance.html.

 collision attack for MD5?’. Cryptology ePrint Archive, Report 2008/391, available at
http://eprint.iacr.org/2008/391.

https://www.researchgate.net/publication/322465126_A_Study_on_Fingerprint_Hash_Code_Generation_Based_on_MD5_Algorithm_and_Freeman_Chain_code
https://www.researchgate.net/publication/322465126_A_Study_on_Fingerprint_Hash_Code_Generation_Based_on_MD5_Algorithm_and_Freeman_Chain_code
https://www.researchgate.net/publication/258650505_New_modified_256-bit_MD5_Algorithm_with_SHA_Compression_Function
https://www.researchgate.net/publication/258650505_New_modified_256-bit_MD5_Algorithm_with_SHA_Compression_Function
https://tools.cisco.com/security/center/resources/integrity_assurance.html
http://eprint.iacr.org/2008/391

86

 D Rachmawati*, J T Tarigan1* and A B C Ginting, (2018). A comparative study of

Message Digest 5(MD5) and SHA256 algorithm, 2nd International Conference on

Computing and Applied Informatics 2017 IOP Publishing IOP Conf. Series: Journal of

Physics: Conf. Series 978 (2018) 012116 doi :10.1088/1742-6596/978/1/012116,

Departemen Ilmu Komputer, Fakultas Ilmu Komputer dan Teknologi Informasi,

Universitas Sumatera Utara, Jl. Universitas No. 9-A, Medan 20155, Indonesia *Email:

dian.rachmawati@usu.ac.id, jostarigan@usu.ac.id, realardi@gmail.com, Available:

file:///C:/Users/mero/Desktop/MD5/Rachmawati_2018_J._Phys.__Conf._Ser._978_0121

16.pdf.

 D. Florencio and C. Herley, ―A large-scale study of web password habits,

‖ Proceedings of the 16thInternational conference on the World Wide Web, 2007. (PDF)

Fingerprint Recognition System: Design & Analysis. Available:

https://www.researchgate.net/publication/247773759_Fingerprint_Recognition_System_

Design_Analysis .

 Dobbertin. Ha (1996). Cryptanalysis of MD4. German information security agency.

 Esmael V. Maliberan, Ariel M. Sison, Ruji P. Medina, (2018). A New Approach in

Expanding the Hash Size of MD5, Graduate Programs, Technological Institute of the

Philippines, Quezon City, Philippines, Available: file:///C:/Users/mero/Downloads/3292-

6925-1-PB.pdf.

 John Black, Martin Cochran and Trevor Highland, (2006). A Study of the MD5 Attacks:

Insights and Improvements, University of Colorado at Boulder, USA

mailto:realardi@gmail.com
file:///C:/Users/mero/Desktop/MD5/Rachmawati_2018_J._Phys.__Conf._Ser._978_012116.pdf
file:///C:/Users/mero/Desktop/MD5/Rachmawati_2018_J._Phys.__Conf._Ser._978_012116.pdf
https://www.researchgate.net/publication/247773759_Fingerprint_Recognition_System_Design_Analysis
https://www.researchgate.net/publication/247773759_Fingerprint_Recognition_System_Design_Analysis
file:///C:/Users/mero/Downloads/3292-6925-1-PB.pdf
file:///C:/Users/mero/Downloads/3292-6925-1-PB.pdf

87

www.cs.colorado.edu/∼jrblack, ucsu.colorado.edu/∼cochranm jrblack@cs.colorado.edu,

cochranm@cs.colorado.edu 2 University of Texas at Austin, USA

trevor.highland@gmail.com, Available:

https://link.springer.com/content/pdf/10.1007%2F11799313_17.pdf.

 K. Krishna Prasad & P. S. Aithal. A Study on Fingerprint Hash Code Generation Based

on MD5 Algorithm and Freeman Chain Code. International Journal of Computational

Research and Development, Volume 3, Issue 1, Page Number 13-22, 2018.

 K. Wiesner, M. Foth, M. Bilandzic, and H. Krcmar. (2009). Restrictions and Constraints

in mobile narratives for place-based community engagement. In Community Practices

and Locative Media Workshop, MobileHCI, University of Bonn, Bonn, 2009.

 Kahate. At (2008). Cryptography and network security (Second edition), India.

 Klima, V. (2005). Finding MD5 collisions on a notebook PC using multi-message

Modifications. Cryptology ePrint Archive, Report 2005/102, available at

http://eprint.iacr.org/2005/102.

 Klima, V. (2005). Finding MD5 collisions on a notebook PC using multi-message

Modifications. Cryptology ePrint Archive, Report 2005/102, available at

http://eprint.iacr.org/2005/102.

 Klima, V. (2006). Tunnels in hash functions: MD5 collisions within a minute. Cryptology

ePrint Archive, Report 2006/105, available at http://eprint.iacr.org/2006/105.

 Klima, V. (2006). Tunnels in hash functions: MD5 collisions within a minute.Cryptology

ePrint Archive, Report 2006/105, available at

http://eprint.iacr.org/2006/105.

 Kumar. Sa, Gupta. Pi, (2018), A Comparative Analysis of SHA and MD5

Algorithm, Piyush Gupta et al, / (IJCSIT) International Journal of Computer Science and

Information Technologies, Vol. 5 (3) , 2014, 4492-4495.

 Libed. JA, Sison. AR &Dr.Medina. Ru. (2018). Enhancing MD5 Collision Susceptibility.

Conference: 4th International Conference on Industrial and Business Engineering

mailto:trevor.highland@gmail.com
https://link.springer.com/content/pdf/10.1007%2F11799313_17.pdf
http://eprint.iacr.org/2005/102
http://eprint.iacr.org/2006/105
http://eprint.iacr.org/2006/105

88

Proceedings, At University of Macau. Available:

https://www.researchgate.net/publication/328879023_Enhancing_MD5_Collision_Susce

ptibility.

 Libed. JA, Sison. AR &Dr.Medina. Ru. (2018). Improved MD5 through the extension of

1024 message input block. Conference: International Conference on Machine Learning

and Machine Intelligence, At Hanoi, Vietnam. Available:

https://www.researchgate.net/publication/328879020_Improved_MD5_through_the_exte

nsion_of_1024_Message_Input_Block.

 M. Stamp and R. M. Low, Applied Cryptanalysis: Breaking Ciphers in the Real World,

Wiley 2007.

 Maltoni. D, Maio. D, Jain. A. K., & Prabhakar. S. (2009). Handbook of Fingerprint

Recognition, Springer-Verlag, London, XVI, 494.

 McClelland. Me (2018). Data integrity checksum. (on-line) available:

http://www.versity.com/blog/data-integrity-checksums.

 Naito. Yu, Kunihiro. No & Ohta. Ka, (2005). The University of Electro-

Communications, Japan ftolucky, yu339, kunihiro, otag @ice.uec.ac.jp Available:

https://www.semanticscholar.org/paper/Improved-Collision-Attack-on-MD5-Sasaki-

Naito/06036d71d60fd4a8a002f50bf2524ef9c3540717.

 Narayana. D. Ka, (2006). A Meaningful MD5 Hash Collision Attack, Master thesis,

San Jose State University, San Jose, California.

 Piyush. GU, Sandeep. Ku, (2019), A Comparative Analysis of SHA and MD5 Algorithm,

(IJCSIT) International Journal of Computer Science and Information Technologies, Vol.

5 (3) , 2014, 4492-4495,

 Rachmawati. D, Tarigan. A B C Ginting, (2018). A comparative study of Message Digest

5(MD5) and SHA256 algorithm, 2nd International Conference on Computing and

https://www.researchgate.net/publication/328879023_Enhancing_MD5_Collision_Susceptibility
https://www.researchgate.net/publication/328879023_Enhancing_MD5_Collision_Susceptibility
https://www.researchgate.net/publication/328879020_Improved_MD5_through_the_extension_of_1024_Message_Input_Block
https://www.researchgate.net/publication/328879020_Improved_MD5_through_the_extension_of_1024_Message_Input_Block
http://www.versity.com/blog/data-integrity-checksums
https://www.semanticscholar.org/paper/Improved-Collision-Attack-on-MD5-Sasaki-Naito/06036d71d60fd4a8a002f50bf2524ef9c3540717
https://www.semanticscholar.org/paper/Improved-Collision-Attack-on-MD5-Sasaki-Naito/06036d71d60fd4a8a002f50bf2524ef9c3540717

89

Applied Informatics 2017, IOP Publishing. IOP Conf. Series: Journal of Physics: Conf.

Series 978 (2018) 012116.

 Rivest, R. (1992) ‘The MD5 Message-Digest Algorithm’, Internet Engineering Task

Force, Request For Comments, RFC 1321, April, (on-line) available at

http://www.ietf.org/rfc/rfc1321.txt.

 Robshaw. Ma, (1994). Message Authentication with MD5, Burt Kaliski and Matt

Robshaw RSA Laboratories 100 Marine Parkway, Suite 500 Redwood City, CA

94065 USA burt@rsa.com matt@rsa.com , Available:

https://pdfs.semanticscholar.org/cad3/6d5c4fdf768154b7bfafa5e1a33a1abf0062.pdf.

 S. Thomsen, (2007). The Grindahl Hash Functions, Conference paper, Available:

https://link.springer.com/chapter/10.1007/978-3-540-74619-5_3 .

 Sasaki. Y, Naito. Y & Kunihiron. N, Ohta, K, (2005). Improved collision attack on MD4.

The University of Electro-Communications, Japan {tolucky, yu339, kunihiro, ota}

@ice.uec.ac.jp, Available:

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=B8DED5D7D255B36A2CA82

B5D6D5EFA71?doi=10.1.1.59.5096&rep=rep1&type=pdf.

 Schaettgen. Ni, Levy. Di & Schelnast. Ju, Socol. So, Digital signatures paving the way to

a digital Europe (on-line) available:

http://www.adlittle.fr/sites/default/files/viewpoints/ADL_2014_Digital-Signatures.pdf.

 Selinger. Pe, (2011). MD5 collision demo (on-line) Available:

https://www.mscs.dal.ca/~selinger/md5collision/.

 Stallings, W. (2006). Cryptography and Network Security: Principles and Practice.

 Stallings. Wi (2004). Cryptography and network security (fourth edition), Prentice

Hall publication.

 Stevens, M. (2006). Fast collision attack on MD5. Cryptology ePrint Archive,

Report 2006/104, available at http://eprint.iacr.org/2006/104.

http://www.ietf.org/rfc/rfc1321.txt
mailto:matt@rsa.com
https://pdfs.semanticscholar.org/cad3/6d5c4fdf768154b7bfafa5e1a33a1abf0062.pdf
https://link.springer.com/chapter/10.1007/978-3-540-74619-5_3
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=B8DED5D7D255B36A2CA82B5D6D5EFA71?doi=10.1.1.59.5096&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=B8DED5D7D255B36A2CA82B5D6D5EFA71?doi=10.1.1.59.5096&rep=rep1&type=pdf
http://www.adlittle.fr/sites/default/files/viewpoints/ADL_2014_Digital-Signatures.pdf
https://www.mscs.dal.ca/~selinger/md5collision/
http://eprint.iacr.org/2006/104

90

 Stevens, M. (2007). On collisions for MD5. TU Eindhoven MSc thesis, June.

available at http://www.win.tue.nl/hashclash/On%20Collisions%20for%20MD5%20-

%20M.M.J.%20Stevens.pdf.

 Stevens, M. (2012). Attacks on hash functions and applications. Universiteit Leiden

PhD thesis, to appear, available at http://marc-stevens.nl/research.

 Stevens, M., Lenstra, A.K. and de Weger, B.M.M. (2007). Chosen-prefix

Collisions for MD5 and colliding X.509certificates for different identities. In

EUROCRYPT 2007, Lecture Notes in Computer Science, Vol. 4515, pp.1–22.

 Stevens, M., Lenstra, A.K. and de Weger, B.M.M. (2007). Chosen-prefix collisions

For MD5 and colliding X.509 certificates for different identities. in EUROCRYPT

2007, Lecture Notes in Computer Science, Vol. 4515, pp.1–22.

 Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A.K., Molnar, D., Osvik, D.A. and

De Weger, B.M.M. (2009). Short chosen-prefix collisions for MD5 and the creation of

A rogue CA certificate. in CRYPTO 2009, Lecture Notes in Computer Science,

Vol.5677.

 Thomas. Co (2009). Introduction to algorithm (third edition). The MIT press. Lai. Xu,

Liang. Ji, (2005). Improved collision attacks on hash function MD5. Department of Computer

Science and Engineering Shanghai Jiao Tong University Shanghai 200240, China Email:

luckyaa@sjtu.edu.cn.

 Tulyakov. Se, Farooq. Fa, Govindaraju. Ve, (2005), Symmetric Hash Functions for

Fingerprint Minutiae, SUNY at Buffalo, Buffalo NY 14228, USA.

 Wang, X. and Yu, H. (2005). How to break MD5 and other hash functions. In

EUROCRYPT 2005, Lecture Notes in Computer Science, Vol. 3494, pp.19–35.

 Wang, X., Feng, D., Lai, X. and Yu, H. (2004). Collisions for hash functions MD4,

MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199,

Available at http://eprint.iacr.org/2004/199.

 Wang, X., Yao, A. and Yao, F. (2005a). New collision search for SHA-1. CRYPTO

2005 Rump session, available at http://www.iacr.org/conferences/crypto2005/r/2.pdf.

 Wang, X., Yin, Y.L. and Yu, H. (2005). Finding collisions in the full SHA-1. In

CRYPTO 2005, Lecture Notes in Computer Science, Vol. 3621, pp.17–36.

http://www.win.tue.nl/hashclash/On%20Collisions%20for
http://marc-stevens.nl/research
mailto:luckyaa@sjtu.edu.cn
http://eprint.iacr.org/2004/199
http://www.iacr.org/conferences/crypto2005/r/2.pdf

91

 Xie, T., Liu, F. and Feng, D. (2008). Could the 1-MSB input difference be the fastest

collision attack for MD5?. Cryptology ePrint Archive, Report 2008/391, available at

http://eprint.iacr.org/2008/391.

 Xie, T., Liu, F. and Feng, D. (2008). Could the 1-MSB input difference be the fastest

Collision attack for MD5?. Cryptology ePrint Archive, Report 2008/391, available at

http://eprint.iacr.org/2008/391.

 Xie, T., Liu, F. and Feng, D. (2008). Could the 1-MSB input difference be the fastest

collision attack for MD5?. Cryptology ePrint Archive, Report 2008/391, available at
http://eprint.iacr.org/2008/391.

 Xie, T., Liu, F. and Feng, D. (2013). Could the 1-MSB input difference be the fastest

http://eprint.iacr.org/2008/391
http://eprint.iacr.org/2008/391
http://eprint.iacr.org/2008/391

92

Appendix A

Contract

93

94

95

96

97

98

