b .ugill gy llA e gl o
MIDDLE EAST UNIVERSITY

Amman - Jordan

Homomorphic Encryption of Text Documents
Luaill cfafiall Jilaial) il

Prepared By

Omar Hanash

Supervisor
Dr. Mudhafar Al-Jarrah

Thesis Submitted in Partial Fullfillment of the Requirements

for the Degree of Master in Cloud Computing

Department of Computer Science
Faculty of Information Technology
Middle East University
June, 2020

Authorization

I, Omar Hanash authorize Middle East University to provide an electronic copy of my
thesis to the libraries, organizations, or bodies and institutions concerned in research and

scientific studies upon request.

Name: Omar Hanash.
Date: 08 / 07 / 2020.

Signature:

Examination Committee Decision

This is to certify that the thesis entitled “Homomorphic Encryption of Cloud-Based Text Document” was
successfully defended and approved on 17-06-2020

Examination Committee Members Signature
(Supervisor) _ ,

Dr. Mudafar Al Jarrah K{V, :
Associate Professor, Department of Computer Science Y "’ =5
Middle East University Sy

(Chairman of Examination and Committee Member)
Dr. Hesham Abu Sa}meh

Associate Professor, Department of Computer Science
Middle East University

Prof. Mohammad Ahmad Alia
Professor, Department of Computer Science S
Al Zaytoona University NG

(External Committee Member) " ' >

Acknowledgment

First, I give thanks, and praise to Allah for his mercy, and reconcile and for granting me
knowledge, confidence, patience to pass this Master thesis successfully.

Also, I would like to express my gratitude to my thesis advisor. Dr. Mudafar Al-Jarah
for the complete guidance throughout the thesis stages, and for the critical assistance in
designing and preceding the methodology of my research.

Finally, I thank all those, who have helped me directly or indirectly in the successful
completion of my research work.

Omar Hanash

The Researcher

Dedication

To the one who always kept me in her prayers, and did not save any effort to assist me
throughout my life, my Beloved Mother.

To My Father, who has been always struggling to assure us a decent life, who raised
me on the acts of mannerism, who kept admonishing me by the trust and honesty.

To my gorgeous Brothers who kept pushing me off the boundaries and assisted me in
all the possible means.

To the woman who struggled with me through this journey and never stopped
supporting and dedicating every possible means to support me through this journey, My
Wife

To the light of my eyes, to my heart, My Daughter.

I dedicate my effort

Omar Hanash

\

Table of Content

I bbbttt |
AULNOTIZALION ..ttt Il
ACKNOWIEAGMENL ...ttt ettt e et e e e sseeaeesaesseenaeas \Y,
DEUICALION ...ttt ettt bttt ettt b e \%
Table OF CONENT ..ot VI
LISE OF TADIES .. VI
LISt OF FIQUIES ...ttt ettt e e esra e e eaaesaeensesseesanensens IX
LiSt OF ADDIEVIALIONSviieieiieteiee et X
AADSTIACT ...ttt ne e X
Chapter ONne: INTrOAUCTIONoiiiiiiiiiieee e 1
1.1 RESEAICH TOPIC: ...ueeitieieitieitieieeteesteete st este et este e te s e e s e eteesaesteeteesaesseesseesaesreeaseeneans 2
1.2 ProbIem SEatEMENT........coiiieeeiee s 2
1.3 GOalS aNd ODJECLIVEScveeveeieciieeee et aeeaeens 4
1.4 RESEAICN QUESTIONS:vivieiieieeteete ettt ettt e esaeeaeesaesreeneeneens 4
1.5 DElIMITALIONS ...ttt 5
Chapter Two: Background and Related WOrKeeeeeeeieiccccinvnneeeeeenescccsssnneeeeeennns 6
2.1 CloUd COMPULING ...covieiieiieie ettt ettt et s e r e e e st esteeaesreereennas 7
2.2 Cloud COMPULING SEIVICES: ...veveieiieieeeierieeeesee st eteseeseeeaeseesseeaesreensessesseenseenees 7
2.3 HOMOMOIPhIC ENCIYPLION.....cceevieiieieeiecieee et 8
2.3.1 History of HOmomorphic ENCryption........cccevveveeiieeiereee e 9

2.4 Categories of HOmomorphic ENCryptionccooveveeienieneeie e 10
2.4.1 Partially Homomorphic ENCryption..........cccceeevveenieciesieseee e 11
2.4.2 Fully HOmomorphiC ENCrYPLioN.........ccceveeveeiieniesieeieeeeseee e 11

2.5 Homomorphic Encryption Schemes in cloud storage challenges.............ccc....... 13
2.6 FUII-EEXE SBAICN ... 14
2.7 SUDBSLITULION CIPNET ...ttt esteennesneens 15
2.8 Scrambling Text with Codes and CIphers........cccccevveeereereecie e 16
Chapter Three Methodology and Proposed WOrkccccocvvviieiiiiiiciin e, 18

B L OVEIVIEW ..o e e e e e e et e e e e e ee e e s eeeeeeeeseaaeaneeereeeeeeeaaanneneens 19

VI

K 2072 L0110 To [0 od o] o ISR 19
3.3 Objectives of the Proposed Model ..o 20
3.4 Description of the Encryption Model...........cocooeriiiiiiiinininneecceee 20
3.5 The Encryption / Decryption AlgOrithmscccevieiiieiieeiiccie e 21
3.5.1 The LHB/UHB Swap Encryption Algorithmc.ccccoeevininininiececee, 21
3.5.2 The LHB/UHB Swap Encryption AIgorithmc.cccoeevinininieecceee, 22
3.5.3 The LHB/UHB Swap Decryption Algorithmcccccevevenenieieienenenene. 23
3.5.4 Indexing the CIPRErteXt WOIASccccoeeeririeieiciereereeeeeee e 25
3.5.5 Creating @ KBYoc.eiieieieeeeeeeee st 25
3.6 Searching the Ciphertext DOCUMENTS........cccvireririeieieieseseseeie e 25
3.7 SUMIMAIY .ttt ettt ettt sttt ettt b et sae e sb et eaeesb e et e satenbe e s e eanesbeennesnnens 26
Chapter Four:_Implementation and Experimental Results..............cccccccoeveveiiennnn, 27
4.1 OVEIVIBW ..ttt ettt e st e steeeesaeesteesaesseetessaesseensesssesseensesssesseensesnsesseensesneens 28
o 111 oo 0 od o] o USRS 28
4.3 DALASELScoeeeeite ettt ettt ettt ettt sb e e st e e bt e e be e satesreenaeeeas 28
4.4 IMPIEMENTALION ...eveiiiiiitereeete ettt 29
4.4.1 Application MOAUIEScc.ovuieieieieeeeee e e 29
4.5 EXPErIMENTAL FESUILS......eeiieieeeiesie ettt 31
4.5.1 Evaluation of the Encryption fUNCLIONcccoecvevieiiieeriee e 34
4.6 SEAICH FESUILS ...ttt 35
AT SUMIMAIY ..eveeiiireeesiieeesiteeessteeessteeesseeesssaeesssseessssessssaeessseesssseessssessssessssseesssseesssseesnns 37
Chapter Five: Conclusion and FUture WOork ... 39
T8 A @0 [0 [1E5] o o O ORSRRSTR P 40
5.2 FULUIE WOTK ...ttt 40

RETEIEINCES & ..ottt ettt ettt ettt et ee e e eeeeeeeeeeneeeeennennennnnnene 42

List of Tables

Chapter Number.

Table Number Contents Page
Table 4.1 Experimental Result 24
Table 4.2 Evaluation Of Encryption Function 27

28

Table 4.3

Time per KB

Vil

List of Figures

Chapter
Number. Figure Contents Page
Number
Figure 4.1 CloudCrypto System Diagram 22
Figure 4.2 Plaintext 25
Figure 4.3 Ciphertext 26
Figure 4.4 Search Result 29

List of Abbreviations

Abbreviations

Meaning

HE

Homomorphic Encryption

PHE Partial Homomaorphic Encryption

FHE Fully Homomorphic Encryption

RSA Rivest-Shamir-Adleman

Enc Encryption

DataSet 1 Pride and Prejudice

DataSet 2 The Works of Edgar Allan Poe

DataSet 3 Alice's Adventures in Wonderland

DataSet 4 ION

DataSet 5 A Journal of the Plague Year

DataSet 6 The Adventures of Sherlock Holmes
DataSet 7 The Moby Dick; Or, The Whale

DataSet 8 The Yellow Wallpaper

DataSet 9 Frankenstein; Or, The Modern Prometheus
DataSet10 Importance of Being Earnest: A Trivial Comedy

VC++

Visual C++

Xl

Homomorphic Encryption of Text Documents
Prepared by:
Omar Hanash
Supervised by:
Dr. Mudhafar Al-Jarrah
Abstract

The big expansion of sensitive data stored on cloud computing platforms has
focused the attention on the need for more secure data protection technologies.
Homomorphic encryption has emerged as an important approach to protect cloud-based
data by allowing operations on the encrypted data to be carried out without the need for
decrypting the data while it is on the cloud. The work in this thesis extends the
homomaorphic encryption approach to deal with securing text documents that are stored
on the cloud, by allowing the encrypted text documents to be searched using encrypted
queries, thereby to make the query and its results ambiguous to a potential intruder. A
homomorphic text encryption model is presented which provides text document
encryption, query encryption, and ciphertext documents search using ciphertext queries
based on ciphertext word index. The developed encryption algorithm performs half-byte
swapping of character pairs directed by random numbers generated using a 16-decimal
digit secret key that is used in the encryption and decryption processes. The proposed
model has been implemented as a working encryption system using the C++
programming language. Experimental work was carried out using a corpora of 10 public
text documents in the English language ranging in size from 26 KB to 1.2 MB.
Performance analysis was carried out, the results showed that the average encryption
time per KB was 288 milliseconds, while the average decryption time per KB was 160
milliseconds. Accuracy of the encryption system was evaluated by comparing the
decrypted documents with the original plaintext documents, which yielded complete
equivalence between every pair of documents. The thesis ends with conclusions and

suggestions for future work.

Keywords: homomorphic, encryption, decryption, text document, ciphertext,

plaintext, cloud computing

Xl

il e aiiall Jilaiall dda
Chial) es rala)
zhall Jilia .3 Gl
ol

Sle olay) Aplaid) L eal) cliaie e dulual) Ul 585 4 sl awgll X,
Alaal dege Al Fladl jeal gy JGW sV cbld)l Gla clis) dall)
dalall 550 sl clily) e clleal) ity #lead) DA (e onadl & A5 iyl
e by Al 38 8 Jaadl o Jggulall cndl o laagay oW bl jeis ol
Candl e A5l Ll il Gl pe delaill il el aws e
Gl alatiuly skl duall Gliied) 4 Gall Zlad) DA e dygulal)
Tl ad oy L Jdine Jluiie () Al Lmale aniliy 2Slain) Jas Sl ¢ 35850
Clatise & Ginlly D) iy aall dall a5 e @M Bladl (aill e
Qalsn asfi L Akl Gaill uyed o el Hida) pail)l Cladlatiul aladiuly jida) Gaill
& Aflglie) Aauls deasdl CaY) £)Y b Caai b elal 3yshall sl
iy il Gllee b adaiin) 2y Gudie W 16 e e pals ke alasiuly bl
Mt 5y C b, Aaapl) Al Aoty Jasy i AUa # el 2 dgalll A 5 .yl
& zsbE Andaty) Al dde dpal Glatiee 10 e Ao sens alidiuly owpadl) Jaall
IO sl iy daugie o) @bl ekl Lcublase 1.2 Y CulilS 26 e aaall
oo 160 culigds IS jaiall ol by Jasgie OIS Ly ¢ 40l e 288 (I8 culislsS
Clatise pe lpadi olh 5) Clatied) Aijlie A e padnl) Ui 482 4 5 L4006
dag by il (e zs) IS o ALIS Al e gl il ¢ LAY galal) Sl
cainall b Jaall &)l o iy g0

z\.yajﬂ‘ céébuﬁcwwcg@ﬁwcw\rﬂécw\ Z\.Plﬁd\awsl\
AL i) dlacd)

Chapter One
Introduction

1.1 Research Topic:

This thesis investigates Homomorphic Encryption of text documents to develop a

secure text-based search over the cloud.

Cloud computing is delivering the traditional computing services that can be found
at any premises that include services like servers, storage, databases, networking,
software, and in recent days Al over the Internet, on remote data centers. Individuals
and companies whether they are large or small can benefit from the cloud services and
they only pay for the cloud services they use only, which makes the clouds sometimes a

cheaper solution.

Homomorphic encryption is a ciphering method that allows any data to remains
encrypted while it is being processed and manipulated. Homomorphic Encryption
allows data owners from individuals or company owners or sometimes the authorized
third parties (such as cloud providers) to apply the functionality to encrypted data
directly without the need to disclose data. The Homomorphic encryption system is
similar to other forms of public encryption as it uses a public key for data encryption
and only allows the individuals with the corresponding private key to access the
unencrypted data. However, what distinguishes it from other forms of encryption is that
it allows algebraic operations and allows users to perform a variety of mathematical

operations on the encrypted data.

1.2 Problem statement
Cloud storage has the advantages of offering low-cost services for the cloud user,
with high scalability options, and easy to manage platforms. Having premises or

individuals confidential and sensitive data is saved to third parties cloud providers

especially cheap ones, that we can say that it has changed how the individuals and
premises save their data has raised some questions to some of the cloud users, which
made some of the corporates have private clouds computing, but that also never solves
the issue of the data security. Many companies have to stick with old fashioned and
known storage model to overcome their concerns. One of these concerns was accessing

the data by unauthorized personnel or data theft, so encrypted storage was adopted.

With the arrival of the cloud computing paradigm and the proliferation of online
services, the Internet stores not only information for sharing, but also a large amount of
personal data demanding restricted access and privacy protection. Secure management
of personal data stored online is an increasingly important issue, which demands a
balance between data confidentiality and availability. Technologies that can enable
secure online data management are going to be critically important for cloud computing

to reach its full potential.

Traditional privacy protection for online personal data focuses on access control
and secure data transmission to ensure that the data can be securely transmitted to the
server and unauthorized people cannot access the data. Once the data arrives at the
server, the server decrypts the data and operates on plaintext in order to provide services
to users, such as search and data summarization. This makes the user’s private
information vulnerable to untrustworthy service providers and malicious intruders. For
example, personal photo aloums can potentially be viewed by a system administrator if
stored online in plaintext. Encryption of the data stored on the server using traditional
cryptographic ciphers directly makes it difficult for the server to process the data, and
for the user to retrieve information from the encrypted database. Therefore, it is both

desirable and necessary to develop technologies for information retrieval over encrypted

databases that can protect users’ privacy without sacrificing the usability and

accessibility of the information.

1.3 Goals and objectives

Implementing a new method to encrypt sensitive and confidential text documents
before uploading them to the cloud where they are being stored, so when using this
approach, the cloud server employees and anyone in the middle such as hackers or
unauthorized personnel will not be getting any useful information about the files, as
the server will be hosting only the ciphertext, encrypted index, and the encrypted
query. Therefore, using this approach will guarantee the confidentiality not only of the

stored documents but also of the query and its results.

The following objectives are sought to be realized:

1. The design of a new algorithm that will achieve the homomorphic encryption of
text documents, based on half-byte swapping guided by random numbers that

are generated from a secret key.

2. Implementation of the designed algorithm.

Dataset selection for the evaluation phase.

4. Performance analysis of the implemented system using the selected dataset.

1.4 Research questions:

1. How will the cloud-based text documents be encrypted homomorphically and
how will the exncrypted documents be searched without decrypting the
documents or the query anywhere outside the local computer?

2. What will be the encryption key, what is its data type?

3. What will be the algorithm steps that will achieve homomorphic encryption and
search on text document word

4. What are the content and structure of the word index and will it be stored in

plaintext or ciphertext ?

5. Where will the encryption and decryption of the text documents be performed ?

1.5 Delimitations

The work will not involve numeric manipulation or algebraic processing on
numeric data. Also, the text search will be based on single-word terms, which can be

extended later on to phrases and multi-word terms.

Chapter Two

Background and
Related Work

2.1 Cloud computing

Cloud computing's biggest advantages are that the cloud is available at any time the
user wants to access it, network access, resource pooling, elasticity, and measured
service. Availability means that cloud users can access and they can manage their
computing resources at any time and from anywhere, as long as the clouds are
connected to the internet and up. Pooled resources mean that cloud users can use from a
pool of computing resources if they need more resources to be added to their current
cloud if the current setup they have is not enough. Elasticity means that services can be
scaled larger or smaller, depending on the cloud user requirements. Moreover, the cloud
user will pay only for what is being used from the resources of the cloud. (Tharam

Dillon et al. 2010)

2.2 Cloud Computing Services:

There are mainly three services that the cloud provides provide for their customers, the

most popular services are (Junjie Peng et al. 2009)

Platform as a Service (PaaS): The cloud provider provides a platform for the
creation of software that is delivered to customers over the web. Paa$ allows users to
create applications easily without the hassle of buying and maintaining the software or

infrastructure.

Software as a Service (SaaS): The cloud provider provides the applications that are
needed by the cloud users as a service. Applications are connected to customers' cloud
via the Internet and applications are owned and operated by customers. Ex: Google

Apps, Zoho, Kayako...etc

Infrastructure as a Service (laaS): The cloud provider delivers the computing
infrastructure such as storage or server space, servers, and network infrastructure as
on-demand service. Instead of purchasing the computer hardware from vendors, cloud

users can order laaS based cloud and they pay per what they use.

Many large companies like Google, Amazon, Microsoft, IBM, Alibaba, and many
more are developing cloud infrastructure to providing services to those who wish to
host their work or rent a cloud server through the internet. Cloud computing has
offered a new mean of utilization the computing resources by sharing the resources
with several users, and each user can just pay for what is being used from resources
without and data can be accessed at any time and anywhere as long there is an

internet connection between the cloud users and the cloud providers.

2.3 Homomorphic Encryption

Homomorphic Encryption is considered different from the traditional and known
encryption methods by permitting computations to be done to the ciphered data
(encrypted data) directly without the need of decrypting the data or any access to the
secret key used to encrypt the original data. The result of the computation is still in an
encryption form after all the needed computation is done on the encrypted data the
result is still encrypted until the user decrypts the data again to see the results. The
outcome of the computation data that happens on the Encrypted data is the same result

of the computation done on the plain data itself. (Amit Joshi et al. 2019)

2.3.1 History of Homomorphic Encryption

Ronald Rivest and Leonard Adleman suggested the concept of homomorphic
encryption in 1978. However, for 30 years the progress is very slow. In 1982, Shafi
Goldwasser and Silvio Micali proposed their encryption system that able to encrypt one
bit in additive homomaorphic encryption. Pascal Paillier 1999 suggested another additive
homomorphic encryption. In 2005, Dan Boneh, Eu-Jin Goh, and Kobi invented a
security system of encryption, which conducts only single multiplication but a large
number of additions. In 2009, Craig Gentry constructs a fully homomorphic encryption-
based system that able to conduct both addition and multiplication at the same time.

(Jabbar 2009)

The data stored in the cloud will not be in an encrypted format. If it is stored in an
encrypted way that can solve issues like Availability, Data security, and Third-party
control. But the problem is the user will not be able to depend on the cloud service
provider to carry out the computation of data. For this the data will be decrypted first
then will be shipped to the user for computation. So the cloud provider has to decrypt
the data first thus nullifying the issues of privacy and confidentiality, perform the
computation, and then send the result to the user (Kanagavalli 2014). Suppose if the
user could carry out any arbitrary computation on the hosted data, then without the
cloud provider learning about the users’ data, computation is done on the encrypted data
without prior decryption. In this scenario, the promise of homomorphic encryption takes

a call (Payal 2014).

Homomorphic encryption schemes are methods that allow the transformation of

ciphertexts C(M) of message M , to ciphertexts C(f(M)) of a computation/function of

10

message M, without disclosing the message. Generally, an encryption scheme contains

three-step algorithms. They are

1. Key Generation - creates two keys i.e. the secret key sk
2. Encryption - encrypts the plaintext m with the secret key sk to yield ciphertext c.

3. Decryption - decrypts the ciphertext ¢ with the secret key sk to retrieve the

plaintextm.

In addition to the above stated three steps, homomorphic encryption schemes

involve another 4 steps namely Storage, Request, Evaluation, and Response.

In the cloud-based environment, the key generation takes place at the client-side
and encrypts the data with the encryption key and sends the data to the cloud server
along with sk . The encrypted data is stored in the database along with the key.
Whenever the client wants to operate it sends the request to the service provider. The
service provider forwards the request to the processing server .the processing server
operates as per request. The service provider then returns the processed result to the
client in the response phase. The client finally decrypts the result returned by the service
provider with the secret key sk. Among the homomorphic encryption schemes available
depending on the operations performed on data, can be classified into three main
categories namely: Partially Homorphic Encryption(PHE), Some What Homomorphic

Encryption (SWHE) and Fully Homomorphic Encryption(FHE) .

2.4 Categories of Homomorphic Encryption

Homomorphic encryption can be classified into 2 main parts: Partially
Homomorphic Encryption (PHE) and Fully Homomorphic Encryption (FHE). (Gentry

2009)

11

Homomorphic Encryption (PHE), such as the traditional and knows RSA, ElGamal,
Paillier, and other known encryption methods enables executing algebraic operations to

the ciphertext (Encrypted data) that can be either multiplication or addition operation.

Constructing a Partially Homomorphic Encryption that can brace both algebraic
operations simultaneously was very hard, even though Boneh et al. came near. Gentry

in the year 2009 had managed to make the two arithmetic operations with one another.

2.4.1 Partially Homomorphic Encryption

Partially Homomaorphic Encryption PHE is an old and known method for years, as it
enables us to operate on the ciphered data ((Encrypted data)) without the need to
Encrypt it first, these operations are algebraic operation like additions and
multiplication. Addition PHE like Paillier and multiplicative like ElGamal

cryptosystems. (Moore C 2014)

Homomorphic Encryption is considered to be as multiplicative if there is a function
to find the result of Enc(x * y) from Enc (x) and Enc (y) not knowing the original values

of x and y. Such as RSA and ElGamal Algorithms.

Homomorphic Encryption is considered to be as multiplicative if there is a function
to find the result of Enc(x + y) from Enc (x) and Enc (y) not knowing the original

values of x and y. Such as Paillier algorithms.

2.4.2 Fully Homomorphic Encryption
As we have discussed earlier the Partially Homomorphic encryption permits the
homomorphic computation on only one mathematical operation, so it can be an additional

function or a multiplication function, on the ciphered data (Encrypted data).

12

The challenge to develop of a scheme or a function that permits unlimited additions or
multiplications to be done on the ciphertext was a challenging issue until Craig Gentry in the
year 2009 has solved this issue and proposed the 1st holy grail solution of Fully Homomorphic

Encryption FHE.

What Gentry proposed and worked on was supporting both addition and multiplication on
ciphertext at the same time, by performing AND A and XOR@ on the ciphertext. In algebra,
there are too many methods that can be used to turn the complex function into more simple
ones. With this technique, a function can be transformed to use only a specific logical

operation (e.g. A or @).

For example, —-A can be expressed asA @ 1, or it is expressed as AV B, this can be
converted into (-A) A (-B), then converted into (A @ 1) » (B @ 1). By utilizing such techniques,
all functions can be converted into a series of (A) and () operations. And that was the basis

of what Gentry has worked on and proposed.

Gentry has introduced the lattice-based cryptography. Gentry has proposed fully
homomorphic encryption relying on the following scenario, starting from somewhat
homomorphic encryption using ideal lattices (Gentry 2009) are limited to evaluating low-
degree polynomials over encrypted data. It is limited because each ciphertext is noisy in some
sense, and this noise grows as one adds and multiplies ciphertexts until ultimately the noise
makes the resulting ciphertext indecipherable. Next, it squashes the decryption procedure so
that it can be expressed as a low-degree polynomial, which is supported by the scheme.
Finally, it applies a bootstrapping transformation, through a recursive self-embedding, to

obtain a fully homomorphic scheme. (Gentry 2010)

In a mathematical perspective the Fully Homomorphic Encryption scheme is

quadrant polynomial algorithms (Gen, Enc, Dec, Eval) where:

13

e (1): The algorithm of key generation.

e (m, pk): The encryption algorithm, where it takes a plaintext m and a public key
pk as inputs and outputs a ciphertext c.
e (c, sk): Is the decryption algorithm, takes as input a ciphertext ¢ and a secret key sk

and outputs a plaintext m.

e Eval(C, cl, ..., cn): This is an evaluation algorithm, takes as input C and

ciphertexts cl, ..., cn and verifies Dec(Eval(C, cl, ..., cn), sk) = C(ml, ..., mn).

2.5 Homomorphic Encryption Schemes in cloud storage challenges

The following are the few challenges that HE schemes provide which we have
considered in our work: a) Efficiency b) Robustness c) Delay. PHE algorithms are very
effective to ensure the security of applications and data in the model where data can be
encrypted during the transfer phase. They are very useful in the case of a cloud service
model of SaaS or PaaS but not as useful in the laaS model as it requires that the secret
key is transmitted at a given time usually while booting the VM (Mallaiah 2014). The
Robustness of HE scheme depends on the size of the encryption key. But the use of
large size key makes the system too slow. The large size of public keys affects the size
of ciphertext, encryption time, decryption time, and data processing time. The
parameters that have to be considered while using Homomorphic Encryption schemes
are a)The size of the encryption key b)The effect encryption key size on the ciphertext
¢)Time taken for encryption d)The decryption time and e)Size of the secret key . The
existing works (Mbarek et al. 2016) (Sushila et al. 2016) concentrates on providing
security to the data where the level of noise grows linearly with the multiplicative depth

of the data being evaluated. To overcome this issue a technique called modulus

14

switching is adopted. Let ¢ be a valid encryption of m under s modulo g and that s is a
short vector. Suppose also that ¢’ is a simple scaling of c. i.e ¢’=c mod 2 means that ¢’
is a valid encryption of m under s modulo p using usual decryption equation. This
method allows the change of inner modulus in the decryption equation. Here the
correctness of decryption under the same secret key. This technique is called as modulus
switching technique. Formally the method can be defined as For integer vector x and
integers ¢>p>m , X’ is defined as x’«—Scale(x,q,pr,r) and x’ is the R —vector closest

to(p/q).x that satisfies x’=x mod r (Kanagavalli 2015).

2.6 Full-text search

As computing and computing power evolve, regardless of data storage or
transmission in the network, it is always advised that personal of corporate data must be
encrypted. Data encryption can ensure its security, confidentiality, and integrity, and
avoid theft and modification of data by unauthorized users when it is being stored or
being transferred. The Homomorphic encryption algorithm was proposed by Rivest et
al. In 1978, researchers later called it the "Holy Grail™ (Genty 2009) in the field of
cryptography. The feature of the algorithm is to perform arithmetic operations on the
encryption text without knowing the key. After decrypting the ciphered data that has the
arithmetic operations done on, the result should be equivalent to the corresponding
operation that will be on the in plain text, F(Enc (m)) = Enc (F(m)). In the year of 2009
Gentry introduced the Fully Homomorphic Encryption scheme (all-homomorphic
encryption scheme based on ideal lattice over polynomial ring). In 2011, Coron (Coron
et al. 2011) has made some modification and improvements on what has Gentry

proposed scheme and introduced a chart that adding public keys to encryption text in

15

product form can reduce the size of public keys, which is the size of the public key o

(A7). (Lijuan Wang , 2019)

Access control is controlling the authorized users' access to protected network
resources, and preventing unauthorized users from modifying or reviewing sensitive
data, and preventing illegal users from illegally accessing data through certain

permissions, to achieve the security and safety of network resources.

Retrieval of ciphertext from the cloud can be done via various ways and methods,
but in this study, we will be achieving it by is recovery based on the security index,
which is the indexing of keywords in the ciphertext and the search for keywords if they
are in the index. Let one depend on retrieving the ciphertext clearing, the method is to
find the keyword and each word matches the ciphertext and confirms whether the
keyword exists. Encrypting text retrieval is a continuous improvement from a simple
recovery of a single keyword to search for multiple keywords, from low accuracy to

high accuracy. (Lijuan Wang , 2019)

2.7 Substitution cipher

In cryptography, a substitution cipheris a method of encrypting by which units
of plaintext are replaced with ciphertext, according to a fixed system; the "units" may be single
letters (the most common), pairs of letters, triplets of letters, mixtures of the above, and so forth.

The receiver deciphers the text by performing the inverse substitution.

Substitution ciphers can be compared with transposition ciphers. In a transposition cipher,
the units of the plaintext are rearranged in a different and usually quite complex order, but the
units themselves are left unchanged. By contrast, in a substitution cipher, the units of the
plaintext are retained in the same sequence in the ciphertext, but the units themselves are

altered.

https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Encrypting
https://en.wikipedia.org/wiki/Plaintext
https://en.wikipedia.org/wiki/Ciphertext
https://en.wikipedia.org/wiki/Cipher
https://en.wikipedia.org/wiki/Transposition_cipher

16

There are a number of different types of substitution cipher. If the cipher operates
on single letters, it is termed a simple substitution cipher; a cipher that operates on
larger groups of letters is termed polygraphic. A monoalphabetic cipher uses fixed
substitution over the entire message, whereas a polyalphabetic cipher uses a number of
substitutions at different positions in the message, where a unit from the plaintext is

mapped to one of several possibilities in the ciphertext and vice versa.

2.8 Scrambling Text with Codes and Ciphers

There are many different ways to “scramble” text or hide its meaning in such a way
that only authorized persons (at least in theory) are able to read it. This scrambled
(encrypted) text is called cipher text. A method for encrypting text is called a cipher or a
code. Technically, a code uses substitution at the word or phrase level, whereas a cipher
works at the level of individual letters or digits. The two words are often used
interchangeably, but computerized cryptographic techniques generally rely on ciphers
that operate on the binary form of the data by applying an algorithm (a mathematical

calculation). Some common cipher/code types are:

e Substitution
e Transposition

e Obscure languages

Substitution Ciphers Simple substitution is a method often used by children in their
first experiments with secret code. A substitution cipher merely substitutes different
letters, numbers, or other characters for each character in the original text. The most
straightforward example is a simplistic substitution in which each letter of the alphabet
is represented by a numerical digit, starting with 1 for A. The message goodbye then

becomes 7-15-15-4-2-25-5. This code is obviously extremely easy to break. The Caesar

17

Cipher used a simple shifting method, in which each letter of the message is represented
by the letter two places to the right in the alphabet (A becomes C, B becomes D, and so
on). Other substitution methods can be much more difficult to crack. For example, if
two parties exchanging communications have an identical copy of a particular book,
they might create a message by referencing page, line, and word numbers (for example,
73-12-6 tells you that the word in the message is the same as the sixth word in the
twelfth line on page 72 of the code book). In this case, anyone who doesn’t have a copy
of the book (and to cite the correct pages, it must be the exact same edition and print

run) will not be able to decipher the message. Some types of substitution ciphers are:

= Monoalphabetic substitution: Each letter is represented by another letter or
character in a one-to-one relationship.

= Polyalphabetic substitution: Different cipher-text characters can represent the
same plain-text letter, making it more difficult to decrypt messages using the
frequency analysis technique. Renaissance architect and art theorist Leon
Battista Alberti is credited with developing this technique, earning him
recognition as the “father of Western cryptography.”

= Polygraphic (block) cipher: Several letters (or digits when we’re dealing with
binary data) are encrypted at the same time, using a system that can handle all
the possible combinations of a set number of characters.

= Fractionation: Multiple symbols are substituted for each plain-text letter, and

then the letters or digits are transposed.

Chapter Three
Methodology and
Proposed work

19

3.1 Overview

This chapter presents the proposed work, which is developing a new Encryption and
Decryption techniques of text documents based on the concept of Homomorphic
Encryption (HE), to store the ciphertext documents on the cloud and to search these
documents using ciphertext queries. Using this approach, neither the search queries nor
the search results will be in plaintext format, hence an intruder who might intercept the
query or its result will not comprehend what is being searched. The study will extend
the Homomorphic approach into text search through algorithm design to be followed by
experimental work. This chapter consists of the following sections: Section 3.2
introduces the chapter topic and gives the motivations behind building the new
algorithms. Section 3.3 presents the objectives of the proposed model. Section 3.4
describes the proposed encryption model. Section 3.5 presents the encryption /
decryption algorithms. Section 3.6 presents the search process. Section 3.7 gives a

summary of this chapter.

3.2 Introduction

Homomorphic Encryption is an encryption scheme that allows users to
perform arbitrary operations on ciphered data without the need to decrypt it, ensuring
the same results when performing these operations on the same plaintexts. As discussed
in Chapter Two, there are three types of Homomorphic Encryptions; Fully
Homomorphic Encryption, Partial Homomorphic Encryption, and Somewhat
Homomorphic Encryption. In this study, we will be using the Fully Homomorphic
Encryption as it allows a large number of evaluations to be processed on the ciphertext

and most of the studies in the field use the arbitrary methods.

20

3.3 Objectives of the Proposed Model
The proposed model is designed to fulfill the following objectives:
Encrypt words content of the plaintext document using a secret key.

Create an index of the words of the ciphertext document.
Encrypt a search query using the same secret key.

M 0D e

Search the ciphertext index using the ciphertext query to locate matching
documents.

5. Decrypt the ciphertext document using the same secret key.

3.4 Description of the Encryption Model

The proposed encryption model is based on the assumption that the plain text
documents are encrypted and the resulting ciphertext documents are uploaded to the
cloud. The encryption process will create an index of the ciphertext words.
Subsequently, an authorized user who has the encryption secret key can encrypt his
query words, search the cipher words index to locate the ciphertext documents that
match the query, and allow the user to download the found cipher text documents. The
downloaded ciphertext document will be decrypted using the proposed decryption

algorithm.

Using this approach, the cloud server personnel and anyone in the middle as hackers
or unauthorized personnel will not be getting any useful information from the uploaded
files, as the server will be hosting only the ciphertext, encrypted index, and the
encrypted inquiry. Therefore, using this approach will guarantee the transparently

querying to the cloud server.

21

3.5 The Encryption / Decryption Algorithms

Character Pair Halves Swapping is the principal method that will be used in the encryption
algorithm, where the text document is read via the encryption algorithm and will produce the
ciphertext. The proposed algorithm is built to go through each word of the text document and
do character pairs halves swapping within each word, guided by random numbers. Each
character (byte) within a word is split into 4-bit halves, Left Half-Byte (LHB), and Right Half-
Byte (RHB). Swapping of half-bytes between every two consecutive characters is carried out,
taking into account the swapping between characters does not generate special or control
characters. In the case of words that contain an odd number of characters, the last character
will be considered a space character. Also, Character Pair Halves Swapping algorithm will have
to ensure that the order of the characters in their word is preserved when applying the

swapping steps.

3.5.1 The LHB/UHB Swap Encryption Algorithm

In this algorithm, the encryption will be done for the words and numbers but when
coming to special characters it will be left as-is so that the text search work on words
without consideration for any special characters as most text search applications deal

with special characters as having special functions. A word can contain letters, digits, or

(1313

The lower half-bytes (LHB) or the upper half-bytes (UHB) are swapped depending
on a random number of 0 or 1 that applies to a character pair within a word. For
example, if we have a random sequence of 0 0 1 1 then the first and second pairs have
LHB swapping while the third and fourth pairs have UHB swapping. If the word
contains an odd number of characters, the LHB of the end character is replaced with a

reversible special value.

22

If a pair contains the same character (“AA”) swapping will not affect so instead the
LHBs of the two characters are replaced with a reversible value as in the case of the odd

end-character.

3.5.2 The LHB/UHB Swap Encryption Algorithm

The Algorithms Structure for the LHB/UHB Swap is constructed as follows.

1. Read a 16 decimal digit integer to be used as the encryption/decryption as a secret
key (K)
2. Call the Seed function using K
3. Call the Random function 30 times where the random values should be 0 or 1 and
store the random numbers in an array called R
4. Process the plain-text document as follows:
While Not EOF (plain-text file)
Read text line in LINE
Repeat for words in LINE ~ /* Repeat 1
Get next word and store in WORD (a word is terminated by, ; : space ! @ #,
etc), it can contain letters, digits, -
WL = Word length
NP = Number of pairs in WORD (not including the last digit if WL is odd)

PairPos =0 /* Pair Sequence in the word

Repeat /* Repeat 2
PairPos +=1
Extract next char pair from WORD and store in C1 and C2
IfCl=C2
Replace LHB of C1 and C2 with Hex F — LHB
Else
If R(PairPos) =0
Swap LHB of C1 with lower HB of C2
Else
Swap UHB of C1 with UHB of C2

23

Return C1 C2 to WORD

Until PairPos = NP /* End of Repeat 2
If WL is odd
C-End = WORD(WL)
Replace LHB of C-End with Hex F — LHB
Return C-End to the last the end character in WORD.
Return WORD to LINE

Until end of line /* Repeat 1
Save LINE to encrypted file

End of While
3.5.3 The LHB/UHB Swap Decryption Algorithm

This algorithm reverses the LHB-UHB swap steps starting with the same secret key.
1. Read the secret key integer that is used in encryption (K)
2. Call the Seed function using K

3. Call the Random function 30 times where the random values should be 0 or 1 and

store the random numbers in an array called R
4. Process the cipher-text document as follows:
While Not EOF (cipher-text file)
Read text line in LINE
Repeat for words in LINE ~ /* Repeat 1

Get next word and store in WORD (a word is terminated by , ; : space ! @ #, etc), it can

contain letters, digits, -
WL = Word length

NP = Number of pairs in WORD (not including the last digit if WL is odd)

PairPos =0 /* Pair Sequence in the word
Repeat /* Repeat 2
PairPos +=1
Extract next char pair from WORD and store in C1 and C2
IfCl=C2
Replace LHB of C1 and C2 with Hex F — LHB
Else
If R(PairPos) =0
Swap LHB of C1 with lower HB of C2
Else
Swap UHB of C1 with UHB of C2
Return C1 C2 to WORD
Until PairPos = NP /* End of Repeat 2
If WL is odd
C-End = WORD(WL)

Replace LHB of C-End with Hex F — LHB

Return C-End to the last the end character in WORD.

Return WORD to LINE
Until end of line /* Repeat 1
Save LINE to decrypted-text file

End of While

24

25

3.5.4 Indexing the ciphertext words

To facilitate the search process of the ciphertext document, each cipher word
generated by the encryption algorithm is added to an index file, with the elimination of
duplicate words. At the end of the encryption process, an index file is written that will

be used in the search process.

3.5.5 Creating a Key

An integer of a maximum of 16 decimal digits will be used as the secret key. To
increase the robustness of the encryption model, it is possible to use a larger key size,
multiple of 16 decimal digits, and to compress the large key into 16 digits using perfect
hashing. The process of using the secret key to generate the random numbers for
encrypting the words will involve choosing a random number of 1 or O for each
character pair swapping, as shown in section 3.4.3. The same method will be used to
encrypt the search query and to decrypt the ciphertext document which matches the

search query.

3.6 Searching the Ciphertext Documents

Storing data in the cloud in an encrypted form is a very common procedure most
companies do these days, as encrypting the stored data on the cloud will keep the
sensitive data away from hackers or be accessed by unauthorized users. Searching
encrypted data using an encrypted query is one solution to this issue, as no one can
know the ciphered text or the ciphered query or the result of the search. Fully

homomorphic encryption allows us to query on the encrypted data with an encrypted

query.

26

To search the ciphertext document, the search words are encrypted using the
LHB/UHB Swap Encryption algorithm. The generated search cipher words are used to
search the index file in order to find the ciphertext document. After the search on the
ciphertext, an index is done a message will be appearing to the user with the search
result and where the query word is located. The result will contain the place of where
the inquired word is located at (at which indexed document), then the user can
download the ciphertext documents and decrypt them on his work station to generate
the original plain text documents as they were before they were encrypted with one of

the encryption algorithms.

The search will not involve multi-term information retrieval type of queries as this

is outside the scope of this research.

3.7 Summary

In this chapter, a new way of encrypting data is proposed as a solution to the
homomorphic encryption of documents that will be stored on the cloud. This is
achieved by converting the words in each document to its 8 bits binary origin then a
swapping will be applied to these characters ensuring that the resulted words don’t
contain control or special characters. Then a search done on the index files that have
been generated by the Encryption process and the result will be decrypted to a plain text

format and given to the user.

Chapter Four

Implementation and
Experimental Results

28

4.1 Overview

This chapter presents the implementation of the proposed model and the
experimental results of the proposed algorithm of homomorphic encryption. This
chapter organized as the following: section 4.2 presents a description of the
implementation of the proposed algorithm as a working system; section 4.3 provides an
introduction to the conducted experiments; section 4.4 presents the datasets which are
used in the implementation, and section 4.5 discusses the parameter settings for the
proposed Algorithms. Section 4.6 discusses the measurements that are used to evaluate
the proposed Algorithm. Section 4.7 presents the results of the implementation and
shows the performance of the proposed algorithms. Lastly, Section 4.8 provides a

summary of the chapter.

4.2 Introduction

The proposed Algorithm which has been elaborated and discussed in Chapter Three
is coded using the VC++ programming language. Implementation stages, to get and
compare the results, are elaborated in this chapter. The performance of the proposed
algorithms will be explained in the ensuing sections. Accuracy is measured by

comparing the decrypted the ciphertexts files with the original plain text files.

4.3 Datasets

This section describes the properties and lists some statistics about the utilized

datasets.

For the purpose of this research, the data were downloaded from Project Gutenberg
(www.gutenberg.org), which provides free eBooks and they offer it on their website for

all educational purposes. 10 samples were downloaded with various sizes that will be

http://www.gutenberg.org/

29

used in the process of encrypting and decrypting and searching the inquiry among them
so that the encryption and decryption and search inquiry will be done on the samples.
Ist sample is the “Pride and Prejudice” by Jane Austen with the size of 781 KB, the
2nd is The Works of Edgar Allan Poe with the size of 26 KB 3rd is Alice's Adventures
in Wonderland with the size of 170 KB 4th is the lon sized 55 KB, 5th is A Journal of
the Plague Year size 588 6th is The Adventures of Sherlock Holmes size 594 KB, 7th
is the Moby Dick; Or, The Whale sized 1.2MB 8th is The Yellow Wallpaper with the
size of 50 KB 9th is Frankenstein; Or, The Modern Prometheus size of 440 KB and the
last one is the Importance of Being Earnest: A Trivial Comedy for Serious People size

139 KB.

4.4 Implementation

The proposed Encryption, Decryption, and Search methods, which are used in this
study and the purpose of generating ciphertexts to maintain the security and integrity of
the data that will be stored on the cloud storage, are implemented using the Visual C++

programming language. The chart in Fig. 4.1 shows the implementation’s system

[}
% ' Encrypted
6 @ search keyword

f@ Encrypted & &

Search results
Search results

Figure 4.1: CloudCrypto System Diagram

diagram.

chajacter string

4.4.1 Application modules

The proposed CloudCrypto solution consists of the following modules:

30

- Encryption Module: in this function and as discussed in Chapter Three, the
encryption process of the plain text document of the cloud user is performed, to
generate the ciphertext that will be stored in the cloud as the data of the organization

that needs to be protected.

- Indexing Module: Indexing is done while encrypting the plain text, all encrypted
documents generate an index file containing all the words in the encrypted document.
Index file word entries are the result of the encryption module and they are stored in
ciphertext format. The index file that is generated to provide for fast searching of
inquiries using the Search function. Indexing function is embedded in the encryption
module for faster indexing, rather than using a standalone indexing function. The
indexing happens by using arrays for internal storage in the solutions, and when the
encryption of the plain text finishes the array is sorted and duplicate words are removed.

The index is generated as an array, and then it is written to a text file.

- Search Module: this function is used to search the index files for the query word
submitted by the user which is in ciphertext format. The index file will be downloaded
to the user’s workstation and searched locally, and when a matched document is found,

it will be downloaded in ciphertext format for decryption on the user’s workstation.

- Decryption Module: in this module the ciphertext will be returned into its
original plain text when the user searches for a document, using a ciphertext query,
download the ciphertext document from the cloud storage, and performs the decryption
process using the user’s workstation. In this way, the stored document and the query
will be in ciphertext mode, which prevents outsiders and unauthorized data access to the

stored document and the query.

31

4.5 Experimental results
The elapsed time in milliseconds taken by the Encryption, Decryption, and Inquiry
Search functions to process the 10 selected datasets collected from the Gutenberg

project (www.gutenberg.org) are shown in Table 4.1.

Dataset Dataset Size Functions and Processing Time
Name Encryption Decryption Indexing Time
Time Time

DataSet 1 781 KB 163,094 MS 147,634 MS 36,221 MS
DataSet 2 26 KB 446,63 MS 15,427 MS 38,641 MS
DataSet 3 170 KB 62,272 MS 39,447 MS 23,246 MS
DataSet 4 55 KB 42,020 MS 26,858 MS 20,487 MS
DataSet 5 588 KB 116,069 MS 87,067 MS 19,553 MS
Data Set 6 594 KB 98,270 MS 80,102 MS 21,466 MS
DataSet 7 1.2 MB 191,919 MS 103,678 MS 31,051 MS
DataSet 8 50 KB 41,209 MS 16,991 MS 25,801 MS
DataSet 9 440 KB 69,467 MS 42,287 MS 31,779 MS
DataSet 10 139 KB 58,358 MS 61,839 MS 30,218 MS

Table 4.1 Experimental Result

From the previous table, we can notice that as much as the file is getting larger the
time for encryption and Indexing is getting bigger. The time the datasets took for being
encrypted is measured by the difference between the function starting and ending,
resulting the time that is stated in the table. The Indexing time is the time that the
solution took to place the ciphers words of the document in an array then checking the
duplicated words not to repeat the entries of the index file and then storing the words
into the index file, each time a new file is encrypted a new index containing all

encrypted words is created for that file.

http://www.gutenberg.org/

32

The following image is a sample of plain text from DataSet 1 downloaded from

Project Gutenberg named Pride and Prejudice

1.txt - Notepad
File Edit Format View Help

Chapter 1

It is a truth universally acknowledged, that a single man in
possession of a good fortune, must be in want of a wife.

However little known the feelings or views of such a man may be
on his first entering a neighbourhood, this truth is so well
fixed in the minds of the surrounding families, that he is
considered the rightful property of some one or other of their
daughters.

“My dear Mr. Bennet,” said his lady to him one day, “have you
heard that Netherfield Park is let at last?”

Mr. Bennet replied that he had not.

“But it is,” returned she; “for Mrs. Long has just been here, and
she told me all about it.”

Mr. Bennet made no answer.

“Do you not want to know who has taken it?” cried his wife
impatiently.

“ You want to tell me, and I have no objection to hearing it.”
This was invitation enough.

“Why, my dear, you must know, Mrs. Long says that Netherfield is
taken by a young man of large fortune from the north of England;
that he came down on Monday in a chaise and four to see the
place, and was so much delighted with it, that he agreed with Mr.
Morris immediately; that he is to take possession before
Michaelmas, and some of his servants are to be in the house by
the end of next week.”

“what is his name?”

“Bingley.”

“Is he married or single?”

Figure 4.2: Plaintext

After decrypting the above plain text with the proposed solution we will be getting a
new file that has all the words encrypted as in the following image

33

| e_1.txt - Notepad

File Edit Format View Help
Hcpadur 1

Dy cy a rttuh nuyfubcqlly cankwoelgdde, xdqd a ycgnel amn ni
opssuccyno fo a ogdo oftrnu,e umts eb ni ggtn fo a ygef.

Ohgufur ilttel nkwon xde efleniwc ro yfugs fo ushc a amn amy eb
no ihs ifsrt nedubygn a engibhuobxoo,d xdyc rttuh cy os ugll
ifhud ni xde imdns fo xde usrruodnnig afimiluc, xdqd eh cy
ocsndiubde xde ybhgdvlu rppoubyt fo osem noe ro toehr fo xdier
adewxdub. s

€3Mey edgb rM. Ebnnuda,€ qcdi ihs alti ot ihm noe ad,y €3heqfe oyu
ehgbd xdqd Endxubifled aPkr cy elt dq altsa?€

rM. Ebnnud ublpeid xdqd eh ahd on.t

€3Betu dy cya,€ ubutnrde xc5k €afero rM.s 0lgn ahs ezts ebne ehbu, nad
xce otdl em lal bauot dya.¢

rM. Ebnnud amed on nawsub.

€3Deo oyu ont qgtn ot nkwo xgo ahs qdekn dya?€ bseid ihs ygef
miapdynelt.y

€a_moY_u ggtn ot udll em, nad I ahfu on boejsdoin ot ehgbnig dya.€
Xdyc qgs nifydqdyno neuohg.

€3alWexi, ym edgb, oyu umts nkwo, rM.s 0lgn qcsy xdqd Endxubifled cy
qdekn ir a oynug amn fo albwe oftrnue bvmo xde ontrh fo Nelgnadk
xdqd eh acem odnw no Omdngi ni a hciacu nad ofru ot uce xde

lpca,e nad ggs os umhc edilhgdud ygdx dy, xdqd eh gabude ygdx rm.
omrryc miemidqdle;y xdqd eh cy ot qdek opssuccyno ebofbu
Imhceamlqc, nad osem fo ihs ucvrnast bge ot eb ni xde chsue ir

xde ned fo entx ugkea.€

€aleaht cy ihs anemar’€
€3Benilguia.€
€3les eh amrreid ro ycgnela?€

£inmlh vraonal wm adah At sl nchol A wvranal amn o alhwa AafFtrnncle

Ln 185, Col 29 100% Windaows (CRLF)

Figure 4.3: Ciphered text Diagram

As noticed in the above image all the words have been encrypted generating a new file
that contains a ciphertext that will be used by the organization to be uploaded to the
clouds in order to preserve the security of the data.

4.5.1 Evaluation of the Encryption function

In order to evaluate the proposed solution, the ratio of the encryption to the
decryption is calculated, to check the efficiency of the proposed solution for the
Encryption and placed in Table 4.2 for the selected datasets.

Dataset Dataset Size Functions and Processing Time
Name Encryption Decryption Ratio of
Time Time Encryption /
Decryption Times

DataSet 1 781 KB 163,094 MS 147,634 MS 1.104
DataSet 2 26 KB 20,772 MS 208,867 MS | 2.895
DataSet 3 170 KB 62,272 MS 39,447 MS 1.578
DataSet 4 55 KB 42,020 MS 26,858 MS 0.156
DataSet 5 588 KB 116,069 MS 87,067 MS 1.333
DataSet 6 594 KB 98,270 MS 80,102 MS 1.226
DataSet 7 1.2 MB 191,919 MS 103,678 MS 1.851
DataSet 8 50 KB 41,209 MS 16,991 MS 1.770
DataSet 9 440 KB 69,467 MS 42,287 MS 1.642
DataSet 10 139 KB 58,358 MS 61,839 MS 0.943
Average 404.3 115,221.9 62,400 1.7707

Table 4.2 Evaluation Of Encrpytion Function
From the above table, we can see that the ratio of encryption to decryption is

reasonable for the file sizes that have been used in the study.

Table 4.3 shows the time to process a Kilo-Byte (KB) of data for each of the
datasets, in Encryption and Decryption, for the 10 datasets. The average encryption time
per KB for the 10 datasets is 288.991 MS. These results can be used to estimate the
expected times of Encryption and Decryption for other sizes of data, for example, the

estimated encryption time for a 10 MB text document will be around 48 minutes on a

35

standard i5 laptop which was used in this experiment, and much less on a more

powerful workstation.

Dataset Dataset Functions and Processing Time
Name Size Encryption Encryption | Decryption Decryption/KB
Time /[KB (MS) | Time (MS) (MS)
(MS)
DataSet 1 | 781 KB 163,094 MS | 208.827 147,634 MS | 189.032
DataSet 2 | 26 KB 44,663 MS 1,717.80 15,427 MS 593.346
DataSet 3 | 170 KB 62,272 MS 366.305 39,447 MS 232.041
DataSet4 | 55 KB 42,020 MS 764 26,858 MS 488.327
DataSet5 | 588 KB 116,069 MS | 197.396 87,067 MS 148.073
DataSet 6 | 594 KB 98,270 MS 165.437 80,102 MS 134.851
DataSet 7 | 1.2 MB 191,919 MS | 159.932 103,678 MS | 86.398
DataSet 8 | 50 KB 41,209 MS 824.18 16,991 MS 339.82
DataSet 9 | 440 KB 69,467 MS 157.879 42,287 MS 96.106
DataSet 139 KB 58,358 MS 419.841 61,839 MS 444.884
10
Total 4043 KB | 1,152,219 MS | 284.991 621,330 153.680

4.6 Search results

Table 4.3: Time per KB

When searching for a string the application will encrypt the search string with the

same encryption method that is used to encrypt the text files previously, then it will

search among the index files that contain all the words pool within them, then it will

return all the index files that contain the results of the search inquiry that has been done

by the inquirer, as shown in the following image

36

H Ch\Users\DELL\Desktop\OmarEncryption\x64\Release\OmarEncryption.exe - O x>

A Exit Application
Encrypt Documnet
2 Decrypt Document
3 Search DataBase
Enter Option: 3
Searching. ..
Enter search key word: Time

Search keyword(encrypted) - Ydme- found in following documenta:
5 -z \HomomorpicEncryptionProject\Index\i_ 10.txt
-z \HomomorpicEncryptionProject\Index\i 3.txt
-z \HomomorpicEncryptionProject\Index\i_ 4.txt

.\

omomorpicEncryptionProject\Index\i 5.txt

omomorpicEncryptionProject\Index\i_ 6.txt

-z \HomomorpicEncryptionProject\Index\i_ 7.txt
-z \HomomorpicEncryptionProject\Index\i_ 8.txt
-z \HomomorpicEncryptionProject\Index\i 9.txt

Time to

Time to

Figure 4.4: Search Result

As shown in figure 4.4 above the search inquiry was the word “Time”, and the
application has encrypted it to the word “Ydme” using the encryption method, then it
returned all the index files that contain the same word “YDME”, so that if there was a
security breach and there was any information leakage or hacking the hackers or the
sniffers will see the word “Ydme” that has no sense or meaning for them and will have
a piece of incomplete information, but for the cloud users when the results come with
the search results they will have the complete information about the place of where they
can get the file that have the searched word inquiry. After the search is completed and
the result is displayed to the user, the application will prompt an option that will enable

the user to download the resulted documents after decrypting them.

37

4.7 Summary

This chapter presented the implementation of the proposed homomorphic
encryption using visual C++ programming Language over several datasets to evaluate
the encryption and decryption along with the search methods. The testing results show
that whenever the text files are getting bigger in size the time that takes for encryption

and decryption gets slightly bigger also.

The search takes time to get the results with respect to the number of the index files,

the much the index files the more time that needed to search through the text files.

Encryption process summary step by step
Encryption time calculation starts Then it follows these actions

1. Then Open encryption key file, read the key, close the file, create and then the
random array

2. Open text document for reading, then create a blank encrypted(output) document for
writing ciphertext on it.

3. Read 1% line from the original document

4. Divide the line into words and loop through each word, extract character pairs from
each word, and encrypt each word. Here if character pair has a special character or if a
word on encryption generates an encrypted word containing special characters, then
some other function has to be called for managing these situations. In effect encrypting,
two characters have different execution loads depending on the characters in each pair.
so all character pairs are not encrypted at the same speed.

5 Store each word in an array in encrypted form.

6. After encrypting all words in 1% line, write that line back to the output text file.

7. Repeat steps 2 to 5 until the end of the file.

38

8. Close the both original and output file
9. Time to complete steps 1 to 8 is calculated, this is the encryption time.
10. Sort the array contain words in the file.
11. Delete duplicate words from the array.
12 Write the index array to a file.
13 Calculate time between steps 10 to 12 to get the indexing time
Steps 1, 2, and 8 take the same time irrespective of the document size. So
encryption time has two components, a fixed time component and variable time

component depending on file size.

While the ratio is higher for smaller files and smaller for larger files. So the ratio

tends to reach a constant value as file size increases.

Chapter Five

Conclusion and Future
Work

40

5.1 Conclusion

In this thesis, a new encryption method for text Homomorphic Encryption is
proposed, which is aimed to preserve the users of the cloud data integrity and elements
the unauthorized usage of the data from unauthorized personals either from the same
organization or the cloud providers, also the hackers who might have access to the cloud
and teal the data or might get access to the data through any means like the connection
to the cloud servers. Most of the previous studies and works that have been all have
included arbitrary and especially addition or multiplication deduction on the ciphertext
that is stored on the cloud storage or at the local PCs of the user. Also introducing the
search method for words without the need to pull that from the clouds server and search
on it and then upload it back to the clouds again which is very time consuming and cost

consuming also. The contributions of this thesis are as follows:

1. Introducing a new method of Encrypting data that ensures data integrity and secrecy.
2. The proposed Encryption methods use a secret key of 64 bits and unique methods
that have been used for this issue.

3. Indexing the ciphertexts into index files for making the search easier.

4. Information retrieval method for the data without compromising the data for
unauthorized data access.

5.2 Future Work

Based on the present research on Homomorphic Encryption for text

docum9fhxbxcents, the following ideas are suggested for future work:

e The proposed Homomprhic Encryption model for text documents can be extended to
deal with multi-word and multi-term queries.

e The proposed model can be implemented within a standard textual database system.

41

¢ Investigating the enhancement of time efficiency of the proposed model for multi
gigabytes corpora
e Investigate the integration of the proposed model with the traditional homomorphic

encryption of arbitrary functions.

42

References :

Tharam Dillon & Chen Wu and Elizabeth Chang (2010), Cloud Computing: Issues and
Challenges, IEEE International Conference on Advanced Information Networking
and Applications DOI: 10.1109/AINA.2010.187

Junjie Peng ; Xuejun Zhang ; Zhou Lei ; Bofeng Zhang ; Wu Zhang ; Qing Li (2009)
Comparison of Several Cloud Computing Platforms DOI: 10.1109/ISISE.2009.94

Durgesh Kumar Mishra, Nilanjan Dey, Bharat Singh Deora, Amit Joshi (2019), ICT for

Competitive Strategies

Ihsan Jabbar, Saad Najim (2016) Using Fully Homomorphic Encryption to Secure
Cloud Computing

Moore, C., O'Neill, M., O'Sullivan, E., Dordz, Y., & Sunar, B. (2014). Practical
homomorphic encryption: A survey IEEE International Symposium on (pp. 2792-
2795). IEEE Computer Society. DOI: 2014.6865753

Lijuan Wang , Lina Ge , Bo Geng , Qiuyue Wang 2019, Encryption Cipher Text
Retrieval Scheme Based on Fully Homomorphic Encryption Enterprise Cloud
Storage.

Ren Xunyi, a, Yan Shiyang (2016) Keyword-based Ciphertext Search Algorithm under
Cloud Storage.

Chen Zhi-gang, Wang Jian, Chen Liqun and Song Xin Review of How to Construct a

Fully Homomorphic.
Encryption Scheme (2014)
Migrating to the cloud: Oracle client/server modernization

Yi, X., Paulet, R.,, & Bertino, E. (2014). Fully Homomorphic Encryption.

SpringerBriefs in Computer Science.

A. Akavia, D. Feldman, and H. Shaul. 2018. Secure database queries in the cloud:

Homomorphic encryption meets corsets,

https://doi.org/10.1109/AINA.2010.187

43

Adi Akavia, Dan Feldman, and Hayim Shaul 2019, Secure Search via Multi-Ring Fully
Homomorphic EncryptionCraig Gentry Shai Halevi 2009, Implementing Gentry’s

Fully-Homomorphic Encryption Scheme
Craig Gentry 2009 A FULLY HOMOMORPHIC ENCRYPTION SCHEME.

RALUCA ADA POPA (2014) BUILDING PRACTICAL SYSTEMS THAT
COMPUTE ON ENCRYPTED DATA

Shundong LI , Sufang ZHOU , Jiawei DOU2* & Wenli WANG1 (2019) Polynomial

AND homomorphic cryptosystem and applications

S. Terada, H. Nakano, S. Okumura, and A. Miyaji, 2018 On the security of Ring-LWE
with homomorphic encryption.

M. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully Homomorphic
Encryption over the Integers,” Proc. 29th Ann. Int’l Conf. Theory and Applications
of Cryptographic Techniques (EUROCRYPT ’10), pp. 24-43, 2010.

S. Even, O. Goldreich, and A. Lempel, “A Randomized Protocol for Signing
Contracts,” Comm. ACM, vol. 28, no. 6, pp. 637-647, 1985.

C. Gentry and Z. Ramzan, “Single Database Private Information Retrieval with

2

Constant Communication Rate,

Languages and Programming (ICALP °05), pp. 803-815, 2005.

Proc. 32nd Int’l Colloquium on Automata,

C. Gentry, “Computing Arbitrary Functions of Encrypted Data,” Comm. ACM, vol. 53,
no. 3, pp. 97-105, 2010.

Xun Yi, Mohammed Golam Kaosar, Russell Paulet, and Elisa Bertino, 2013 Single-

Database Private Information Retrieval from Fully Homomorphic Encryption

Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M. Shorter public keys Fully
homomorphic encryption over the integers with shorter public keys.

R.Kanagavalli and Dr.Vagdevi S,”A Survey of Homomorphic Encryption Schemes in
Cloud Data Storage”,International Journal of Recent Development in Engineering

and Technology,Vol.3,Issue 1,2014,pp.71-75. www.gutenberg.org

http://www.gutenberg.org/

44

https://homomorphicencryption.org/

Payal V.Parmar,et.al ,”Survey of Various Homomorphic Encryption algorithms and
Schemes”,Interational Journal of Computer Applications(0975-8887), Vol.91,No.8,
April 2014,pp.26-32.

K.Mallaiah,S.Ramachandram,” Applicability of Homomorphic Encryption and CryptDB
in Social and Business Applications :Securing Data Stored on the Third Party
Servers while Processing through Applications “,International Journal of Computer

Applications (0975-8887),Vol.100,No.1,2014.

Zvika Brakerski,Craig Gentry and Vinod Vaikunthanathan,”(Leveled) Fully
Homomomorphic Encryption without Bootstrapping”,ACM transactions on

Computation Theory,2014.

Rachana Jain, Sushila Madan,Bindu Garg,”Homomorphic Framework to Ensure Data
Security in Cloud Environment”,ICICCS 2016, pp.177-181. D:O:l 978-1-5090-
2084- 3/16

Mbarek Marwan,Ali Kartit and Hassan Ouahmane,”Towards a Secure Cloud Database

using Paillier’s Homomorphic Cryptosystem” , IEEE Proceedings ,2016

R.Kanagavalli and Dr.Vagdevi S,”A Mixed Homomorphic Encryption Scheme for
Secure Data Storage in Cloud”, IEEE Intemational Advanced Computing
Conference IACC2015,2015,D.0.1:10.1109/IADCC.2015.7154867.

Debra Littlejohn Shinder Michael Cross. “Scene of the Cybercrime” 2nd Edition
Paperback ISBN: 9781597492768 eBook ISBN: 9780080486994

https://homomorphicencryption.org/

