
 

 

A HADOOP MAPREDUCE IMPLEMENTATION OF 

C5.0 DECISION TREE ALGORITHM 

 

 Hadoop" باستخدام "C5.0انشاء و تطبيق خوزارمية شجرة القرارات " 
MapReduce  " 

 

Prepared By 

Mamoun Abu-Lubbad 

 

Supervisor 

Dr. Bassam Al-Shargabi 

 

 

Thesis Submitted In Partial Fulfillment of the Requirements 

of the Master Degree in Computer Science 

 

Computer Science Department 

Faculty of Information Technology 

Middle East University 

June, 2020



  ii 

 

Authorization 

 

 

 

 

 

 

 

 

 

 



  iii 

 

Thesis Committee Decision 

 

 

 

 

 

 



  iv 

 

Acknowledgement 

I would like to thank Dr. Bassam Al-Shargabi, my supervisor, for his consistent support and 

guidance during the running of this thesis. And express my deep sense of gratitude to the group 

general manager of HijaziGhosheh company Dr. Hani Hijazi for encouraging and assist me to 

achieve my high education. And I would like to express my special gratitude to all the lecturers 

at the Faculty of Information Technology, university of the Middle East, and to all those who 

supported me in carrying out this work. 

The researcher  

Mamoun Abu-Lubbad 

 

 

 

 

 

 

 

 

 

 



  v 

 

Dedication 

To: 

My parents and friends who helped me a lot in accomplishing this thesis within the required 

time, and also to my wife bara, with great love, she gave me the power and encouragement, and 

this work would not have been possible without her input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  vi 

 

Table of Contents 
 

Title ................................................................................................................................................................ i 

Authorization ................................................................................................................................................ ii 

Thesis Committee Decision .......................................................................................................................... iii 

Acknowledgment ......................................................................................................................................... iv 

Dedication ..................................................................................................................................................... v 

Table of Contents ......................................................................................................................................... vi 

List of Figures ............................................................................................................................................. viii 

List of Tables ................................................................................................................................................ ix 

Table of Abbreviations .................................................................................................................................. x 

English Abstract........................................................................................................................................... xii 

Arabic Abstract ............................................................................................................................................xiii 

Chapter One:  Introduction ........................................................................................................................... 1 

1.1 Overview ....................................................................................................................................... 1 

1.2 Definitions ..................................................................................................................................... 1 

1.3 Introduction .................................................................................................................................. 2 

1.4 Problem Statement ....................................................................................................................... 4 

1.5 Question of the study ................................................................................................................... 5 

1.6 Purpose of the Study ..................................................................................................................... 5 

1.7 Scope of the study ........................................................................................................................ 5 

1.8 Limitation of the Study.................................................................................................................. 5 

1.9 Contribution and Important of the Study ..................................................................................... 6 

1.10 Motivation ..................................................................................................................................... 6 

Chapter Two: Theoretical Background and Related Works .......................................................................... 7 

2.1 Introduction .................................................................................................................................. 7 

2.2 Hadoop Overview ......................................................................................................................... 7 

2.2.1. Hadoop Architecture ................................................................................................................. 8 

2.2.1.1. Hadoop HDFS ........................................................................................................................ 9 

2.2.1.2. MapReduce ......................................................................................................................... 10 

2.3 Decision Tree ............................................................................................................................... 11 

2.4 C 5.0/ See5 Decision Tree Classification Algorithms ................................................................... 13 



  vii 

 

2.5 Review of Related work .............................................................................................................. 13 

Chapter Three: Methodology and the Proposed Approach ....................................................................... 18 

3.1 Introduction ................................................................................................................................ 18 

3.2 Methodology ............................................................................................................................... 18 

3.3 The proposed approach .............................................................................................................. 19 

3.3.1 Data Structures ....................................................................................................................... 19 

3.3.2 MapReduce Implementation .................................................................................................. 20 

3.3.3 Preparing the data .................................................................................................................. 20 

3.3.4 Selection of attributes ............................................................................................................. 21 

3.3.5 Update ..................................................................................................................................... 22 

3.3.6 Developing the tree. ............................................................................................................... 23 

Chapter Four: Experimental Design and Results ........................................................................................ 24 

4.1 Overview ..................................................................................................................................... 24 

4.2 Introduction ................................................................................................................................ 24 

4.3 Computing environment ............................................................................................................. 25 

4.4 Comparisons between the C4.5 with C5.0, and C5.0 with and without MapReduce on Single 

node  .................................................................................................................................................... 26 

4.5 Performance evaluation on cluster ............................................................................................. 28 

4.6 MapReduce C5.0 Tree evaluation result ..................................................................................... 30 

Chapter Five: Conclusions and Future Work .............................................................................................. 34 

5.1 Conclusion ................................................................................................................................... 34 

5.2 Future work ................................................................................................................................. 34 

6 References .................................................................................................................................. 35 

 



  viii 

 

List of Figures 

 

Figure No Contents Page No 

Figure 2.1 The Hadoop Master-Slave Architecture. 8 

Figure 2.2 HDFS architecture with default data placement policy. 9 

Figure 2.3 
MapReduce Programming Model 

10 

Figure 2.4 Illustration of Decision Tree 12 

Figure 3.1 Methodology steps 18 

Figure 4.1 Performance on Different Numbers of Nodes for 

Census, Forest Dataset per Second 

28 

Figure 4.2 Speed-up for Different Training Size on Different 

Number of Nodes 

29 

Figure 4.3 Performance measures of MapReduce C5.0 Tree for 

census income dataset. 

31 

 
 

 

 

 

 

 

 

 

 

 

 



  ix 

 

List of Tables 

 

Table No Contents Page No 

Table 2.1 Summary of the most similar related works 15 

Table 4.1 The detailed information of the data sets in experiments 25 

Table 4.2 The hardware specification of the cluster hardware used 25 

Table 4.3 Comparisons between C4.5 and C5.0 26 

Table 4.4 Comparisons between C5.0 and MapReduce C5.0 27 

Table 4.5 confusion matrix for census income dataset 31 

Table 4.6 Evaluation parameters of MapReduce C5.0 Tree for 

census income dataset. 

31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  x 

 

Table of Abbreviations 

 

Abbreviations Meaning 

HDFS Hadoop Distributed File System 

MR MapReduce 

DT Decision Tree 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  xi 

 

Table of Equation 

 

Equation Number Equation Page 

1 Speed-up 29 

2 Accuracy 30 

3 Precision 30 

4 Recall 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  xii 

 

A Hadoop MapReduce Implementation of C5.0 Decision Tree Algorithm 

 

Prepared By: Mamoun Abu-Lubbad 

 

Supervisor: Dr. Bassam Al-Shargabi 

 

Abstract 

Recently, many of the research institutes have been involving in boosting the accuracy and 

efficiency of different classification techniques. To date, a lot of enhancement efforts are spent in 

order to boost such techniques. In addition, the growing volume of data produced daily raises 

more issues that need to be resolved, which presents risks to the standard Decision Tree (DT) 

algorithms. Likewise, the process of generation DT is complicated and is time-consuming to 

complete the computation on one machine when the size of the datasets becomes big, and as the 

data can not keep the whole training dataset or most of it in memory on one machine. Some 

computations are transferred to the additional storage, which will lead to increasing the cost of 

input or output. In this thesis, the researcher will implement a standard DT algorithm C5.0 using 

Hadoop MapReduce and will compare the error-rate, leaf nodes, and rules with C4.5. The 

procedure used in this thesis is to transform the standard algorithm into steps of Map and reduce. 

In addition to implementing data structures to reduce the cost of communication and to proceed 

with comprehensive experiments on a vast dataset. The results of the study revealed that the 

MapReduce C5.0 tree is a fixed memory issue to enhance the execution time of the algorithm, 

and it is suitable for enormous data. The algorithm is characterized by being expandable in the 

cluster environment and is also characterized by time efficiency. 

Keyword: Hadoop, MapReduce, Data Mining, Decision Tree, C5.0 . 

 



  xiii 

 

 "  Hadoop MapReduce" باستخدام "C5.0انشاء و تطبيق خوزارمية شجرة القرارات "  

 اعداد: مامون ابو لباد
 اشراف: الدكتور بسام الشربتجي

 الملخص

تم تحقيق  المختلفة، حيثيهتم المجتمع العلمي بكيفية زيادة دقة وأداء طرق التصنيف  الأخيرة،في الآونة 
فإن الكمية المتزايدة من البيانات التي يتم  التحديات،حتى الآن. إلى جانب هذه ل هذا المجا كبيرة فيإنجازات 

تحديات لخوارزميات شجرة  تظهرالمزيد من التحديات التي يجب التغلب عليها، والتي  تبرزإنشاؤها كل يوم 
بناء شجرة قرارات  فإن عملية للغاية،نظرًا لأن حجم مجموعة البيانات يصبح كبيرًا  ،منهاالقرار التقليدية. 

مقبولة على جهاز كمبيوتر واحد وهي عملية صعبة للغاية غير غضون فترة زمنية  احتسابها فييتم يمكن أن 
وتستغرق وقتًا طويلًا. لأنه لا يمكن الاحتفاظ بمجموعة بيانات بأكملها أو معظمها في الذاكرة على جهاز 

التخزين الخارجي وبالتالي زيادة تكلفة اجهزة بية إلى يجب نقل بعض العمليات الحسالذالك كمبيوتر واحد. 
  C5.0شجرة قرار تنفيذ خوارزمية  رسالةالهذة في  يقترح الباحث الغاية،تحقيق هذه و لالإدخال / الإخراج. 

 ، Hadoop MapReduceباستخدام 

قوم ي كما و الاجراءاتو  الخطوات بتحويل الخوارزمية التقليدية إلى سلسلة من الباحث قوم ي، في هذة الرسالة
على مجموعة بيانات  عديدةأيضًا تجارب  الباحث جرييو بعض هياكل البيانات لتقليل تكلفة الاتصال.  بناءب

الوقت وقابلية التوسع في  توفيرتتميز ب ى الباحثلد المستخدمة  تشير النتائج إلى أن خوارزمية التي ضخمة.
 .البيئة الموازية

 (C5.0خوارزمية )  , شجرة القرار,  استخراج البيانات,  Hadoop ,MapReduce الكلمات المفتاحية:
 

 

 

 

  

 



  1 

 

Chapter One:  Introduction 

1.1 Overview 

This chapter explains the need to extract a decision tree using the Hadoop MapReduce and 

describes the ability to produce a decision tree from the data gathered from a Hadoop Distributed 

File System (HDFS). The researcher sheds light on the background and importance of this study. 

This chapter includes definitions, introduction, problem statement, purpose, scope, limitation, 

and motivation of the thesis. 

1.2 Definitions  

Is this section we will define the key terms that are used on this thesis, 

• Decision Tree (DT): It is one of the most famous data mining methods used. DT, is a 

structured tree splits that data as rules. The definition of DT in the computer system are 

some of the mathematical equations and computational processes executed on the data to 

find the hidden information. DT has three nodes, the root node, which is the start point of 

the DT, decision node, and the tree ends with the leaf node. 

 Hadoop: It is a collection of software or programming modules which help us using a 

grid of commodity hardware to solve big data issue. Hadoop is an open-source 

framework; the main module for Hadoop is HDFS and MapReduce. 

 MapReduce (MR): It is one of the core components of the Hadoop system, used for 

distributing the vast data to a small unit and store it on the HDFS, MR divides the data as 

Key and value, and it has two primary operations Map and Reduce. 



  2 

 

 HDFS: It is the storage system for Hadoop; the design of the HDFS makes this system to 

be a highly efficient and scalable, and fully available system. The data store and 

distributed on many data servers called data nodes as small pieces. All these data nodes 

are controlled and managed by a master server called Name node. 

1.3 Introduction 

Day after day, the size of data, storage capacity, processing power, and availability of data is 

constantly increasing. In addition, the traditional storage management systems tools and data 

storage are unable to deal with the amount of data generated (Qasem, Sarhan, Qaddoura, & 

Mahafzah, 2018). To deal with this issue, the Hadoop framework was designed to solve such 

data problems. Hadoop is one of the most famous technologies or software programs intended to 

process and solve problems related to the large size of data in providing an effective data 

solution. The Hadoop system or framework contains two major components, namely HDFS and 

MapReduce. MapReduce is a programming model that was developed by Google, but now it is 

incorporated by the Apache (Yang & Hiong Ngu, 2017), it provides a framework for scalable 

distributive computing. MapReduce is hosted in two operations or stages which include Map 

stage, and Reduce stage. The Map stage refers to applying a process of input data, which changes 

over into key-value pairs. The second operation is the reduce stage, which takes the output of the 

Map stage as input. The reducer is to process all the data that comes from the mapper, after 

processing, a new set of outputs produced and stored in (HDFS). A strong feature or value of this 

programming model is that it avoids the complication of managing a cluster of distributive 

processing nodes (Polo, 2013), Hadoop MapReduce is considered the best solution to be used 

with data mining techniques when the data becomes bigdata, and when it is hard to process it of 



  3 

 

a single computer. Data mining techniques are applied to raw data for extracting and finding 

useful information. The process of finding a model is to describe the data classes by using a 

classification algorithm, DT's are the most famous techniques for classifying and assisting the 

decision-making process in different data mining applications. DT's find the difficult or invisible 

information and the correlation between the enormous sets of data that are useful in decision 

making (Revathy & Lawrance, 2017). DT's are structured trees consist of three main parts: root 

node, decision nodes, and it ends with leaf nodes. The way from the root node to the leaf node 

forms is a decision rule to decide which class the new abilities and learning to (Dai & Ji, 2014). 

To generate the DT, there are a lot of algorithms that should be used for that purpose. One of the 

DT algorithms is the C5.0 algorithm, which is an updated release of the C4.5 algorithm, C4.5 is 

an expansion of ID3. In addition, C5.0 is the algorithm for classification, which is improved to 

be used for big data. C5.0 are lease with improvement in memory, speed, and efficiency. In C4.5, 

all the errors are considered equally. The errors were not separated based on their importance or 

significance. The most exciting improvement in C5 over C4.5 depends on the size of their impact 

on the system; it treats all errors with individual classification. It creates classifiers that help to 

reduce the cost of misclassification rather than the high error toll (Revathy & Lawrance, 2017).  

In this thesis, the researcher is implement the DT C5.0 algorithm using a Hadoop MapReduce to 

reduce communication cost of input and output when the data become huge and the memory not 

fit to hold all tanning dataset or part of it, which is affected to execution time and accuracy, 

afterward deploy it on a Hadoop cluster, to evaluate the performance and measure scalability 

Hadoop nodes with the execution time.   

 



  4 

 

1.4 Problem Statement  

As the amount of data produced daily is expanding very fast, several data mining methods is 

needed to learn from big data. Many data mining methods or algorithms are proposed up to now 

with the small/ and medium data sets. However, not many of them will be applied to the analysis 

of large data sets.  

 The main problems in learning from big data can be summarized as the following,  

• Memory restrictions: It is hard to keep the whole training dataset or most of it in memory on a 

single computer. 

• Time complexity: Completion of the computation process on a single computer within a 

tolerable time is difficult. 

• Data complexity: The high dimensional and multi-modal features of the data that make a far-

reaching influence on the performance and efficiency of research results. 

However, due to the problem mentioned above, the researcher will be implementing a DT C5.0 

algorithm using a Hadoop MapReduce. MapReduce is very suitable for distributed computing, 

which abstracts away from large numbers of challenges in parallelizing data management 

operations across a cluster of item machines. 

 

 



  5 

 

1.5 Question of the study 

 How can we implement the decision tree C5.0 algorithm using Hadoop MapReduce, 

regard to time producing tree and accuracy? 

1.6 Purpose of the Study 

The purpose of the thesis is to the speed-up growth of DT and reduce the error-rate 

classification prediction. The main objectives of this proposed work are: 

 Implementing Decision Tree C5.0 algorithms using Hadoop MapReduce. 

 Measuring and evaluating the execution performance after implementation of the DT 

C5.0 algorithm with MapReduce. 

 Measuring and evaluating the error-rate during the classification process. 

1.7 Scope of the study  

The scope of this thesis is to implement a decision tree using a Hadoop MapReduce on a single 

node and cluster environment. Compare between C4.5 with C5.0, C5.0 with MapReduce C5.0 

Tree based on the error-rate, execution time, and the number of leaf nodes on a single node, 

evaluate the execution time and scalability on the cluster. The classification algorithms used in 

this thesis is original C5.0.  

1.8 Limitation of the Study  

The work of this thesis is limited to implementing a decision tree original C5.0 algorithms using 

a Hadoop MapReduce v 3.0.2 under Ubuntu 18.4 LTS and evaluating the time execution on the 

cluster. Chapter 4, section 4.3. Of this thesis, provided considerable information about the 



  6 

 

hardware used to achieve the desired goals. The researcher will only compare C4.5 with C5.0 

and MapReduce C5.0 Tree on a single node and will evaluate the performance of the 

MapReduce C5.0 tree on a cluster environment. 

1.9 Contribution and Important of the Study 

The importance of this thesis stems from the implementation of the decision tree C5.0 algorithms 

using a Hadoop MapReduce. The researcher contribution in this thesis can be summarized as the 

following: 

 The thesis implements data structures customized for a single node and cluster computing 

environment.  

 The thesis proposes a MapReduce implementation of the original C5.0 algorithm. 

 The thesis proves the efficiency of the approach used on C5.0 with extensive experiments 

on a vast dataset. 

1.10 Motivation  

The Motivation of this thesis comes from the famous quote, "we are drowning in data but starved 

for knowledge" for John Naisbitt, in his 1982 book Megatrends, while is written over 38 years 

ago, that sentence is true today, the amount of data produced daily is expanding very fast. And 

the data mining algorithms are needed to learn from big data. How we can find hidden 

information for these data to assists decision-making to solve problems is the motivations for the 

researcher in this thesis. 

 



  7 

 

Chapter Two: Theoretical Background and Related Works  

2.1 Introduction  

This chapter will show a brief definition and theoretical background for the Hadoop framework 

and its components in addition to DT with an overview of the widely used and relevant big data 

and then literature review of related available works. 

2.2 Hadoop Overview 

Hadoop is a software framework (open source) designed for process large volumes of 

heterogeneous data sets through commodity hardware and computer clusters in a distributed 

manner using a simplified programming model. It provides a reliable system of shared storage 

and analytics. Hadoop has been released, based on Google's paper on the MapReduce, and it 

applies functional programming concepts. Hadoop was written among the highest-level Apache 

projects in the Java programming language (Yang & Hiong Ngu, 2017). 

The design of the Hadoop is increasing, its capability of fault tolerance, distributed processing, 

and scalability. Hadoop is the solution to Big Data problems. It is the technology that provides 

bigdata analyzes through a distributed computing framework. Furthermore, store massive 

datasets on a cluster of commodity hardware in a distributed manner (Purdila & Pentiuc, 2014). 

The next subsections cover the Hadoop architecture and its component.   

 



  8 

 

2.2.1. Hadoop Architecture  

Hadoop has a master-slave topology. On this topology, we can have many slave nodes and one 

master node. The primary function of master nodes is to define the task and distribute it on slave 

nodes. The master nodes store the metadata of the data stored on the slave nodes, while slave 

nodes store the actual data (Bikku, Sambasiva Rao, & Akepogu, 2016) Figure 2.1 illustrate the 

Hadoop master-slave architecture. 

 

Figure 2.1 the Hadoop Master-Slave Architecture(Kebande & Venter, 2015). 

This design or topology is objective to deal with large data sets, portability crosswise over 

heterogeneous hardware and software platforms, fault tolerance. Hadoop Architecture has 

two main components. They are: 

 HDFS.   

 MapReduce. 

 



  9 

 

In the next subsections, the researcher explain the MapReduce and HDFS storage solution for the 

Hadoop framework. 

2.2.1.1. Hadoop HDFS 

HDFS, it is a data storage solution; it is considered one of the significant feature for Hadoop. 

HDFS divides data into small pieces; each piece is called blocks stored in distributed algorithms 

or methods. It has got two running services. One for a master node called name node and other 

for slave nodes called data node (Hu & Dai, 2014) Figure 2.2 shows the HDFS architecture. 

 

 

Figure 2.2 HDFS architecture with default data placement policy (Krish, Anwar, & Butt, 2014).  

HDFS has the architecture of a Master-Slave. The service name is Name Node running under the 

master server or node. It is used for managing file access by the client and namespace 

management. Data Node service is running on slave nodes. It is used for storing the actual data 

submitted by the client. Inside, a file is split into many data blocks and placed on a group of 



  10 

 

slave machines. Any changes that maybe happened in the file will be done by the name node (Hu 

& Dai, 2014). For example, renaming or indexes files, opening, and closing action will be 

managed by the name node. This data node creates, deletes, and replicates blocks on-demand 

from the name node. Java programming language is the local language of HDFS. 

2.2.1.2. MapReduce 

MapReduce is a programming model that started from google paper to solve the parallel and 

distributed vast amounts of data problems (terabyte data sets) on commodity hardware clusters at 

the same time. MapReduce is composed of two operations (or stages). The first one is Map, the 

Map or mapper job is to process the input data. Usually, data stored in the HDFS (Wu et al., 

2009). The procedure to enter the input data to the map function is line by line. The Map 

generates many small chunks of data and processes them. Reduce is the second operation; it is 

represented by the shuffle stage and reduce stage. The job of the reducer is to process all the data 

that comes from mapper. After processing, a new set of outputs produced for us and stored in 

(HDFS). Figure 2.3 explains the map-reduce programming model. 

 

Figure 2.3 MapReduce Programming Model (Tutorialspoint, 2019). 



  11 

 

MapReduce and HDFS run in the same node-group. That means the computing nodes and 

storage nodes are working together. This style of design enables the system to schedule tasks 

quickly so that the entire cluster is used efficiently (Polo, 2013). 

2.3 Decision Tree 

A DT is structure tree, with root, decision and leaf node, DT split the data on a set of rules for 

example, ( if the income > 10 K and age > 18 so he can buy a car,  if the income > 10 K and age 

< 18 he can not buy a car ), the DT will start with the root node and end with a leaf node, in the 

decision node we can be split to two or more instances and sometimes decision node (Yang & 

Hiong Ngu, 2017), to clear the DT Tree concept figure 2.4 provide an example of a DT where 

the square indicate to the leaf node and the circle indicates to decision node. We have three 

classes (ages, gender, and so on) and the following rule (Dai & Ji, 2014). 

Rule 1 – if the age < 20, can not buy a car. 

Rule 2- if the age > or equal 20, and the gender is female Then Yes, can buy a car. 

Rule 3- if the age > 20 and the Criteria x and is he has a license, then Yes. 

Rule 4- if the age > 20 and the Criteria x and is he did not have a license, then-No. 



  12 

 

 

 

Figure 2.4. explanation of DT (Dai & Ji, 2014). 

DT is a mathematical and computational process or method. To build a DT, we have to find the 

best split attribute. Once it found, the tree will be start generated, to root, decision, and leaf 

nodes. The DT procedure will be terminated when we find the leaf's node; otherwise, the 

calculator will repeat. If the DT is generated, the rules can also be generated. There are many 

algorithms used to generate a DT. In this thesis, the researcher will use the C5.0 algorithm, 

which is the latest update by Roos Quinlan, from Stanford University. The C5.0 update to deal 

with massive data and solve memory issues. In the next section, introduce the C5.0 algorithms 

with updated features. 

 



  13 

 

2.4 C 5.0/ See5 Decision Tree Classification Algorithms 

C5 algorithm is an update of C4.5. In C4.5, there no separation for any errors based on its 

importance or significance; all errors are taken equally. A clear improvement that comes in C5 

on C4.5 is that it has handled all errors with individual classification depends on the magnitude 

of its impact on the system. C5 based on building classifiers that help reduce the 

misclassification cost function. This characteristic of C5 is defined as variable misclassification 

costs (Lakshmi, Indumathi, & Ravi, 2016). Due to the size of the account, each case is of varying 

significance. This problem is treated very well in C5 by adding a characteristic attribute called 

case weight. By using this function (case weight), the C5 lower the cost of biased predictive 

miscalculation, and C5 contains far more data types than in C4.5 or any of the previous 

algorithms. It includes case labels with date, timestamp, in C5 class called "not applicable" as it 

identifies a new data type and encourages the inclusion as a function of some other feature of a 

new category. Many of C4.5's various components have been merged into C5, for example, 

cross-validation and sampling, making this algorithm more straightforward and more effective 

(Lumpur, 2018). This algorithm released two versions, one for UNIX named as C5 and other 

See5 for Windows (Lumpur, 2018) in this thesis; we will use C5.0 on Ubuntu OS version 18.4 

LTS. 

 

2.5 Review of Related work 

In this section, the researcher is reviewing the most related study, or works used the Hadoop 

MapReduce to generate decision tree in different algorithms: 



  14 

 

- A Study was presented by (Shirzad & Saadatfar, 2020), the authors show problems with 

one unsuccessful job execution of MapReduce; the unsuccessful jobs can lead to 

significant resource waste. The authors attempt to predict the future of MapReduce work 

on the open cloud Hadoop cluster using their log files. The authors compared the learning 

methods. They showed that C5.0 algorithms had the best results. 

- A Study was presented by (Revathy, Balamurali, & Lawrance, 2019), the authors analyze 

the agricultural Corp pest dataset using Hadoop MapReduce based on the C5.0 algorithm. 

The research methodology was used to classify a Corp pest dataset, and the result for this 

study is going on a single node. 

- A Study was presented by (Rajeswari & Suthendran, 2019), the authors evaluate the 

selection process based on statistical techniques called Chi-square MapReduce and C4.5. 

The Chi-square is found irrelevant data, and therefore the resulting accuracy is not as 

expected as the authors aimed. 

- A Study was presented by (Yang & Hiong Ngu, 2017), the authors have evaluated the 

efficiency of Hadoop implementation of DT C4.5 using AWS service. The authors 

evaluated the execution time with the number of CPU cores performed by the mapper / 

and reducer and the execution time with the size of the data input. 

- A Study was presented by (Cui, Yang, & Liao, n.d.) 2017, where the authors have 

proposed a new algorithm for DT learning in the Hadoop MapReduce framework name it 

as PDTSSE.  

- A Study was presented by (Purdila & Pentiuc, 2014)where the authors introduced a new 

algorithm for DT called MR-Tree, which can be used to learn Dt's using massive datasets 

and runs on the  Hadoop platform. The problem of the proposed algorithm, as the authors 



  15 

 

declare, is that it uses a MapReduce iteration to find and pick the best attribute to split 

each tree node, which means it can take time and memory for trees of big or large data. 

- A study was presented by (Dai, Wei; Ji, Wei, 2014) the authors aim to execute a standard 

DT algorithm, C4.5, depend on the MapReduce programming model. And Propose and 

used modified data structures for cluster computing environments, and propose 

MapReduce use of C4.5 algorithms with Hadoop MapReduce. 

- A study was presented by (Wu, Gongqing; Li, Haiguang; Hu, Xuegang; Bi, Yuanjun; 

Zhang, Jing; Wu, Xindong,2009 ) where the authors propose a new approach Called 

MReC4.5 used parallel and distributed classification. The authors show that increase the 

number of nodes would enhance the accuracy of the classification method, and model-

level serialization operations render MReC4.5 classifiers. 

 

Table 2.1 summarized the methods of most of the related works compared to the proposed 

method proposed in this thesis. 

 

Authors, Year Purpose and, the algorithm used Comparison of the proposed method 

(Revathy et al., 2019) The purpose of the study is to 

analyze the agricultural Corp pest 

dataset using Hadoop MapReduce 

based on the C5.0 algorithm, and 

this study is implemented on a 

single node. 

In this thesis, the researcher is 

implementing the DT C5.0 using 

Hadoop MapReduce, for the generic 

dataset and execute it on a single 

node and cluster of nodes.  

(Yang, Tianyi Hiong The purpose of the study is to In this thesis, the researcher is using 



  16 

 

Ngu, Anne Hee, 2017) evaluate the efficiency of the 

Hadoop implementation of DT 

C4.5 using AWS service. 

the C5.0 algorithm. The 

implementation used a data structure 

to reduce memory overhead. 

( Purdila, V; Pentiuc, 

S,2014) 

This study introduced a new 

algorithm for DT called MR-

Tree, which can be used to learn 

Dt's using massive datasets and 

runs on the Hadoop platform. The 

problem of the proposed 

algorithm, as the authors declare, 

is that it uses a MapReduce 

iteration to find and pick the best 

attribute to split each tree node, 

which means it can take time and 

memory for trees of big or large 

data. 

In this thesis, the researcher is using 

the C5.0 algorithm, and execute it on 

single and cluster of nodes. 

(Dai, Wei; Ji, 

Wei,2014) 

this study aims to execute a 

standard DT algorithm, C4.5, 

depend on the MapReduce 

programming model. And 

Propose and used modified data 

structures for cluster computing 

In this thesis, the researcher is using 

the C5.0 algorithm, and execute it on 

single and cluster of nodes. 



  17 

 

environments, and propose 

MapReduce use of C4.5 

algorithms with Hadoop 

MapReduce. 

(Cui, Yan; Yang, 

Yuanyang; Liao, 

Shizhong, 2017) 

This study is proposed a new 

algorithm for DT learning in the 

Hadoop MapReduce framework 

named PDTSSE. 

In this thesis, the researcher is using 

the C5.0 algorithm, and execute it on 

single and cluster of nodes. 

(Wu, Gongqing; Li, 

Haiguang; Hu, 

Xuegang; Bi, 

Yuanjun; Zhang, Jing; 

Wu, Xindong,2009 ) 

This study proposed a new 

approach Called MReC4.5 used 

parallel and distributed 

classification. The authors show 

that increasing the number of 

nodes would enhance the 

accuracy of the classification 

method, and model-level 

serialization operations render 

MReC4.5 classifiers 

In this thesis, the researcher is using 

the C5.0 algorithm, and execute it on 

single and cluster of nodes. 

 

 

 

 



  18 

 

Chapter Three: Methodology and the Proposed Approach  

3.1 Introduction  

This chapter presents a description of the proposed methodology, proposed approach. Sections 

3.2 covers the methodology. Section 3.3 explains the proposed approach. 

3.2 Methodology 

In big data, the dataset is enormous, and typically, the data needed to build decision trees is 

complex. The following steps are summarized our methodology to implement a decision Tree C5 

using Hadoop MapReduce, 

 

Figure 3.1 Methodology steps 

Step 1 – Data Preparation (implement data structure over HDFS, to arrange and manage data that 

will help to grow the decision tree), Step 2- Implementation of C5.0 Using Hadoop MapReduce, 

Step 3- Exploring the optimum setup for C5.0 using MapReduce based on Time and Memory 

Complexity, Step 4- Evaluate the error rate, leaf nodes, execution time and the performance on 

the cluster environment. 



  19 

 

3.3 The proposed approach 

In this section, the researcher presents the proposed approach for MapReduce implementation of 

the C5.0 algorithm. First, the researcher introduces data structures used in this thesis, and 

afterward, present the MapReduce execution of C5.0 as a process of Map and Reduce function. 

The data structure and algorithms used in this section are used before on different studies (Dai & 

Ji, 2014). The approach used in this thesis used different algorithm library files than other 

studies, used different implementation platforms, and use a new table called intermediate and 

update on usage of count table mentioned in section 3.3.1. 

3.3.1 Data Structures 

In big data, the data need to build DT is complicated, and the data are massive. The standard 

algorithm can not store the whole training data over the memory, and it will take a troubled time 

to complete the classification process of the data. As the data can not fit in the memory, this will 

lead to transforming some computational to external storage, which will increase the cost of 

input and output. So, it’s essential to use robust data structures to support this implantation with a 

distributed parallel algorithm. The main suppose that the memory is not fit to match the entire 

dataset.  

The structure of data we used contains the following tables, 

1- Property table, which contains and stores the attributes data details. 

2- Count table, on this table, the save and count the number of all instances and count the 

instances of the attribute with unique classes 

3- Intermediate table, this table will have the result of entropy, gain and gain ratio 



  20 

 

4- Rule Table, this table saves the connection details of the tree nodes, like the connection 

between the decision node and its sub-section (nodes). 

Note that for efficiency purposes, the dataset is vertically partitioned into a distributed parallel 

data nodes to optimize the protection of the characteristics of the localization.  

In the proposed approach, we split the data set by similarly assigning attributes to multiple 

nodes. For example, if we have X attributes, Y nodes, so there is [X / Y] on the first Y-1 nodes, 

and the rest of the attributes are stored on the last node. 

3.3.2 MapReduce Implementation 

The entire process consists of four steps to implement a DT C5.0 Algorithm using the data 

structure mention on section 3.3.1,  

 Step 1- Preparing the data 

Step 2- Selection of attributes  

 Step 3- Update the connection of nodes.  

Step 4 -Developing the tree. 

3.3.3 Preparing the data 

At the beginning of the algorithm (Data Preparation), we need to change the dataset or the 

relational table based on the data set to the proposed data structure we mentioned in section 

3.3.1. Now, in the algorithms 1 (Data Preparation), we have two procedures MAP_APP and 

REDUCE_ATT, the MAP_ATT, transforms the recording instance into a table of property (A) 



  21 

 

as Key, for example (A1 (C=1,2,3,4,5….N)) and the row_id and class label (C) as the values, 

and on the REDUCE_ATT procedure will count the number of instances with a unique class 

label (cnt).  

Algorithm 1 Data Preparation  

1: procedure MAP_ATT (row_id, (a1,a2,....aM,c)) 

2:  emit(aj,(row_id,c)) 

3: end procedure 

4: procedure REDUCE_ATT ((aj, (row_id,c))) 

5:   emit (aj, (c, cnt)) 

6: end procedure 

Where the emit() indicate save to the result from the procedure to HDFS table , row_id indicate 

to instance ID, c  indicate to class label, a indicate to attributes, cnt = count the number of 

instances with a unique class label. 

3.3.4 Selection of attributes 

In this step, we will find the best split or attribute, in the algorithms 2 (Selection of attributes), 

we have a MAP procedure, and two Reduce procedures, the reduce procedure start taking the 

number of instances in every attribute or value pair to reach the maximum size of record for the 

specified attribute like Ac, Then, After the MAP_COMP procedure complete the compute Ac 

Information and splitting information, the REDUCE_COMP procedure compute the information 

gain ratio. Finally, the Ac with the best Gain Ratio counting will be considered as the best 

attribute for splitting. 

 



  22 

 

Algorithm 2 selection of attributes  

1: procedure REDUCE_POP ((aj,(c,cnt))) 

 2:   emit(aj, all) 

3: end procedure 

4: procedure MAP_COMP ((ac,(c,cnt,all)) 

 5:    compute Entropy(ac) 

6: compute Info(ac)=  Entropy(ac) 

7: compute SplitInfo(ac)= log  

8: emit(ac,(Info(ac),SplitInfo(ac)) 

9: end procedure 

10: procedure REDUCE_COMP ((ac,(Info(ac),SplitInfo(ac))) 

 11:  emit (ac,GainRatio(ac)) 

12: end procedure 

Where the info indicate information gain, and all count the total number of instances.  

3.3.5 Update  

After we find the best split, In this stage we will to update the rule table and save the node's 

connection, in the algorithm 3 (Update Table) we have two Map procedure, 

MAP_UPDATE_COUNT, which will update the split attribute to the intermediate table after 

reading a record from the property table with a key and value. And The MAP_RULE Procedure 

will set a node_identification or ID on the best split a rule value to verify and validate that 

records with the same values are split into the partition.   

 

 



  23 

 

1: Algorithm 3 Update Tables 

2: procedure MAP_UPDATE_COUNT((abest,(row_id,c))) 

 3:     emit (abest,(c,cnt')) 

4 : end procedure 

5 :procedure MAP_RULE((abest,row_id)) 

 6:  compute node_id=rule(abest) 

 7:  emit(row_id,node_id) 

8 : end procedure 

Where the node_id indicate DT node.  

3.3.6 Developing the tree. 

After we update the rule table, in this step or stage we need to generate the DT based on the 

datastore on the rule table, Algorithm 4 (Tree Developing) has a one MAP procedure, at the 

procedure we building the links between nodes, 

1: algorithm 4 Tree Developing 

2: procedure MAP ((abest, row_id)) 

 3:   compute node_id=rule(abest) 

4:  if node_id is same with the old value then 

5:  emit (row_id, node_id) 

6: end if 

7: add a new subnode 

8: emit(row_id, node_id,subnode_id) 

9: end procedure 

On this approach, the data preparation is a one-time job, and the other step is repeated until the 

tree generation or development. 



  24 

 

Chapter Four: Experimental Design and Results 

4.1 Overview  

In this chapter, the researcher describes the experimental design and results using the proposed 

approach. Section 4.2 illustrative the datasets used in this thesis. Section 4.3 provides the 

computing environment and hardware specification used. Then, some comparisons on the 

datasets between the original C4.5 and C5.0, with and without MapReduce C5.0 Tree are 

presented in Section 4.4. Section 4.5 shows the confusion matrix. Section 4.6 shows the analysis 

of the cluster performance of the MapReduce C5.0 Tree. 

 

4.2 Introduction 

To be able to test the behaviors of the approach in real-world applications, we collect two tested 

datasets for the experimental studies in this thesis. As described in Table 4.1, The detailed 

information of the data sets in experiments,   

First, Census Data set from the UCI archive, which has 200K of instances or cases. This data set 

is goals to predict if a person's income is higher than or less $50K. This data set has 40 attributes 

divided to 33 discrete or nominal and seven numerical (Kesorn & Chanmee, 2020). . This data 

set is used before on the for purpose of evaluating classification methods, and this is our goal 

from using such dataset it in this thesis to compare and verify the result of the proposed 

approach. 

The second one is the Forest Cover dataset, also from the UCI archive, which has 600K records. 

This data set is published by US forest service. This data set has 21 attributes, 12 are numerical, 



  25 

 

and two discrete, and seven classes. Also, this data set is used before with classification studies 

(Nathan & Scobell, 2012). 

 

Table 4.1 the detailed information of the data sets in experiments 

Attributes 

No Dataset Numerical Nominal   Class Instance Size 

1 Census  7 33  0 199,523 99 MB 

2 Forest  12 2 7 581,012 71.6 MB 

 

4.3 Computing environment 

 In our experiments on this thesis, the proposed MapReduce C5.0 Tree algorithm is implemented 

in the R language, rHadoop are used packages to integrate the R with the Hadoop and pass the 

data via MapReduce. C5.0 library is used for DT generation, MapReduce C5 Tree classification 

works well on large data sets. During the experiments and based on the proposed approach 

mention in chapter 3 on this thesis. The researcher evaluates the performance of the MapReduce 

C5.0 Tree classification system in a small cluster operating environment containing two host 

computers hosted 6 Virtual Machine. The detailed hardware specification of the cluster is given 

in Table 4.2. 

Table 4.2 the hardware specification of the cluster hardware used 

No. Nodes CPU, GHz RAM, GB OS Bit 

1 Master Intel Xeon 2.00 GHz, 1 Core 16 Ubuntu 18.4  64 



  26 

 

2 Slave01 Intel Xeon 2.00 GHz, 1 Core 8 Ubuntu 18.4 64 

3 Slave02 Intel Xeon 2.00 GHz, 1 Core 8 Ubuntu 18.4 64 

4 Slave03 Intel Xeon 2.00 GHz, 1 Core 4 Ubuntu 18.4 64 

5 Slave04 Intel Xeon 2.00 GHz, 1 Core 2 Ubuntu 18.4 64 

6 Slave05 Intel Xeon 2.00 GHz, 1 Core 16 Ubuntu 18.4 64 

  

 Our rules for virtual cluster specification are as follows to simulate the typical working 

environment in Hadoop MapReduce, 

1) Virtual machine executes Map and Reduce functions, has a core per node.  

 2) Under vSphere System, each selected core of the same medium computing power is selected.  

3)  VMware vSwitch is chosen to be the network connection between nodes. 

4.4 Comparisons between the C4.5 with C5.0, and C5.0 with and without 

MapReduce on Single node  

In this section, we make some comparisons between C4.5, C5.0, and C5.0 with and without the 

MapReduce. On the unseen testing data set. The proposed MapReduce C5.0 Tree algorithm is 

performed on a single node with the number of processors implemented. We mainly focus on the 

comparisons about the error-rate, rules, and the number of leaf nodes as respectively shown in 

Tables 4.4 comparison between original c4.5 and C5.0, Tables 4.5 shown a comparison between 

C5.0 with and without MapReduce C5.0.  

 

 



  27 

 

Table 4.3 Comparisons between C4.5 and C5.0 

C4.5 C5.0 

Dataset Error Rate Rules Leaves Time Error Rate Rules Leaves Time 

Census Income 5.0% 190 264 2.782 Sec 4.9% 84 122 10 Sec 

Forest cover 6.8% 5,316 10,167 30,115 Sec 5.9% 4269 9,185 270 Sec 

 

 

Table 4.4 Comparisons between C5.0 and MapReduce C5.0 

C5.0 C5.0 MapReduce 

Dataset Error Rate Rules Leaves Time Error Rate Rules Leaves Time 

Census Income 4.90% 84 122 10 Sec 4.0% 84 122 5 Sec 

Forest cover 5.90% 4269 9,185 270 Sec 5.90% 4269 9,185 120 Sec 

 

As seen in  Table 4.3 and Table 4.4 we can conclude  that the  C4.5 and C5.0 algorithms can 

build classifiers which are either expressed DT's or rule sets. In C4.5, a slow execution in the 

ruleset and the memory usage are high. The improvement is clear based on results on table 4.3 

(Comparisons between C4.5 and C5 algorithms), and this proves that C5.0 is memory 

enhancement a specially for a massive amount of data sets. 

 For prediction accuracy: The MapReduce C5.0 Tree rules have lower error rates on 

forest datasets. 

 For execution time: MapReduce C5.0 Tree is used less than C4.5, and its faster than the 

C4.5 algorithm. To generate a rule in C4.5, the model take more than 8 hours despite the 

fact that MapReduce C5.0 takes 3 minutes to do the DT Generation. And terminate the 

process successfully. 



  28 

 

 For Memory: MapReduceC5.0 Tree is the needless size of memory than C4.5 when 

executing a job of rules for the forest dataset. 

The main problem in C4.5 is fixed on the MapReduce C5.0 Tree which are the tree sizes and 

execution times, and memory, MapReduce C5.0 trees are smaller and faster than C4.5, which 

achieves our thesis goals and proves that the proposed approach even on a single node are 

outperformed. 

4.5 Performance evaluation on cluster  

In this section, we will measure and evaluate the performance of MapReduce C5 Tree in a 

cluster environment. The measurement of scalability evaluation is a performance with six nodes 

of the cluster, and performance with the size of training data sets used on both datasets we have 

in this thesis. As specified in section 4.3 computing environment, we have six nodes on two 

physical servers, and the data sets vary from 200 K to 600 K as to the number of instances. 

We will verify the efficiency and scalability assessment on six nodes of the cluster and given 

specific training dataset. Figure 4.1 explains the execution time of the proposed MapReduce 

C5.0 algorithm with various numbers of cluster nodes for the census, forest cover dataset used in 

this thesis.  



  29 

 

 

Figure 4.1. Performance on Various Numbers of Cluster Nodes for Census, Forest Dataset per 

Second 

We can note that as the number of cluster nodes increases, the total execution time decreases. 

This indicates that increasing the algorithm’s effectiveness depends on the increasing number of 

nodes used.  Figure 4.2 provides the speed-up output of the training set instances as the number 

of cluster nodes increases, where speed-up is measured how much faster in an M computers 

system and can be expressed by equation (1). 

Speedup (M) = executing time on one computer / executing time on M computers     (1) 



  30 

 

 

Figure 4.2. Speed-up for Different Training size on Various Number of Cluster Nodes 

As depicted  from Figure 4.1 and Figure 4.2 we conclude the following: 

(1) We note that more Cluster nodes used, that will reflect the less of execution time. 

(2) If there is a sufficient number of cluster nodes, despite an increase in the size of the datasets, 

this can bring us closer to optimum node efficiency. 

4.6 MapReduce C5.0 Tree evaluation result 

A confusion matrix is an N*N matrix, where N is the number of class labels. That provides 

values of portions of true-positive, negative, and false-negative, positive cases. The researcher 

used the confusion matrix to find the accuracy, precision value, and recall value, for the 

MapReduce C5.0 tree in census dataset used in this thesis. 

The accuracy rate for the classification is calculated as the following, the No of true 

instances/total of all cases * 100 (Revathy et al., 2019). It is calculated using equation (2). 

)(

)(

FNFPTNTP

TNTP
Accuracy




                                                                     (2) 



  31 

 

Precision, it is defined as the percentage of selected entities that are correctly classified in class 

out of all the available entities in the dataset (Yuvaraj & SriPreethaa, 2019).It is calculated using 

equation (3). 

FPTP

TP
ecision


Pr                                                                                                    (3) 

Recall, it is defined as the percentage of correct entities that are selected in class from all the 

available entities in the dataset, belonging to class(Yuvaraj & SriPreethaa, 2019). It is calculated 

using equation (4). 

FNTP

TP
call


Re                                                                                                        (4) 

The census income data set are a 2×2 matrix; table 4.5 shows the confusion matric of census 

income dataset. 

 

Table 4.5 confusion matrix for census income dataset 

  Prediction 

    TRUE FALSE 

Actual 
TRUE 185634 1506 

FALSE 6383 5999 

 

It can be depicted from table 4.6, that the accuracy of implementing proposed approach for  C5.0 

using MapReduce  is almost 93.79% with precision of 96.86 and recall of 96.67%  for census 

dataset as illustrated in figure 4.3. 



  32 

 

Table 4.6 Evaluation parameters of MapReduce C5.0 Tree for census income dataset. 

Accuracy Recall Precision 

93.79417 % 96.67581516 % 96.86953708 % 

 

 

Figure 4.3. Performance measures of MapReduce C5.0 Tree for census income dataset. 

Finaly, the challenges in C4.5 when the data become big, is fixed on the MapReduce C5.0 Tree 

which are the tree sizes, execution times, and memory, MapReduce C5.0 trees are smaller and 

faster than C4.5, which achieves our thesis goals and proves that the proposed approach. 

 Accuracy: The MapReduce C5.0 Tree have lower error rates. 

 Scalability, the number of nodes, reflect the less of execution time. Which indicate the 

scalability of MapReduce C5 Tree. 



  33 

 

 Execution time: MapReduce C5.0 Tree is used less than C4.5 and C5, The model take 

more than 8 hours despite the fact that MapReduce C5.0 takes 3 minutes to do the DT 

generation. And terminate the process successfully. 

 Memory: MapReduceC5.0 Tree is less size of memory than C4.5 when executing a job. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  34 

 

Chapter Five: Conclusions and Future Work 

5.1 Conclusion 

In conclusion, there is no doubt that the size of data, storage capacity, processing power, and 

availability of data are becoming increasing. However, research of this thesis aimed to 

implement a C5 DT algorithm using a Hadoop MapReduce and to overcoming memory 

restriction and time complexity when the dataset is huge. Therefore, the results of this thesis 

concluded that the classical algorithm is considered one of the most approaches used in small or 

medium datasets. And, there are several challenges for data mining algorithms to be performed 

on big data. Accordingly, the researcher made his efforts to implement a DT using the C5.0 

algorithm to solve the challenges of massive data, and the effect on memory usage and time 

complexity. In addition, MapReduce C5.0 trees are smaller and faster than C4.5 is proving that 

the proposed approaches outperformed the sequential, even a single node. 

5.2 Future work 

In future works, we recommend using Hadoop MapReduce and Yarn to further research other 

typical data mining and machine learning algorithms. 

 

 

 

 

 

 



  35 

 

6 References  

Bikku, T., Sambasiva Rao, N., & Akepogu, A. R. (2016). Hadoop based feature selection and 

decision making models on big data. Indian Journal of Science and Technology, 9(10), 

660–665. https://doi.org/10.17485/ijst/2016/v9i10/88905 

Cui, Y., Yang, Y., & Liao, S. (n.d.). PDTSSE : A Scalable Parallel Decision Tree Algorithm 

Based on MapReduce. 400–406. 

Dai, W., & Ji, W. (2014). A mapreduce implementation of C4.5 decision tree algorithm. 

International Journal of Database Theory and Application, 7(1), 49–60. 

https://doi.org/10.14257/ijdta.2014.7.1.05 

Hu, P., & Dai, W. (2014). Enhancing fault tolerance based on hadoop cluster. International 

Journal of Database Theory and Application, 7(1), 37–48. 

https://doi.org/10.14257/ijdta.2014.7.1.04 

John Naisbitt. (1981). No Title. Retrieved from https://ericbrown.com/drowning-in-data-starved-

for-information.htm 

Kebande, V., & Venter, H. S. (2015). A functional architecture for cloud forensic readiness 

large-scale potential digital evidence analysis. European Conference on Information 

Warfare and Security, ECCWS, 2015-Janua(September), 373–382. 

Kesorn, K., & Chanmee, S. (2020). Data Quality Enhancement for Decision Tree Algorithm 

using Knowledge-Based Model. 20(March), 259–277. https://doi.org/10.14456/cast.2020.15 

Krish, K. R., Anwar, A., & Butt, A. R. (2014). HatS: A heterogeneity-aware tiered storage for 

hadoop. Proceedings - 14th IEEE/ACM International Symposium on Cluster, Cloud, and 

Grid Computing, CCGrid 2014, (June), 502–511. https://doi.org/10.1109/CCGrid.2014.51 

Lakshmi, B. N., Indumathi, T. S., & Ravi, N. (2016). A Study on C.5 Decision Tree 

Classification Algorithm for Risk Predictions During Pregnancy. Procedia Technology, 24, 

1542–1549. https://doi.org/10.1016/j.protcy.2016.05.128 

Lumpur, K. (2018). Decision Tree Algorithms C4 . 5 and C5 . 0 in Data Mining : A Review 

Faculty of Computer Science and Information Technology , University of Malaya. 11(1), 1–

8. 

Nathan, A. J., & Scobell, A. (2012). Classification of Forest Cover Type Using Random Forests 

Algorithm. In: Kolhe M., Tiwari S., Trivedi M., Mishra K. (eds) Advances in Data and 

Information Sciences. Lecture Notes in Networks and Systems, vol 94. Springer, Singapore. 

Foreign Affairs, 91(5), 287. https://doi.org/10.1017/CBO9781107415324.004 

Polo, J. (2013). Big data processing with mapreduce. Big Data Computing, 295–313. 

https://doi.org/10.1201/b16014 

Purdila, V., & Pentiuc, S. (2014). MR-Tree - A Scalable MapReduce Algorithm for Building 

Decision Trees. “Journal of Applied Computer Science & Mathematics,” 16(8), 16–19. 



  36 

 

Qasem, M. H., Sarhan, A. A., Qaddoura, R., & Mahafzah, B. A. (2018). Matrix multiplication of 

big data using MapReduce: A review. Proceedings of 2nd International Conference on the 

Applications of Information Technology in Developing Renewable Energy Processes and 

Systems, IT-DREPS 2017, 2018-Janua, 4–9. https://doi.org/10.1109/IT-

DREPS.2017.8277807 

Rajeswari, S., & Suthendran, K. (2019). Feature Selection Method based on Fisher’s Exact Test 

for Agricultural Data. International Journal of Recent Technology and Engineering, 8(4S2), 

558–564. https://doi.org/10.35940/ijrte.d1104.1284s219 

Revathy, R., Balamurali, S., & Lawrance, R. (2019). Classifying agricultural crop pest data using 

hadoop MapReduce based C5.0 algorithm. Journal of Cyber Security and Mobility, 8(3), 

393–408. https://doi.org/10.13052/jcsm2245-1439.835 

Revathy, R., & Lawrance, R. (2017). Comparative Analysis of C4.5 and C5.0 Algorithms on 

Crop Pest Data. International Journal of Innovative Research in Computer and 

Communication Engineering, 5(1), 50–58. Retrieved from www.ijircce.com 

Shirzad, E., & Saadatfar, H. (2020). Job failure prediction in Hadoop based on log file analysis. 

International Journal of Computers and Applications, 0(0), 1–10. 

https://doi.org/10.1080/1206212X.2020.1732081 

Tutorialspoint. (2019). No Title. Retrieved from 

https://www.tutorialspoint.com/map_reduce/map_reduce_quick_guide.htm 

Wu, G., Li, H., Hu, X., Bi, Y., Zhang, J., & Wu, X. (2009). MReC4.5: C4.5 ensemble 

classification with MapReduce. 4th ChinaGrid Annual Conference, ChinaGrid 2009, 

(August), 249–255. https://doi.org/10.1109/ChinaGrid.2009.39 

Yang, T., & Hiong Ngu, A. H. (2017). Implementation of Decision Tree Using Hadoop 

MapReduce. International Journal of Biomedical Data Mining, 06(01), 1–4. 

https://doi.org/10.4172/2090-4924.1000125 

Yuvaraj, N., & SriPreethaa, K. R. (2019). Diabetes prediction in healthcare systems using 

machine learning algorithms on Hadoop cluster. Cluster Computing, 22. 

https://doi.org/10.1007/s10586-017-1532-x 

 


