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DeepCPC: Deep Learning Model for Colorectal Polyps 

Classification 

Prepared by 

Dima Hussein Taha 
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Dr. Ahmad Gazi Al zu'bi 

Abstract 

Colorectal cancer is a silent disease that attacks without warning, but in many cases, 

treatment is possible when discovered early. Screening tests play an important role in 

identifying polyps before they become cancerous, where colonoscopy is more effective 

compared to other tests. Over the past few decades, the computer-aided colorectal polyp in 

colonoscopy has been the subject of research and achieved significant advances. However, 

the automatic polyp classification in real-time is still a challenging problem due to utilizing 

the hand-crafted methods that do not provide discriminating image features. 

The advanced deep convolutional neural networks (DCNN) have shown a significant 

revolution that positively influenced many fields including image classification. In the 

domain of colonoscopy images, many limitations could affect the DCNN-based polyp’s 

classification especially the lack of sufficient amount of patients' training samples, 

inadequate training time, and needed resources for neural networks.  

The work in this thesis aims to develop a deep learning model for classifying colorectal 

polyps (referred to as DeepCPC), based on discriminative features extracted from deep 

conventional neural networks. Specifically, some CNN models pretrained has been used 

on general-purpose images to apply a transfer learning scheme in the polyp’s classification 

system. This is achieved by concatenating a set of discriminating image features extracted 

from the activations of convolutional layers, then improved feature representations by fine-

tuning a proposed CNN architecture on polyps images through a complete end-to-end 

training procedure. The proposed model consists of three main components: lower fine-
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tuned layers, concatenated image vector, and fully-connected top layers. The CVC-

ClinicDB dataset is used to evaluate the Deep CPC model, but further patch extraction and 

image augmentation strategies are applied to enrich the training procedure with more 

sufficient polyp’s samples. The experimental results show that the proposed CNN model 

can achieve an accuracy of 98.4%, which emphasize its efficiency for helping endoscopic 

physicians to classify polyps and decrease the colorectal polyp miss rate. 

Keywords: Colorectal cancer, Deep convolutional neural networks, DeepCPC, Polyps. 
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DeepCPCنموذج التعلم العميق لتصنيف سلائل أورام : 

 القولون والمستقيم

Abstract in Arabic  

 إعداد : ديمة حسين طه

 إشراف : الدكتور أحمد غازي الزعبي

 

  الملخص

                                                  

 الحالات،ي كثير من ولكن ف إنذار،سرطان القولون والمستقيم هو مرض صامت يهاجم دون سابق 
حميدة رام اليكون العلاج ممكنًا عند اكتشافه مبكرًا. تلعب اختبارات الفحص دورًا مهمًا في تحديد الاو 

دى قبل أن تصبح سرطانية، حيث يعتبر تنظير القولون أكثر فعالية مقارنة بالاختبارات الأخرى. على م
قدمًا توحقق يم بمساعدة الكمبيوتر موضوعًا للبحث، كان تنظير القولون والمستق الماضية،العقود القليلة 

دام بسبب استخ صعب، تحدييزال التصنيف التلقائي للأورام في الوقت الفعلي يمثل لا  كبيرًا. ومع ذلك،
 .للصورة الأساليب اليدوية التي لا توفر خصائص تمييزية

 بشكل إيجابي على العديد ثورة مهمة أثرت (DCNN) أظهرت الشبكات العصبية التلافيفية العميقة
يمكن أن تؤثر العديد من  القولون،من المجالات بما في ذلك تصنيف الصور. في مجال صور تنظير 

التدريب خاصةً عدم وجود كمية كافية من عينات  DCNN القيود على تصنيف الاورام المستندة إلى
 .صبيةوالموارد اللازمة للشبكات الع التدريب،وعدم كفاية وقت  للمرضى،

، نهدف إلى تطوير نموذج التعلم العميق لتصنيف الاورام الحميدة في القولون في هذه الرسالة
 والذي فيفية العميقةالتلاية المستخرجة من الشبكات العصبية والمستقيم على أساس الخصائص التمييز 

 . DeepCPCسيشار اليه باسم 
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لى التي تم تدريبها مسبقًا ع ة التلافيفيةالشبكات العصبي ، نستخدم بعض نماذجعلى وجه التحديد
في نظام تصنيف الاورام الحميدة. تم تحقيق  نقل التعلملتطبيق مخطط  ،الصور ذات الأغراض العامة

، جة من تفعيل الطبقات التلافيفيةذلك من خلال ربط مجموعة من خصائص الصور التمييزية المستخر 
لال إجراء تدريب كامل من طرف إلى آخر. لى صور الاورام من خع DeepCPC ثم ضبط بنية
وناقل  بدقة،من ثلاثة مكونات رئيسية: الطبقات المنخفضة المضبوطة  DeepCPCيتكون نموذج 

 والطبقات العلوية المتصلة بالكامل. المسلسل،الصور 

لكن يجب تطبيق ، و  DeepCPCلتقييم نموذج  ClinicDB-CVC تُستخدم مجموعة بيانات 
لورم. اتيجيات استخراج التصحيح وزيادة الصورة لإثراء التدريب بعينات أكثر من االمزيد من استر 

٪، مما يؤكد على كفاءته 98.4يمكن أن يحقق دقة تبلغ  DeepCPC أظهرت النتائج التجريبية ان
 .في مساعدة الأطباء بالمنظار لتصنيف الاورام الحميدة وتقليل معدل فقد ورم القولون والمستقيم

 

 .الحميدة الأورام, التلافيفية العميقة الشبكات العصبية ,سرطان القولون والمستقيم : المفتاحيه الكلمات
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This chapter presents the importance of research involved in the thesis and provides a general 

introduction about the challenges which aim to tackle in the domain of polyps image classification 

using deep neural networks. Additionally, the problem statement is formulated and discussed based 

on some defined objectives, questions, and limitations that triggered the motivation to address them 

in this work's contributions. The remaining of this chapter is organized as follows:  

Section 1.2 introduces the problem statement of this research; Section 1.3 presents the research 

questions; Section 1.4 summarizes the study aims; Section 1.5 presents the study motivation; Section 

1.6 provides the study scope and limitation; Section 1.7 discusses the study contribution and its 

significance; Finally, Section 1.8 presents the thesis outline. 

1.1 Overview 

Among different types of diseases associated with gastrointestinal, ranges from annoyances to 

lethal diseases, colorectal cancer is the second most common cause of cancer-related death in the 

world according to statistics provided by the international agency for research on cancer  

(Ferlay et al., 2019), which shows over 1.8 million new cases in 2018.  

Colorectal adenomas polyps are small neoplasm of cells formed in the lining of the colon (ACS, 

2018). In spite of the fact that most colon polyps are harmless and do not usually cause symptoms; 

some may become cancerous over time (Groff, 2008). The process of transforming colorectal 

adenomas to cancerous adenocarcinoma is slow. Therefore, the early detection, endoscopic and 

histopathological characterization is crucial in preventing colorectal cancer and treating them safely 

(Dekker & Rex, 2018). 

Colorectal cancer screening is a key principle in detecting polyps and avoiding the development 

process (Arnold et al., 2016). There are several popular screening tests for colorectal cancer, such as 

stool DNA tests, computed tomography colonography, wireless capsule endoscopy, and 

colonoscopy. Currently, the most commonly used screening test for colorectal polyps is colonoscopy 

(Lieberman et al., 2012). However, the challenging part of such test is the follow-up procedure after 

screening or CRC surveillance, where no polyp is detected but some undetected polyps may develop 

to another stage before conducting the next checkup. 
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Several studies inclouding (Rex et al., 1997; Huang et al., 2012) have shown that colonoscopists 

usually miss small colorectal polyps and even some larger polyps. Moreover, producing an accurate 

characterization of polyp's type is a challenging task, e.g. recognizing the difference between sessile 

serrated polyp and hyperplastic, shown in Figure 1.1, which is not well suited in any screening 

method (Kahi, 2015). 

 

 

 

 

 

 

 

Figure 1.1. Endoscopic appearance of colorectal cancer: 

 (A) Hyperplastic polyp (B) Sessile Serrated Adenoma1 

  

The decision of removing or ignoring polyps imposes expertise beyond the proficiency of many 

endoscopists, thereby becoming a challenging task for pathologists (Irshad et al., 2014). The reason 

is that the biopsy requires the patients undergo a colonoscopy examination while cutting off the small 

samples of suspicious parts of the polyp after detection, which should be examined later by the 

histopathologic. This process is obviously inconvenience and time-consuming in classifying the 

polyp type by practitioners (Horv´et al., 2016). 

In response to the early diagnoses and prevention of colon cancer, urgent actions are needed by 

physicians and computer vision researchers in order to tackle the limitations and to find more accurate 

and reliable detection and classification methods of polyps based on endoscopic images. 

 

                                                
1 Images from endoscopy campus website by  https://www.endoscopy-campus.com/en/classifications/polyp-

classification-nice/ 

  

A) Hyperplastic polyp       B) Sessile Serrated Adenoma  

https://www.endoscopy-campus.com/en/classifications/polyp-classification-nice/
https://www.endoscopy-campus.com/en/classifications/polyp-classification-nice/
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ML has been tremendously developed as one of the essential solutions utilized in various 

intelligent information technologies (Srivastava et al., 2011). Machine learning algorithms have been 

constrained in several aspects, e.g. speed and structure complexity. However, the recent advances in 

the capabilities of machines and processors have enabled developing computer-aided diagnostic 

systems with high performance, which also have served diagnostic processes in many health-related 

realms. 

Various CAD based on machine learning approaches for tumor detection have been actively 

investigated in colonoscopy (Jerebko et al., 2003; Summers et al., 2005), but few of them have been 

evaluated in clinical settings (Mori et al., 2017). Basically, the CAD system extracts the features from 

polyp images using the hand-made features such as color, texture-based, and local binary pattern 

(Ameling et al., 2009; Karkanis et al., 2003). These features can be used for classification, e.g. 

classifying abnormal tissues into lesion or non-lesion, malignant or benign, which have been obtained 

from segmented objects using particular input features, e.g. area, contract.  

However, the automation of polyps recognition is a technical challenge in practice since the 

same type of polyps can vary significantly in size, color, and texture (Pogorelov et al., 2019). 

Additionally, many polyp types do not clearly emerge from the surrounding mucosa; therefore, such 

automated methods may cause performance degradation due to the similarity of feature pattern in 

polyp and non-polyp parts. 

Deep learning elevated to the prominent position in the field of endoscopy, when neural 

networks started outperforming other traditional methods on a wide range of screening tests (Zhou et 

al., 2017). For instance, a noticable success has been achieved in recognizing anatomical locations in 

diagnosis, polyp image analysis benchmarking, and polyp’s detection and classification. Various 

deep learning methods based on convolutional neural networks (CNN) suggest a new insight into 

colorectal cancer diagnoses including endoscopy analysis tasks to overcome their limitations and 

improve the performance in several applications. 

The majority of existing studies are mainly focused on polyps detection, but few of them were 

focused on polyps classification. This work proposes a CNN-based deep learning model to generate 

and learn discriminative image features based on concatenating image features for automated 

classification of colorectal polyps in colonoscopy images by using different configuration and distinct 

CNN network. 
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1.2 Problem Statement 

In general, the major problem in the colorectal polyp diagnosis process is the dependency on 

the specialist’s experience to primarily decide the final diagnosis (Horv´ath et al., 2016). Handcrafted 

analysis methods can be expensive, tedious, and error prone. Consequently, the evolution of 

intelligent image-based diagnostics has gained a remarkable attention by researchers and medical 

practitioners. 

The availability of devolving deep learning CNN models and powerful machines has 

accelerated the progression of new intelligent diagnoses. These diagnoses are dedicated to analyze 

images and implement an accurate classification of any potential lesion areas, which provides a 

clinical decision about patients’ health.  Nonetheless, deep CNN can be seriously over fitted by 

biomedical databases that typically have hundreds or thousands of images.  

 Additionally, there are some challenges in developing DL algorithms and integration a variety 

of polyp features into one system in order to classify particular polyp types, such as the limitation of 

polyp images makes CNN training for automated colonoscopy image classification so difficult, also 

the learning from scratch can be time-consuming. Consequently, a deep neural network model with 

adequate feature extraction and notable feature representation needs to be utilized. 

1.3 Research Questions 

To attempt addressing the limitations discussed in the previous sections, the following 

specific questions are posed: 

1. Does the mechanism of transfer learning provide satisfied classification results when the 

fine-tuning is applied with insufficient training dataset? 

2. What is the impact of extracting deep image features from the activations of convolutional 

layers on the accuracy of polyps classification? 

3. Does the CNN models performance be further maintained by adding optimized fully-

connected layers to project image features into low-dimensional spaces? 
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1.4 Research Objectives 

The aim of this research is to produce an accurate model that is most suitable for aiding the 

doctors to classify polyps and make decisions at early stages. To reach this aim, the following specific 

objectives are posed. 

1. To provide an automated CNN-based model for colorectal polyps classification diagnosis. 

2. To explore the transfer learning approach on various CNNs model with polyp dataset and fine 

tuning.  

3. To improve the extracted image discriminative features extremely that increases the model 

performance. 

1.5 Motivation 

Recent trends in research expounded that deep learning networks are very influential for 

automatic image analysis. Deep learning models have shown great improvements in the performance 

of numerous medical applications. This possess our curiosity to find and perform an effective method 

based on DL algorithms to determine the discriminative features in colorectal polyp images, which 

in turn will lead to an effective classification model that can potentially be a life savior. 

1.6 Research Scope  

The scope of this thesis is to provide insights on the CNN-based deep learning architecture and 

features appropriate for polyp classification tasks. It focuses on the analysis of features extraction 

and concatenation from activations of convolutional layers using transfer learning. Several pretrained 

deep CNN architectures utilized in these experiments including: VGG19, InceptionV3, ResNet50, 

Xception, MobileNetV2 and ResNet152V2. Moreover, the model training and testing was performed 

on the public CVC-Clinic dataset (Bernal  et al, 2017). 
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1.7 Research Contributions 

The main contributions of this thesis can be summarized in the following: 

 A deep CNN-based model is proposed to generate discriminating image features that are 

extracted from different predefined architectures then concatenated into a single image 

descriptor.  

 An in-depth performance analysis is provided using different CNN architectures and setups 

in order to demonstrate the effectiveness of utilizing the transfer learning from source domain 

(general images) to target domain (polyp images) for existing CNN hyperparameters in 

tackling the lack of training data. 

 Empirically, this research has shown the efficiency of the proposed learning model in the 

context of selected features, layers, and hyperparameters on the classification polyp images, 

which may inspire more research works to investigate its performance in the domain of 

medical imaging where sufficient data can hardly be obtained. 

1.8 Thesis Outline 

Chapter 1 provided a general introduction for the domain of polyps’ image classification using 

deep neural networks. The research problem, objectives, limitations, and scope are also discussed. 

The rest of this thesis is organized as follows: 

Chapter 2 introduces a clinical background of colorectal polyps and screening tests. Also, it 

presents comprehensive details on the fundamentals of machine learning and neural networks but 

focused on the CNN models. Numerous studies and recent related works are discussed thoroughly. 

Chapter 3 discusses the proposed methodology and illustrates the proposed architecture of 

deep CNN-based model for polyps classification (DeepCPC). It also provides thorough illustrations 

about several modified CNNs utilized in this work. Additionally, it presents the dataset improved and 

employed to train and evaluate the performance of DeepCPC.  
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Chapter4 presents the environment requirement and thorough analysis on the implementation 

of updated CNN networks and the results. It also discusses the experimental results of the DeepCVC 

model with performance comparisons. 

Chapter5 concludes the thesis by summarizing the findings and how they relate to the research 

problem and objectives. It also outlines the possible directions that could expand this research work 

in the future. 
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Background and Literature Review 
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This chapter covers a medical background and general aspects of machine learning and 

convolutional neural network. Section 2.1 presents an overview of the medical scenario in the 

colorectal polyp with reviews of various screening methods used in the diagnosis; Section 2.2 

provides a background of machine learning with a description of learning types; Section 2.3 discusses 

an overview of the artificial neural network mechanism; Section 2.4 explores the convolutional neural 

network and its primary parameters; Section 2.5 illustrates the training methods utilized in deep 

learning; Section 2.6 provides the techniques used to perform regularization; Section 2.7 shows 

previous studies associated with the ML algorithms used for colorectal polyps problem, discussing 

their finding and limitations; Section 2.8 provides a summary of this chapter. 

2.1 Clinical Background 

This section provides a clarification of polyp and process of growths, given different modalities 

for screening tests.   

2.1.1 Colorectal polyp 

Polyps are abnormal growths of tissue from a mucous membrane (inner lining) of the colon or 

rectum. As shown in Figure 2.1, polyps are commonly found in different parts of the gastrointestinal 

system, such as the stomach, ear, nose, urinary bladder, colon, and uterus. Some polyps are flat, it is 

said to be sessile while others attached to the surface by a narrow elongated stalk (ACS, 2018).  

 

Figure 2.1. Parts of the Colon with polyp2 

                                                
2Image from the National Cancer Institute © 2012 Terese Winslow LLC by 

https://www.cancer.gov/types/colorectal/patient/rectal-treatment-pdq 

https://www.cancer.gov/types/colorectal/patient/rectal-treatment-pdq
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2.1.2 Colorectal Cancer Screening and Surveillance 

Screening of colon cancer can detect early cancers and polyps in the large gut. This kind of 

screening may be able to find the problems that can be treated prior to developing or propagating 

cancer. Regular tests can reduce death risk and colorectal cancer complications. Several test options 

are available for colorectal cancer screening such as the following: 

Colonoscopy is a laparoscopic examination of the lower digestive tract, including the anus, the 

rectum, the colon, and sometimes the last part of the small intestine (terminal ileum), during a 

colonoscopy, a long, flexible tube (colonoscope) is inserted into the rectum. A precise video camera 

on the edge of the tube filming inside the body, and connected directly to the TV screen allows the 

doctor to view the entire colon, If necessary, polyps or other abnormal tissue can be removed through 

the endoscope during the colonoscopy procedure, or to stop bleeding, as well as tissue samples 

(biopsies) can also be taken during colonoscopy. An image taken by colonoscopy is shown in 

Figure2.2. 

 

 

 

   

 

Figure 2.2. Images taken by a colonoscope3. 

 

Computed Tomography Colonography a special device of radiology, gives an image of the 

organs of the body using x-rays taken from different angles, then with the computer assistance, these 

images overlap on top of each other, giving a detailed 3-dimensional image that presents any 

abnormalities or tumors, that cannot be shown by normal radiographs. 

 

                                                
3Figure published in depeca website byhttp://www.depeca.uah.es/colonoscopy_dataset/ 

http://www.depeca.uah.es/colonoscopy_dataset/
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Wireless Capsule Endoscopy a medical procedure used to diagnose and visualize the 

gastrointestinal tract. The endoscopy is carried out using a small special wireless camera placed inside 

a capsule swallowed by the patient, shown in Figure2.3.The capsule is small in size, enabling it to 

reach places that the normal endoscope cannot reach, as well as the sharpness of its images and the 

magnification it provides.  

 

Figure 2.3. Wireless capsule endoscopy4. 

As the capsule travels through the digestive tract, it takes thousands of pictures of the stomach, 

intestines and other parts, example pictures from a WCE are shown in Figure 2.4. It is recorded and 

sent to a receptor that is fixed around the patient's waist. The capsule stays in the patient's body for 

about 8 hours and goes out with the stool. It is not reused afterward. 

 

Figure 2.4. Images taken by a wireless capsule5. 

 

                                                
4Figure released into the  Diagnostic and Interventional Cardiology webpage, 

https://www.dicardiology.com/article/capsule-endoscopy-systems-safety-patients-cardiovascular-implants 
 
5 Figure published in the article “Polyp Detection and Segmentation from Video Capsule Endoscopy: A Review” 
https://www.mdpi.com/2313-433X/3/1/1/htm. 

https://www.dicardiology.com/article/capsule-endoscopy-systems-safety-patients-cardiovascular-implants
https://www.mdpi.com/2313-433X/3/1/1/htm
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The next following sections, will discuss the machine learning in details covering different 

types, then presenting the artificial neural network processes and convolutional neural network, 

finally illustrating the proposed methods for colorectal polyps and applications. 

2.2 Machine Learning Background 

Artificial intelligence has recently captured the world's attention in various forms (Shalev-

Shwartz & Ben-David, 2017). Several models confirm that artificial intelligence has approached 

competition from human intelligence, with this success, increasingly more interest with what is 

known as machine learning to move towards greater gaining in employing artificial intelligence. 

ML is one of AI branches based on building computer programs in various forms, which 

improve their performance at some task through the experience.  The term machine learning was 

coined by the pioneer of artificial intelligence Arthur Samuel in 1959 while working in IBM 

laboratories (Awad& Khanna, 2015), he used the game of checkers to create the first learning 

program. 

In the mid-90s, machine learning rose as the new substance of AI. Bigger datasets were created 

and made open to permit more individuals to manufacture and train AI models (Burkov, 2019). 

Despite the fact that ML calculations draw derivation from statistics, what make it powerful is the 

attempts to limit the error between the expected yields given by the dataset and predicted calculation 

yield to find the advanced principles. ML approaches are basically three: supervised, reinforcement, 

and unsupervised. These approaches are discussed briefly in the following subsections: 

2.2.1 Supervised Machine Learning 

Supervised machine learning algorithms perform the data mining task in which both input 

(training sample) and the expected output data (labels) are provided, the task of the algorithm is to 

analyzes and learn a mapping function from training data inputs to predict the correct label in the 

outputs. Supervised learning problems can be further grouped into sub-types of learning according 

to the required output from the machine learning system. One of the most important of these types is 

classification; the goal of the learning process is to produce a model that can classify any new income 

into one or more of the previously defined types. The other type is regression, which is similar to the 

classification, except that it predicts values with resides continuously instead of separate classes. 
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Different supervised machine learning techniques and feature selection algorithms have been widely 

applied to colorectal cancer by numerous studies, such as prediction of early colorectal cancer 

metastasis (Takamatsu et al., 2019), automated polyp detection system (Zur et al., 2018), or to clasify 

colorectal polyps (Komeda et al., 2019). 

2.2.2 Unsupervised Machine Learning 

Also called descriptive learning, unlike the previous type, unsupervised learning performed 

through incoming data without any predefined output, and the goal is to devise new models and 

hidden relationships between the data. The most important unsupervised learning method is 

clustering, which uses exploratory data analysis for grouping or to find hidden patterns that are not 

previously known. Unsupervised learning explored in colonic disease studies, e.g. clustering 

proteomic data from colon cancer (Zufferey etal., 2018), radiomic features of quantitative imaging 

phenotypes (Chen et al., 2019). 

2.2.3 Reinforcement Machine learning 

It is concerned with how software agents have to take actions on the current behavior. The 

agents learn by giving signals symbolizing reward or punishment based. Semi-supervised learning is 

between supervised learning and non-supervised learning, where it gives an incomplete training 

signal: a training group with some (often) of the missing outputs targeted. Transduction is a special 

case for this principle where a whole set of problem states are known as learning time, except that 

part of these goals is missing. Semi supervised is utilized for metastatic colon lymph node diagnosis 

(Michaeli et al., 2012). 

2.3 Artificial Neural Networks 

They are synthetic neurons similar to the neurons in human nervous system, especially in the 

brain as shown in Figure 2.5. What happens in human brain as a permanent activity is an 

electrochemical activity between networks of brain cells called neurons or nerves cells. In particular, 

the neuron consists of many inputs that are responsible for communication called (dendrites), and 

one output (the axon) that links to different neurons or biological tissues. The signals are transmitted 

from one neuron to others by the synaptic method. The signals may be inhibitory or exciting. If the 
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signal is exciting (the ability to move) then it activates the neurons and spreads via the axon. 

(Nicholls, J. &Kuffler, S., 2018).  

 

Figure 2.5. Biological neuron6.  

Accordingly, artificial intelligence has tended to build artificial neural networks that mimic the 

human brain. Artificial neural networks consist of neurons that communicate with each other via 

links. These links are used to transfer signal between these neurons, and each link has a specific 

weight that increases with the rise in the strength of the contact between the two neurons connected 

via this link. 

As shown in Figure 2.6, the data that need to be process is placed at the first layer of units (x1, 

x2,…xi), each input is connected to neurons (j) and weights (w1j, w2j,…wij). Every signal being 

multiplied with its related weights on the connection, then the neuron sums all signal received and 

send to the non-liner activation function φ(•) in order to give the final output (y). 

 

Figure 2.6. Artificial neural network7. 

                                                
6Neves, A. C., González, I., Leander, J., & Karoumi, R. (2017). A New Approach to Damage Detection in Bridges 

Using Machine Learning. Experimental Vibration Analysis for Civil Structures, 73–84. 
7Figure published in the article on the medium.com website.  https://medium.com/@jayeshbahire/the-artificial-neural-

networks-handbook-part-4-d2087d1f583e 

https://medium.com/@jayeshbahire/the-artificial-neural-networks-handbook-part-4-d2087d1f583e
https://medium.com/@jayeshbahire/the-artificial-neural-networks-handbook-part-4-d2087d1f583e
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2.4 Convolutional Neural Networks 

DL has become the latest model for many image and signal processing tasks. DL is a new 

branch of ML, which relies on a set of algorithms based on modeling high-level abstractions in data 

by extracting multiple processing layers, allowing systems to be able to learn complex mapping 

functions directly from input data, thereby achieving AI goals, which was recognized as one of the 

top 10 breakthroughs in 2013(Person, 2015). 

Deep CNN model is a multi-layer neural network in which there is a connectivity pattern 

between its neurons, each neuron receives an input, a dot product between each input and its 

associated weight is performed, followed with a non-linearity. There are two main parts for CNN: A 

convolution tool that splits the various features of the image for analysis, a fully connected layer that 

uses the output of the convolution layer to predict the best description for the image as shown in 

Figure 2.7. 

 

 

Figure 2.7. Typical deep CNN with 2 hidden layers, 2 pooling layers, fully connected layer, and 9output units.8 

Neurons are arranged in three dimensions – width, height, and depth, within the layer also 

neurons are connected to a small area of the layer before them, called the receptive field, and are not 

as connected as in a normal neural network. The structure of CNN networks consists of several 

                                                
8 Figure published in the towardsdatascience article web page  https://towardsdatascience.com/mnist-handwritten-

digits-classification-using-a-convolutional-neural-network-cnn-af5fafbc35e9 

https://towardsdatascience.com/mnist-handwritten-digits-classification-using-a-convolutional-neural-network-cnn-af5fafbc35e9
https://towardsdatascience.com/mnist-handwritten-digits-classification-using-a-convolutional-neural-network-cnn-af5fafbc35e9
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different types of sequential layers, and some will be replicated. The following are some of the 

common CNN layers: 

Input Layer is an image that has the following dimensions width x height x depth, saved as a 

matrix of pixel values, an RGB image which has been separated by its three color planes: Red, Green, 

and Blue. 

Convolutional layer is the basic building block of CNN, consists of a set of filters that are 

grouped across the width and height dimensions of the image. Filters in which the image is converted 

have the same number of dimensions as the image, and usually used spatial sizes such as 3x3 or 5x5. 

The width and height of the output depending on the size of the filter, the stride which is the number 

of pixels in which the filter is transferred between each calculation, usually one or two, and the 

number of zero padding around an image. The output depth will be equivalent to the number of filters 

applied. 

Pooling layer provides a method for non-linear reduction of volume using small filters for 

sampling, two common methods are average pooling and max pooling aggregation in a rectangular 

area of output from the previous layer, therefore reduces the number of parameters and calculations, 

spatial size, as well as avoids over fitting. 

Fully connected layer takes the end results of the convolution and pooling layers process and 

reaches a classification decision; consist of input layer that takes the output from previous layer and 

turns them to single vector (flatten), that can be used as an input for the next fully connected layer 

that takes the input from features analysis and perform weights to predict correct label, last output 

layer gives the final probabilities of certain feature belongs to a label. 

2.4.1 Convolutional Neural Network Functions 

After introducing the basic structure of CNNs, we will present some of core functions in CNN-

based models: 

Activation function is a mathematical equation that squashes the input values into a certain 

range to determine the output of a neural network, each neuron in the network attached to this function 

which then determines whether to be activated or not based on the relevance between the inputs from 

each neuron with the model prediction. Sigmoid, tanh, and rectified linear unit (ReLU) are widely-

used activation functions, as they prevent saturation problems and make learning quicker than most 
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functions. Mathematical utility is often employed by sigmoid (nonlinear) functions since they are 

very simple to compute derivative, and we use them to measure weight updates for training 

algorithms. 

Loss function is a method for evaluating the error between the output and the given target 

value, it is used to determine how well the algorithm models, the data, and what needs to be 

optimized. 

Softmax is a factor which normalizes an input into a value vector that follows a distribution of 

probability with a total of up to 1. The value of the output is between [0,1]. 

2.4.2 Hyperparameters 

A parameter set prior to the learning process. These parameters can be tuned and largely affect 

the model performance. Among important parameters are: 

Learning rate: is a parameter controls how much the model will adjust when the model weights 

are changed, in response to the expected error. Choosing the learning rate is difficult because a value 

that is too small may result in a lengthy training cycle that may get stuck, while a value that is too 

high might result in learning a sub-optimal set of weights that are too fast or unstable. 

Batch size: refers to the number of samples examples utilized in the one iteration belong to 

such subset. 

Epochs: indicates the number of passes of all the data, meaning that one pass is a full learning 

cycle of entire training dataset prediction, along with weight update and cost calculation. 

2.4.3 Training Alternatives 

There are three common approaches utilized in deep learning to perform classification tasks: 

1- Training from scratch: Requires a very large labeled data set to be gathered, in addition, 

network architecture needs to be designed to learn features and models. This is perfect for 

new apps or apps with a large number of output categories. This is a less popular approach 

since, with a large amount of data and a high learning rate; such networks typically take days 

or weeks to train. 
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2- Transfer learning: Recently, it observed that an increasingly applied to deep neural 

networks in many domains, thus to develop a deep learning network with an acceptant result, 

requires large amounts of training data, and significant training time (Sarkar et al, 2018). 

Transfer learning is the motivated method to solve one problem from the pre-trained model. 

It gains the parameters and weights from an already-trained network and used as the starting 

point on a new problem, therefore modify them to be fit in the target model. Transfer 

learning may also assist the target project learning within the following ways: 

 Stepped forward baseline performance: when we increase the understanding of an 

ignorant learner with the realization from a source model, the baseline overall 

performance may enhance due to this expertise transfer. 

 Development time of the model: adapting information from a source model may 

additionally assist in completely gaining knowledge of the target task, compared to learn 

from scratch. Therefore, improve the total time taken to develop or learn a model. 

3- Fine-tuning: A process to train the pre-trained network on a small dataset. Usually, fully 

connected layers, which can be used as classification layers, the pre-trained layer will obtain 

a lower learning rate. This will enable the features to be adapted to the new dataset. 

2.4.4 Regularization Techniques 

One of the most common problems facing data science professionals is to prevent over-fitting. 

When the model performed extremely well on train data, but was unable to predict test results. 

Different regularization techniques to overcome the overfitting issue such as: 

Data Augmentation: this is a technique that allows increasing the data available for training 

models without collecting new data. This can be in different schemes relying on the dataset used. 

Techniques for data augmentation, such as cropping, padding, and horizontal flipping are widely used 

to train large neural networks. 

Dropout: the main concept is to deactivate input units by random after each iteration. The set 

of 2n neural networks is a neural network with n units that hires dropout. Such alternative networks 

have a reduced number of units but also exchange weights in order to retain an equivalent overall 

number of parameters. Training a weight loss network can be seen as training a series of 2n smaller 

weight share networks. 
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Early Stopping: during training, the model is tested on dataset after each epoch. When the 

output of the model on the validation dataset begins to degrade such as the accuracy begins to 

decrease or the loss begins to increase, therefore, the training phase is stopped. 

2.5 Related Works for Polyp Classification 

This section, discuss the related work in regards to colorectal polyp classification, the methods 

employed, introduce the experiments were performed, and the results. 

A pipeline for image classification can be classified into extraction features and classification 

training. Conventional feature extractors are mostly based on pre-designed techniques, which require 

a strong knowledge of the field and considerable technical skills. In addition, the workload is heavy 

when multiple parameters are finely tuned. The previous study on the diagnosis of colorectal polyp 

focused on techniques of feature engineering, for example, to extract features from vessel structures 

(Tamaki et al., 2013), or using scale-invariant key points sampled from local patches as 

characteristics such a study proposed by (Stehle et al.,2009),they perform classification on colon 

polyps as a multi-stage system, by compared two learning algorithms in order to perform vessel 

segmentation, after that used the results as seed for fast marching algorithm to carry out other 

segmentation for the whole vessel lumen. Consequently, the computed features from segmentation 

used to classify the polyps. The system achieved a correct classification rate of 90% evaluated on the 

datasets that include 56 polyps with histologically confirmed ground truth. A limitation of these 

studies is that each region of interest had to be selected manually. 

Other study focused on machine learning methods based on SVM, utilizing shape-based 

approach to extract characterizing features (Li et al., 2004). The study proposed supervised learning 

methods to detect the abnormal regions in colonoscope, the method extracts different size patch from 

the image with the resolution of 256 × 256 pixels, then SVM classifiers are trained for each size 

independently, the features are passed to ensemble classifier to perform classification score, then 

aggregate scores for a final decision. The classification task compared three methods SVM, Gaussian 

kernel, and MFNN, to perform classification between abnormal and normal regions. Study results 

show that SVM achieved a higher classification accuracy rate than others. 
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Cao et al., (2009) present an automated detection of the shape of the opening appendix in a 

colonoscopy video frame. The study proposes several intermediate-level features suitable and uses a 

K-mean classifier to finally classifying images into two categories: appendix image and non-

appendix image, a test images consist of 800 images taken from 5 colonoscopy videos. The technique 

has an average accuracy of 90% in both classes. 

Manivannan et al., (2013) proposed two methods for representing intermediate-scale features 

to classify normal-abnormal in colonoscopy images, using SVM for features selection patch-based 

method, and scale-space method are proposed, by using cross-validation for the patch-based method 

found that window size 60 perform the best accuracy and for the scale-space method, 3-level Gaussian 

scale-space gave the best accuracy. 

Other study investigates the advanced precancerous colon lesions proposed by (Hilsden et al., 

2018). The process of using ColonFlag algorithm that combines patient data to be classified based on 

the majority lesion found into five groups, invasive colorectal cancer, high-risk precancerous lesions, 

non-advanced adenomatous polyp or non-dysplastic sessile serrated polyp, non-neoplastic findings 

and, the last group if there's not any finding. Based on the data of the regularly collected CBC and 

data such as patient age, gender, and colonoscopy, the ColonFlag model was able to classify 

individuals at risk of a CRC. As the authors indicate, ColonFlag can also identify screened people at 

increased risk to the CRC, and individuals can, therefore, be targeted for greater compliance with 

conventional screening tests. 

Recent applications with DL methods have mostly overcome the difficulties of designing these 

modalities, highlighted the significance success in classifying massive amount of objects in colorectal 

domains. Different CNN studies have been proposed for classification colorectal dieses. (Ribeiro et 

al., 2016 ) explored the classification of colonic polyps by several CNNs to classify the colonic 

mucosa into healthy and abnormal. The dataset consists of 25 healthy images from 18 patients and 

75 abnormal images from 56 patients. The CNN’s used small patches in order to increase the dataset 

and to classify different regions in the same image, thus 800 images resulted to train the classifier. 

The results show experimentally the overall accuracy was 90.96% while the sensitivity was 95.16%, 

but the false positive rate was high resulting in specificity only 74.19 %. 

Another used of benchmark methods such a study presented by (Byrne et al., 2017). The study 

used inception network architecture with stochastic gradient descent to classify each input frame into 
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one of four different categories. The study applied a mini-batch of 128 frames and data augmentation 

procedure on the dataset. Image frames for narrowband image video and unaltered routine video used 

in model training and validation. The CNN network results in the study can identify polyps with an 

accuracy of 94% percent, a sensitivity of 98%, and specificity of 83%, all with 95% CI (confidence 

interval). 

Tian et al., (2019) proposed one-stage detection and classification approach for the five class 

polyp classification. The CNN network used Retinanet50 for detection and classification in one stage 

and two stages with a dataset containing 871 images of colorectal polyps annotated by a professional 

medical practitioner. In addition, the study utilized a data augmentation during training. The study 

measures the results with state-of-art based on the MICCAI 2015 polyp challenge. The results show 

that the one-stage approach is more efficient than the two-stage. 

The CNN method of colon polyp CAD is used for another analysis by (Komeda et al., 2019)  

a total of 1,200 colonoscopy images in the datasets used in the analysis, were collected from videos 

of actual endoscopic examinations. The CNN network consists of several conventional layers, 

pooling layers, and Softmax classifier. The input image is 256 × 256 pixels, performing 10-hold 

cross-validation in the training process. The study reveals that the CNN-CAD method can precisely 

differentiate between adenoma and non-adenoma polyps up to 70%. 

The research by (Wang et al., 2019) uses the CNN system intended by an automated polyp 

detection system to investigate the impact of ADR. 1.130 patients involved in the study with 

eligibility requirements. At the end of the test, the CAD colonoscopy was shown to raise ADR by 

20.3% (p<0.001) significantly to 29.1%, relative to normal colonscopic ADR. 185 adenomas were 

detected and 114 polyps were detected in CAD colonoscopy. Such results are substantially higher 

than those found by Standard Colonoscopy relative to 102 adenomas and 52 hypetlastic polyps. 

An alternative way is to adopt a transferlearning strategyfor classification the celiac diseases 

on the basis of the endoscopic dataset explored by (Wimmer et al., 2016). The transfer learning from 

CNN demonstrated great potential for the classification of celiac diseases on the basis of the 

endoscopic dataset. The endoscopic images have been identified in three different transfer learning 

techniques. CNN with fine-tuning obtained the highest classification accuracies, even though the 

small number of available training dataset resulted in overfitting. These were the highest results for 
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the diagnosis of the disease achieved in the VGG16 network with an accuracy of 90.5% in 

comparison to four state-of-the-art networks. 

The use of transfer learning to increase adenoma detection rates was research by (Urban et al., 

2018). Various CNN models performed in the study included pre-trained models for the image 

recognition and untrained models. The datasets selected included 8,641 colonoscopies images from 

2,000 patients, the second dataset contains 1,330 colonoscopy images from a variety of patients, and 

another dataset includes 9 colonoscope videos. The study performed cross-validation by training the 

model on a single dataset and checking it on a whole new data set. The findings show models 

previously equipped with a polyp and random images capable of detecting polyps with 96.4% 

accuracy and sensitivity of 96.9%. The model also predicates all polyps discovered during the 

analysis by experts and polyps. The studies are summarized inTable2.2. 
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Table2.1. Summary of approaches proposed for colorectal cancer classification. 

Reference Study Goal Method Used Main Findings Limitation 

Wang et al.,  

( 2019)   

Detection and classification 

polyp and adenoma 

CNN based on SegNet CAD system increase of ADR by 50%, 

from 20% to 30% compare with standard 

colonoscopy with sensitivity 94.38% 

 

Difficult to assess the exact 

contribution of the system. 

Lack of external validity. 

Tian et al., 

(2019) 

Detection and classification 

polyp 

Adapting RetinaNet Model with one-stage approach is more 

efficient than the two-stage. 

Shows smaller training needs and 

inference times  

 

High rate in miss-detected polyps 

compare with manual  detection 

methods 

Hilsden et al., 

(2018) 

Predicate the appearance of 

polyps at colonoscopy 

Machine learning utilizing ColonFlag 

algorithm  

The model identifies the patients with high 

rate of CRC;achieve 95% in the 

specificity.  

Lack of patient history information 

that leads to high-risk polyps in the 

earlier years will misclassify as non-

high risk 

Urban et al., 

(2018) 

Localizes and  identifies polyps  Using a pre-trained CNN for detected 

the presence of polyps in a frame. 

Identified polyps under the ROC curve of 

99%, the accuracy 96.4%, false positive 

7% rate. 

Require large training data for pre-

training. 

Byrn et al., 

(2017) 

Differentiation of colorectal 

polyps  

Apply DCNN (Inception Network) Model works with unprocessed frames and 

can operate in quasi real-time. 

Achieve high accuracy in sorting 

diminutive colorectal polyps into 

adenomas or polyps. 

Low confidence determination. 

(15%) of consecutive diminutive 

polyps in the test set were excluded by 

the AI model. 

Komeda et al., 

(2017) 

Classification adenomas or 

polyps 

Applying CNN network  The model decision correct in every 7 out 

of 10 cases. 

Unsatisfactory accuracy  

for CNN-CAD system  
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Reference Study Goal Method Used Main Findings Limitation 

Zhang et al., 

(2017) 

Detect and classify of colorectal 

polyps by using low-level CNN 

features  

Two different CNN models for 

detection and classification  

High detection performance Low classification performance and 

limited data set 

Wimmer et al., 

(2016) 

Classification of Celiac Disease CNN and SVM Fine-tuning the CNNs clearly achieves the 

highest classification accuracies 

Network overfitted 

Ribeiro et al., 

(2016) 

Classification polyp into healthy 

and abnormal  

Applying CNN network The model performs in the accuracy 90% 

and sensitivity 95.16%. 

High false positive rate  

Manivannan et al., 

(2013) 

Classification Colonoscopy 

image to normal-abnormal 

SVM Considerable accuracy improvement 

regardless of the features used 

Limited dataset  

Cao et al.,  

(2009) 

Automatic classification in 

colonoscopy video  

Utilizing machine learning and k-mean 

classifier  

Technique has an average accuracy of 90% 

for appendix images and 90% for non-

appendix images. 

Falsely classified several type to 

another due to not applying 

preprocessing phase  

Stehle et al.,  

(2009) 

Classification of polyps  ML The system achieved a correct 

classification rate of 90%.  

Limited dataset and low specificity 

Li et al.,  

(2004) 

Detecting and classification 

abnormal regions in 

colonoscope images.  

Utilizing SVM for detection and 

classification  

Achieved accuracy 76.3%  in classification 

and the average detection rate is 83.3% 

Numbers of cases used were limited 
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2.6 Summary 

This chapter commenced with a brief discussion of a medical scenario for the colorectal polyps 

problem, which provide general characteristics of the disease and the methods of examination 

followed and their challenges. As well, it highlighted the concept of machine learning, deep learning, 

and explored the existing synergy between the fields of colorectal polyps and machine learning, by 

illustrating the needs for deep learning techniques to overcome a polyp-image classification 

limitation. Finally, extensive research in the previous studies enraptured, however, some of the 

published methods invariably show two common limitations: first, low classification performance, 

which makes these approaches unsuitable for correctly classifying the polyps; second, all studies used 

their own image data set which prohibits quantitative comparison. Consequently, this guides the way 

towards performing the DeepCPC model for colorectal polyps classification. The next chapter will 

introduce the methodology of this work and presents the details of DeepCPC architecture. 
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This chapter presents the methodology used to develop the DeepCPC model for polyps 

classification. Section 3.1 covers a description of the dataset utilized for polyps classification model; 

Section 3.2 illustrates the model and main stages of the DeepCPC model; Section 3.3 provides the 

pre-processing as the first stage; Section 3.4 discusses the model initialization steps by comparing 

six pre-trained CNN models then choosing the best of them to be trained on modified dataset; Section 

3.5 presents the third stage in the DeepCPC including features extraction, selection, and 

concatenation; Section 3.6 illustrates the performance evaluation measures; Section 3.7 summarizes 

this chapter. 

3.1 Datasets 

This section elaborates the available datasets considered in this thesis. 

3.1.1 ImageNet (Deng et al., 2009) 

ImageNet is a popular dataset used for different general purposes. The ImageNet Large Scale 

Visual Recognition Challenges (ILSVRC) annual competition assesses large-scale algorithms and 

neural network structure for image detection and classification. The ImageNet dataset consists of 

1000 hierarchical classes, divided into 1.2 million training sets, 50,000 testing sets, and 100,000 

evaluation sets. In this work, this dataset is already utilized to train the CNNs used to initialize the 

DeepCPC model. 

3.1.2 CVC-Clinic DB (Bernal et al., 2017) 

The dataset designed as the training set for MICCAI2015 and ISBI2015 sub-challenges for 

polyp detection in endoscopic videos. The dataset frames extracted from 29 endoscopic videos by 

courtesy of Hospital Clinic, Barcelona, Spain. The dataset contains 612 frames standard definition 

still images of 384 × 288 resolution with 31 several examples of polyps from 31 several sequences. 

Each frame in this dataset consists of 612 frames ground truth corresponding to a region covered by 

the polyp in the image, as observed in Figure 3.1. 
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Figure 3.1. Sample images of CVC-Clinic dataset. Original images shown in the first row and their corresponding 

ground truth shown in the second row. 

 

3.2 The DeepCPC Model 

This work, propose a deep learning CNN-based model for colorectal polyps classification, as 

shown in Figure 3.2. The complete model consists of three stages: the dataset preprocessing, model 

initialization using pre-trained CNNs, finally, the features selection and concatenation from the 

activations of two well-performing model, which fed to the fully-connected layers for classification. 

The model details are explained in the next sub-section.  
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Figure 3.2. A depiction of the DeepCPC model for colorectal polyp classification. 
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3.3 Image Preprocessing 

The available amount of training samples from CVC-Clinic dataset (Bernal et al, 2017) is 

insufficient. In order to perform a larger balanced dataset, therefore, a batch extraction is applied with 

data augmentation techniques such as rotation, flipping, scaling, and cropping. Figure 3.3 shows some 

sample images. Then, images are split into training, validation, and testing subsets. 

 

 

Figure 3.3. Sample augmented polyp images with different shapes and sizes.9 

 

 

  

 

 

 

 

                                                
9 Figure published in deephealthresearch website https://site.uit.no/deephealthresearch/2017/07/19/polyp-detection-

using-deep-learning/ 

https://site.uit.no/deephealthresearch/2017/07/19/polyp-detection-using-deep-learning/
https://site.uit.no/deephealthresearch/2017/07/19/polyp-detection-using-deep-learning/
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3.4 Model Initialization 

The lower part of DeepCPC architecture is built from a pretrained CNN network and have the 

same parameters initializations of best two models that would be further processed to extract image 

features from them then get concatenated 

3.4.1 Benchmark CNN Architectures 

 This section, examines some of the most popular CNN architectures used for image 

classification tasks: VGGNet, GoogleNet, ResNet, MobileNet, and Xception. Such networks are also 

used as feature extractors due to their great extraction capabilities. 

VGGNet: Introduced by (Simonyan& Zisserman, 2014), consistent over multiple stacked 

layers, easy-to-implement architecture, and has a lot of variants based on the number of stacked 

layers. The VGG16 and VGG19, illustrate in Figure A.1, Appendix A. The VGG architecture comes 

with the 3 x 3 convolution layers, max-pooling for reducing volume size performed over a 2 x 2-pixel 

window with a stride of 2, in each of the hidden layers ReLU activation is used. The end of the 

network comes with two fully connected layers that go along with a softmax layer for prediction. 

GoogleNet (Inception): Introduced by (Szegedy et al, 2014). Inspired by LeNet but 

implemented a novel element, the main contribution is the creation of the Inception-V1 module, 

which notably decreased the wide variety of parameters with the aid of forty million on the top of the 

convolutional layers. The architecture consisted of a 22 deep layers as shown in Figure A.2, Appendix 

A, which eliminated a massive variety of parameters through the usage of average pooling instead of 

fully connected layers. In addition, several versions of the GoogleNet were launched, such as 

InceptionV3 that makes use of batch normalization in particular, comes with 24M parameters, and 

42 layers as shown in Figure A.3, Appendix A. The motivation of Inceptionv3 is to prevent 

representational bottlenecks i.e. to seriously limit the input dimensions of the subsequent layer and 

to have extra powerful computations by using of factorization techniques. 

 

 

ResNet: Developed by researchers at Microsoft (He et al., 2015), which received first place in 

the ImageNet competition in 2015. ResNet architecture consists of 152 layers, includes batch 
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standardization and unique skip connections to educate deeper architectures as shown in Figure A.4, 

Appendix A. In addition, ResNet with 1000 layers can be equipped. However, it has been found that 

ResNet typically operates on blocks of relatively low depth 20-30 layers operating in parallel rather 

than serially flowing across the entire length of the network. Various ResNet models can be 

implemented such as ResNet-50,152, which the numbers follow the model name indicate the numbers 

of the layers in the architecture of the model.The ResNet-50 considered as a smaller version of ResNet 

152. 

Xception: Developed in Google, inspired by previously published GoogleNet’s Inception 

architecture, the architecture is novelty the adaptation of modified depth wise separable convolution 

layers, which proven to outperform the InceptionV3 on ImageNet data set and achieved .94% 

accuracy. The model made up of 58 layers with 36 convolutional layers structured into14 blocks as 

feature extraction base, the middle flow of Xception network, as shown in Figure A.5, Appendix A, 

repeated 8 times. The blocks are separated by residual layers with total of 13 depth-wise layers’ 

employ kernels of size 3 x 3, 14 ReLU activation layers,19 batch normalization layers,4 Max-pooling 

layers use a 3 x 3 kernel with a stride of 2, one global pooling layer, and one fully connected layer. 

The normal convolutional layers utilized both a 1 x 1 kernel with a stride of 2, and a 3 x 3 kernel with 

a stride of 2 and 1 pixels. 

MobileNetV2. Submitted by (Sandler et al., 2018), and designed for mobile resource-

constrained systems, which is an improvement of MobileNetV1. The network uses depth-wise 

separable convolutions which permit similar effects as convolutional layers, but decrease the single 

layer computations. The architecture of MobileNetV2 as shown in Figure A.6, Appendix A, 

structured from convolution layer with 32 filters followed with 17 bottleneck residual blocks to retain 

important information in the network, a regular 1 x 1 convolution, followed by a global average 

pooling layer and a ReLU activation as classification layer. 

Table 3.1 describes some main features of the CNN networks, where the model size refers to the file 

size on actual disk after training the model on ImageNet dataset. Parameters refer to the total number 

of weights between the neuron connections. Depth refers to the topological depth of the network, 

includes activation layers, batch normalization layers etc.  
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Table 3.1. A summary of CNN models characteristics. 

Model Name Model Size Total Layers Parameters Depth 

Xception 88 MB 58 22,910,480 126 

VGG19 528 MB 19 138,357,544 26 

ResNet50 98 MB 50 25,636,712 - 

MobileNetV2 14 MB 20 3,538,984 88 

InceptionV3 92 MB 42 23,851,784 159 

ResNet152V2 232 MB 152 60,380,648 - 

 

3.4.2 CNNs Comparison Procedure 

The input to individual CNN is an image (Ys) from a CVC-clinic. The dataset  

D = {Ys , Ls ; s = 1, .... S} of the images which consists of S images that corresponds to the labels 

 Ls ∈ {1, . . . , B} for classification into B classes (binary). Each input dimension (d × d × m) image, 

where (d × d) are spatial dimensions, and the (m) refer to the channels number in the image. The 

DeepCPC utilized RGB channel (m=3), and these input images will be fed to the selected networks: 

ResNet50, Xception, MobileNetV2, ResNet152V2, InceptionV3 and VGG19. 

3.4.3 Top Layers Configuration 

The top layers from each CNN are removed to overcome the limitation of input image size. 

Each layer produces K output feature maps (bottleneck features) fed into the average pooling layer, 

and then to the proposed top layer. The proposed top layer, as shown in Figure 3.4, consists of two 

new Dense layers: (Dense-512 and Dense-2), and one dropout layer between the two FC layers. The 

dropout disables the detector nodes that have week features during the training. The activation 

functions used after the (FC-512) is rectifier function f(x) = max (0, x), where x is the neuron input. 

The Dropout output will be the input for the next (FC-2). The softmax is being used as the output 

layer by the current top layer to predict a separate probability for each category: polyp or no-polyp.  
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Figure 3.4. Transfer learning applied on CNN architecture. 

3.4.4 Transfer learning and Fine Tuning 

Since the numbers of polyp lesions in most of the images used are limited, therefore, transfer 

learning will be applied. At this stage, each individual CNN will be initialized with its weights that 

already trained on ImageNet, which has learned features that could be valuable for the classification. 

Moreover, freeze technique being used to the lower-level portion convolutional layers of each 

individual CNN, due to their ability to holding more generic features of the polyp. The training will 

be applying for the proposed fully connected layers with initialized weights loaded from a saved 

corresponding layer and fine-tuning the proposed classification system with the available CVC-Clinic 

dataset. Each single CNN will be referred to as following; FT-Xception, FT-VGG19, FT-ResNet50, 

FT-MobileNetV2, FT-InceptionV3, FT-ResNet152V2, where (FT) refer to Fine-Tuning. 

3.5 Features Concatenation 

After applying the transfer learning technique on the mentioned convolutional neural networks 

and feeding with polyp images as the input, a model evaluation is being applied on image features 

extracted from each individual convolutional neural network. In addition, according to the 

classification accuracy results from each single network, features concatenation is being performed 

by utilize two CNNs achieved the highest performance. As a result, a single image descriptor is 

formulated and used to represent each colorectal polyps and non-polyp image. The following 

subsection, present the procedure of features extraction, selection, and concatenation. 
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3.5.1 Features Extraction and Selection 

Given two CNNs from the previous stage, and let the extracted features from the last 

convolutional layers in intermediate level denoted by the matrix (X ∈ R a × C) and (Y ∈ R a × D), where 

C and D represent the total number of feature maps that can differ according to the specific CNN 

architecture. The size of feature maps after the pooling layer is (a). For each matrix, the xi and yi is 

the ith column that corresponds to one feature map. The output features are extracted from the 

activation functions of the last convolutional layer in the specific CNN model is: 

𝑅 = (∑ 𝜔𝑥𝑖

𝑐

𝑖=1

+ β) ⊙ (∑ 𝜔𝑦𝑖

𝑑

𝑖=1

+ β) 

Where ⊙  is an element-wise product, 𝜔 are the weights for each feature map, and β represents 

the bias. The feature map (R) represents the bottleneck features.   

3.5.2 Feature Concatenation Procedure 

The feature maps, obtained from each CNN intermediate layers, are directly concatenated into 

one single vector that represents one image, as shown in Figure 3.5. 

 

Figure 3.5. The proposed procedure of features concatenation. 

 

 

 

(3.1) 

 

(3.1) 
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Given two CNN models: the first model (K1), and the second model (K2). The combined 

features will be: 

F = [K1, K2]       (3.2) 

Where K1∈ Rd×d×M1 refers to the bottleneck features map of model K1, (d × d) denotes the width 

and height, and M1 is the number of channels. K2∈ Rd×d×M2   is the bottleneck features map of model 

two. Then the combined features will be as: 

F ∈Rd×d×(M1+M2)                                                           (3.3) 

The concatenated features vector will be fed to the proposed fully connected layers, as 

discussed in section 3.4.3. Therefore, the complete model is fine-tuned on the polyps dataset via a 

number of end-to-end training epochs. Finally, a fully-trained deep model is obtained that will be 

used for polyps classification. 

3.6 Model Performance Evaluation 

This section, defines the evaluation metrics used to measure the performance DeepCPC model. 

True Positive (TP):  The number of positive samples that are identified correctly by the 

classifier means that sample falls in polyp class and classified as such. 

False Positive (FP): The number of negative sample that are wrongly identified in a positive 

category, means that sample falls in non-polyp class, but classified as polyp class. 

True Negative (TN): The number of negative sample that are identified correctly in its 

category. Samples are non-polyp class and classified as such. 

False Negative (FN): The number of positive samples that are wrongly identified in another 

category means that the sample falls in polyp class, but classified as non-polyp class. 

Confusion Matrix is a table utilized to describe the overall performance of the classification 

model on test data whose actual values are known. The relation between true positive, false positive, 

true negative and false negative are shown in Table 3.2. 
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Table 3.2. The calculation of TP, TN, FN, and FP. 

 

 

Recall (REC):  Calculates the proportion of all true positive samples from cases that are 

actually positive.  Also it referred to as sensitivity and true positive rate. 

 

                                        REC =     
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑢𝑡𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
       =    

𝑇𝑃

𝑇𝑃+𝐹𝑁
                (3.4) 

Precision (PREC): Calculates the proportion of all true positive samples from cases that are 

predicated as positive. 

                PREC =     
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
       =    

𝑇𝑃

𝑇𝑃+𝐹𝑃
        (3.5) 

Accuracy (ACC): Calculates the proportion of correctly classified samples. 

        ACC =     
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
       =    

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
       (3.6) 

F1 score (F1): Another accuracy measure, also referred F-measure, utilized to seek the 

relation between precision and recall by counting the weighted average. 

             F1 score =     2 ×
𝑃𝑅𝐸𝐶  ×𝑅𝐸𝐶
𝑃𝑅𝐸𝐶 + 𝑅𝐸𝐶 

       =    
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
        (3.7) 

ROC curve: The receiver operating characteristics is a two-dimensional graph in which created 

by plotting the false positive rate FPR on the x-axis against true positive rate TPR represents the y-

axis at various threshold settings. 

 

  Actual Class 

Polyp Non-polyp 

Predicated Class 
Polyp True positive  False positive  

Non-polyp False negative True negative 
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Specificity (SPEC): Calculates the proportion of all true negative samples from cases that are 

actually negative, also referred to false positive rate. 

                                    SPEC =     
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑡𝑢𝑎𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
       =    

𝑇𝑁

𝑇𝑁+𝐹𝑃
                        (3.8) 

3.7 Summary 

This chapter discussed the techniques used for the experiments and presented the DeepCPC 

architecture in details. It also presented the dataset in-depth utilized in the implementation. Then, it 

moved on to the CNN network employed in the DeepCPC including preprocessing, extracting 

features from CNN network, then showing the concatenation features technique applied on the best 

two CNN performance. Finally, it covered different performance matrices including confusion 

matrices, recall, precision, accuracy, F1-score, ROC-curve, and specificity. The next chapter will 

discuss the implementation details and experimental results.  

 

 

 

 

 

 

 

 

 

 

 

 

 



40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 

Implementation and Results 
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This chapter presents in-depth a discussion on the DeepCPC configurations, implementation, 

and experimental results for automatic polyp classification. Section 4.1 illustrates the environment 

configurations; Section 4.2 provides the software toolkits and hardware requirements; Section 4.3 

presents the preparation procedure of the CVC-clinic dataset including patch extraction and data 

splitting; Section 4.4 illustrates the experimental scheme conducted on a set of deep CNN 

architectures to initialize DeepCPC, which highlights specific hyper-parameters and their 

performance on the transfer learning efficiency; Section 4.5 presents a detailed implementation of 

the DeepCPC  including features extraction and formulation, and the results are discussed and 

evaluated using standard performance metrics with some comparisons; Section 4.6 summarizes 

this chapter. 

4.1 Experiments Configuration 

All the experiments were carried out on Co-laboratory model provided by Google. It is a 

cloud computing service that allows performing professional and advanced projects using Jupyter, 

which enables us to implement the entire project in Python. In addition to the provided virtual 

machine terminal, the hardware specifications allocated and used in this project are as follows: 

 GPU Tesla P100-PCIE-16GB. 

 4 Intel(R) Xeon(R) CPU @ 2.20GHz. 

 15GB RAM. 

4.2 Programming Language and Libraries 

There are several deep learning resources available to use for developers, which made the 

implementation components and procedures efficient. Several toolkits and libraries are used after 

careful consideration and based on the unique requirements and time limitations of this work. The 

following subsections will introduce them. 

4.2.1 Keras 

Is a Python-based open Source application programming interface that uses either Theano 

or Tensorflow as backend (Team, 2020). It was designed to allow rapid innovation, allowing 

complete solutions to be more easily created and readable with the biggest range of CNN model. 
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4.2.2 TensorFlow 

TensorFlow is a Python open source library created and released by Google (Tensorflow, 

2020), for rapid numerical computing under an open source license from Apache 2.0. It is a base 

library that is used to develop Deep Learning models or to facilitate the process built on 

TensorFlow using any other wrapper library, such as Keras. It can operate on single CPU systems, 

mobile systems, GPUs, and distributed large-scale systems on centuries of machines. 

4.2.3 Python for Data Science 

Python is a language of high-level programming that has excellent library and community 

capabilities for data science applications. The libraries utilized in this work as the following: 

 MatPlotLib: a popular multifunctional 2D and 3D plotting library. 

 NumPy: a fundamental package for computational computing, defining arrays, matrices, 

and operations on these, which is used in Python's core scientific computing packages. 

 SciPy: a domain toolboxes collection, and numerical algorithms. 

4.3 Input Data Preparation 

The classification performance of the DeepCPC model is influenced by the proper 

preparation of images dataset. CVC-Clinic DB dataset is used to evaluate DeepCPC, and the 

dataset includes images with sufficient diversity. Due to the limited amount and highly imbalanced 

types of images in CVC-Clinic dataset, a patch extraction and data augmentation are performed to 

provide more data samples utilized in the training phase. The next sub-sections introduce these 

processes thoroughly. 

4.1.1 Patch Extraction 

The CVC-Clinic dataset is imbalanced, means the dataset only represents one class of polyp 

image. As the DeepCPC requires binary classification (polyp, non-polyp), patch extraction has 

been utilized to create a balanced dataset from the original dataset.  The methodology for patch 

extraction as follows: 
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Polyp patches: This process extracts the patch covers the whole polyp from every frame by 

eliminating the black margin that appears in the ground truth, and it extracts the corresponding 

section image from the original images, i.e. the white area visible in the ground truth. 

Non-polyp patches: Extract the region that does not contain any part of the polyp from each 

frame by eliminating the white area in the ground Truth which corresponding with the original. 

Figure 4.1 illustrates the process of extracting polyp and non-polyp patches from CVC-Clinic DB. 

 

Figure 4.1. Illustrate patches extraction for Polyp and Non-Polyp. 

 

The data augmentation techniques are being utilized with random rotations, horizontal and 

vertical flip, zoom-in, and zoom-out, therefore, the number of positive and negative samples can 

be artificially increased, and finally generating new balanced dataset with total of 1222 samples. 

For polyp 611 samples and for non-polyp 611 samples. 

4.1.2 Dataset Split 

The dataset of 1222 images are split into 80/20 split ratio, i.e. 80% for training and 20% for 

testing. Then, the training images are also split into training and validation datasets using 80/20 

ratio, i.e. 80% for training and 20% for holdout validation.  

Two different main classes used as targets in the training and testing phases, and they 

organized into folders that contain two subfolders titled 0 and 1, where 0 represents a group of 

non-polyp images and 1 is responsible for representing lesions classified as a polyp. Table 4.1 

summarizes the splitting procedure of training, validation, and testing samples. 
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Table 4.1. Training-testing split details. 

Method Ratio (%) Training Validation Testing 

Split sample 80/20 781 196 245 

 

4.4 Experiments of Model Initialization 

As described in Section 3.4, the experiments conducting on a set of predefined CNN 

architecture to set up the first block of our architecture for polyps. The aim of experiments carried 

out here on each individual deep architecture is to figure out the best performing ones on the polyps 

dataset. Consequently, the performance of six distinct state-of-the-art CNNs are being examined 

under the same experimental configurations. These configurations are important to be carefully 

considered as they largely affect the overall accuracy of any trained model. The following 

subsection, presents the experimental setups made and used in each step. 

4.4.1 Hyper-parameters Optimization 

Each input image is resized to 150 × 150 × 3. All CNN networks are trained with an initial 

learning rate () 0.00001 using Adam optimizer (Opt). A batch size (Bs) of 64 is adopted in all the 

experiments of model initialization and transfer learning. Each individual network is trained for 

100 epochs (Te). Table 4.2 summarizes these initialized hyperparameters. 

Table 4.2.Hyper parameters used in model initialization. 

Training parameter Value 

T e 100 

Bs 64 

Is 150 × 150 × 3 

 0.00001 

Opt Adam:  =0.001 

4.4.2 Transfer Learning 

Firstly, a new top layer is implemented to replace the existing fully connected layers in order 

to fine-tune them on the new domain, i.e. polyp medical images. Each individual pre-trained 

network is used as feature extractor and only the new top layers are trained again on CVC-Clinic 



45 

 

dataset. Furthermore, transfer the learned ImageNet weights as initial weights, and fine-tune the 

customized model with the new top layer through a complete end-to-end training, i.e. forward and 

back-propagation procedures. The classification performance of all individual optimized CNN 

models is evaluated using 245 testing images (20% of dataset). 

4.4.3 Experimental Results of Model Initialization 

Table 4.3 shows the detailed results for each pre-trained CNN performance that has been 

modified and trained on the CVC-Clinic dataset. Figure 4.3 shows the Precision-Recall curve for 

each model. As shown, the highest overall accuracy in the training and validation phases is 

achieved by the FT-Xception model with accuracy of (97.5%) followed by the FT-MobileNetV2 

with accuracy of (97.1%). The rest of the networks are still performing well but less than FT-

Xception and FT-MobileNetV2.  

Moreover, the modified FT-Xception and FT-MobileNetv2 are also performing efficiently 

in terms of F1 score measures by reporting (97%) followed by FT-InceptionV3 that achieved 

(96%). The FT-ResNet50 and FT-ResNet152V2 achieved the lowest F1 scores compared to other 

architectures with results (92%) and (70%), respectively. It is worth to mention that FT-VGG-19 

shows the lowest accuracy results less than (21%), but it gains a recall of 45.0% due to the fact 

this network predicted one class only. 

Table 4.3. Evaluation of CNN’s models using CVC-clinic DB images as input. 

Methods FT-

Xception 

FT-

MobileNetV

2 

FT-

InceptionV3 

FT-

ResNet50 

FT-

ResNet152V2 

FT-     

VGG-19 

Precision  0.97 0.97 0.96 0.92 0.81 0.21 

Recall 0.97 0.97 0.96 0.90 0.73 0.45 

F1-Score 0.97 0.97 0.96 0.92 0.70 0.28 

Accuracy 0.976 0.971 0.956 0.927 0.727 0.453 

Test Results 

TP 105 109 106 103 45 111 

TN 134 129 133 124 133 0 

FP 6 2 5 8 66 0 

FN 0 5 1 10 1 134 
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Figure 4.2.ROC Curves for Polyp Classification. 

Obviously, the transfer learning scheme provided by the proposed architecture shows a 

noticeable impact on the accuracy results of the pre-trained CNN models. This initial finding is 

important to highlight how different convolutional features of polyps images do act and perform 

on this dataset when the transfer the learning is performed from general purpose domain, i.e. 

ImageNet, to a new different domain, i.e. medical images.  

Moreover, the size of extracted features in each CNN model is reduced to 512-dimension 

vector that represents a generic image descriptor, which is a compact size compared to the original 

one. The full-size features are projected into a low-dimensional data space using the dense layer 

added to the top fully connected layers of the modified architecture. This reduction procedure 

confirms that the modified CNN architecture is able to achieve high accuracy even with compact 

image descriptors. Additionally, this will reduce the number of parameters to be learned, the 

training time, and the required memory to store the model and its parameters into the actual disk. 

 

    FT-InceptionV3              FT-MobileNetV2                                         FT -Xception  

 

              FT-ResNet152V2                                           FT-ResNet50             FT-VGG-19 
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The performance impact of such architecture is beneficial in real-time applications and large-scale 

image repositories.   

The next optimization approach in this thesis is enhancing the classification accuracy further 

using the concatenation procedure, which relies on utilizing the highest performance from two 

CNN architectures: (FT-Xcption and FT-MobileNetV2). 

4.5 Features Concatenation Experiments 

This section, presents in details the stage three of DeepCPC model, as discussed earlier in 

Section 3.5. concatenating approach is utilized for the convolutional features extracted from the 

fine-tuned deep CNNs that achieved the highest performance results, which in turn provides a new 

single model that generates one fused image descriptor for any given polyps image. The following 

subsections introduce and discuss the configurations set for the input architectures (FT-Xception 

and FT-MobileNetV2), hyperparameters initialization, and experimental results of the optimized 

deep model. 

4.5.1 FT-Xception Setups 

The FT-Xception architecture, as mentioned in Section3.4.1, consists of 36 convolutional 

layers that are structured in three flows. The exit flow consists of 4 separable conventional layers 

with kernel size 3x3, and one conventional layer with kernel size 1x1 and stride 2x2, and followed 

by an average pooling layer, Figure A.6, Appendix A. From the last convolutional layer of the FT-

Xception the features are being extracted, and a 2048-dimensional features vector is used in feature 

concatenation without considering the fully connected layer (bottleneck features). 

4.5.2 FT-MobileNetV2 Setups 

The FT-MobileNetV2 architecture achieved the second higher performance in the 

comparison stage and was selected for performing features concatenation with the FT-Xception 

network. MobileNetV2 consists of sixteen blocks. The Final flow structured with a conventional 

layer, batch normalizes and ReLU Activation that repeated three times followed by a conventional 

layer 1 x 1. The features from the last convolutional layer of the FT-MobileNetV2 are being 

extracted, and a 1280-dimensional features vector is used in feature concatenation without 

considering the fully connected layer (bottleneck features). 
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4.5.3 Hyper-parameter Initialization 

This model was trained end-to-end for 100 epochs using a learning rate of 0.00001; a batch 

size of 64, an image size is of 150×150×3, and Adam optimizer with learning rate 0.001. 

4.5.4 Final Model Fine-tuning 

The features extracted by the two pre-trained CNN models are utilized, i.e. 2048-features 

vector from FT-Xception and 1280-features vector from FT-MobileNetV2. Concatenation 

technique is performed to the extracted features to form a 3328-dimensional features vector. The 

resulting vector’s size is undesirable especially in online training systems and large-scale 

repositories; therefore, this vector is fed into a dense layer to reduce the size into only 512-features 

vector.  

Since the concatenated convolutional features represent various details and characteristics 

of polyp images, this process helps in exploring the underlying image details and producing more 

inclusive depiction of discriminative features compared to the descriptions provided by any 

individual CNN model. 

Finally, the customized fully-connected layers is being added, including the softmax layer 

classification, so the final image descriptor will be fed to this top part of DeepCPC and the 

performance will be reported and evaluated using a set of standard metrics.  

4.5.5 Results and Discussion 

All experiments are conducted under the same defined setups on polyp vs non-polyp training 

images using the final model and its concatenated generic descriptor. The model performance is 

evaluated in terms of precision, recall, F1-score, accuracy, confusion matrix, training speed, and 

memory size. The performance results are shown in Figure 4.3. The results confirm the high 

capability of the DeepCPC in predicting non-polyp images, which reports 0.97, 1.00, and 0.99 

scores of precision, recall, and F1-score, respectively. Similarly, achieves high accuracy in 

predicting polyp images by reporting scores of 1.00, 0.96, and 0.98 precision, recall, and F1-score, 

respectively. 
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Figure 4.3. The performance results using concatenation features. 

Figure 4.4(a) compares the learning curve of the DeepCPC using two concatenated networks. 

It can be easily observed that the loss rate of the DeepCPC is smoothly reduced to a lower value 

after epoch 5 while the accuracy increases smoothly after epoch 30. For FT-Xceptionin Figure 

4.4(b), and FT-MobileNetV2 in Figure 4.4(c), there is a fluctuation in the training loss and 

accuracy throughout the training and validation procedures. This also confirms that the DeepCPC 

overcomes any possible overfitting or underfitting issues. 
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(a) Accuracy of network based on concatenated features. 
 

 

(a) Accuracy of FT-Xception. 

 

(c) Accuracy of FT-MobileNetV2. 

Figure 4.4. Training and validation accuracy results. 

 

 



51 

 

Furthermore, the confusion matrix showed in Figure 4.5illustrates the number of 

misclassified images per classes. It can be observed that the DeepCPC classifies both types of 

images correctly. On one hand, the DeepCPC model makes a few misclassifications between polyp 

and non-polyp classes, i.e. only 2 misclassified images out of 111 for polyp class and 2 

misclassified images out of 134 for non-polyp class. On the other hand, the confusion matrix of 

FT-Xception in Figure 4.6(a) shows 6 misclassified images out of 111 of polyp class but it is 

performing very well in predicting the non-polyp class. Also, the confusion matrix of FT-

MobileNetV2 in Figure 4.6(b) shows that it performs similarly as the DeepCPC for polyp class 

with 2 misclassified images out of 111 but with 5 misclassified images out of 134 for non-polyp 

class. 

 

Figure 4.5.Confusion matrix of DeepCPC. 

 
                                               (a) FT-Xception                                                   (b) FT-MobileNetV2 

Figure 4.6. Confusion matrix of FT-Xceptionm and FT-Mobile NetV2. 
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Finally, Table 4.4 summarizes and compares the performance of the classification results of 

single fine-tuned CNN models with DeepCPC. It shows the obtained average accuracy, precision, 

recall, and f1-score of the classifications. It is noted that the DeepCPC model performs better than 

single fine-tuned CNN by which the accuracy improved to 98.4% over the FT-Xception of 97.6% 

and FT-MobileNetV2 of 97.1%. 

Table 4.4. Performance comparisons of the DeepCPC. 

Methods FT-Xception FT-MobileNetV2 FT-Concatenated  

Precision 0.97 0.97 0.98 

Recall 0.97 0.97 0.98 

F1-Score 0.97 0.97 0.98 

Accuracy 0.976 0.971 0.984 

 

4.6 Summary 

 This chapter, various experiments has been conducting with a thorough analysis of results, 

described the environment and libraries used for the experiments and the evaluation metrics 

to measure our model performance. The model initialized with six pre-trained CNN, their 

performance is examined, and how transfer learning with fine-tuning affected the 

classification rates is discussed. The result in the implementation shows that FT-Xception 

and FT-MobileNetV2 outperform the other CNN. Finally, provide a features concatenation 

scheme based on the extracted bottleneck features from FT-Xception and FT-MobileNetV2 

to enhance the model performance. The DeepCPC showed improvements in the overall 

performance, and it was able to improve the sensitivity from 97% to above 98%. The next 

chapter will present the research conclusion and future work.  
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Chapter 5 

Conclusion and Future Work 
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5.1 Conclusions 

In this thesis, various techniques and solutions has been investigated for the automatic 

classification of polyps in colonoscopy images. The aim of this thesis is to develop a deep learning 

model for classifying colorectal polyps based on discriminative features extracted from deep 

convolutional neural networks in order to achieve automated disease diagnosis. Firstly, a background 

of the colorectal polyp and its surveillance tests has been studied, in additions, discussed work on 

topics related to automatic polyp classification in colon images. For machine learning, an overview 

of different learning classes is introduced such as supervised, unsupervised, and reinforcement 

learning, then a discussion of convolutional neural network architecture and its parameters are 

illustrated. As for benchmark CNN architectures, the most popular CNN networks for image 

classification tasks are studied, such as VGGNet, GoogleNet, ResNet, MobileNet, and Xception, 

which can be utilized in the processing pipelines of health care fields. 

Most importantly, a deep learning model is proposed (DeepCPC), which consists of three 

stages. The first stages present the image preprocessing including techniques used such as patch 

extraction and data augmentation to classify the original dataset into two types, i.e. polyp and non-

polyp, because the original CVC-Clinic dataset contains polyp image only. The second stage presents 

the model initialization by modifying and comparing the pre-trained CNN networks, adapting transfer 

learning scheme, and fine tuning the models with the proposed fully connected layer. The final stage 

presents the core design of DeepCPC by adapting features concatenation from the two pre-trained 

networks modified that achieved the highest performance in the previous stage. According to the 

comparisons results of six CNN models, the FT-Xception and FT-MobileNetV2 have shown highest 

performance with average accuracy of 97.5% and 97.1%, respectively. 

Finally, an overall 98.4% classification accuracy, 98% of precision, 98% of sensitivity, and 

98% of f1-score are achieved by using features concatenation technique with the proposed fully 

connected layer and optimized hyper-parameters, then fine-tuning DeepCPC on polyps images 

through a complete end-to-end training procedure, which outperformed the single transfer learning 

classification methods in each defined performance metric. The DeepCPC structure is also flexible 

and dynamic, such that it can be effectively expanded in the future to incorporate the classification 

in other forms of diseases. 
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5.2 Future Work 

A number of improvements could be applied while implementing a deep learning-based 

solution of this kind in the health care sector. The presented results are promising but several 

improvements could be considered in the future as follows: 

- Increasing the data set could yield better performance for classifying colorectal polyp. A 

larger data set also introduces the possibility of including more classes, enabling the 

classification of other polyp types as well. Including serrated sessile, pedunculated, and 

tubular, etc. would thereby widen the area of use. Therefore, it is a necessity to further collect 

a greater number of colonoscopy images in order to re-evaluate, qualify and respectively 

confirm the results of this work, further performing the optimization of the DeepCPC model 

to be able to classify all different polyp types in future. 

- Investigate the influence of different approaches for features dimensionality reduction such 

as principal component analysis (Pearson, 1901), or random projection  

(Johnson & Lindenstrauss, 1984). 

- Other types of local features can be utilized with convolutional features including fisher 

vectors (Jaakkola & Haussler, 1998) and scale invariant feature transform (Lowe, 2004). 
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Appendix A: Specifications of Pretrained CNNs Architectures 

 

 

Figure A.1.VGG-16 and VGG-19 Architecture10. 

 

 

 

 

                                                
10Image fromdatahacher website available at: http://datahacker.rs/deep-learning-vgg-16-vs-vgg-19/ 

http://datahacker.rs/deep-learning-vgg-16-vs-vgg-19/
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Figure A.2.Inception-V1 Architecture. 
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Figure A.3. Inception-v3 architecture11. 

 

 

 

                                                

11Szegedy, Christian, et al. “Rethinking the Inception Architecture for Computer Vision.” 2016 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), 2016, doi:10.1109/cvpr.2016.308. 
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 Figure A.4.ResNet Architecture. 
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Figure A.5. Xception Architecture12. 

 

 

 

 

 

 

 

 

                                                
12Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR). 
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Figure A.6.MobileNetV2 blocks Architecture. 

 Each line shows a sequence (blocks) of 1 or more identical layers that repeated (n) times, all spatial convolutions use 3 

× 3 kernels, the stride (s) vary in each sequence use a 1 or 2. All layers in each sequence have the same number of 

output channel (c). 

 


